
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A multilevel evaluation method for heuristics with an application to the VRPTW

Peer-reviewed author version

CORSTJENS, Jeroen; DEPAIRE, Benoit; CARIS, An & Sörensen, Kenneth (2020) A

multilevel evaluation method for heuristics with an application to the VRPTW. In:

International Transactions in Operational Research, 27(1), p. 168-196..

DOI: 10.1111/itor.12631

Handle: http://hdl.handle.net/1942/27737

This is the peer reviewed version of the following article: [Corstjens, J. ,
Depaire, B. , Caris, A. and Sörensen, K. (2019), A multilevel evaluation method
for heuristics with an application to the VRPTW. Intl. Trans. in Op. Res.],
which has been published in final form at https://doi.org/10.1111/itor.12631.
This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions.

A Multilevel Evaluation Method for Heuristics

with an Application to the VRPTW

Jeroen Corstjens1, Benôıt Depaire2, An Caris1, and Kenneth
Sörensen3

1UHasselt/Research Group Logistics, Agoralaan, Diepenbeek 3590,
Belgium

1jeroen.corstjens@uhasselt.be
2UHasselt/Research Group Business Informatics, Agoralaan,

Diepenbeek 3590, Belgium
2Universiteit Antwerpen/Department Engineering Management,

Prinsstraat, Antwerpen 2000, Belgium

January 27, 2019

Abstract

The field of combinatorial optimisation has inspired the development of
a large number of heuristic solution procedures. These methods are com-
monly assessed using a competitive evaluation methodology that may give
an indication of which algorithm has a better performance. A next step in
the experimental analysis is to uncover ‘why’ one algorithm performs bet-
ter. Which elements are responsible for good or bad performance? How
does the performance of elements vary across the design space? What is
the influence of the specific problem instance that is being solved? We fo-
cus on gaining a better understanding of heuristic algorithm performance
and demonstrate that the application of a proper statistical methodology
can provide researchers insight into how performance is affected by the
different algorithm parameters and components. As an example, we apply
a multilevel statistical analysis to a large neighbourhood search algorithm
for the vehicle routing problem with time windows.
Keywords: Algorithm Performance; Statistical Evaluation; Un-
derstanding; Vehicle Routing Problem with Time Windows; Large
Neighborhood Search; Metaheuristics

1 Introduction

The field of combinatorial optimisation has inspired the development of a large
number of heuristic algorithms which are able to produce good solutions in a
reasonable time. They range from standard construction and improvement al-
gorithms to powerful metaheuristic frameworks. The former two also constitute
an important component in all metaheuristic frameworks (Bräysy and Gend-
reau, 2005).

1

The most common approach to evaluate heuristics for an optimisation pro-
blem is by studying their performance on a set of standard benchmark problems.
This type of evaluation results in a competition between state-of-the-art met-
hods in the literature. A newly developed heuristic algorithm is considered
‘better’ than existing ones if it outperforms them on the standard set of bench-
mark problems. This kind of experimental evaluation has been useful to get to
know which algorithms work well on which applications. It is one type of know-
ledge acquisition. This research argues to go a step further and acquire another
type of knowledge that focuses on understanding why heuristic algorithms or
configurations of a single algorithm perform differently. An experimental evalu-
ation focused on gaining insight into how things work and why they work well
has been acknowledged as important, but has received little attention (Hooker,
1995; Cuervo et al., 2014; Sörensen, 2015).

This research aims to fill this gap by focusing on evaluating heuristic algo-
rithms with the aim of understanding how the reported performance values are
obtained rather than on developing the best performing algorithm. Therefore,
we propose a general statistical evaluation framework to set up and analyse the
results of an experimental study investigating the relationships between algo-
rithm performance, algorithm parameters, and problem instance characteristics.
The methodology has a statistical foundation since statistical tests offer a means
of learning (Bartz-Beielstein, 2006) with the interest being to draw conclusions
that are valid beyond the specific problem instances and parameter values chosen
(Rardin and Uzsoy, 2001). We wish to identify how the algorithm parameters
impact algorithm performance, positively or negatively, and how these effects
vary across different parts of the problem space. The objective is to expose
patterns in the performance data to establish which (combinations of) elements
work well under which conditions. These patterns can then be further investiga-
ted by formulating falsifiable hypotheses in consecutive studies and the ultimate
goal is the production of insights that increases our knowledge of heuristic al-
gorithms. In this paper the contribution is threefold. First, the methodological
framework is presented and discussed. Secondly, the framework is applied to
produce falsifiable hypotheses that are to be validated in consecutive iterations
of the experimental study (e.g., in Corstjens et al. (2019)). Thirdly, the frame-
work is demonstrated to the domain of vehicle routing problems (VRP). These
are an extensively studied class of combinatorial optimisation problems, with a
wide spectrum of real-life applications. Understanding how a VRP influences
heuristic algorithm behaviour is therefore relevant knowledge to acquire.

The paper is structured as follows: In Section 2 previous research efforts
targeted at providing some explanation for performance results are reviewed.
This is followed by a brief introduction to the hypothetico-deductive method
in Section 3, which forms the foundation our evaluation methodology is built
on. In Section 4 we introduce our methodology followed by an illustration in
Section 5 on the large neighbourhood search (LNS) and vehicle routing problem
with time windows (VRPTW) where we first elaborate on the problem instances
generated (Section 5.2) and the heuristic algorithm used to solve these instances
(Section 5.3). The results of the statistical analysis and the insights obtained
are discussed in Section 5.5. A conclusion is finally given in Section 6.

2

2 Related Work

The surgence of automated algorithm configurators over the last decade, often
inspired on concepts from machine learning, have gained a lot of popularity by
introducing more formal procedures to determine parameter settings rather than
the tedious and error-prone trial-and-error approach (Birattari, 2009). However,
these configurators often provide no or limited insight on why identified elite
parameter configurations perform better than other ones. Several importance
analysis techniques have been proposed that try to explain which design choices
are most important to performance. Nannen and Eiben (2007) propose a met-
hod based on information theory for parameter relevance estimation. Gunawan
et al. (2011) suggest a preliminary phase to automatic algorithm configuration.
They employ a factorial experimental design to first screen and rank parame-
ters and then use response surface methodology to identify a good initial value
range for the important parameters before applying automated tuning. These
approaches are limited to a small number of parameters. Hutter et al. (2013)
introduce a forward selection approach that repeatedly fits a regression model,
each time adding the parameter or instance characteristic that results in the
model with the lowest root mean squared error on the validation data. This re-
peatedly model learning can require a significant amount of computation time.
Hutter et al. (2014) train a random forest model on an algorithm performance
data set and then apply functional analysis of variance (fANOVA) (Hooker,
2007) on the prediction model to decompose the overall algorithm performance
variance in additive components. Fawcett and Hoos (2015) present an automa-
ted technique that iteratively modifies parameter settings from a default to a
target configuration in order to identify which parameter level changes induce
the largest performance differences between the two algorithm configurations.
It has the limitation of being bounded to two specific configurations.

These importance analyses prove their value when the aim is to perform a
screening of parameters, but are not really suitable for confirmatory analyses.
A technique like fANOVA (Hutter et al., 2014), for example, relies on a random
forest prediction model. While random forests succeed very well in obtaining
accurate predictions, it is not able to validate hypotheses. Hence, if a confir-
matory analysis with hypotheses testing is to be performed on the prediction
data, parametric statistical models such as classical linear regression models are
better suited (Cutler et al., 2007). In that respect, the work of Chiarandini
and Goegebeur (2010) is the most related to the methodology proposed in this
paper. The authors separate the effects of algorithm parameters and problem
instance characteristics in a mixed effects or multilevel model, and are able to
infer conclusions to the entire population of problem instances. We also rely on
multilevel models, but go a step further by investigating how algorithm parame-
ter effects alter throughout the problem space. Problem-parameter interactions
are also investigated by Ries et al. (2012) in their instance-specific parameter
tuning strategy. The authors consider a full factorial design with four problem
instance characteristics and three algorithm parameters each having two levels
(problem instance size has three levels). The experimental study performed in
this paper considers more factors, some of which are continuous, resulting in a
large number of levels. This makes a full factorial design impractical.

3

2. Theory

3. Hy-
pothesis

4. Ex-
periment

1.
Observe

Figure 1: The hypothetico-deductive method.

The next section addresses the process we follow for gaining insight into
algorithm performance.

3 Research methodology

The hypothetico-deductive method is the most common description of a set
of steps scientists use to search for answers to research questions (Figure 1)
(Dodig-Crnkovic, 2002). After running a controlled experiment on a heuristic
algorithm, patterns in the data might be observed that spark new research que-
stions. Theories are then formulated to answer these questions and hypotheses
are deducted to test the theories. New controlled experiments are set up to
validate the hypotheses after which a theory can be rejected or not. If rejected,
a modified or completely new theory is formulated and the process repeated. If
not rejected, the new insights acquired might expose other patterns that again
lead to new research questions, new theories, hypotheses and so on. It shows
that experimentation is not a one-time effort, but should be considered as an
iterative process in which each iteration gains a deeper knowledge of the al-
gorithm, while raising questions that need to be answered (Barr et al., 1995;
McGeoch, 1996; Dodig-Crnkovic, 2002; Montgomery, 2012; Bartz-Beielstein and
Preuß, 2014). In order to be clear about the kind of study we wish to perform,
an analogy can be made with petri dish studies that are commonly performed
in microbiology. Such experimental studies are aimed at learning in a controlled
laboratory environment how tissue or individual cells react to, for example, ne-
wly developed drugs before these are administered to human subjects in clinical
trials and approved for commercial use (Gibco, 2016). The evaluation metho-
dology we promote, similarly, considers both a problem and solution method in
a very controlled environment to learn about their interplay before applying it
in a real-world context using the knowledge obtained from the ‘laboratory’ study.

The means to perform this iterative process are provided by the field of De-

4

sign of Experiments. It offers established experimental designs and statistical
analysis tools in order to collect the appropriate data and to draw valid and
objective conclusions with mathematical preciseness (Adenso-Dı́az and Laguna,
2006; Montgomery, 2012). Since it is often impractical to obtain data for an
entire population, a fraction of this population — referred to as a sample — is
studied. Inferential statistics offer methods that enable practitioners to draw
conclusions about an entire population or process based on sample data and
express the amount of confidence that can be attributed to these conclusions
(Mason et al., 2003; Moore et al., 2012). A key principle of experimental design
is randomisation. This is a necessary condition for statistical methods which
assume observations (or error terms) are independently distributed random va-
riables. It also helps to “average out” effects of possible extraneous factors.
Hence, it is important that the samples drawn are properly randomised (Mont-
gomery, 2012).

The obtained insights and knowledge from the analysis can be used in the
design, optimisation and comparison of heuristic methods. In the design phase
insights can assist in making design choices. For example, Ribeiro et al. (2011)
look into the need for effective stopping criteria for metaheuristics. They have
discovered that the solutions produced by Greedy Randomized Adaptive Search
Procedures (GRASP) can be approximated by a Normal distribution. The sta-
tistical properties of this distribution are used to derive effective probabilistic
stopping rules. In addition, the analysis results should lead to the inclusion of
only those elements that are crucial to its performance and exclude non-essential
elements that could lead to inefficiencies (Cuervo et al., 2014). Further, the
insights are also useful when optimising existing heuristic algorithms, as the
deployment of these methods often involves selecting appropriate values for a
multitude of algorithm parameters. It is shown that applying a rigorous pro-
cedure to determine parameter values results in a better performing heuristic
algorithm compared to parameter values that are determined using a trial-and-
error approach or limited testing (Birattari, 2009). Finally, the insights can
provide answers why two heuristic algorithms differ in performance in a compa-
rative analysis.

In the following sections we propose a statistical evaluation framework (Section
4) that is model-based, works on an unbiased data set, takes into account the
problem instance influence and enables the formulation and validation of hypot-
heses. The framework is then applied on an existing heuristic algorithm (Section
5). We will perform the first steps of the hypothetico-deductive process, i.e.
looking for patterns in the performance data and start formulating hypotheses
that might explain them.

4 A Multilevel Evaluation Methodology

The proposed methodology allows an algorithm designer to gain a thorough un-
derstanding of the relationship between algorithm performance, algorithm pa-
rameters, and problem instance characteristics. The algorithm parameters are
commonly under control of the designer while the characteristics of a problem
instance to be solved usually are not. In the proposed framework, however, we

5

control both groups of factors. The framework is summarised in Figure 2. First,
a data set of scenarios is generated, with a scenario defined as a combination
of a certain problem instance with a certain parameter setting. We interpret
a parameter setting as a set of values and included operators. The data set is
created according to a two-phase sampling procedure in which first a number
of problem instances are randomly generated and then a number of parame-
ter settings are randomly defined for each problem instance (Section 4.1). The
algorithm runs each scenario returning a desired performance measure. The
scenarios with performance results are analysed by fitting a multilevel regres-
sion model (Section 4.2). From the regression output, we can investigate and
interpret the relationships between performance, the algorithm parameters and
problem instance characteristics.

Create data set
of scenarios

Run algorithm

Fit multilevel re-
gression model

Analyse & in-
terpret results

1. Define population of problem instances
2. Randomly generate problem instances
3. Define domain of algorithm parameters
4. Randomly define parameter settings (per problem instance)

Run each scenario & measure performance

Which algorithm parameters to include?
For which parameters to investigate problem instance influence?

Figure 2: Diagram of Multilevel Methodology.

4.1 Experimental Design

The aim of the proposed framework is to expose how the various algorithm
parameters relate to performance and how the problem instance influences the
performance impact of the algorithm parameters. The latter has to our kno-
wledge not been analysed in previous research on the experimental analysis of
heuristic algorithms. In order to effectively be able to study these relationships
many different combinations of parameter settings and problem instances have
to be analysed. A way of reducing the number of combinations and thereby
computational effort without losing statistical power is by introducing a hierar-
chical structure in the data, i.e., testing several different parameter settings on
a single problem instance such that it is clear that any performance differences
observed are due to the algorithm parameters and not due to the problem in-
stance. Doing this for multiple problem instances enables the exposure of the

6

Table 1: Multilevel Experimental Design

Instance Characteristics Algorithm Parameters
Scenario i X1 X2 ... Xp Z1 Z2 ... Zk

1 0.5 10 ... 0 0.2 12 ... 0
2 0.5 10 ... 0 0.4 5 ... 1
3 0.5 10 ... 0 0.9 15 ... 1
4 0.5 10 ... 0 0.9 6 ... 0

5 1.2 8 ... 1 0.6 10 ... 1
6 1.2 8 ... 1 0.1 1 ... 1
7 1.2 8 ... 1 0.5 5 ... 1
8 1.2 8 ... 1 0.2 3 ... 0
...

problem instance influence. Therefore, the methodology relies on multilevel1

models to efficiently study how effects vary by the group (or in this case pro-
blem instance) they belong to. For example, it could be possible that a heuristic
operator only has a beneficial effect on performance when the problem size is
large (say more than 300 customers) or one operator can cope with tight time
windows better than other operators.

Multilevel models are regularly applied in social research where the need
was expressed for statistical techniques that can account for information from
both individuals and the groups these individuals belonged to (De Leeuw et al.,
2008). The aim is to investigate how individuals interact with the social con-
texts they belong to. For example, some research may focus on investigating
the nationwide test scores of pupils. Individual skill levels will have an impor-
tant effect on the obtained score, but since pupils attend specific schools, this
might also have an influence (e.g., one school might have a better math teacher).
This traditional view of multilevel models being targeted at individuals nested
within groups has changed to a view that consider these models as a flexible
way to handle complex data, especially since more and more multilevel analysis
software has become available (Hox et al., 2010).

The chosen multilevel experimental design considers two levels. First, the
population of problem instances is defined by specifying the probability distri-
butions (e.g., uniform, normal, ...) for different problem instance characteristics
(e.g., problem size, time window width, vehicle capacity, customer demand,
service time, ...). Next, from this population, a random sample of artificial in-
stances is drawn. On a second level the algorithm parameters are considered.
Likewise, probability distributions are specified for the different algorithm para-
meters. Multiple parameter settings will then be created by randomly selecting
values and components. The problem instance characteristics and algorithm
parameters are further discussed in Sections 5.2 and 5.3.

Table 1 gives an illustration of a multilevel experimental. For i going from
one to four the values for the problem instance characteristics remain the same

1The term ‘multilevel’ implies a hierarchical or nested data structure having complex pat-
terns of variability, particularly nested sources of variability. Ignoring the different sources of
variability may lead to incorrect conclusions being drawn (Hox et al., 2010; Snijders, 2011)

7

while the values for the algorithm parameters change. In other words, four
different parameter settings are tested on the same problem instance. The same
goes for scenarios five to eight, but with a different problem instance. Each row
in the table represents a unique combination of problem instance characteristics
and algorithm parameter values.

4.2 Regression Model

The analysis of the multilevel design is performed by relying on parametric re-
gression models, to obtain complete insights over the full range of algorithm
parameter values and problem instance characteristics. These models have the
added benefit over classical ANOVA that statements can be made for the com-
plete range of values. Classical ANOVA, on the other hand, is limited to cate-
gorical variables and therefore limits insights into performance to the algorithm
parameter levels that are measured. Further, the multilevel data structure in
Section 4.1 demands a multilevel regression analysis since it violates the assump-
tion of independent error terms made by traditional regression analysis. The
violation of this assumption could lead to inaccurate statistical estimations due
to biased (i.e., underestimated) standard errors that result in spuriously signifi-
cant results (Hox et al., 2010). Classical regression models including interaction
terms also do not allow the inclusion of both problem-level indicators (specifying
the problem instance) as well as problem-level predictors (i.e., the characteris-
tics defining a problem instance) because this would cause collinearity of the
predictors. Therefore a multilevel regression analysis is applied that takes the
hierarchical structure of the data into account and that provides a clear model
that accounts for both individual- and group-level effects. In theory, a multilevel
model could be fit using only a single parameter setting per problem instance,
but as this could lead to imprecise estimations, multiple parameter settings are
included. There is, however, no general rule to determine a minimum number
of observations per group (Gelman and Hill, 2006).

A multilevel regression model is basically a multilevel version of the well-
known multiple regression model and can, therefore, also be applied to many
research problems. In a multiple regression equation the intercept and coeffi-
cient terms are fixed, i.e. they do not vary from group to group — or, in our
case, from problem instance to problem instance. In a multilevel regression
model (some of) these terms are considered random, i.e. they are allowed to
vary across problem instances such that the performance impact some heuristic
operator has does not have to be the same when having to serve 50 customers or
300 customers (Hox et al., 2010). Like multiple regression, it relies on a number
of assumptions. The residual terms are assumed to be independent — which is
guaranteed through the multilevel design — and to follow a normal distribution.
The latter is considered to be the least important assumption and Gelman and
Hill (2006) even advise against testing this assumption. The third and final
assumption of equal error variance states that the residual terms should be un-
related to any variable and is verified by plotting the residuals.

The multilevel design in Table 1 is translated into the following multile-
vel regression model. The general formulation below considers all variables as
numerical, but algorithm element variables can also be boolean to reflect the

8

decision on whether to activate an algorithm component or not, or can be cate-
gorical. Since the aim is to show how to formulate a multilevel regression model,
no non-linear effects or variable interactions (within the same level) are included
in order to focus on the multilevel aspect. The regression model used for the
analysis in Section 5.4 does consider non-linear effects and variable interactions.

Yi = αj[i] +
∑
k∈K

βkj[i]Zki + εi (1)

αj = µα0 +
∑
p∈P

µαpXpj + ηαj (2)

βkj = µβk

0 +
∑
p∈P

µβk
p Xpj + ηβk

j ∀k ∈ K (3)

i ∈ I the scenario, a combination of a certain problem instance with a
certain parameter setting

j ∈ J the problem instance

k ∈ K the algorithm parameter; associated variables are Zk

p ∈ P the problem instance characteristic; associated variables are Xp

j[i] index variable to code problem instance membership (j[i] = j),
e.g., j[90] = 5 means the 90th scenario in the data solves problem
instance 5

Yi the objective function value of scenario i

αj[i] the varying regression intercept, representing the objective function
value given scenario i and problem instance j when Zki = 0 ∀ Zki

βkj[i] the varying effect of algorithm parameter k on Y given scenario i
and problem instance j

µβk

0 mean effect of algorithm parameter k on Y

µβk
p the effect of problem instance characteristic p on the coefficient β

of algorithm parameter k

ηj the error at the problem instance level and is assumed to be ∼
N(0,σ2)

εi the error at the parameter setting level and is assumed to be ∼
N(0,σ2

e)

Equation (1) represents the regression model at the parameter setting level
and estimates the impact of the algorithm parameters (Zk) on the objective
function value Y (e.g., total distance covered for a routing problem) as expres-
sed by the regression coefficients (the β’s). Equations (2) and (3) represent the
regression models at the problem instance level and measure the influence of the
problem instance characteristics (Xp) on α and the β’s. The multilevel model
thus contains the algorithm parameters at the lowest level — the parameter
setting or observation level — and are structured within a certain group or, in

9

this case, problem instance level, where the problem instance characteristics are
included. Note that not all algorithm parameter coefficients (the β’s) need to
be modelled as a varying effect, but can also be modelled as having a constant
impact across all problem instances, also known as a fixed effect. In this case
the β coefficient will not be determined by a regression model at the problem
instance level.

The set of equations (1) to (3) can also be written in a single regression
equation by filling in (2) and (3) in equation (1).

Yi = [µα0 +
∑
p∈P

µαpXpj[i] + ηαj[i]] +
∑
k∈K

[µβk

0 +
∑
p∈P

µβk
p Xpj[i] + ηβk

j[i]]×Zki + εi (4)

Or

Yi =[µα0 +
∑
p∈P

µαpXpj[i]] + [
∑
k∈K

µβk

0 × Zki +
∑
k∈K

∑
p∈P

µβk
p Xpj[i] × Zki]+

[εi + ηαj[i] +
∑
k∈K

ηβk

j[i] × Zki]
(5)

This regression model allows us to analyse how a single algorithm parameter
has an impact on performance, under the influence of the problem instance
characteristics. The focus is not on specific problem instances or particular
algorithm parameter values. Instead the interest lies in the whole population of
instances and value ranges. The aim is to gain a better understanding of how
an algorithm parameter or component works and for which problem instance
characteristics it performs well or not.

5 Experimental Analysis

In this section the statistical evaluation framework is illustrated on a case study
that is introduced in Section 5.1, followed by a description of how the problem
instances used in the experiment are generated (Section 5.2) and a discussion of
the heuristic algorithm of which we aim to gain a better understanding (Section
5.3).

5.1 Case

An analysis is performed on the results of a large neighbourhood search (LNS)
algorithm run on a number of instances for the vehicle routing problem with
time windows. The vehicle routing problem (VRP) in its basic form is the
problem of finding a set of routes to serve a number of customers with the
objective of minimising a total cost measure. In the vehicle routing problem
with time windows (VRPTW), a number of customers have to be served at
minimum cost without violating the customers’ time-window constraints and
the vehicle-capacity constraints. This variant is chosen since the importance of
VRPTW in many distribution systems has spurred intensive research efforts for
both heuristic and exact optimization approaches (Bräysy and Gendreau, 2005).

All experiments were performed on Intel Xeon E5-2680v2 CPUs (2.8 GHz, 25
MB level 3 cache) with 20 GB of RAM per core under Red Hat Enterprise Linux

10

ComputeNode release 6.4 (Santiago), 64 bit. These resources were available from
the infrastructure of the Flemish Supercomputer Center (www.vscentrum.be).

5.2 Problem Instance Generation

A problem instance generator is developed to create a desired number of artifi-
cial VRPTW instances. The instances provided by known benchmark problem
sets, such as the Solomon (1987) instances, are not used due to concerns of
overfitting and often unknown probability distributions of the characteristics of
these instances. The Solomon instances represent a sample from some problem
population, just like our sample of artificial problem instances. However, con-
trary to the Solomon instances, we know from what population our instances
are drawn while this is not known for the Solomon benchmark since there is
no information on the probability distributions used to generate these instan-
ces. Hence, we have no idea to what kind of problem population any conclusions
coming out the analysis apply to and they are therefore limited to the set of ben-
chmark instances (Banerjee and Chaudhury, 2010). Secondly, repeatedly using
the same set of instances to evaluate the performance of various heuristic algo-
rithms, very often with the focus on matching or surpassing the state-of-the-art
performance that is reported for these instances, risks of obtaining optimistic
evaluations. Benchmarks can thus become stale and not reflect how a heuris-
tic algorithm truly performs (Bertsimas and Simchi-Levi, 1996; Birattari, 2009;
Goodfellow et al., 2016). A problem instance generator can produce a new inde-
pendent sample for every new analysis, thereby reducing the risk of overfitting.
In addition, for a single analysis, an independent second problem instance set,
the test set, can be used to produce an unbiased performance estimate.

The random generation of test instances enables proper statistical statements
to be made about the experimental results. By applying a valid experimental
design2 and statistical analysis, inference from a sample to all possible problem
instances producible by the instance generator can be made (Lin and Rardin,
1979). Random sampling is preferred over some form of guided sampling as the
interest of this research lies in investigating the entire problem instance space
instead of focusing on mapping a small part of this area for which good per-
formance measures are obtained. In this case, validity is more important than
efficiency (Brus and De Gruijter, 1997). Rardin and Uzsoy (2001) point out
the conveniences of using randomly generated problem instances. A properly
designed instance scheme is able to produce a diverse population of instances
since the researcher has complete control over the problem instance characteris-
tics. The benefit of this diversity is that parts of the problem space are included
that may not be expressed in available real data or benchmark problem sets. A
well-documented generator also creates clarity on all problem instance charac-
teristics, which may not be the case in existing benchmarks.

Some risk exists when using randomly generated instances. The design of
the problem instance generator should ensure that the instances are sufficiently
difficult and representative for the kind of problems the researcher aims to solve.

2One-factor-at-a-time experimental designs are not considered as rigorous experimental
designs when dealing with several factors. Factorial experiments that vary factors together,
instead of one at a time, should be used (Montgomery, 2012).

11

Moreover, the question of which parameter values to test needs to be answered.
We accounted for these risks in the selection of the value ranges which are dis-
cussed in the next paragraphs.

The characteristics for which the combined values constitute a single pro-
blem instance are listed in Table 2 and are based on the characteristics of the
instances in the problem set of Solomon (1987). His representative benchmark
set consists of problems containing one hundred customers, a central depot,
capacity constraints, time windows on the time of delivery, and a total route
time constraint. All these features are included in our scheme. Not all values
are determined randomly, the coordinates of the depot and the vehicle capacity
are kept constant for simplicity. The number of vehicles available is chosen to
equal the number of customers in order to guarantee feasibility of the problem
instance. The capacity of each vehicle is arbitrarily fixed at 150 units. The
depot is also determined to be open during a fixed time window.

The problem instance characteristic values that are determined stochasti-
cally are either drawn from a uniform distribution or from a (symmetric) tri-
angular distribution. The value ranges are given in Table 2. Unlike Solomon’s
instances, clustered or semi-clustered customers are not considered in order to
limit the number of characteristics under investigation in this example. This
can however, be easily incorporated in the generator. The service time for each
customer is drawn randomly from a symmetric triangular distribution with a
minimum and maximum value drawn from a uniform distribution. A triangular
distribution is chosen, because the assumption is made that it is most probable
that the time necessary to unload goods is the same at every customer. The
time window constraints are constructed in a similar way as for the Solomon
benchmark set. The maximum CPU time the algorithm is allowed to run on the
problem instance is defined as a problem instance characteristic and not as an
algorithm parameter since we assume a context in which a problem instance has
to be solved within a certain time frame. This makes it typical for the problem
instance and not a parameter that can be set to obtain the best performance
results.

Further assumptions made are that the triangle inequality holds, the travel
cost between two nodes is the same in both directions (i.e., symmetry), and the
common assumption of constant speed (Cordeau et al., 2007) is made so that
distances, travel times and travel costs have the same proportions.

The diversity of the sample of problem instances is assessed through sum-
mary statistics in Table 5 in Appendix. This was not only done for the problem
instance characteristics listed in Table 2, but also for characteristics like the spa-
tial distribution of customers which was noted an important aspect of a VRP
problem by Tuzun et al. (1997). The conclusions from this research should be
seen in the context of problem instances with a diverse number of customers
randomly dispersed in a 5002 area without peak demand values, with small
variations in the service time and time window width for each customer.

12

Table 2: Problem Instance Characteristics

Characteristic Type Value Ranges

number of customers Integer U[25, 400]
capacity vehicle Integer 150
(x,y)-coordinates Integer U[0,500] × U[0,500]
demand customers Integer U[10,50]
Service time Integer TRIA(min,max)

min∼U[10,30]
max∼U[30,50]

time window depot Integer Start = 0; End = 900
time window customer
- time window centre Integer U[0 + travel time, 900 - travel time - service time]
- time window width Integer TRIA[min,max]

min∼U[20,50]
max∼U[50,80]

- start Centre - 0.5*width
- end Centre + 0.5*width
Run time Integer TRIA(60,1800)

5.3 Large Neighborhood Search

The heuristic algorithm under investigation is a Large Neighbourdhood Search
(LNS) algorithm. LNS is a widely applied metaheuristic framework and pro-
ven to be very effective in solving various VRP variants (Gendreau and Potvin,
2010). Our implementation has two stages. First, starting from an initial so-
lution, the number of vehicles is minimised by iteratively removing one route
and scheduling the customers from this route into the remaining ones. If the
algorithm is no longer able to find a solution that can serve all customers, it
continues with the last solution that could serve them all. In a second stage the
focus is on minimising the total distance covered. At each iteration, the algo-
rithm destroys and repairs the current solution by randomly selecting a destroy
and repair operator from a set of destroy and repair operators. This process is
repeated until some stopping criterion is met.

This implementation of the algorithm is based on the Adaptive Large Neig-
hbourhood Search (ALNS) algorithm developed by Pisinger and Ropke (2007).
Since it is recommended to start small when planning experiments (Lawson and
Erjavec, 2016), the choice is made not to tackle the ALNS, but simplify it by
removing the adaptive mechanism — and thereby all associated parameters —
that updates the weights of the operators and instead assigning all operators
an equal probability of being selected each iteration. The number of operators
is also scaled down. The set of destroy heuristics is limited to random, worst
and related removal. Random removal is the simplest destroy operator and re-
moves q randomly selected customers. Worst removal removes customers with
the highest cost, while related removal looks for customers that are in some
way related to each other (here in terms of distance as in Pisinger and Ropke
(2007)) and therefore easy to interchange. The q customers to remove is deter-
mined randomly each iteration and varies between 10% and 50% of the total
number of customers. The set of repair heuristics we consider are basic greedy
search and regret-2. The greedy operator inserts customers in the cheapest
route, while regret-2 looks ahead by also accounting for the second cheapest

13

route. All operators as well as the remaining algorithm parameters are listed
in Table 3. Pisinger and Ropke (2007) use a certain number of iterations as a
stopping criterion. We chose to set a maximum CPU time as stopping criterion
to avoid very long computation times. The pseudocode is given in Algorithm 1.

Algorithm 1 Large Neighbourhood Search

Input: Problem instance j, Parameter setting θ
Output: Best found solution xbest

Initialization: initial solution x constructed by regret-2 heuristic
Stage 1: Vehicle Minimisation

1: repeat
2: Remove one route from x
3: Schedule removed requests into remaining routes (as in Stage 2)
4: until 20% of maximum run time met

Stage 2: Minimisation of total distance covered
5: repeat
6: select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using probabilities

ρ− and ρ+

7: xtemporary = r(d(x))
8: if xtemporary is accepted then
9: x = xtemporary

10: end if
11: if c(xtemporary) < c(xbest) then
12: xbest = xtemporary

13: end if
14: until maximum run time met

The determinism parameter serves as an input for the destroy operators
worst and related removal. It is a measure of the amount of randomness invol-
ved in the selection of customers to remove from a solution. The higher this
value, the more the selection is based on the ranking established in these opera-
tors. For worst removal, a high determinism value means removing customers
with a high cost, while for related removal it means removing customers that are
close to each other. Shaw (1998), the author who introduced the related removal
operator, found that values less than 3 and greater than 30 performed poorly,
therefore the interval used here takes 30 as an upper bound. This initial range
of values can later be altered if analysis results indicate a wider range should be
considered. The noise parameter controls the fraction of noise that is used in
the repair heuristics. The noise amount is calculated as the maximum distance
between two nodes in a problem instance multiplied by the noise parameter. It
brings randomness to the moves these repair heuristics make. The cooling rate
and start temperature control parameter are part of the local search framework
simulated annealing operating within the LNS algorithm. According to Aarts
et al. (2005) the values for the cooling rate are typically between 0.80 and 0.99
and we consider a step size of 0.0001 (i.e., 0.01%). Finally, it is determined
which destroy and repair operators to include. Each parameter setting should
use at least one repair and one destroy operator, otherwise the algorithm cannot
function. There are three possible scenarios for the repair heuristics, each with
an equal probability of occurence: either greedy insertion or regret-2 is used

14

Table 3: Algorithm Parameters

Parameter Type Value ranges

seed Integer U [1, 1000000]
determinism parameter Integer U [1, 30]
noise parameter Discrete U [0, 1]
cooling rate Continuous U[0.8000,0.9999]
start temperature control parameter Discrete U[0.01,0.10]
Destroy operators
- Random removal Dummy True/False: ∼U[0,1]
- Worst removal Dummy True/False: ∼U[0,1]
- Related removal Dummy True/False: ∼U[0,1]
Repair operators
- Basic greedy Dummy True/False: ∼U[0,1]
- Regret-2 Dummy True/False: ∼U[0,1]

alone, or both operators are included. A similar logic was used to determine
which out of seven possible destroy operator combinations to include. More
information on all algorithm parameters of an (A)LNS can be found in Pisinger
and Ropke (2007).

Our LNS implementation is available at https://github.com/corstjens/lns
along with the problem instance sample used for the analysis in Section 5.5 and
the Python script used to generate these problem instances.

5.4 Data set and model formulation

The data set serving as an input for the algorithm has 4000 scenarios, con-
sisting of 200 randomly generated problem instances and 20 randomly created
parameter settings per problem instance. The performance measure recorded is
the total distance travelled by the vehicles. The analysis performed investiga-
tes how the different algorithm parameters and problem instance characteristics
influence this total distance measure. Since some of these problem instance cha-
racteristics (time window width, demand and service time) have different values
for each customer, averages are taken over all customers in order to obtain a
variable at the problem instance level. The geographical coordinates are exclu-
ded from the analysis.

The regression model is fitted with varying (i.e., random) effects for all algo-
rithm parameters and components, while interaction-coefficients are fixed and
do not vary per problem instance. It is run using the brms package version 2.4.0
(Bürkner, 2017) in R version 3.4.2 (R Core Team, 2016). This package allows
to fit a generalized (non-)linear mixed model, which incorporates both fixed-
effects parameters and random (i.e., varying) effects in a (non-)linear predictor
via full Bayesian3 inference using Stan, a probabilistic programming language

3In Bayesian regression parameters are estimated using Bayes theorem posterior ∝
likelihood× prior to obtain a posterior distribution of a parameter based on the information
available in the data (likelihood) and the practitioner’s beliefs (prior) about this parameter.
The regression analysis in this paper considers weakly informative priors (Bürkner, 2017) since
we have no preliminary beliefs regarding these parameters, making the resulting posterior dis-
tribution primarily dependent on the information in the data. More information on Bayesian
regression can be found in, for example, Wakefield (2013)

15

−2500

0

2500

5000

7500

20000 40000 60000 80000
Fitted Values

R
es

id
ua

l V
al

ue
s

Figure 3: Fitted versus residual values for original model.

−200

−100

0

100

5000 10000
Fitted Values

R
es

id
ua

l V
al

ue
s

Figure 4: Fitted versus residual values for transformed model.

for statistical inference written in C++.

A first linear4 regression model showed not to satisfy all assumptions. The
residuals (cf. Figure 3) reveal the presence of heteroscedasticity. While this issue
is minor in most cases of moderate sample size (Gelman and Hill, 2006; Jacqmin-
Gadda et al., 2007), a common approach is to apply a variance-stabilising trans-
formation (Montgomery, 2012) which results in a non-linear model (cf. equations
(6) to (8)). We empirically found the reciprocal transformation of the response
variable together with the cube root of the problem instance characteristic Cu-
stomers to succeed in resolving the heteroscedasticity (cf. Figure 4).

1

Yi
= αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + ...+ β33j[i]Noisei + εi (6)

αj = µα0 + µα1Customers
1
3
j + ...+ µα5Runtimej + ηαj (7)

βkj = µβk

0 + µβk

1 Customers
1
3
j + ...+ µβk

5 Runtimej + ηβk

j ∀k ∈ K (8)

5.5 Analysis of Results

The output5 of the regression analysis indicates significant effects for all repair
and most destroy operator combinations, the interaction of the determinism

4Linear is interpreted here as linear in the parameters and not as linear in the variables.
5The R script used for the multilevel regression analysis is provided in Appendix 6.

16

Table 4: Significant Effects

Variable Estimate Est.Error 95% CI
Intercepta 3, 810.45∗∗ 119.69 [3, 571.73; 4, 043.58]
Greedy −157.27∗∗ 5.97 [−168.90; −145.48]
Regret2 13.43∗∗ 4.27 [5.09; 21.81]
Random 21.70∗∗ 4.21 [13.43; 29.92]
Related −50.38∗∗ 4.68 [−59.48; −41.20]
RandomWorst 12.11∗∗ 4.40 [3.50; 20.75]
WorstRelated −17.30∗∗ 4.28 [−25.74; −8.92]
Noise parameter −11.30∗ 4.07 [−19.27; −3.34]

Customers
1
3 −423.48∗∗ 27.58 [−477.26; −369.47]

Avg time window width 37.21∗ 17.81 [1.53; 71.87]

Customers
1
3× Runtime 8.17∗ 3.56 [1.25; 15.21]

Related×Determinism parameter −1.34∗∗ 0.30 [−1.94; −0.75]
Greedy×Noise parameter −40.71∗∗ 5.88 [−52.43; −29.21]
Greedy×Random −61.59∗∗ 6.16 [−73.71; −49.64]
Greedy×Worst −79.79∗∗ 6.41 [−92.27; −67.28]
Greedy×Related 66.71∗∗ 6.58 [53.86; 79.48]
Greedy×RandomWorst −75.62∗∗ 6.38 [−88.11; −63.23]

Greedy×Customers
1
3 14.19∗∗ 1.03 [−16.23; −12.16]

Greedy×Avg service time 3.43∗∗ 1.06 [1.38; 5.51]
Greedy×Avg time window width −2.54∗∗ 0.67 [−3.86; −1.23]
Greedy×Runtime 1.67∗ 0.73 [0.23; 3.11]

Worst×Customers
1
3 1.77∗∗ 0.63 [0.53; 3.01]

Related×Customers
1
3 −6.04∗∗ 0.71 [−7.43; −4.66]

Related×Runtime −1.03∗ 0.50 [0.05; 2.03]

RandomRelated×Customers
1
3 −1.38∗ 0.59 [−2.55; −0.22]

Note: ** denotes significance at 1%, * denotes significance at 5%
a The effects of Regret-2 & Greedy and Random, Worst & Related, the reference levels for the repair

and destroy operator dummies, are accounted for in the Intercept.

parameter with one individual destroy operator, the noise parameter, and the
interaction of the noise parameter with one individual repair operator. The
operator effects are also significantly moderated by certain problem instance
characteristics. For all other algorithm parameters included in the model, no
significant effects are found. Table 4 lists for all significant effects the estimated
performance impact on 1

Y (column ‘Estimate’), the uncertainty regarding this
estimate (column ‘Est.Error’) and 95% confidence interval (columns ‘l-95% CI’
and ‘u-95% CI’). The uncertainty regarding the coefficient estimate is used to
calculate the 95% confidence interval which is interpreted as that we are 95%
confident that the true performance impact lies within this value range. If this
range does not include zero, the effect is indicated as significantly different from
zero (for a significance level at 5%) and not due to chance. A complete summary
of the regression analysis is given in Table 6 in Appendix 6.

All problem variables are centred around their mean value (before fitting
the regression model) such that the intercept term can be interpreted as the
performance value obtained for an average problem instance rather than for a
meaningless problem instance with zero customers or zero demand. The inter-
cept estimate also accounts for the parameter setting that allows all repair and
destroy operators to be used (i.e., GreedyRegret2 and RandomWorstRelated, the
reference levels for the operators)6. In this case, the expected cost is predicted

6Including all destroy variables or all repair variables would lead to perfect multicollinearity.

17

to be 26 243.627. The principal interest of this research lies in investigating
how this measure is further impacted by the different algorithm parameters and
how the problem instance characteristics interact with these parameters. These
results are discussed next.

5.5.1 Effect repair and destroy operators.

When considering an average problem instance and with all other numerical
variables (e.g., cooling rate) at their mean level, the results in Table 4 suggest
to use random removal as sole destroy operator, since it has the largest posi-
tive performance impact (21.70) over the configuration with all destroy opera-
tors. Likewise, using regret-2 as sole repair operator is indicated as the best
option since it significantly improves upon the performance of a configuration
with both repair operators (13.43) while using greedy repair alone would lead
to a deterioration of performance (−157.27). The significant interaction terms
between Greedy and the different destroy operator combinations do not alter
this conclusion. Furthermore, the results indicate that the configuration with
either regret-2 as the sole repair operator or both repair operators is better
able at repairing a solution that is destroyed by the random removal operator
(21.70) compared to a solution that is destroyed by the related removal ope-
rator (−50.38). The configuration with greedy as the sole repair operator, on
the other hand, shows the opposite result. The latter can be derived from the
estimates in Table 4: the performance impact of switching to random remo-
val becomes negative when accounting for the interaction with greedy repair
(21.70 − 61.59 = −39.89), while the impact of related removal turns positive
(−50.38 + 66.71 = 16.33).

Figure 5 plots the expected total cost values for GreedyRegret2 and Greedy
with all destroy operator configurations. For example, the combination Greedy
and Random has a predicted total cost of 27 675.61. The plot also shows the
effect of switching from using both regret-2 and greedy to using only greedy as
repair operator. The switch to greedy is expected to deteriorate the solution qua-
lity with all possible combinations of destroy operators (−157.27+ interaction
term). The configuration with both repair operators expects its best perfor-
mance when combined with random removal (21.70), while the highest average
cost measure is predicted with related removal (−50.38). The configuration
with only greedy repair performs best with related removal (−50.38 + 66.71),
and obtains the highest total cost value with worst removal (−5.60− 79.79). A
shift in the “ranking” of the destroy operator combinations can thus be observed
going from all repair operators to greedy alone. When investigating the switch
from both repair operators to using only regret-2 (Figure 6), an improvement
in the performance measure is observed for all destroy operator combinations
(13.43). Unlike the switch to greedy, there is no shift in the ranking of the
destroy operators going from regret-2 and greedy to regret-2 alone. In both

Multicollinearity may lead to inflated variance estimates and a high sensitivity of the coefficient
estimates for changes in the model. This makes it difficult to interpret results as the estimates
are unstable. Therefore, one variable of each needs to be left out and serve as a reference value
which is represented in the regression intercept.

7The Intercept value in Table 4 is backtransformed to the original scale through division
by 100 000 000 and taking the inverse of the resulting value.

18

26
00

0
26

50
0

27
00

0
27

50
0

28
00

0
28

50
0

Repair Operator

P
re

di
ct

ed
 T

ot
al

 C
os

t

Greedy & Regret−2 Greedy

Destroy operators

Random Removal

Worst Removal

Related Removal

Random&Worst

Worst&Related

Random&Related

RandomWorst&Related

Figure 5: Total cost plot switching from Greedy & Regret-2 to Greedy.

scenarios the lowest total cost value is expected when combined with random
removal and the highest value with related removal.

These findings relate to an average problem instance, i.e., an instance with
216 customers, 29 minutes of average service time, an average customer de-
mand of 38.5 units, an average time window width of 57 minutes, and on
which the algorithm can run maximum 15 minutes – due to centring of these
variables. We now analyse the influence these problem instance characteris-
tics have on the performance impact of the repair operators. It is observed
that it becomes more detrimental to use only greedy as repair operator as
the problem size increases. This is derived from the estimates of Table 4.
The impact of switching to greedy repair alone (when combined with random,
worst and related removal) for an average instance is given by the estimate for
Greedy (−157.27), the influence of the problem size is given by the estimate for

the interaction term Greedy × Customers
1
3 (−14.19). Filling in the equation

−157.27 − 14.19∆Customers
1
3 shows the impact estimate increasing as more

and more customers have to be served. For the combination with any other
(set of) destroy operators, the estimate of the interaction term is also added,
e.g., −61.59 is added for the combination with random removal and the equa-
tion becomes −157.27− 61.59− 14.19∆Customers

1
3 . For the combination with

related removal (−157.27 + 66.71 − 14.19∆Customers
1
3), the marginal effect

of Greedy becomes insignificant when serving less than 73 customers, while it
remains significantly negative for all other destroy operator combinations.

Further, the effect of Greedy is also influenced by the average service time
per customer, and the average time window width. The more constraining these
problem instance characteristics become, the smaller the performance differen-
ces between using greedy alone and the other two repair configurations. This
is deducted from the positive influence of the average service time (3.43) and
the negative influence of the average time window width (−2.54) on the effect

19

26
00

0
26

20
0

26
40

0
26

60
0

26
80

0
27

00
0

Repair Operator

P
re

di
ct

ed
 T

ot
al

 C
os

t

Greedy & Regret−2 Regret−2

Destroy operators

Random Removal

Worst Removal

Related Removal

Random&Worst

Worst&Related

Random&Related

RandomWorst&Related

Figure 6: Total cost plot switching from Greedy & Regret-2 to Regret-2.

of Greedy. Finally, the effect of Greedy is positively influenced by the maximum
run time given (1.67), meaning the longer the algorithm is allowed to search for
better solutions, the smaller the differences between the use of greedy alone and
the other repair operator configurations become. This is a logical deduction as
you would expect performance to converge as run time increases.

In a similar way, we investigate whether it is worth including all three de-
stroy operators or whether there are conditions when a configuration with less
destroy operators will give better results. The analysis suggests that worst re-
moval performs relatively better on larger problem instances than on smaller
problem instances while it is the other way around with related removal. This
follows from the positive influence (1.77) of problem size on the effect of Worst
and the negative influence (−6.04 and −1.38) on the effect of respectively Rela-
ted and RandomRelated. Recall that the effect estimates in Table 4 represent the
switch from a configuration with random, worst and related removal to some
other (set of) destroy operator(s) (given an average problem instance). The
impact of switching to related removal is the same with both repair operators
and with regret-2 alone (i.e., −50.38), meaning additional customers will further
strengthen the negative impact. Due to the significant interaction with Greedy,
the impact of switching to related removal for an average instance is positive
(i.e., −50.38 + 66.71 = 16.33), meaning additional customers will diminish this
positive impact and at about 218 customers the estimated impact can no lon-
ger be distinguished from the configuration with all destroy operators. It even
becomes significantly negative at about 319 customers. The effects of Worst
and RandomRelated were not significant for an average problem instance, but
become significant when accounting for the problem size influence. The effect of
Worst is significantly negative up to 207 customers when combined with regret-2
(alone or together with greedy), but is always significantly negative with greedy
as sole repair operator. The effect of RandomRelated is significantly positive
with Greedy up to 216 customers and always insignificant when combined with
regret-2 (alone or together with greedy).

20

The only other significant problem influence observed is on the impact of
Related, which is positively moderated by the average run time (1.03). The
impact for the combination with Greedy becomes more positive for additional
run time, but is insignificant for run times up to 10 minutes. This is probably
due to the fact that a related removal operator is slower than an operator like
random removal and can therefore perform less iterations in the same amount
of time. For the combination with either Regret2 or GreedyRegret2, the impact
remains indistinguishable from the configuration with all destroy operators.

A final significant influence on the operator effects is the randomness element
employed within the operators. The analysis results show that if all destroy ope-
rators are used in a single configuration, then complete randomisation in the
selection of customers to remove should be left to the random removal operator,
while related removal should strictly focus on removing customers that are easy
to interchange. On the other hand, if related removal is used alone, it is prefe-
rable to add some randomisation in the selection of customers to remove. For
the repair operators, the analysis results suggest it is never worthwhile to ap-
ply randomisation when reconstructing solutions. These conclusions are derived
from the negative effect estimates for the determinism and noise parameter in
Table 4. The determinism parameter has a negative effect on the performance
impact of Related (−1.34). Its effect on Worst is insignificant, so there is not
enough evidence in the data to make a valid statement regarding this effect even
though its 95% confidence interval hints that it will be probably also be negative.
The noise parameter negatively influences the impact of Regret2 and Greedy-
Regret2 (−11.30) and Greedy (−11.30 − 40.71 = −52.01). The importance of
randomisation to ALNS performance is further investigated by Hemmati and
Hvattum (2017) who propose deterministic alternatives and found they perform
mostly similar to the randomised variants.

Summarising the discussion on the effect of the operators, we can conclude
that including all repair and destroy operators in a parameter setting does not
necessarily lead to the best results. The analysis identified using regret-2 as
the sole repair to be the best choice on average as it is expected to perform
better than the other two repair operator configurations for larger problem sizes.
The destroy operator combination that will obtain the best results with this
repair operator is random removal. The results also showed that diversification
in the search for solutions works during the destroy process, but should be
avoided when repairing solutions. The observation that regret-2 is the more
effective repair operator (on larger instances) is not surprising as it is the more
‘intelligent’ one of the two, but it is a valuable insight to know this is not
necessarily the case for the destroy operators where it is shown that a simple
operator as random removal can outperform other, more ‘intelligent’ destroy
operators. These conclusions are confirmed in Corstjens et al. (2018) when
applying a functional analysis of variance.

5.5.2 Validity Check

In order to verify whether the previous findings are not confined to that par-
ticular data set, the regression model is fitted on a second, independent data

21

set and the obtained estimates compared with the ones in Tables 4 and 6.
The effects significant in our training analysis are also significant in our test
analysis, except for six terms: Avg time window width, Customers

1
3× Runtime,

RandomWorst ,Greedy × Avg service time, Greedy × Runtime and Worst ×
Customers

1
3 . Since the focus is on investigating problem influences on algorithm

element effects, the uncertainty regarding the terms Avg time window width and
Customers

1
3× Runtime is not relevant for the discussion in this paper. The test

estimates of RandomWorst, Greedy × Avg service time and Greedy × Runtime
are at the border of significance and are of the same direction and size as their
training estimates. The test estimate of Worst × Customers

1
3 is of the same

direction as the training estimate and has about the same standard error, but
the size of the test estimate is only half of the training estimate. A larger sam-
ple size that reduces estimate uncertainty would probably make these effects
similarly significant as was found in the training analysis. Hence, the analysis
discussed in this paper does not contain any spurious significant results.

5.5.3 New questions

We exposed which combinations of operators work well for what parts of the
problem space. This spurs new research questions. For example, what is so
unique about the way related removal destroys a solution that makes it most
difficult for regret-2 to repair it? The analysis results have led to several similar
new questions. A logical next step would be to further investigate these obser-
vations by formulating new hypotheses and conducting further experiments. A
single experiment will often not answer all questions posed and may raise new
questions - as is the case in our experiment. It shows that experimenting is
an iterative learning process: observing what works well in a first experiment,
then finding out why it works well in consecutive experiments. Box et al. (2005)
describe it as the iterative inductive-deductive process.

A first thought experiment about random and related removal is performed.
We reason that removing a random selection of customers from a solution re-
sults in more “interesting” alternatives for the removed customers, meaning that
the difference between their cheapest and second cheapest route (i.e., the regret
value) is on average smaller compared to removing a group of geographically
clustered customers. For the randomly removed customers, there might still be
many routes nearby, while the removal of a cluster of customers might remove
all nearby routes. So overall, a solution destroyed with the random removal
operator has better alternatives for the cheapest route compared to a solution
destroyed by the related removal operator. This gives scenarios using random
removal more flexibility in repairing a solution. From the previous, we can for-
mulate two hypotheses to validate.

Hypothesis 1 (H1): When a cluster of geographically nearby customers is
removed, each removed customer has on average less feasible routes to be inser-
ted in compared to a customer that was removed at random.

Hypothesis 2 (H2): The average (maximum) regret value of the selected cus-
tomer for insertion per iteration is lower when customers are removed at random
compared to when a cluster of geographically nearby customers is removed.

22

The operator pattern is analysed in detail in Corstjens et al. (2019). It is
found that removing geographical clusters of customers reduces the number of
insertion alternatives to choose from during the repair phase. Several custo-
mers do not even have a single feasible insertion option in one of the existing
routes and can therefore be considered isolated cases (at the start of the repair
phase). Postponing the insertion of these isolated customers is found to have
a detrimental impact on the solution quality. It is tested what the effect is
of assigning these customers a higher priority by allowing their insertion in an
individual route from the depot to the customer and back, an option that was
previously considered as a last alternative. Permitting these individual routes
to be created sooner in the repair process adds good insertion alternatives for
other removed customers and thus enables the regret operator to make better
choices. Hence, a regret operator will make a better estimation of customer dif-
ficulty and consequently a better prioritisation if each individual customer has
existing routes nearby in which it can be feasibly inserted. So, when a removed
customer cannot be reinserted in one of the existing routes, its insertion (in a
new route) should not be considered less important, but rather as one that is
urgent. All details on the experimental analyses performed to reach this con-
clusion are provided in Corstjens et al. (2019)

Similarly, we can look for reasons why related removal has more trouble with
larger instances than smaller instances. Further, we also observed no significant
performance difference between using regret-2 alone or together with greedy
repair on the smaller instances. Using both repair operators implies regret-2 is
used in half the iterations performed, while greedy is used in the other half. So
even though we observe no performance difference, the configuration with only
regret-2 will probably reach the best solution in fewer iterations and time than
the configuration with both repair operators. It would be interesting to look
into the gain achieved. Does it require half the time or even less?

6 Conclusions

This paper proposes a statistical methodology for understanding heuristic algo-
rithm performance. It enables investigation of correlations between algorithm
performance and algorithm parameters and correlations between the latter and
problem instance characteristics. We see it as a next step in the experimental re-
search on combinatorial optimisation problems to obtain a deeper understanding
and insight in the effects of parameters and heuristic components on algorithm
performance. The methodology is able to identify which algorithm parameters
significantly impact the solution quality of a heuristic method and how the pro-
blem instance characteristics influence these effects. It enables researchers to
make statements about an entire population of problem instances, not just a
small set of benchmark instances. Different recommendations for different parts
of the problem space can be obtained.

In an analysis of a large neighbourhood search algorithm on instances of the
vehicle routing problem with time windows we observed that including all repair
and destroy operators in a parameter setting does not necessarily lead to the

23

best results. The analysis identified using regret-2 as the sole repair to be the
best choice on average as it is expected to perform better than the other two
repair operator configurations for larger problem sizes. The destroy operator
combination that will obtain the best results with this repair operator is random
removal. This analysis of the performance impact of the operators considered
the moderating effect of each significant problem instance characteristic ceteris
paribus, but these parameters can off course divert simultaneously from their
average level. Which operator combinations work well and which do not depend
on the unique combination of characteristics that constitute a problem instance.
The multilevel methodology offers guidance and insights for both an ‘average’
problem instance as for a specific problem instance with certain characteristics.

Finally, the analysis results have led to new questions that are to be answered
in future research by formulating new hypotheses and setting up new controlled
experiments. A single experiment will often not answer all questions posed and
may raise new questions. It is a good illustration of the principle that learning
is advanced by iteration. Further, regression model complexity grows with the
number of variables added. We look into possibilities of limiting the set of
included variables through some kind of preliminary importance analysis. In
addition, the current methodology considers single-objective optimisation, but
optimisation problems like vehicle routing typically consider multiple objectives.
Our aim, therefore, is to incorporate multi-objective optimisation in the current
framework, formulating a multivariate regression model.

Acknowledgments

This work is supported by the National Bank of Belgium and the Interuniversity
Attraction Poles Programme initiated by the Belgian Science Policy Office (re-
search project COMEX, Combinatorial Optimization: Metaheuristics & Exact
Methods). The computational resources and services used in this work were
provided by the VSC (Flemish Supercomputer Center), funded by the Research
Foundation - Flanders (FWO) and the Flemish Government department EWI.

References

Aarts, E., Korst, J., Michiels, W., 2005. Simulated Annealing. In Burke, E.K.
and Kendall, G. (eds), Search Methodologies. Springer US, pp. 187–210.

Adenso-Dı́az, B., Laguna, M., 2006. Fine-Tuning of Algorithms Using Fractional
Experimental Designs and Local Search. Operations Research 54, 1, 99–114.

Ahuja, R.K., Orlin, J.B., 1996. Use of representative operation counts in com-
putational testing of algorithms. INFORMS Journal on Computing 8, 3,
318–330.

Amini, M.M., Racer, M., 1994. A Rigorous Computational Comparison of Al-
ternative Solution Methods for the Generalized Assignment Problem. Mana-
gement Science 40, 7, 868–890.

24

Assis, L.P., Maravilha, A.L., Vivas, A., Campelo, F., Ramı́rez, J.A., 2013. Mul-
tiobjective vehicle routing problem with fixed delivery and optional collecti-
ons. Optimization Letters 7, 7, 1419–1431.

Banerjee, A., Chaudhury, S., 2010. Statistics without tears: Populations and
samples. Industrial psychiatry journal 19, 1, 60.

Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Jr, W.R.S., 1995. De-
signing and reporting on computational experiments with heuristic methods.
Journal of Heuristics 1, 1, 9–32.

Bartz-Beielstein, T., 2006. Experimental Research in Evolutionary Computa-
tion: The New Experimentalism. Springer Science & Business Media.

Bartz-Beielstein, T., Preuß, M., 2014. Experimental analysis of optimization
algorithms: Tuning and beyond. In Theory and Principled Methods for the
Design of Metaheuristics. Springer, pp. 205–245.

Bertsimas, D.J., Simchi-Levi, D., 1996. A new generation of vehicle routing
research: Robust Algorithms, Addressing Uncertainty. Operations Research
44, 2, 286.

Birattari, M., 2002. A racing algorithm for configuring metaheuristics. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufmann Publishers, pp. 11–18.

Birattari, M., 2009. Tuning Metaheuristics, Studies in Computational Intelli-
gence. Vol. 197. Springer Berlin Heidelberg.

Box, G.E.P., Hunter, J.S., Hunter, W.G., 2005. Statistics for experimenters:
design, innovation, and discovery. Wiley-Interscience.

Bräysy, O., Gendreau, M., 2005. Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms. Transportation
Science 39, 1, 104–118.

Brus, D., De Gruijter, J., 1997. Random sampling or geostatistical modelling?
choosing between design-based and model-based sampling strategies for soil
(with discussion). Geoderma 80, 1, 1–44.

Bürkner, P.C., 2017. brms: An R package for bayesian multilevel models using
Stan. Journal of Statistical Software 80, 1, 1–28.

Calvet, L., Juan, A.A., Serrat, C., Ries, J., 2016. A statistical learning based
approach for parameter fine-tuning of metaheuristics. SORT-Statistics and
Operations Research Transactions 1, 1, 201–224.

Chiarandini, M., Goegebeur, Y., 2010. Mixed Models for the Analysis of Op-
timization Algorithms. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L.
and Preuss, M. (eds), Experimental Methods for the Analysis of Optimization
Algorithms. Springer Berlin Heidelberg, pp. 225–264.

Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D., 2007. Vehicle routing.
In Barnhart, C. and Laporte, G. (eds), Transportation, Handbooks in Ope-
rations Research and Management Science, Vol. 14. Elsevier, Amsterdam,
chapter 6, pp. 367–428.

25

Corstjens, J., Caris, A., Depaire, B., 2019. Explaining heuristic performance
differences for vehicle routing problems with time windows. In Kotsireas, I.
and Pardalos, P. (eds), Learning and Intelligent Optimization. LION 12 2018,
Lecture Notes in Computer Science. Vol. 11353. Springer, pp. 159–174.

Corstjens, J., Dang, N., Depaire, B., Caris, A., De Causmaecker, P., 2018. A
combined approach for analysing heuristic algorithms. Journal of Heuristics

Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A., 2001. Using Experimen-
tal Design to Find Effective Parameter Settings for Heuristics. Journal of
Heuristics 7, 1, 77–97.

Cuervo, D.P., Goos, P., Sörensen, K., Arráiz, E., 2014. An iterated local search
algorithm for the vehicle routing problem with backhauls. European Journal
of Operational Research 237, 2, 454–464.

Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson,
J., Lawler, J.J., 2007. Random forests for classification in ecology. Ecology
88, 11, 2783–2792.

De Leeuw, J., Meijer, E., Goldstein, H., 2008. Handbook of multilevel analysis.
Springer.

Dodig-Crnkovic, G., 2002. Scientific methods in computer science. In Procee-
dings of the Conference for the Promotion of Research in IT at New Univer-
sities and at University Colleges in Sweden, Skövde, Suecia, pp. 126–130.

Fawcett, C., Hoos, H.H., 2015. Analysing differences between algorithm confi-
gurations through ablation. Journal of Heuristics 22, 4, 431–458.

Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/-
Hierarchical Models. Cambridge University Press.

Gendreau, M., Potvin, J.Y., 2010. Handbook of metaheuristics, Vol. 2. Springer.

Gibco, 2016. Cell Culture Basics. Invitrogen Life Technologies.

Golden, B.L., Assad, A.A., Wasil, E.A., Baker, E., 1986. Experimentation in
optimization. European Journal of Operational Research 27, 1, 1–16.

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning,
Vol. 1. MIT press Cambridge.

Gunawan, A., Lau, H.C., et al., 2011. Fine-tuning algorithm parameters using
the design of experiments approach. In International Conference on Learning
and Intelligent Optimization, Springer, pp. 278–292.

Hemmati, A., Hvattum, L.M., 2017. Evaluating the importance of randomi-
zation in adaptive large neighborhood search. International Transactions in
Operational Research 24, 5, 929–942.

Hooker, G., 2007. Generalized functional anova diagnostics for high-dimensional
functions of dependent variables. Journal of Computational and Graphical
Statistics 16, 3, 709–732.

26

Hooker, J.N., 1994. Needed: An empirical science of algorithms. Operations
Research 42, 2, 201–212.

Hooker, J.N., 1995. Testing heuristics: We have it all wrong. Journal of Heu-
ristics 1, 1, 33–42.

Hox, J.J., Moerbeek, M., Schoot, R.v.d., 2010. Multilevel Analysis: Techniques
and Applications, 2nd Edition. Routledge.

Hutter, F., Hoos, H., Leyton-Brown, K., 2014. An efficient approach for as-
sessing hyperparameter importance. In International Conference on Machine
Learning, pp. 754–762.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-based opti-
mization for general algorithm configuration. In International Conference on
Learning and Intelligent Optimization, Springer, pp. 507–523.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2013. Identifying Key Algorithm
Parameters and Instance Features Using Forward Selection. In Nicosia, G.
and Pardalos, P. (eds), Learning and Intelligent Optimization. Springer Berlin
Heidelberg, number 7997 In Lecture Notes in Computer Science, pp. 364–381.

Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J.M., Thibaut, R., 2007.
Robustness of the linear mixed model to misspecified error distribution. Com-
putational Statistics & Data Analysis 51, 10, 5142–5154.

Jones, Z., Linder, F., 2015. Exploratory data analysis using random forests. In
Prepared for the 73rd annual MPSA conference.

Karakatič, S., Podgorelec, V., 2015. A survey of genetic algorithms for solving
multi depot vehicle routing problem. Applied Soft Computing 27, 519–532.

Kendall, G., Bai, R., B lazewicz, J., De Causmaecker, P., Gendreau, M., John,
R., Li, J., McCollum, B., Pesch, E., Qu, R., et al., 2016. Good laboratory
practice for optimization research. Journal of the Operational Research So-
ciety 67, 4, 676–689.

Lawson, J., Erjavec, J., 2016. Basic Experimental Strategies and Data Analysis
for Science and Engineering. CRC Press.

Lin, B.W., Rardin, R.L., 1979. Controlled Experimental Design for Statistical
Comparison of Integer Programming Algorithms. Management Science 25,
12, 1258–1271.

Mason, R.L., Gunst, R.F., Hess, J.L., 2003. Statistical design and analysis of
experiments: with applications to engineering and science, Vol. 474. John
Wiley & Sons.

McGeoch, C.C., 1996. Feature ArticleToward an Experimental Method for Al-
gorithm Simulation. INFORMS Journal on Computing 8, 1, 1–15.

McNabb, M.E., Weir, J.D., Hill, R.R., Hall, S.N., 2015. Testing local search
move operators on the vehicle routing problem with split deliveries and time
windows. Computers & Operations Research 56, 93–109.

27

Montgomery, D., 2012. Design and Analysis of Experiments, 8th Edition. John
Wiley & Sons, Incorporated.

Moore, D.S., Craig, B.A., McCabe, G.P., 2012. Introduction to the Practice of
Statistics. WH Freeman.

Nannen, V., Eiben, A.E., 2007. Relevance estimation and value calibration of
evolutionary algorithm parameters. In IJCAI, Vol. 7, pp. 975–980.

Palhazi Cuervo, D., Goos, P., Srensen, K., Arriz, E., 2014. An iterated local
search algorithm for the vehicle routing problem with backhauls. European
Journal of Operational Research 237, 2, 454–464.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems.
Computers & Operations Research 34, 8, 2403–2435.

Pongcharoen, P., Chainate, W., Thapatsuwan, P., 2007. Exploration of genetic
parameters and operators through travelling salesman problem. Science Asia
33, 2, 215–222.

R Core Team, 2016. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Rahimi-Vahed, A., Crainic, T.G., Gendreau, M., Rei, W., 2013. A path relinking
algorithm for a multi-depot periodic vehicle routing problem. Journal of
Heuristics 19, 3, 497–524.

Rardin, R.L., Uzsoy, R., 2001. Experimental Evaluation of Heuristic Optimiza-
tion Algorithms: A Tutorial. Journal of Heuristics 7, 3, 261–304.

Ribeiro, C.C., Rosseti, I., Souza, R.C., 2011. Effective probabilistic stopping
rules for randomized metaheuristics: Grasp implementations. In International
Conference on Learning and Intelligent Optimization, Springer, pp. 146–160.

Rice, J.R., 1976. The algorithm selection problem. Advances in computers 15,
65–118.

Ridge, E., Kudenko, D., 2006. Sequential experiment designs for screening
and tuning parameters of stochastic heuristics. In Workshop on Empirical
Methods for the Analysis of Algorithms at the Ninth International Conference
on Parallel Problem Solving from Nature (PPSN), Citeseer, pp. 27–34.

Ridge, E., Kudenko, D., 2007. Analyzing heuristic performance with response
surface models: prediction, optimization and robustness. In Proceedings of
the 9th annual conference on Genetic and evolutionary computation, ACM,
pp. 150–157.

Ries, J., Beullens, P., Salt, D., 2012. Instance-specific multi-objective parameter
tuning based on fuzzy logic. European Journal of Operational Research 218,
2, 305–315.

van Rijn, J.N., Hutter, F., 2018. Hyperparameter importance across datasets.
In Proceedings of the 24th ACM SIGKDD International Conference on Kno-
wledge Discovery & Data Mining, ACM, pp. 2367–2376.

28

Rodŕıguez, A., Ruiz, R., 2012. A study on the effect of the asymmetry on real
capacitated vehicle routing problems. Computers & Operations Research 39,
9, 2142–2151.

Saremi, A., Elmekkawy, T.Y., Wang, G.G., 2007. Tuning the Parameters of a
Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using
Design of Experiments. International Journal of Operations Research 4, 4,
206–219.

Shaw, P., 1998. Using Constraint Programming and Local Search Methods
to Solve Vehicle Routing Problems. In Maher, M. and Puget, J.F. (eds),
Principles and Practice of Constraint Programming CP98. Springer Berlin
Heidelberg, number 1520 In Lecture Notes in Computer Science, pp. 417–431.

Silva, A.L., Ramı́rez, J.A., Campelo, F., 2013. A statistical study of discrete
differential evolution approaches for the capacitated vehicle routing problem.
In Proceedings of the 15th annual conference companion on Genetic and evo-
lutionary computation, ACM, pp. 77–78.

Smith-Miles, K., Baatar, D., Wreford, B., Lewis, R., 2014. Towards objective
measures of algorithm performance across instance space. Computers & Ope-
rations Research 45, 12–24.

Smith-Miles, K., Bowly, S., 2015. Generating new test instances by evolving in
instance space. Computers & Operations Research 63, 102–113.

Snijders, T.A., 2011. Multilevel analysis. In International encyclopedia of sta-
tistical science. Springer, pp. 879–882.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling pro-
blems with time window constraints. Operations research 35, 2, 254–265.

Sörensen, K., 2015. Metaheuristics - the metaphor exposed. International Tran-
sactions in Operational Research 22, 1, 3–18.

Sörensen, K., Schittekat, P., 2013. Statistical analysis of distance-based path re-
linking for the capacitated vehicle routing problem. Computers & Operations
Research 40, 12, 3197–3205.

Talarico, L., Sörensen, K., Springael, J., 2015. Metaheuristics for the risk-
constrained cash-in-transit vehicle routing problem. European Journal of
Operational Research 244, 2, 457–470.

Tuzun, D., Magent, M.A., Burke, L.I., 1997. Selection of vehicle routing heuris-
tic using neural networks. International Transactions in Operational Research
4, 3, 211–221.

Wakefield, J., 2013. Bayesian and frequentist regression methods. Springer
Science & Business Media.

Xu, J., Chiu, S.Y., Glover, F., 1998. Fine-tuning a tabu search algorithm with
statistical tests. International Transactions in Operational Research 5, 3,
233–244.

29

Appendix A

Table 5: Summary Table sample problem instances

Problem characteristic min max average standard deviation

Number of customers 25 397 216.45 103.65
Average demand 27.06 35.11 30.02 1.06
Average service time 20.37 39.07 29.29 4.29
Average time window width 34.50 63.58 49.35 6.68
Maximum run time (seconds) 72.55 1707.81 901.82 373.42
Average edge distance 201.03 272.24 241.44 14.76
Standard deviation edge distance 98.43 128.86 115.64 6.17
Fraction of distinct distances 0.41 1 0.72 0.17
Centroid of the nodes: x coordinate 170 331 249 33.20
Centroid of the nodes: y coordinate 160 330 248 34.42
Average distance to centroid 145.31 201.95 176.54 11.47
Average number of customers on a route 4 5.47 4.92 0.19

1 library(brms)

2
3 Data <- read.table ("./Summary_LNS_experiment.csv", header=T, sep=",")

4
5 #variable transformations

6 Data$Customers <- scale(Data$Customers , center=TRUE , (*@scale@*)=FALSE)

7 Data$Customers_cbrt <- sign(Data$Customers)*abs(Data$Customers)**(1/3)

8 Data$Avg_servtime <- scale(Data$Avg_servtime , center=TRUE , (*@scale@*)=FALSE)

9 Data$Avg_tw_width <- scale(Data$Avg_tw_width , center=TRUE , (*@scale@*)=FALSE)

10 Data$Avg_demand <- scale(Data$Avg_demand , center=TRUE , (*@scale@*)=FALSE)

11 Data$Runtime <- scale(Data$maxruntime/60, center=TRUE , (*@scale@*)=FALSE)

12 Data$Cooling_rate <- scale(Data$cooling_rate , center=TRUE , (*@scale@*)=FALSE)

13 Data$Start_temp_ctrl_param <- scale(Data$Start_temp_ctrl_param ,center=TRUE , (*@scale@*)=FALSE)

14 Data$Noise_param <- scale(Data$Noise_param , center=TRUE , (*@scale@*)=FALSE)

15 Data$Determinism_param <- scale(Data$Determinism_param , center=TRUE , (*@scale@*)=FALSE)

16
17 Cost_inv <- (1/Data$total_cost)*100000000

18
19 # In the model formulated below ‘:’ are used to formulate interaction terms , the random

20 # effects are defined as a sum between brackets at the end of the model with ‘1’

21 # indicating the random intercept and the grouping factor defined after ‘|’.

22 # The default value for max_treedepth is 10 and should be raised when model output

23 # suggests to increase it. There are 4 Markov chains used (default), 8000 iterations

24 # per chains of which 2000 are warmup.

25 M1 <- brm(Cost_inv ~ Greedy + (*@Regret2@*) + Random + Worst + Related + RandomWorst +

26 WorstRelated + RandomRelated + Cooling_rate + Start_temp_ctrl_param +

27 Cooling_rate:Start_temp_ctrl_param + Noise_param + Determinism_param +

28 Determinism_param:Random + Determinism_param:Worst + Determinism_param:Related +

29 Determinism_param:RandomWorst + Determinism_param:WorstRelated +

30 Determinism_param:RandomRelated +

31 Noise_param:Greedy + Noise_param:(*@Regret2@*) +

32 Greedy:Random + Greedy:Worst +Greedy:Related + Greedy:RandomWorst +

33 Greedy:WorstRelated + Greedy:RandomRelated + (*@Regret2@*):Random + (*@Regret2@*):Worst +

34 (*@Regret2@*):Related + (*@Regret2@*):RandomWorst + (*@Regret2@*):WorstRelated +

35 (*@Regret2@*):RandomRelated +

36 Customers_cbrt + Avg_servtime + Avg_tw_width + Avg_demand + Runtime +

37 Customer_number_cbrt:Runtime +

38 Greedy:Customers_cbrt + Greedy:Avg_servtime + Greedy:Avg_tw_width +

39 Greedy:Avg_demand + Greedy:Runtime +

40 (*@Regret2@*):Customers_cbrt + (*@Regret2@*):Avg_servtime + (*@Regret2@*):Avg_tw_width +

41 (*@Regret2@*):Avg_demand + (*@Regret2@*):Runtime +

42 Random:Customers_cbrt + Random:Avg_servtime + Random:Avg_tw_width +

43 Random:Avg_demand + Random:Runtime +

44 Worst:Customers_cbrt + Worst:Avg_servtime + Worst:Avg_tw_width +

45 Worst:Avg_demand + Worst:Runtime +

46 Related:Customers_cbrt + Related:Avg_servtime + Related:Avg_tw_width +

47 Related:Avg_demand + Related:Runtime +

48 RandomWorst:Customers_cbrt + RandomWorst:Avg_servtime +

49 RandomWorst:Avg_tw_width + RandomWorst:Avg_demand + RandomWorst:Runtime +

50 WorstRelated:Customers_cbrt + WorstRelated:Avg_servtime +

51 WorstRelated:Avg_tw_width + WorstRelated:Avg_demand + WorstRelated:Runtime +

52 RandomRelated:Customers_cbrt + RandomRelated:Avg_servtime +

53 RandomRelated:Avg_tw_width + RandomRelated:Avg_demand + RandomRelated:Runtime +

54 Cooling_rate:Customers_cbrt + Cooling_rate:Avg_servtime +

55 Cooling_rate:Avg_tw_width + Cooling_rate:Avg_demand + Cooling_rate:Runtime +

56 Start_temp_ctrl_param:Customers_cbrt + Start_temp_ctrl_param:Avg_servtime +

57 Start_temp_ctrl_param:Avg_tw_width + Start_temp_ctrl_param:Avg_demand +

58 Start_temp_ctrl_param:Runtime +

59 Determinism_param:Customers_cbrt + Determinism_param:Avg_servtime +

60 Determinism_param:Avg_tw_width + Determinism_param:Avg_demand +

61 Determinism_param:Runtime +

62 Noise_param:Customers_cbrt + Noise_param:Avg_servtime +

63 Noise_param:Avg_tw_width + Noise_param:Avg_demand + Noise_param:Runtime +

64 (1 + Greedy + Regret2 + Random + Worst + Related + RandomWorst + WorstRelated +

65 RandomRelated + Cooling_rate + Start_temp_ctrl_param + Determinism_param +

66 Noise_param|problem_instance), data= Data , control = list((*@max@*)_treedepth = 12),

30

67 chains = 4,warmup = 2000, iter = 8000, cores =4)

68
69 #Generate regression table

70 summary(M1)

Table 6: Summary Table Multilevel Regression Analysis

Variable Estimate Est.Error 95% CI

Intercept 3, 810.45∗∗ 119.69 [3, 571.73; 4, 043.58]
Greedy −157.27∗∗ 5.97 [−168.90; −145.48]
Regret2 13.43∗∗ 4.27 [5.09; 21.81]
Random 21.70∗∗ 4.21 [13.43; 29.92]
Worst −5.60 4.53 [−14.49; 3.39]
Related −50.38∗∗ 4.68 [−59.48; −41.20]
RandomWorst 12.11∗∗ 4.40 [3.50; 20.75]
WorstRelated −17.30∗∗ 4.28 [−25.74; −8.92]
RandomRelated −1.90 4.37 [−10.49; 6.62]
Cooling rate −18.55 12.58 [−43.24; 6.40]
Start temperature control parameter −22.02 25.90 [−72.77; 28.42]
Noise parameter −11.30∗∗ 4.07 [−19.27; −3.34]
Determinism parameter 0.17 0.22 [−0.26; 0.60]

Customers
1
3 −423.48∗∗ 27.58 [−477.26; −369.47]

Avg service time −18.19 28.31 [−72.15; 37.90]
Avg time window width 37.21∗ 17.81 [1.53; 71.87]
Avg demand 69.79 114.49 [−149.39; 301.35]
Runtime −14.74 20.34 [−54.44; 25.27]
Cooling rate × Start temperature control parameter −392.47 439.16 [−1, 253.45; 475.22]
Random × Determinism parameter −0.23 0.29 [−0.81; 0.34]
Worst × Determinism parameter −0.41 0.30 [−1.00; 0.18]
Related × Determinism parameter −1.34∗∗ 0.30 [−1.94; −0.75]
RandomWorst × Determinism parameter −0.03 0.30 [−0.61; 0.57]
WorstRelated × Determinism parameter −0.07 0.29 [−0.66; 0.51]
RandomRelated × Determinism parameter −0.20 0.30 [−0.78; 0.37]
Greedy × Noise parameter −40.71∗∗ 5.88 [−52.43; −29.21]
Regret2 × Noise parameter −5.56 5.60 [−16.47; 5.35]
Greedy × Random −61.59∗∗ 6.16 [−73.71; −49.64]
Greedy × Worst −79.79∗∗ 6.41 [−92.27; −67.28]
Greedy × Related 66.71∗∗ 6.58 [53.86; 79.48]
Greedy × RandomWorst −75.62∗∗ 6.38 [−88.11; −63.23]
Greedy × WorstRelated 5.73 6.04 [−6.07; 17.61]
Greedy × RandomRelated 11.50 6.31 [−0.87; 23.88]
Regret2 × Random −5.64 5.96 [−17.30; 6.12]
Regret2 × Worst 1.75 6.14 [−10.26; 13.79]
Regret2 × Related −11.49 6.27 [−23.89; 0.99]
Regret2 × RandomWorst 1.43 6.18 [−10.52; 13.64]
Regret2 × WorstRelated 0.83 5.98 [−11.01; 12.49]
Regret2 × RandomRelated −6.40 5.96 [−18.04; 5.31]

Customers
1
3 × Runtime 8.17∗ 3.56 [1.25; 15.21]

Greedy× Customers
1
3 −14.19∗∗ 1.03 [−16.23; −12.16]

Greedy× Avg service time 3.43∗∗ 1.06 [1.38; 5.51]
Greedy× Avg time window width −2.54∗∗ 0.67 [−3.86; −1.23]
Greedy1× Avg demand 2.65 4.29 [−5.65; 11.09]
Greedy1× Runtime 1.67∗ 0.73 [0.23; 3.11]

Regret21× Customers
1
3 0.63 0.38 [−0.13; 1.38]

Regret2× Avg service time 0.18 0.38 [−0.57; 0.94]
Regret2× Avg time window width 0.01 0.25 [−0.48; 0.49]
Regret2× Avg demand −0.21 1.62 [−3.40; 2.98]
Regret2× Runtime −0.51 0.27 [−1.03; 0.02]

Random× Customers
1
3 −0.35 0.59 [−1.51; 0.81]

Random× Avg service time 0.55 0.60 [−0.62; 1.75]
Random× Avg time window width 0.08 0.39 [−0.70; 0.85]
Random× Avg demand −1.64 2.53 [−6.52; 3.35]
Random× Runtime 0.13 0.42 [−0.69; 0.96]

Worst× Customers
1
3 1.77∗∗ 0.63 [0.53; 3.01]

Worst× Avg service time −0.01 0.64 [−1.27; 1.24]
Worst× Avg time window width −0.22 0.42 [−1.05; 0.62]
Worst× Avg demand 0.11 2.71 [−5.18; 5.37]
Worst× Runtime 0.21 0.46 [−0.68; 1.10]

Related× Customers
1
3 −6.05∗∗ 0.71 [−7.43; −4.66]

Related× Avg service time 0.34 0.71 [−1.06; 1.73]

31

Related× Avg time window width −0.48 0.47 [−1.39; 0.43]
Related× Avg demand −2.47 2.91 [−8.18; 3.30]
Related× Runtime 1.03∗ 0.50 [0.05; 2.03]

RandomWorst× Customers
1
3 0.29 0.61 [−0.88; 1.49]

RandomWorst× Avg service time 0.44 0.61 [−0.76; 1.63]
RandomWorst× Avg time window width −0.08 [0.40; −0.87] 0.71
RandomWorst× Avg demand 0.26 2.58 [−4.79; 5.32]
RandomWorst× Runtime −0.01 0.43 [−0.85; 0.82]

WorstRelated× Customers
1
3 −1.07 0.58 [−2.21; 0.06]

WorstRelated× Avg service time 0.39 0.58 [−0.75; 1.54]
WorstRelated× Avg time window width 0.09 0.39 [−0.67; 0.85]
WorstRelated1× Avg demand 0.58 2.40 [−4.08; 5.29]
WorstRelated1× Runtime 0.52 0.40 [−0.27; 1.31]

RandomRelated× Customers
1
3 −1.38∗∗ 0.59 [−2.55; −0.22]

RandomRelated× Avg service time 0.07 0.60 [−1.11; 1.25]
RandomRelated× Avg time window width −0.15 0.40 [−0.93; 0.63]
RandomRelated× Avg demand −2.16 2.45 [−6.95; 2.64]
RandomRelated× Runtime 0.05 0.41 [−0.76; 0.87]

Cooling rate× Customers
1
3 −2.52 2.89 [−8.15; 3.15]

Cooling rate× Avg service time 1.66 3.01 [−4.30; 7.56]
Cooling rate× Avg time window width 1.16 1.92 [−2.60; 4.94]
Cooling rate× Avg demand −0.46 11.99 [−24.04; 23.04]
Cooling rate× Runtime 1.84 2.04 [−2.19; 5.86]

Start temperature control parameter × Customers
1
3 −8.63 5.95 [−20.21; 3.11]

Start temperature control parameter × Avg service time −3.58 6.07 [−15.41; 8.19]
Start temperature control parameter × Avg time window width −4.21 3.97 [−12.00; 3.50]
Start temperature control parameter × Avg demand 14.57 25.17 [−34.40; 64.03]
Start temperature control parameter × Runtime −1.43 4.29 [−9.85; 6.97]

Determinism parameter× Customers
1
3 0.01 0.02 [−0.03; 0.05]

Determinism parameter× Avg service time 0.01 0.02 [−0.03; 0.06]
Determinism parameter× Avg time window width −0.003 0.01 [−0.03; 0.03]
Determinism parameter× Avg demand 0.02 0.10 [−0.17; 0.21]
Determinism parameter× Runtime −0.02 0.02 [−0.05; 0.02]

Noise parameter× Customers
1
3 −0.47 0.60 [−1.64; 0.72]

Noise parameter× Avg service time −0.09 0.61 [−1.29; 1.10]
Noise parameter× Avg time window width −0.44 0.40 [−1.22; 0.34]
Noise parameter× Avg demand −0.89 2.49 [−5.80; 3.91]
Noise parameter× Runtime 0.12 0.42 [−0.71; 0.95]

Note: ** denotes significance at 1%, * denotes significance at 5%

32

