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Abstract

An analytical expression is derived for the
transition path time distribution for a one-
dimensional particle crossing of a parabolic bar-
rier. Two cases are analyzed: (i) A non-
Markovian process described by a generalized
Langevin equation with a power-law memory
kernel and (ii) a Markovian process with a
noise violating the fluctuation-dissipation the-
orem, modeling the stochastic dynamics gener-
ated by active forces. In the case (i) we show
that the anomalous dynamics strongly affecting
the short time behavior of the distributions, but
this happens only for very rare events not influ-
encing the overall statistics. At long times the
decay is always exponential, in disagreement
with a recent study suggesting a stretched expo-
nential decay. In the case (ii) the active forces
do not substantially modify the short time be-
havior of the distribution, but lead to an overall
decrease of the average transition path time.
These findings offer some novel insights, use-
ful for the analysis of experiments of transition
path times in (bio)molecular systems.

Introduction

Biomolecular folding involves structural tran-
sitions of various time- and lengthscales. A
simplified description of this process employs a
single reaction coordinate performing stochas-
tic dynamics along a free energy landscape. In
the case of a two state folding, the folded and
unfolded states correspond to two free energy
minima, which are separated by a barrier. Typ-
ically, this barrier is high compared to the char-
acteristic thermal energy kBT , therefore the
molecule spends the predominant fraction of
its time close to one of the minima.1 Transi-
tion paths are the part of the stochastic trajec-
tory corresponding to an actual barrier cross-
ing event.2 Although the transition paths cor-
respond to a tiny fraction of the stochastic tra-
jectory, they encompass all the information of
the folding process. Measuring their duration
has been for long time a big challenge, owing to
the high time resolution needed. In the past few
years, however, experiments have sufficiently
progressed to make measurements of transition
path times in nucleic acids and protein fold-
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ing possible.3–6 Recently also the full proba-
bility distribution function of transition path
times, obtained from the statistics of a large
number of events, was determined.7 The the-
ory of transition path times have been discussed
in several papers.8–18 These studies mostly em-
ployed memoryless Markovian dynamics, while
correlated noise, leading to memory effects and
anomalous dynamics, was only considered in a
few recent works.19,20

Anomalous dynamics is ubiquitous in macro-
molecular systems as polymers, as it is known
from many examples.21–27 This dynamics is
characterized by a mean-square displacement
of a suitable reaction coordinate scaling as
〈∆x2〉 ∼ tα, with α 6= 1. The analysis of
the effect of an underling anomalous dynam-
ics on transition path times is therefore an in-
teresting case to study, which is one of the
aims of this paper. Another purpose of the
present work is to analyze transition path times
for stochastic processes in which the noise has
a non-thermal component, ie not satisfing a
fluctuation-dissipation relation. Such noise has
been used in the description of the dynamics
of active systems.28 Our primary interest is to
calculate the transition path time (TPT) dis-
tribution for these two cases and discuss the
differences with the more standard situation of
Markovian dynamics in thermal systems. We
consider here a parabolic barrier, which leads
to a dynamics described by linear stochastic dif-
ferential equations and to Gaussian processes.
We show that, using the formalism developed
recently in Ref.,18 the calculations are manage-
able and lead to some simple expressions for
the TPT distributions. We discuss here several
features of these distributions such as the short
and long time behavior in the limit of high bar-
riers.

Generalities

We consider a particle performing a stochas-
tic dynamics on an inverted parabolic potential
barrier V (x) = −kx2/2, with k > 0. At time
t = 0 the particle starts from a point −x0 + ε.
Transition paths are those paths reaching x0 at

the right side of the barrier without recrossing
−x0 and x0. To compute the distribution of
their duration one should solve the Langevin
equation imposing absorbing boundary condi-
tions in −x0 and x0. Free boundary condi-
tions are however easier to handle and provide a
good approximation if the barrier is high,10 i.e.
βE � 1, with E = kx2

0/2 and β = 1/kBT the
inverse temperature. This is because the prob-
ability of multiple crossings in ±x0 is negligible
for high barriers.

In Ref.18 the TPT distribution was calculated
for a Markovian particle with inertia. It was
shown that both in the inertial and overdamped
cases the TPT distribution assumes the general
form18

pTP (t) = − 2√
π

Ġ(t)e−G
2(t)

1− Erf(
√
βE)

. (1)

where Ġ ≡ dG/dt and

G(t) ≡ x0 − x(t)√
2σ2(t)

. (2)

In the previous equation

x(t) ≡ 〈x(t)〉 (3)

σ2(t) ≡
〈
(x(t)− x(t))2〉 (4)

are the mean and variance of the process.
In the overdamped case the function G(t) as-

sumes a simple form

G(t) =
√
βE

√
eΩt + 1

eΩt − 1
(5)

where Ω = k/γ and γ is the friction coefficient.
The G(t) in the inertial case is more complex
and is given in Ref.18

For short times G(t) ≈
√

2x0/σ(t), which di-
verges as a consequence of the the initial con-
dition x(0) = −x0, implying σ(t) → 0. This
leads to a TPT distribution vanishing with an
essential singularity as t→ 0. In the Markovian
case the behavior was found to be different in
the overdamped pTP(t) ∼ exp(−x2

0/Dt) and in-
ertial pTP(t) ∼ exp(−2βmx2

0/t
2) cases18 (here

m is the particle mass and D = 1/(βγ) the dif-
fusion coefficient). At long timesG(t) converges
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to a constant in both cases, while its derivative
decays exponentially Ġ(t) ∼ exp(−λt), where
λ−1 is the longest relaxation time of the process
(λ = Ω in the overdamped limit (5)). This leads
to an exponential decay pTP(t) ∼ exp(−λt) for
the long time behavior of the distribution both
in the overdamped and inertial case.18 In the
next Section we computeG(t) for a process with
correlated and active noise and discuss the TPT
distribution obtained from it.

Memory effects in transition

path times

A reaction coordinate x is by definition a slow
variable for which standard statistical mechan-
ical arguments show that its time evolution
is given in terms of a generalized Langevin
equation.29 For a parabolic barrier in the over-
damped case this equation takes the form∫ t

0

K(t− τ) ẋ(τ)dτ = kx(t) + ξ(t) (6)

Here K(t) is a memory kernel. The noise ξ(t)
is assumed to be a Gaussian process with aver-
age zero and a correlation that in equilibrium
is related to K(t) by the fluctuation-dissipation
theorem

〈ξ(t)ξ(t′)〉 = kBTK(|t− t′|) (7)

We focus here on a power law memory kernel

K(t) =
ηα t

−α

Γ(1− α)
(8)

where 0 < α ≤ 1 and where, following Ref.,27

we define the generalized friction coefficient as
ηα = γΓ(3−α). In the limit α→ 1−, the Γ func-
tion in the denominator becomes singular and
K(t) = 2γδ(t), i.e. one recovers the Markovian
(memoryless) dynamics. Power law kernels are
found, for instance, in the dynamics of polymers
which are characterized by a longest relaxation
time τR. While on time scales much larger than
τR the effects of memory on the motion of a re-
action coordinate can be neglected, these are
strongly influencing the polymer dynamics for

t < τR. Polymers have a memory kernel K(t)
that, for t < τR, can be well approximated by
a power law.30,31 This power law behavior is a
characteristic of systems with a broad spectrum
of relaxation times.

The generalized Langevin equation (6) with
the kernel (8) is a linear equation which can
be solved using Laplace transforms. The initial
condition is x(t = 0) = −x0. As explained in
the previous section we do not impose specific
boundary conditions in ±x0, an approximation
which is good for steep barriers βE � 1. The
solution of (6) is (for details see Appendix )

x(t) = −x0Θα(t) +
1

ηα

∫ t

0

ξ(t− τ)Ψα(τ)dτ (9)

where we introduced the functions

Θα(t) ≡ Eα,1 [(Ωt)α] (10)

Ψα(t) ≡ tα−1Eα,α [(Ωt)α] (11)

(Ω ≡ (k/ηα)1/α is the characteristic rate of the
process) and where

Eα,β(z) ≡
∞∑
n=0

zn

Γ(αn+ β)
(12)

is the Mittag-Leffler function.32

We assume that the noise ξ(t) is Gaussian,
and since the Langevin equation (6) is linear,
we conclude that also x(t) is Gaussian. Hence
Eqs. (1) and (2) apply. One has for the average

x(t) ≡ 〈x(t)〉 = −x0Θα(t) (13)

while the variance is given by

σ2(t) =
kBT

k

(
Θ2
α(t)− 1

)
(14)

(details of the calculations are in Appendix ).
Plugging in (13) and (14) in (2) we get:

G(t) =
√
βE

√
Θα(t) + 1

Θα(t)− 1
(15)

This result generalizes the memoryless case (5),
which is recovered in the limit α = 1 since
Θ1(x) = E1,1(x) = exp(x).
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Figure 1: Transition path time distribution
pTP(Ωt)/Ω for α = 1 (blue), α = .75 (orange)
and α = 0.5 (green). The other parameters are
k = 1, ηα = 10, kBT = 1 and x0 =

√
2 (top),

x0 =
√

20 (bottom), corresponding to βE = 1
and βE = 10, respectively.

Figure 1 shows plots of the transition path
distribution pTP(t) for three different values of
α and for two different values of k. The tran-
sition path time (in dimensionless units) de-
creases with decreasing α. We now look at the
behavior of pTP(t) for small and large times
which can be obtained from the correspond-
ing behavior of the Mittag-Leffler functions. As
the Mittag-Leffler functions diverge for diverg-
ing values of their arguments (15) implies that
G(t) →

√
βE for t → ∞. For Ġ(t) one finds

(for details see Appendix ).

Ġ(t)
t∼∞−→ − e−Ωt (16)

which implies that pTP(t) vanishes exponen-
tially, as was the case for the Markovian
model.18 This is in contrast with the conclu-
sions of a recent paper20 where a stretched
exponential decay was found. However, the
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Ω t

-
lo
g
(p
T
P
(t
)
/Ω

)

Figure 2: Log-log plot of − log (pTP(t)/Ω) ver-
sus Ωt for α = 0.75, k = 2, x0 = 1 in the early
time regime Ωt < 0.1. The blue line shows the
exact expression while the orange line gives the
early time approximation (17).

results of that paper where obtained from a
Fokker-planck equation for systems with mem-
ory that is only correct for a linear potential,
or for small times.33 Hence one cannot expect
that it gives a correct asymptotic result.

For t → 0, one has that G2(t) → 2βE Γ(1 +
α)(Ωt)−α (see (51)) from which it follows that
Ġ(t) ∼ t−α/2−1. The behavior of the transition
path time distribution for early times is there-
fore determined by the essential singularity in
e−G

2(t). Hence

pTP(t)
t→0∼ e−G

2(t) = exp

(
−2βE Γ(1 + α)

(Ωt)α

)
(17)

We see that the early time behavior does de-
pend on α and that the exponent could be de-
termined from a straight line fit to a log-log
plot of − log (pTP(t)/Ω) versus Ωt. In Fig. 2
we have made such a plot for α = 0.75 and
βE = 1. We find the expected power law be-
havior for Ωt < 0.005. An integration of the
TPT distribution shows however that the prob-
ability that the transition path time is in this
regime is extremely low (∼ 10−43). We there-
fore conclude that it is experimentally impossi-
ble to determine the exponent α from the early
time behavior of the TPT.

We look next at the behavior of the average
transition path time following the same proce-
dure as outlined in Ref.18 As G is a monotonic
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decreasing function of t for the calculation it is
convenient to perform a change of variable:

〈tTP〉 =

∫ ∞
0

t pTP(t) dt =

∫∞√
βE
t(G)e−G

2
dG∫∞√

βE
e−G2 dG

(18)

The integral in the numerator can not be per-
formed exactly. We can however get an approx-
imation for βE sufficiently large. In that limit
the integrals in (18) are determined by the large
t-limit of G(t). The average TPT is then given
by (for details, see Appendix )

〈tTP 〉 =
1

Ω
log
(
2αeCβE

)
+O

(
1

βE

)
(19)

where C ≈ 0.577215 is the Euler-Mascheroni
constant (in the Markovian limit α = 1 this
expression coincides with that previously ob-
tained by Szabo34). In Fig. 3, we have plotted
the result of a numerical calculation of the aver-
age transition path time as a function of βE us-
ing the full expression for G(t) and compared it
with the approximation (19) for α = .75. We re-
mark that, according to (19), the dimensionless
average transition path time, Ω〈tPT 〉, decreases
with decreasing α as was already evident from
the plots in Fig. 1. The most likely transition
path time t∗TP, corresponding to the maximum
of a distribution is (see Appendix)

t∗TP =
1

Ω
log(2αβE) +O

(
1

βE

)
(20)

and show a similar logarithmic dependence on
the barrier height as the average (19). The com-
parison between the analytical expression (20)
and the numerical calculation of the maximum
is shown in Fig. 3 as dashed lines.

Transition path times in the

presence of active forces

The folding of a biopolymer in vivo takes place
in an environment which is out of equilibrium
due to the action of various ATP-dependent ac-
tive processes within a cell. These processes

Ω < tTP >

Ω tTP
*

5 10 15 20 25 30

1

2

3

4

β E

Figure 3: Average dimensionless transition
path time, Ω〈tTP 〉 (solid lines), and most likely
value Ωt∗TP (dashed lines) as a function of the
dimensionless energy βE for α = 0.75, k = 0.1,
ηα = 1. The blue curves are obtained numeri-
cally from the exact expression for pTP(t), while
the orange curves are the approximations (19)
and (20).

are known to modify the dynamics of various
”probes” like microspheres35–37 and chromoso-
mal loci.38–43 Typically, the active forces lead
to an enhanced diffusion or even superdiffusive
behavior. Similar phenomena have been ob-
served in artificial acto-myosin networks.44–48 It
has been found that the effect of the underlying
motor processes can often be described in terms
of an active noise η(t) which is correlated over
the time scale τA that the motors work. These
times are of the order of seconds.

In a recent study on the behavior of active
Brownian particles near soft walls, the dynam-
ics of a semiflexible polymer immersed in an en-
vironment of such particles was investigated.49

Active Brownian particles move in a direction
~e which is subject to rotational Brownian diffu-
sion. The force they produce on a (flexible) soft
wall (like, for example a polymer) will there-
fore be exponentially correlated, where now the
timescale τA of the correlation is related to the
rotational diffusion constant. It was found that
due to pressure instabilities, a sufficiently long
polymer folds, even in the absence of interac-
tions among the monomers.

Inspired by these two examples of folding in
a non-equilibrium environment, it may be of
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interest to study also the effect of active forces
on transition path times. We start from the
Langevin equation

γẋ(t) = k x(t) + ξ(t) + η(t) (21)

Here ξ(t) is now a Markovian thermal force
while η(t) is the active noise which assume to
have an exponential correlation.

〈η(t) η(t′)〉 = C exp

(
−|t− t

′|
τA

)
(22)

We also take 〈η(t)〉 = 0. The coefficient C mea-
sures the strength of the active force. There
is no associated friction force so that (21) de-
scribes a system out of equilibrium.

The solution of (21) with initial condition
x(t = 0) = −x0 is

x(t) = −x0e
Ωt +

1

γ

∫ t

0

eΩ(t−t′) (ξ(t′) + η(t′)) dt′

From this we find that the deterministic motion
is

x(t) = 〈x(t)〉 = −x0e
Ωt (23)

while the variance of the position is given by

σ2(t) = 〈(x(t)− x(t))2〉

=

(
kBT

k
+

CτAΩ

k2(1− τAΩ)

)(
e2Ωt − 1

)
+

2Cτ 2
AΩ2

k2(τ 2
AΩ2 − 1)

(
e2Ωt − e(1−1/ΩτA)Ωt

)
(24)

It is convenient to describe the escape over the
parabolic in terms of an effective temperature
as was done in a study of the motion of colloids
in active bath of bacteria and in the presence
of a confining harmonic potential.50

Asymptotically σ2(t)e−2Ωt goes to a constant
which can be used to define this effective tem-
perature T ?

lim
t→∞

σ2(t)e−2Ωt =
1

k

[
kBT +

CτAΩ

k(τAΩ + 1)

]
≡ kBT

?

k
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Figure 4: Transition path time distribution
pTP(Ωt)/Ω for C = 0 (blue), C = 1 (orange)
and C = 10 (green) and for k = 0.1, ηα =
1, x0 = 10, kBT = 1, τA = 1.

The effective temperature takes over the role of
the physical temperature in the transition path
time distribution. Going through the calcula-
tions of Ref.18 we find that in this case

pTP(t) = − 2√
π

Ġ(t)e−G
2(t)

1− Erf(
√
β?E)

(25)

where G(t) is given by (2) and β? = 1/kBT
?.

From these results one can find that at early
times, the transition path time is again gov-
erned by the essential singularity in e−G

2(t)

whose form is not modified by the active forces.
The late time decay is governed by Ġ(t) which
decays exponentially. The only change is in the
prefactor of the exponential which now involves
the effective temperature

Ġ(t) ∼ −
√
β?E Ω e−Ωt (t→∞) (26)

Finally, in the expression for the average tran-
sition path time, the effective temperature also
replaces the real temperature

〈tTP (t)〉 = Ω−1 log
(
2eCβ?E

)
(27)

Since β? < β, the addition of active forces leads
to a decrease of the average transition path
time. In Fig. 4, we have plotted some dis-
tributions where it can be seen that indeed the
average transition path time decreases if the ef-
fective temperature (here tuned by changing C
at fixed τA) increases.
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As can be seen from the expression of the
effective temperature, the dependence on τA
is weak once it becomes bigger then Ω−1 (the
other time scale in problem). This can also be
seen in Fig. 5 where C is fixed and τA is in-
creased from values below to values above Ω−1

.

r=0.1

r=0.5

r=0.9

r=2.5
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0.2

0.3

0.4

0.5

0.6

0.7

Ωt

p
T
P
(t
)
/Ω

Figure 5: Transition path time distribution
pTP (Ωt)/Ω for r = 0.1 (blue), r = 0.5 (orange)
and r = 0.9 (green) and r = 2.5(red) and for
k = 0.1, ηα = 1, x0 = 10, kBT = 1, C = 1. Here
r = ΩτA is the ratio of the two timescales in the
problem.

Discussion

Conformational transitions of molecular sys-
tems between two different states are governed
by two time scales. The Kramers time cor-
responds to the typical time spent in a given
conformation (the dwell time), while the tran-
sition path time characterizes the actual dura-
tion of the transition. Transition path times,
which have been measured in proteins and nu-
cleic acids folding experiments during the past
decade,3–6,34 can be a few orders of magnitudes
shorter than Kramers’ times.

In this paper we have analyzed the TPT dis-
tribution of a one dimensional stochastic par-
ticle undergoing Langevin dynamics and cross-
ing a parabolic barrier. We investigated the
effects of memory and non-equilibrium thus ex-
tending previous analysis.10,18 As the barrier is
parabolic, the associated Langevin equation is
linear and hence exactly solvable in the case of

free boundary conditions. This solution is ex-
pected to approximate very well the absorbing
boundary case for steep barriers.

In Ref.19 the effect of memory on transition
path times was also investigated. The TPT-
distribution was derived for an arbitrary mem-
ory kernel starting from an Hamiltonian formu-
lation in which the particle dynamics is cou-
pled to a bath of harmonic oscillators.19 We
expect that the expressions reported in19 will
agree with our results in the case of overdamped
dynamics with power-law memory in the limit
of high barriers. Our result for the power law
kernel has the advantage that it is simple and
of the same form as in the Markovian case. We
expect it to be easier to compare with experi-
ments.

Long time limit of transition path
time distribution: why exponen-
tial decay?

We have found that the asymptotic decay of the
transition path time distribution remains expo-
nential for both cases investigated and there-
fore has a remarkable universal behavior. This
contrasts with the conclusions of Ref.20 In that
work, which employed a Fokker-Planck equa-
tion with a time dependent diffusion constant
D(t) ∼ tα−1, it was argued that the large
time decay of the TPT is stretched exponen-
tial. However, it was shown that for a particle
in a harmonic potential the correct expression
for D(t) coincides with that used in20 only for
short times.33 This suggests that the asymp-
totic stretched exponential behavior reported
in20 cannot be trusted. A diffusion constant
D(t) ∼ tα−1 was also derived for a particle un-
der constant force.33

To get some more insights about the differ-
ences in the effect of memory kernels in the con-
stant force and the parabolic barrier case let us
consider the following equation∫ t

0

K(t− τ) ẋ(τ)dτ = f (28)

which describes the average motion of particle
driven by a constant force f in a medium char-

7



acterized by the exponent α. Using Laplace
transforms we find x(t) − x(0) ∼ tα, with the
normal drift x(t) − x(0) ∼ t recovered in the
Markovian limit α → 1. This behavior can be
deduced from an effective medium description

Γeff(t)ẋ(t) ∼ f (29)

where the effective friction Γeff(t) ∼ t−α+1, as
expected from the time integral of memory ker-
nel, grows with time due to memory effects (the
result is consistent with the Einstein relation
for the diffusion constant discussed in33). This
indicates the velocity ẋ(t) ∼ ftα−1 decreases
with time, hence, the anomalous drift. In the
parabolic barrier there is, however, a crucial
difference. The effective medium description
would give

Γeff(t)ẋ(t) ∼ kx(t) (30)

with solution

x(t) = −x0 exp [(Ωt)α] (31)

which is a stretched exponential behavior. This
is not consistent with the exact solution of the
generalized Langevin equation discussed in this
paper, which yields for the average position an
exponentially growing function at long times
(obtained from the asymptotic behavior of the
Mittag-Leffler function of (13)).

To understand this apparent paradox, we
point out that the effective friction argument
would be valid for a process in which the ve-
locity ẋ(t) is a slowly varying function. For a
self-similar process, where the velocity changes
according to a power law ẋ(t) ∼ t−γ, the coarse
grained variable

∫ t
0
dt′ẋ(t′)/t ∼ t−γ by time av-

erage behaves similarly with the original vari-
able. In such a case, the effective friction ar-
gument should work to get the correct scaling
behavior.

However, in the parabolic barrier crossing,
the velocity increases rapidly (exponentially),
therefore, the contribution from the memory
kernel integral is dominated by the most recent
term only. This implies that in the long time
scale, we should expect an effective description,
in which the system feels only the instantaneous

response, hence our effective equation is

γ̃ẋ(t) = kx(t) (32)

where γ̃ is a renormalized friction coefficient.
Our argument suggests that it is this renormal-
ization that is behind the universal exponen-
tial decay in the long time limit of transition
path time distribution. This asymptotic behav-
ior sets already in at Ωt ' 1.5 as seen numeri-
cally (Fig. 1).

Comparison with experiments:
possible implications

Differently from the Kramers’ time, which is
characterised by an exponential dependence
on the barrier height E, the average TPT
in the overdamped limit scales logarithmically
〈tTP〉 ∼ log(βE), where β is the inverse temper-
ature. We have shown here that the logarithmic
dependence also holds in the presence of mem-
ory effects or of active forces. The effect of the
active forces is simply to increase the tempera-
ture to a higher effective one. Hence the average
TPT will always decrease in this case. Memory
also decrease the average TPT when measured
in dimensionless units.

We believe that our results are helpful in in-
terpreting experimental results. Indeed the bar-
rier height as determined from a comparison
between experiments and a model for diffusion
in a parabolic potential without memory terms
gave values that were much lower than those
determined by other means. Our calculations
have shown that both memory effects and non-
equilibrium effects can have the same effect as
lowering the potential barrier. While in cur-
rent experiments non-equilibrium effects almost
surely play no role they could certainly be of
relevance inside the cellular environment. The
experimental results on DNA-hairpins and pro-
teins can however be understood from a model
with memory. Indeed, in that case we predict
that there are more short transit times than in
a model without memory (when time is mea-
sured in rescaled unit Ωt). This is indeed what
is found experimentally. Further research will
have to show whether this qualitative agree-
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ment can be made more quantitative.
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Appendix A: Power law

memory kernel

The solution of the generalized Langevin equa-
tion (6) with power law memory kernel is ob-
tained by performing its Laplace transform

K̃(s) (sx̃(s) + x0) = kx̃(s) + ξ̃(s) (33)

where f̃(s) indicates the Laplace transform of
the function f(t). To obtain the previous
equation we used the convolution theorem (the
Laplace transform of a convolution product is
the product of the Laplace transforms) and the
fact that the Laplace transform of a derivative
is ˜̇f = sf̃(s)− f(0) (34)

(in our case the initial condition is x(0) = −x0).
Solving (33) we get

x̃(s) =
−x0K̃(s)

sK̃(s)− k
+

ξ̃(s)

sK̃(s)− k
(35)

The Laplace transform of the power law ker-
nel (8) is

K̃(s) = γ sα−1 (36)

therefore Eq. (35) takes the form

x̃(s) =
−x0s

α

s (sα − k/γ)
+

1

γ

ξ̃(s)

sα − k/γ
(37)

To perform the inverse transform we use the
following relation∫ ∞

0

dt e−ts tβ−1Eα,β(atα) =
sα

sβ(sα − a)
(38)

where Eα,β(z) is known as Mittag-Leffler func-
tion.32 To handle the two terms in the left hand
side of (37) one can use (38) with β = 1 and
β = α. For this purpose it is convenient to

introduce the functions

Θα(t) ≡ Eα,1 [(Ωt)α] (39)

Ψα(t) ≡ tα−1Eα,α [(Ωt)α] (40)

where Ω ≡ (k/γ)1/α is a characteristic rate of
the process. Inverting (37) we get

x(t) = −x0Θα(t) +
1

γ

∫ t

0

ξ(t− τ)Ψα(τ)dτ (41)

Averaging over noise we get the average posi-
tion, or equivalently the deterministic solution

x̄(t) = −x0Θα(t) (42)

while the variance (4) is

σ2(t) =
kBT

γ

∫ t

0

dτdσ
|τ − σ|−α

Γ(1− α)
Ψα(τ)Ψα(σ)

=
kBT

k

(
Θ2
α(t)− 1

)
(43)

(the details of the calculation of this integral
are given in Appendix ). We finally combine
the above results to find G(t), see (2)

G(t) =
x0 − x̄(t)√

2σ2(t)
=
√
βE

√
Θα(t) + 1

Θα(t)− 1
(44)

where E = kx2
0/2 is the barrier height. This

proves Eq. (15) of the main text.
The Mittag-Leffler function behaves asymp-

totically as32

Eα,β(z)
z→∞−→ 1

α
z(1−β)/α exp(z1/α) (45)

which implies

Θα(t)
t→∞−→ 1

α
exp(Ωt) (46)

Hence

G(t)
t→∞−→

√
βE (47)

Ġ(t)
t→∞−→ −

√
βE αΩ exp(−Ωt) (48)

For small arguments, the Mittag-Leffler func-
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tion behaves as32

Eα,β(z) = 1 +
zα

Γ(α + β)
+ · · · (49)

hence

Θα(t) = 1 +
(Ωt)α

Γ(1 + α)
+ · · · (50)

This implies that G(t) diverges for small t

G(t) ∼ (Ωt)−α/2 (51)

The average transition path time

To calculate the average TPT we follow the cal-
culation outlined in:18

〈tTP 〉 =

∫ ∞
0

t pTP (t) dt =

∫∞√
βE
t(G)e−G

2
dG∫∞√

βE
e−G2 dG

(52)
where we have made the change of variables
G′dt = dG and used the definition of the er-
ror function. The integral in the numerator can
not be performed exactly. We can get an ap-
proximation for βE � 1 where the integrals are
determined by the large t-limit of G(t). From
(39), (44) and (45) one gets for t large

G(t) =
√
βE
[
1 + αe−Ωt + . . .

]
(53)

which can be inverted to

t =
1

Ω

(
logα− log

(
G√
βE
− 1

))
(54)

If we insert (54) into (52) and make also here
an expansion for large βE we finally get

〈tTP 〉 =
1

Ω
log
(
2αeCβE

)
+O

(
1

βE

)
(55)

where C ≈ 0.577215 is the Euler-Mascheroni
constant.

The most likely transition path
time

Another interesting quantity we can infer from
the results is t∗TP, the most likely value of the

TPT. This is obtained by solving the equation

dpTP

dt
= 0 (56)

which from (1) implies G̈ = 2GĠ2 (where the
dot indicates the time derivative), or using (15):

Θ̇2
α − Θ̈α

(
Θ2
α − 1

)
+ 2 ΘαΘ̇2

α = 2βE Θ̇2
α

Θα + 1

Θα − 1
(57)

Using the asymptotic t → +∞ expansion (46)
one has

Θ̇α(t) ∼ Ω

α
exp(Ωt), Θ̈α(t) ∼ Ω2

α
exp(Ωt)

(58)
and to leading order in βE the solution of (57)
becomes

t∗TP =
1

Ω
log(2αβE) (59)

Appendix B: Integral (43)

To compute the integral (43) we start from
the double Laplace transform of the function
Θα(|τ − σ|). We have

f(s, s′) ≡
∫ +∞

0

∫ +∞

0

dτdσ e−sτ−s
′σΘα(|τ − σ|)

(60)

To get rid of the absolute value we split the
integral in two domains so to obtain

f(s, s′) =

∫ +∞

0

dτ

∫ +∞

τ

dσ e−sτ−s
′σΘα(σ − τ)

+

∫ +∞

0

dσ

∫ +∞

τ

dτ e−sτ−s
′σΘα(τ − σ)

=
1

s+ s′

[
1

s′ (1− (Ω/s′)α)
+

1

s (1− (Ω/s)α)

]
(61)

The integrals can be easily computed using a
change of variables and the property (38). The
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above expression can be rearranged as follows

f(s, s′) =
1

ss′ (1− (Ω/s′)α) (1− (Ω/s)α)
−

Ωα

(ss′)α (1− (Ω/s′)α) (1− (Ω/s)α)

sα−1 + s′α−1

s+ s′

(62)

The double inverse Laplace transform of the
first term is easy as this term is the prod-
uct of a function of s and a function of s′.
One has two independent inverse Laplace trans-
form and from (38) one sees that this generates
Θα(τ)Θα(σ).

The second term in (62) is a product of two
fractions. In the first one, one recognises the
double Laplace transform of ΩαΨα(τ)Ψα(σ).
For the second one we use∫ +∞

0

dτdσ
e−σs−τs

′|τ − σ|−α

Γ(1− α)
=

sα−1 + s′α−1

s+ s′

(63)

Invoking the convolution theorem of double
Laplace transforms, the second term of (62) is
therefore the double Laplace transform of the
convolution

Ωα

Γ(1− α)

∫ t

0

∫ t′

0

dτdσ|τ − σ]−αΨα(τ)Ψα(σ)

(64)

Putting everything together we have

Ωα

Γ(1− α)

∫ t

0

∫ t′

0

dτdσ|τ − σ]−αΨα(τ)Ψα(σ)

= Θα(t)Θα(t′)−Θα(|t− t′|)
(65)

from which (43) follows by putting t = t′.
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