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Abstract

Fuzzy Cognitive Maps (FCMs) have become a suitable and proven knowledge-
based methodology for systems modeling and simulation. This technique
is especially attractive when modeling systems characterized by ambiguity,
and/or non-trivial causalities among its variables. The reach literature that
is found related to FCMs reports very clearly many successful studies solved
through the use of FCMs; however, when it comes to software implementa-
tions, where domain experts can design FCM-based systems, run simulations
or perform more advanced experiments, not much is found or documented.
The few existing implementations are not proficient in providing options for
experimentation. Therefore, we believe that a gap exists, specifically be-
tween the theoretical advances and the development of accurate, transparent
and sound FCM-based systems; and we advocate for the creation of more
complete and flexible software products. The goal of this paper is to intro-
duce "FCM Expert”, a software tool for fuzzy cognitive modeling, where we
focus on scenario analysis and pattern classification. The main features of
FCM Expert rely on Machine Learning algorithms to compute the parame-
ters that might define a model, optimize its network topology and improve
the system convergence without losing information. Also, FCM Expert al-
lows performing WHAT-IF simulations and studying the system behavior
through a friendly, intuitive and easy-to-use graphical user interface.
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1. Introduction

Fuzzy Cognitive Maps (FCMs) were presented by B. Kosko as a knowledge-
based methodology for modeling and simulating dynamic systems [1]. FCMs
are in fact, a kind of combination of fuzzy logic, neural networks and cognitive
mapping, serving as a way to represent knowledge of systems that are char-
acterized by uncertainty, causality and complex processes. From a structural
point of view, an FCM may be represented by fuzzy directed digraphs with
feedback, seen as a collection of neural processing units and signed weighted
relations. Using this methodology, a system could conveniently be modeled
in terms of concepts (e.g. variables, objects or entities) and causal relations
between these concepts. Each concept is characterized by its activation de-
gree, which denotes to what extent this variables influences the others. The
fuzzy approach allows us to have degrees of causality, represented as links be-
tween the concepts [2]. The fuzzy nature of FCMs is confined to the network
construction phase where experts define the causal relations using linguistic
terms. After that, no explicit fuzzy operations are used.

Since FCMs allow feedback in their connections, we can explore the sys-
tem dynamics by describing the effect of specific changes over the whole
causal network. Therefore, during the inference phase, the FCM calculates
the activation value of all concepts at each discrete-time step according to the
standard McCulloch-Pitts model [3]. After a number of discrete-time steps,
an FCM may arrive to three possible states: a fixed-point, a cyclic state or a
totally chaotic behavior. The former scenario implies that a hidden pattern
was discovered [4], while the last ones suggest that the FCM is unable to
confidently recognize the target pattern. However, in scenarios devoted to
time series forecasting, the convergence to a fixed-point attractor becomes a
serious drawback since the FCM-base forecaster is unable to fit the expected
values during time.

FCMs have received increasing attention among researchers and both
practical and theoretical results have been introduced. Some representative
application fields include: decision making [5], system control [6], engineering
[7], protein modeling [8], transport management [9], intrusion detection [10],
etc. Also, Papakostas et al. [I1] introduced FCM-based classifiers as light
grey box models, being used for classification tasks. In order to construct an
accurate FCM-based classifier from historical data, the estimation of several



parameters is required, and we believe in the power of Machine Learning to
do so. This opens up the need for a suitable software platform to execute
loads of work. Nevertheless, the scientific literature shows just a few software
products capable of drawing FCMs and performing very simple simulation
tasks, and these tools cannot be used for solving pattern classification prob-
lems anyway due to the absence of experimentation facilities.

With the goal of filling this important gap, in this paper, we present
a Java software tool that allows designing, learning and simulating FCM-
based systems. FCM Expert extends a previous specific-purpose software
tool called FCM Tool, which was developed by Ledn et al. [12] to address a
decision-making problem concerning public transportation in Belgium (2008-
2012). The key advantages of FCM Expert rely on the inclusion of several
experimentation facilities and Machine Learning algorithms, which are sup-
ported by a friendly visual interface. Overall, the most attractive features of
FCM Expert can be concisely summarized as follows:

e Experimentation options to configure the FCM model and perform
WHAT-IF simulations for analyzing hypothetical scenarios.

e The possibillity to model pattern classification problems by using dif-
ferent architectures [II]. To encourage the compatibility with other
Machine Learning software, FCM Expert uses the well-known Attribute
Relation File Format (ARFF) to handle historical data.

e The inclusion of supervised and unsupervised Machine Learning al-
gorithms to estimate the weight set, optimize the network topology
without losing relevant information and improve the convergence of the
FCM-based system being modeled. These algorithms rely on population-
based heuristic search methods, capable of computing near-optimal so-
lutions in a reasonable time, thus ignoring analytically properties of
the error function such as continuity, convexity or differentiability:.

e Several visualization options oriented to model, adjust and exploit the
FCM-based system. Some of such options include real-time visualiza-
tion of the learning progress (error minimization), analysis of fixed-
point attractors and graphical simulations of new virtual scenarios to
support the decision-making process.

The rest of this paper is organized as follows: in Section [2| we briefly
formalize the mathematical theory behind FCM-based systems, whereas in



Section [3] we examine existing software tools related to FCM-based model-
ing. In Section [ we present the main functions and general architecture
of FCM Expert. Section [ Section [6] and Section [7] describe the algorithms
implemented into FCM Expert, as the most advanced features of FCM Ex-
pert. Section |8 explores the FCM-Expert facilities though a specific case
study while Section [9] provides concluding remarks and future research and
implementation goals.

2. Fuzzy Cognitive Maps

In general terms, FCMs can be understood as recurrent neural networks
with interpretable features that have been widely used in modeling tasks [1].
They consist of a set of neural processing entities called concepts (neurons)
and the causal relations among them. The activation value of such neurons
regularly takes values in the [0, 1] interval, so the stronger the activation value
of a neuron, the greater its impact on the network. Also, connected weights
are relevant in this scheme. The strength of the causal relation between two
neurons C; and Cj; is quantified by a numerical weight w;; € [—1,1] and
denoted via a causal edge from C; to Cj.

There are three types of causal relationships between neural units in an
FCM, being detailed as follows:

o If w;; > 0 then there is a positive causality, an increase (decrement) on
C; produces an increment (decrement) on C; with intensity |w;;].

o If w;; < 0 then there is a negative causality, an increase (decrement)
on C; produces an decrement (increment) on C; with intensity |w;;|.

o If w;; = 0 then there is no causal relation.

Equation formalizes Kosko’s activation rule, with A as the initial
state. A new activation vector is calculated at each step t and after a fixed
number of iterations the FCM will be at one of the following states: (i) equi-
librium point, (ii) limited cycle or (iii) chaotic behavior [4]. The FCM is said
to have converged if it reaches a fixed-point attractor, otherwise the updating
process terminates after a maximum number of iterations 7" is reached.

M
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In the above rule, f(-) denotes a monotonically non-decreasing function
to clamp the activation value of each concept to the allowed interval. The
functions most extensively used based on literature are depicted as follows:

o The bivalent function

The saturation function

0, <0
folz)=qz, O<z<l1
1, z>1
e The trivalent function
-1, =<0
fg(l‘) = O, z=0
1, >0
e The hyperbolic function
e —1
fa(z) Tt
o The sigmoid function
1
folw) = 1 4 e AMa=h)



Equation shows an inference rule widely used in many FCM-based
applications, but it is not the only one possible. Stylios and Groumpos [13]
proposed a modified inference rule, found at Equation , where neurons also
take into account its own past value. This rule is preferred when updating the
activation value of independent neurons, i.e., neurons that are not influenced
by any other neural processing entities.

M
t+1 t t
j=1
i#]
Another rule proposed in [14] is used to avoid the conflicts emerging in
the case of non-active neurons. The re-scaled inference depicted in Equation

allows dealing with scenarios where there is not information about an
initial neuron-state and helps preventing the saturation problem.

M
t+1 t t

A = IS w24 — 1) + (240 - 1) (8)

=1

=
If the network is able to converge, then the system will produce the same
output towards the end, so the activation degree of neurons will remain
unaltered (or subject to infinitesimal changes). Convergence is often desired

in pattern classification and scenario analysis, whereas it becomes a serious
problem when modeling time series problem.

3. Examining software tools related to Fuzzy Cognitive Maps

Most of the FCM papers exhibit theoretical contributions or practical
applications related to FCMs application, but less is usually found about well-
defined software for handling FCM-based systems. Moreover, the existing
software implementations fail in providing advanced options to adjust the
model parameters. The absence of such features leads to a gap between
the recent theoretical advances on FCMs research and the development of
accurate and mathematically sound FCM-based systems. In this section, we
review the most representative software tools for FCMs we have found.

We begin with FCM Modeler [I5], a desktop implementation aiming to
model generic FCMs. It involves a simple graphical user interface offering
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support for group decision making on a qualitative static model. It intended
to be a general modeling tool, but regrettably the project never evolved into
that. The authors also advocated for including a basic Machine Learning
algorithm for adjusting the weight set.

A similar approach, FCM Designer [16] was also found during our survey.
This tool allows adapting the inference rule by selecting the transfer function
and the stopping criterion. The key drawback relies on the lack of learning
algorithms to compute the parameters that characterize the system. In spite
of this limitation, several modeled scenarios were found using this software
tool, including the use of FCM for simple tasks related to supervision and
control. In a similar line, FCM-Analyst [17] facilitates the simulation and
implementation of FCMs with basic drawing supported and options for con-
figuring the transfer function. This feature was interesting as they offer an
editor that is able to recognize equation supporting different functions.

FCM Tool [12] is a Java software tool that allows designing complex FCM-
based models through an interactive graph visualization. It allows analyzing
scenarios and customizing the FCM reasoning process. Likewise, FCM Tool
provides a population-based learning algorithm based on Swarm Intelligence
to learn the weight set from historical data. Another relevant feature is the
inclusion of aggregation operators for combining several FCM-based systems
into a single knowledge-based representation. As FCM Tool was designated
to address a specific decision-making problem, this implies that its algorithms
could not be used for solving more generic pattern classification applications.
On the other hand, FCM Tool uses specific files for handling historical data,
which are generated by an Automated Knowledge Engineer implementation,
such features contribute to the lack of generality.

Another promising software tool recently proposed is Mental Modeler [I§],
which comprises a web-based interface to support individuals and communi-
ties to capture their knowledge in a standardized format for scenario analysis.
This software tool was developed to support group decision-making, allowing
domain experts to collaboratively represent and test their assumptions about
a system. Mental Modeler can be mainly used by non-IT people, usually ex-
perts or stakeholders in a given domain who need to design a simple cognitive
map and simulate its behavior for some scenarios. The key drawbacks of this
FCM implementation relies on the lack of learning methods and its limited
experimenting options.

More recently, the Java Fuzzy Cognitive Maps (JFCM), an open source
library for fuzzy cognitive mapping modeling was presented [19]. The library
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is small and simple, but can be used to create a variety of cognitive networks.
The JFCM library allows loading networks from XML files, thus increasing
its portability. The idea behind the library is to create reusable modules that
could be used when needing FCM solutions in a given problem. Interacting
with this library requires to reuse and modify the source code to model
specific features, which becomes a limitation for non-expert users.

Finally, in our study we found the Intelligent Expert System based on
Cognitive Maps (ISEMK) [20] that allows modeling decision support systems
based on FCMs and neural networks. ISEMK includes a multi-step gradient
learning algorithm and two evolutionary search methods (e.g., Real-Coded
Genetic Algorithm) for adjusting the FCM model. Moreover, it includes
two learning algorithms for multi-layer neural networks used in time series
forecasting, while it supports the visualization of results through an adequate
graphical interface. This software however is mostly focused on time series
forecasting, which reduces its usability in more generic domains.

Table[I] provides a comparison among the revised software tools for several
features such as area of application, experimentation facilities, inclusion of
machine learning algorithms and graphical support.

When comparing among the surveyed software tools for several features,
we can conclude that FCM Designer, Mental Modeler, FCM-Analyst and
FCM Tool provide to the experts an appropriate graphical support when
analyzing scenarios and experimenting new situations; JFCM is suitable for
developing FCM modules that could be reused in more complex solutions,
while ISEMK resulted in the best implementation for time series forecast-
ing. The surveyed software tools lack advanced algorithms and experimen-
tation options, making this a strong motivation for introducing FCM Ex-
pert. Furthermore, none of these software products allow handling pattern
classification problems, which reduce their usability when investigating new
FCM-based solutions in this domain.

4. Architecture and Features of FCM Expert

As mentioned, FCM Expert is a software tool for designing FCM-based
systems. This software is written in Java language and comprises more than
25,000 source code lines, which are distributed in 120 source files. These
files are organized in five global packages (i.e., Network, Algorithms, Learn-
ing, Software and Resources) and several sub-packages. Figure [I| shows the



Table 1: Comparison of existing software tools for Fuzzy Cognitive Maps.

Main Features
Exper.l- Learning Graphi- Appllca—
Year | mentation aleorithms cal tion
facilities & support | domain
FCM
Modeler 1997 Not at all Only one Poor Ecosystem
Super-
FCM 2005 Some, but Not at all | Adequate vision,
Designer not enough
Control
Social
Mental Some, but Sciences,
Modeler 2013 not enough Not at all | Adequate Ecological
Systems
JECM | 2013 | FeW> only for | b al | Not at ann | r2HC
developers analysis
Many, Transpor-
FCM but oriented tation
TOOL 2011 to the Only one | Adequate manage-
domain ment

structure of the packages in FCM Expert, including primary packages and
some sub-packages.

In a rough picture, FCM Expert involves three groups of functions that
are distributed in five menus: File, Fdit, Build, Run and Reset. The first
group is oriented to the design of the FCM-based model, where the expert
(user) in a given domain can model a complex system (visual options do not
require deep expertise in Mathematics or Computer Science). The second
group comprises Machine Learning algorithms for adjusting the model pa-
rameters and optimizing its performance. Finally, the third group includes
procedures for exploiting the FCM-based system, as a tool for supporting
decision-making processes. Figure [2| shows the main window of FCM Expert
displaying a real case study concerning the resistance mechanism of HIV
mutations to existing inhibitors [21].

Also, FCM Expert allows designing an FCM-based system from scratch.
This can be done by manually drawing the network structure or importing
the weight matrix from a CSV file (see Figure . This last option includes a
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Figure 1: Packages tree of the FCM Expert software tool.
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Figure 2: Snapshot of the proposed FCM Expert.

heuristic layout procedure for efficiently drawing the network topology, which
minimizes both the distance between concepts and the cuts between graph
edges and concepts.

Other options however require more expertise as they were conceived for
supporting the FCM research community. For example, Figure [ illustrates
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sV file

Layout quality

Low

C:\Users\Gonzalo\Desktop\crime. csv

Import from file

Flease be sure that the first rowy/column comprise the name
of variables to be mapped a5 concepts.

High

Accept Cancel

Figure 3: Dialog to build an FCM-based network from a CSV file.

how to configure the parameters related to the FCM reasoning: the inference
rule, the transfer function and the stopping criterion.

The proposed software implements the three inference rules (see Equa-
tions (1)), (7) and (§)) and the five transfer functions earlier mentioned (see

Equations , , , and @) This suggests that the concepts can take
values in [—1,1] or [0, 1], providing flexibility during the modeling phase.

Reasoning mechanism
Activation rule

Transfer function

Stopping criterion

Epsilon

(®) A fixed-point attactor is reached

Parameters settings

Kosko's activation rule with self-memory

Sigmoid function

Slope 15 Offset ]z

() A number of iterations is reached

0.0011% Iterations 2=

Accept Cancel

Figure 4: Configuration of the FCM reasoning process (settings).

Unlike other tools, our software allows handling different architectures
for both scenario analysis and pattern classification. In the first case, the
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FCM does not comprise a decision concept, whereas in the second case we
implement two different FCM architectures for pattern classification defined
in [22] that differ in the number of decision concepts.

The single-output architecture uses a single decision concept such that
classes are defined as closed partitions of the decision space, while in the class-
per-output architecture, each class is defined by an output neuron. Figure
shows how to specify the role of each neuron in an FCM-based network.
Each neuron may use its own transfer function when updating its activation
values. In this example, we show how to configure the decision table in a
single-output architecture for a two-class (binary) classification problem.

B Concept options B Concept options
General | Settings | Dedision General | Settings | Dedision

Definition

Figure 5: Configuration of parameters for the selected concept.

FCM Expert allows performing WHAT-IF simulations by directly mod-
ifying the activation values of each concept and next running the inference
process. This generates a plot and a table (see Figure @ with the activation
value of each concept at each iteration-step for the specified stimulus.

Additionally, FCM Expert allows performing simulations in a visual mode
where the size of each concept is determined according to its activation value.
Other interesting feature is the aggregation of multiple FCM-based systems
into a single knowledge-based structure. In the next sections, we describe the
learning algorithms implemented, which comprise one of the main advantages
over other software tools found in the surveyed literature.
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Figure 6: Dialog summarizing the FCM inference process.

5. Computing the FCM parameters

Learning methods for computing the weight set are pivotal when de-
signing an FCM-based system. The most prominent algorithms for FCM
learning may be gathered into two large groups [23]: unsupervised and su-
pervised models. Figure [7] displays how to select the learning approach in
FCM Expert, as a first step towards learning the weight set.

ok Computing weight matrix = =

Learning approach

() Unsupervised learning using a Hebbian rule

Learning method Nonlinear Hebbian Learning

(®) Supervised learning using a search method

Search method Global-best Partide Swarm Optimization v

Learning goal Optimize the weights and slopes W

() Forecasting

Next Close

Figure 7: Settings for the weight estimation algorithm.
According to [23], the unsupervised learning algorithms are convenient to

fine-tune the weight set with a small deviation from the initial configuration.
However, these algorithms lack generalization capabilities, hence they are
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not advised when solving pattern classification problems; instead we may
use heuristic (supervised) learning algorithms.

5.1. Scenario analysis

Unsupervised learning of FCM is based on the Hebbian law to iteratively
adjust the causal weights by using a single representative pattern as training
data. Hebbian-based learning was initially applied on the training of artificial
neural networks, however, recently this approach has been successfully used
for training FCM-based systems. The key feature of this learning rule is that
the change of a synaptic is computed by taking into account the presynaptic
and postsynaptic signals flow towards each neural processing unit.

The proposed software tool includes the following Hebbian-type algo-
rithms: the Differential Hebbian Learning [24], the Balanced Differential Al-
gorithm [25], the Nonlinear Hebbian Learning [26] and the Improved Nonlin-
ear Hebbian Learning [27]. The expert must specify two parameters related
to the weight decay and the learning rate. Figure [§| portrays graphical inter-
face to capture the training example (i.e. an activation vector) and visualize
the response vector obtained after adjusting the weights.

ok Computing weight matrix = =

Input vector General settings

Rconcept C1 Learning rate 0.001-%
e &2 Weight decay 0.98 5
RBconcept C3
Bconcept C4
RBconcept C5
RBconcept C6

Bconcept C7T
Output vector

Bdata 0.5361,0.5024,0.497,0.515,0.5
0.8,0.5,0.3,0,0,0,0 134,0.5172,0.4959
Back Run Close

Figure 8: Unsupervised learning of the weight matrix.

It should be mentioned that the adjusted weights partially preserve their
physical meaning, which is often desired when performing WHAT-IF simula-
tions. Of course, the requirement of experts’ knowledge is a serious drawback.
The flexibility on data requirements of these algorithms is the key aspect be-
hind their poor generalization capability.
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5.2. Pattern classification

In the context of FCM-based classifiers, the learning goal is to compute,
in a supervised fashion, a weight matrix minimizing the dissimilarity between
the expected outputs and the predicted ones. Unlike Hebbian-based proce-
dures, supervised learning approaches use a set of training instances instead
of using a single example. FCM Expert also allows optimizing the param-
eters attached to the sigmoid transfer function. The algorithm computes
a custom transfer function for each concept hoping to increase the overall
prediction rates. The software allows including expert knowledge related to
causal relations during learning, therefore the resulting FCM model is no
longer a black-box! The optimization process may be performed by using a
variety of heuristic search methods.

More explicitly, we implemented several population-based optimizers in-
cluding Particle Swarm Optimization [28], Differential Evolution [29], Real-
Coded Genetic Algorithm [30] and Variable Mesh Optimization [31]. The
advantage of using heuristic methods relies on their ability for estimating
near-optimal solutions, therefore ignoring analytic (often unknown) proper-
ties of the error function to be optimized.

Figure [9] shows, as an illustrative example, how to configure the parame-
ters related to the Real-Coded Genetic Algorithm. The expert may provide
to the learning algorithm a separated testing set in order to evaluate the
generalization capability of the learned model, which is a pivotal aspect in
pattern classification scenarios. F-measure, accuracy, Kappa coefficient and
the confusion matrix are some of the statistics used to assess the quality of
the FCM-based classifier (see Figure . Once the supervised learning pro-
cess is completed, we can use the learned FCM model to determine the most
likely decision class for unseen instances (see Figure .

Recently, Népoles et al. [32] surveyed the key advances and challenges on
FCM-based classifiers. Although the road towards computing truly causal,
interpretable FCM classifiers is still narrow, we believe that FCM Expert
comprises useful options for supporting new researches in this field.

6. Optimizing the network topology

Sometimes, we need to handle FCMs with very complex network structure
as a result of modeling a physical system comprised of a large number of
variables. In these situations, some concepts/variables could be superfluous
or even contradictory due to the uncertainty and subjectivity attached to
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Figure 9: Settings for the Real-Coded Genetic Algorithm.

- oI

o Performance summary
Correctly Classified Instances 9 90.0%
Incorrectly Classified Instances 1 10.0%
Total Number of Instances 10
Cohen's Kappa Coefficent 0.8
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure  MCC Class
0.8 0.0 1.0 0.8 0.89 0.82 Ca
1.0 0.2 0.83 1.0 0.91 0.82 Cc7
=== Confusion Matrix ===
Ca c7

ca | 4 1

71 1] 5

Figure 10: Statistics used to asses the quality of an FCM-based classifier.

human reasoning and modeling, thus negatively affecting both the system

performance and interpretability.

Aiming at overcoming this issue, Napoles et al. [2I] proposed a reduc-
tion algorithm for optimizing the network topology on FCM-based systems,
without losing relevant information. The learning goal of this algorithm is
to find the minimal subset of concepts capable of preserving, in some extent,
Since we are mainly focused on FCM-
based systems used in pattern classification scenarios, the performance could

the original system performance.
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Figure 11: Classifying new instances with an FCM-based classifier.

be measured as the number of patterns positively recognized by the system
under investigation. Finding this minimal subset involves a difficult combi-
natorial problem defined by a search space comprised of 2M~! solutions, with
M being the number of concepts in the network.

The proposed implementation offers the possibility to select and configure
the search method and the threshold for accuracy. This algorithm will not
produce models with prediction rates below that threshold; therefore the
algorithm may get trapped into local optima. The more strict the threshold,
the more likely the algorithm to get trapped into a local optimum.

Two distinctive features of this learning algorithm should be highlighted.
First, we use continuous search methods (e.g., Particle Swarm Optimiza-
tion, Real-Coded Genetic Algorithm) to solve the constricted, combinatorial
optimization problem. This can be achieved by discretizing the continuous
space into non-homogeneous partitions, each denoting a specific state, where
the size of each partition is heuristically determined. Second, the learning
method recalculate the values of sigmoid parameters to compensate the alter-
ations on the FCM topology. It is worth mentioning that this second feature
is only applicable for FCM models using sigmoid neurons.

7. Improving the system convergence

Most supervised learning methods reported in the literature do not accu-
rately consider the FCM convergence into their learning scheme [33]. As a
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result, we obtain FCM-based model for scenario analysis and pattern classifi-
cation with acceptable performance, but unable to converge to a fixed-point
attractor. Ensuring the convergence to a fixed-point is often mandatory
in decision-making scenarios where obtaining a non-oscillatory solution is
expected, otherwise making a confident decision is not possible. In other do-
mains (e.g., time series forecasting) the network convergence is less desirable.

To overcome this issue, Ndpoles et al. [34] introduced a novel learning
method to improve the convergence of sigmoid FCM-based classifiers once
the causal relations defining the system semantics have been defined. The
algorithm computes the sigmoid parameters attached to each neural entity
leading to improved convergence features. This involves a continuous opti-
mization problem with 20 variables, with M being the number of neurons.

FCM Expert implements this learning algorithm for both scenario anal-
ysis and pattern classification scenarios. Due to the fact that this algorithm
is supervised, the expert must specify a set of examples where each attribute
matches with a specific concept. Moreover, the expert must specify the ac-
curacy level defining the expected deviation to the original responses. For
simulation and experimentation tasks, real-time visualization (i.e., the error
curve) is essential. Figure |12 shows this functionality, where the current pa-
rameters are used as seed in the learning procedure, allowing the inclusion
of expert knowledge to guide the search process.

o Improving system convergence = =

Learning visualization

0.50
0.45
040
035
0.30
028
0.20
0.15
0.10

0.05

0.00
o 2,600 5,000 7 500 10,000 12,500

— Initial error — Current error

Figure 12: Real-time visualization of error curve.

In a recent study, Népoles et al. [35] analytically proved that, sometimes,
under the weights constriction, the algorithm will be unable to improve the
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system convergence without harming the accuracy. Moved by this result, in
[36] the authors proposed a supervised learning method for computing the
weight set and the sigmoid parameters leading to convergence features from
the beginning. This approach is specially useful when no constraint over the
weight set exists, otherwise the method discussed in [34] should be adopted.

8. Exploring the FCM-Expert facilities though a case study

In this section we illustrate some functionalities of the FCM-Expert (mainly
those related to learning algorithms) by using several FCM-based classifiers
taken from Népoles et al. [37, B8]. Such systems describe the resistance
mechanism of the HIV-1 protease protein to existing inhibitors and the causal
relation among sequence positions. The authors modeled the protein as an
FCM where each sequence position was taken as a neuron, whereas a decision
concept for the resistance target was also defined. The HIV-1 protease chain
is defined by 99 amino acids, however, with the goal of reducing the model
only sequence sites associated with drug resistance were adopted. In this
topology, input neurons are fully connected, hence causal relations among
concepts are established.

Figure[13| displays the resulting FCM-based classifier for the inhibitor In-
dinavir (IDV) where causal connections among neurons have been randomly
generated due to the lack of biological knowledge. In this modeling, the blue
concepts represent the input neurons (i.e. sequence positions) and the red
neuron denotes the resistance concept to the target inhibitor. This deci-
sion concept will be used to determine the decision class associated to each
activation vector.

It is important to highlight that each FCM has associated a high-quality
filtered datasets consisting on reported mutations and their resistance value
[39,140]. For the sake of simplicity, only the FCM-based classifier for IDV will
be used for illustrating the functionality of FCM-Expert. Figure [14] displays
the configuration of the decision neuron (once the modeling phase is done)
for two classes, where the label “0” denotes the susceptible class, whereas “1”
indicates the resistant one. This suggests that all input sequences leading
to a numerical response between 0.007 and 1 will be classified as resistant,
otherwise the input pattern (i.e. mutation) will be classified as susceptible.

Once the decision neuron is configured, we adjust the causal relations by
using a supervised learning approach and the set of training sets associated
to the target inhibitor. With the aim of illustrating this functionality we
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Figure 13: FCM-based classifier for predicting the resistance of HIV-1 mutations.

select the Global-best PSO [41] using 40 particles as swarm size and 80
generations as stopping criterion. Figure [15| displays the windows on which
the expert must configure the required parameters (i.e. the population size,
the generation number, the knowledge base path, and other PSO parameters
such as the acceleration coefficients). This wizard can be reached by clicking
the option Learning Algorithms into the menu Run, and next clicking the
menu item Compute Causal Relations. In this section we will be focused on
supervised learning algorithms since they allow illustrating the strength of
the proposed Java software tool in pattern recognition scenarios.

Figure illustrates the learning progress for the IDV drug where ex-
perts can inspect relevant statistics such as the prediction rates and the
convergence features. Moreover, we included a panel for plotting the best
evaluation computed at each step, hence the experts can check whether the
learning algorithm falls into non-progress configurations or not. Both the er-
ror curve and the statistics are updated step-by-step, which allow visualizing
the learning progress in real-time. For example, the reader may observe that
the best configuration found so far leads to high prediction rates since 98%
of instances were correctly classified. Nevertheless, this weight matrix does
not ensure the classifier stability and thus there is no confidence about the
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Figure 14: Configuration of the decision space for the decision neurons. These windows
can be reached by clicking the decision neuron (which is often denoted by a red concept).

predicted decision classes.

Once the causal weight matrix has been estimated, the expert could op-
timize the network topology by removing non-relevant concepts (if possible).
With the purpose of illustrating this scenario we select the MAX-MIN Ant
System [42] by using the following parameters: 20 artificial ants, 80 iterations
as stopping criterion, the evaporation constant p is set to 0.1, the pheromone
relevance o = 3, while the heuristic preference § = 2. This wizard can be
reached by clicking the option Learning Algorithms into the menu Run, and
next clicking the menu item Optimizing Network Topology. Similarly to the
algorithms for adjusting the causal weights, we need a set of training patterns
since the goal of this algorithm is to reduce the map structure without losing
information.

Figure displays relevant statistics (e.g. mnorm of the best solution
found so far, the reduction rate, the error induced when removing super-
fluous nodes) step-by-step in real-time. Moreover, we included a panel for
plotting the best evaluation computed at each step, therefore the experts
can check when the model is prone to converge to a global solution. In this
representative example, the algorithm found a candidate sub-graph com-
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Figure 15: Computing system causality. A) Unsupervised and supervised learning algo-
rithms. B) Parameters configuration for the selected optimizer (Global-best PSO).

prising only 7 concepts, leading to a reduction rate of 30%. Observe that
AFError = —0.01, therefore when removing the weak neurons and their con-
nections, the classifier is capable of recognizing more patterns (1% of the
testing patterns). This suggests that the removed casual connections com-
prise conflicting knowledge, or perhaps they lead to unstable configurations
where the FCM-based classifier produce chaotic or cyclic decision classes.

FCM-Expert provides several facilities for handling convergence. For ex-
ample, in order to explore the convergence, the expert could run a Conver-
gence Plotter where the FCM responses for all training patterns are depicted.
Instead of being focused on the last response, the Convergence Plotter dis-
plays the convergence behavior of the FCM-based system by inspecting the
behavior of the decision neuron at each discrete-time step. It provides an
overall picture of the stability features of the modeled system and therefore
a measure of its reliability. Figure [19| portrays this interface for the FCM-
based classifier designated to predict the HIV resistance to the IDV inhibitor.

The wizard for handling the convergence can be reached by clicking the
option Learning Algorithms into the menu Run, and next clicking the item
Improve System Convergence. Regarding the optimizer we select the Global-
best PSO [41] with a swarm size of 40 particles (each particle codifies a family
of sigmoid functions, where the ith function will be used for transforming the
activation value of the ith neuron) and 80 generations as stopping criterion.
In this simulation we adopt the default values for the remaining parameters
such as the diversity threshold or the number of generation without progress
since they proved to be quite effective across selected benchmark.

After the learning phase we can confidentially classify new patterns since
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Figure 16: Window summarizing relevant statistics related to the algorithm progress, when
computing the causal weight matrix.

the algorithm improves the classifier convergence without affecting its pre-
diction capability. Figure displays the interface to accomplish this goal
where the expert must provide the input pattern to be classified. In this op-
tion the patterns are encoded using the well-known Attribute Relation File
Format [40]. Observe that the default value for the decision neuron is “null”
since it will be predicted from the activation space of the decision neuron.
After executing the inference rule, the software provides the activation value
of input-type neurons and the predicted decision class. The reader may no-
tice that this option may also be used in modeling and control environments,
although the option Run Inference Process is more convenient and intuitive
when analyzing new scenarios.

Before concluding the paper, it should be highlighted that we preferred
to be focused on the software options rather than the mathematical formu-
lation of the implemented algorithms. For further information about these
learning procedures and the numerical simulations, the reader could consult
the original papers.

9. Concluding remarks

Fuzzy Cognitive Maps have been extensively reported in literature for
modeling real-life problems by recreating virtual scenarios. A weak point
concerning this field is the lack of well-established software tools providing
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Figure 17: Optimizing network topology. A) Swarm Intelligence and Evolutionary opti-
mizers. B) Parameters configuration for the selected optimizer (MAX-MIN Ant System).

options for simulation and/or experimentation. In this paper, we presented
FCM Expert to the scientific community as a flexible software that allows
modeling, learning and simulating FCM-based systems. FCM Expert is an
object-oriented implementation organized in packages, with a compact and
intuitive interface. Our software proposal includes algorithms for computing
the parameters defining the FCM model, optimizing the FCM topology and
improving the convergence without losing information. These options are
not available in other implementations as we checked the existing literature.

Furthermore, we have illustrated the existence of options for configur-
ing the decision space, for analyzing new scenarios based on the modeled
concepts and successive state vectors, for evaluating the convergence of the
FCM-based system, among other options. These facilities have a graphical
support that allows completely designing FCM-based systems with minimal
effort to subject matter experts that are not necessarily experts in Computer
Science. On the other hand, FCM Expert is a platform-independent software
where the user/expert can mine the knowledge related to the system under
analysis. FCM Expert allows modeling a wide range of simulation and pat-
tern classification problems with high flexibility. We are currently developing
other learning algorithms with stronger mathematical principles. Likewise,
we are testing a new module with methods for time series forecasting.
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