
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Formulating and Solving the Integrated Batching, Routing, and Picker

Scheduling Problem in a Real-life Spare Parts Warehouse

Peer-reviewed author version

VAN GILS, Teun; CARIS, An; RAMAEKERS, Katrien & BRAEKERS, Kris (2019)

Formulating and Solving the Integrated Batching, Routing, and Picker Scheduling

Problem in a Real-life Spare Parts Warehouse. In: European journal of operational

research, 277, p. 814-830..

DOI: 10.1016/j.ejor.2019.03.012

Handle: http://hdl.handle.net/1942/27968

Formulating and Solving the Integrated Batching, Routing, and Picker
Scheduling Problem in a Real-life Spare Parts Warehouse

Teun van Gils, An Caris, Katrien Ramaekers, Kris Braekers

UHasselt, Research Group Logistics, Agoralaan Building D, 3590 Diepenbeek, Belgium

Abstract

New market developments increase the complexity of managing order picking operations. Integrating order

picking planning problems enables warehouse managers to organize order picking operations more efficiently.

This paper provides a decision support tool that integrates and solves the three main operational order

picking planning problems (i.e., order batching, picker routing, and picker scheduling). Different from other

studies, the objective is to increase order picking efficiency while ensuring a high customer service level. The

new integrated planning problem accounts for order due times, a limited availability of order pickers, as well

as a high-level storage locations, to ensure the applicability in practice. An iterated local search algorithm

is introduced to solve the problem effectively and efficiently. Moreover, a real-life case shows the substantial

performance benefits gained from integrating batching, routing, and picker scheduling.

Keywords: logistics, metaheuristic, order batching, order picking, routing

1. Introduction

Organizing efficient and flexible order picking operations has been identified as both an important and

complex task for warehouse managers. Order picking operations account for a large part of the overall

logistical costs, and they significantly impact the service level provided to customers (Marchet et al., 2015).

The complexity of planning order picking operations results from the interdependencies among the wide range

of planning problems (e.g., storage assignment, order batching, routing, picker scheduling). Warehouses can

achieve significant efficiency benefits by considering these interdependencies (Van Gils et al., 2016). Serving

e-commerce markets, globalisation and increased customer expectations further increase the complexity of

managing order picking operations. Warehouses are forced to handle a larger number of small orders, while

the time to pick orders has shortened (Wruck et al., 2017).

∗Corresponding author
Email address: teun.vangils@uhasselt.be (Teun van Gils)

Preprint submitted to European Journal of Operational Research February 27, 2019

This paper provides an effective and efficient algorithm to integrate and solve the three main operational

order picking planning problems (i.e., order batching, routing, and picker scheduling). As the time horizon

of the resulting decisions is similar, order picking operations’ efficiency can be improved by integrating these

planning problems. The order batching problem is concerned with deciding on rules defining which orders

to combine in a pick round. The routing decision defines the sequence of items in a pick round. The picker

scheduling problem assigns batches to order pickers to ensure that all orders are picked before due time

(Van Gils et al., 2018b). Traditionally, decisions are made sequentially: first orders are batched based on a

distance or time related measure (De Koster et al., 1999; Henn and Wäscher, 2012; Pan et al., 2015), followed

by routing each batch (Roodbergen and De Koster, 2001; Theys et al., 2010; Scholz et al., 2016) and finally

assigning batches to the first available order picker (Henn, 2015). Although the efficiency of these planning

problems has found to be strongly interdependent, the recent literature review of Van Gils et al. (2018b)

shows that only a limited number of researchers examine multiple planning problems simultaneously.

The main contributions of this paper are as follows. First, a mathematical formulation for the new

integrated batching, routing and picker scheduling problem is presented. Second, an efficient heuristic

algorithm to solve the integrated problem is provided. Third, a real-life case demonstrates the benefits

of optimizing the integrated batching, routing and picker scheduling problem compared to the current

sequential solution of the warehouse. The case is based on an international warehouse located in Belgium

that stores automotive spare parts to serve the B2B e-commerce vehicle market.

The remainder of the paper is organized as follows. Section 2 reviews publications which integrate

different order picking planning problems. Section 3 introduces the mathematical programming model of

the integrated problem. Next, a new, simple but effective iterated local search algorithm to solve the

integrated problem is presented (Section 4) and thoroughly tested (Section 5). Section 6 provides the

concluding remarks and future research directions.

2. Literature review

By simulating existing solution policies for the picker zoning, storage location assignment, order batching

and picker routing, Van Gils et al. (2018a) show that decisions on which policy to apply for each planning

problem are highly interdependent. In addition to the strong relation, the time horizon of the batching and

routing decision is similar, making the integration of both planning problems highly relevant in terms of

order picking efficiency. Instead of simulation existing solution methods, a new solution method is created

in this study that integrates batching and routing decisions, as well as the picker scheduling problem. The

2

Table 1: Studies integrating order picking planning problems, based on Van Gils et al. (2018b).

b
a
tc
h
in

g

r
o
u
ti
n
g

p
ic
k
e
r

sc
h
e
d
u
li
n
g

1 picker > 1 picker

Won and Olafson (2005) • •
Tsai et al. (2008) • •
Ene and Öztürk (2012) • •
Kulak et al. (2012) • •
Henn and Schmid (2013) • •
Matthews and Visagie (2013) • •
Matusiak et al. (2014) • •
Chen et al. (2015) • • •
Cheng et al. (2015) • •
Henn (2015) • •
Li et al. (2016) • •
Lin et al. (2016) • •
Matusiak et al. (2017) • •
Scholz et al. (2017) • • •
Valle et al. (2017) • •
Zhang et al. (2017) • •

integrated problem of batching and routing is extensively studied, as shown in Table 1. As both problems

are NP-hard (Won and Olafson, 2005), metaheuristic algorithms are typically used to solve either batching,

routing, or the integrated problem of batching and routing. These algorithms are able to find good solutions

for the integrated batching and routing problem in small computation time, mainly for small warehouses

of three to six picking aisles (Chen et al., 2015; Li et al., 2016; Ene and Öztürk, 2012), low-level storage

locations (Chen et al., 2015; Scholz et al., 2017) and a single order picker (Li et al., 2016; Matusiak et al.,

2014). To increase the practical relevance, solution methods that account for more real-life issues are needed

(Van Gils et al., 2018b).

As accuracy in delivery times is an essential performance indicator for warehouses (Wruck et al., 2017),

respecting due times is a critical issue when batching orders and routing pickers (Henn and Schmid, 2013;

Chen et al., 2015). This initiates an additional planning problem: the picking sequence and completion time

of all batches should be determined (Chen et al., 2015). Most studies aim at minimizing total tardiness of

all customer orders (i.e., the positive difference between the order due time and the batch completion time

to which the order is assigned) (Chen et al., 2015; Scholz et al., 2017). Solution algorithms often provide a

solution in which one or more customer orders will be picked after the picking due time, resulting in orders

that miss the shipping deadline (Henn and Schmid, 2013). In practice, such solutions may not be accepted

by some warehouses, as this reduces the customer service level. Rather than accepting tardiness, the number

of pickers will be increased (e.g., by shifting workers from other departments) to prevent orders being picked

3

after due time. For example, in the context of spare parts warehouses, service levels are considered as hard

constraints (Kennedy et al., 2002): the objective is to increase order picking efficiency, while maintaining

a high service level to customers. Tardiness is assumed to occur only as a result of unforeseen issues (e.g.,

technical defects and empty storage locations), which are not considered in this study.

Despite the importance of human resources in the labour-intensive environment of warehouses, few

articles integrate workforce related planning problems in batching and routing problems. In a single order

picking system, the batch sequencing decision simply determines the sequence of picking batches (Henn and

Schmid, 2013; Chen et al., 2015). In case of multiple order pickers, the picker scheduling problem becomes

more challenging. Batches need to be additionally assigned to order pickers prior to defining the sequence

of picking batches (Henn, 2015; Scholz et al., 2017; Zhang et al., 2017).

Most studies consider travelling in two dimensions (i.e., low-level storage system), while many warehouses

store products on high-level storage locations (i.e., each storage rack section consists of multiple levels,

requiring the pick truck to lift to reach a location). High-level storage systems strongly increase the storage

capacity for a given warehouse surface (Pan et al., 2014), and these systems are especially useful when

products are large such as the vehicle spare parts of our real-life case. Solution algorithms are required that

account for pick truck lifting. As lifting is typically very slow compared to travelling in horizontal direction,

high-level storage locations and consequently lifting strongly influence the picking efficiency (Van Gils et al.,

2018b).

This study goes beyond the current academic literature by integrating batching, routing and picker

scheduling in a multiple order picker system. To the best of our knowledge, we are the first to optimize

order picking efficiency by integrating order batching, routing, and picker scheduling while ensuring a high

customer service level. Existing assumptions, such as a single order picker (Chen et al., 2015), low-level

storage locations (Chen et al., 2015; Scholz et al., 2017), and minimizing tardiness (Chen et al., 2015; Scholz

et al., 2017) are revised to increase the applicability of this study in practice. A suitable solution algorithm

is provided that is able to cope with multiple pickers, high-level storage locations and avoiding tardiness.

The benefits of integrating batching, routing and picker scheduling in practice are shown by a real-life case.

3. Integrated batching, routing and picker scheduling problem

The integrated problem of order batching, routing and scheduling of order pickers is introduced in this

section. Section 3.1 describes the problem. The mathematical model is introduced in Section 3.2.

4

3.1. Problem description

The integrated batching, routing and picker scheduling problem (IBRSP) can be summarized as combin-

ing a predefined set of orders into batches (i.e., batching), for each batch defining the sequence of storage

locations to visit in order to retrieve all orders assigned to the batch (i.e., routing), assigning the batches to

the available order pickers and sequence the batches for each picker (i.e., picker scheduling). The aim of the

integrated problem is to minimize the total order pick time. While most studies aim to minimize the total

tardiness of all customer orders (Chen et al., 2015; Scholz et al., 2017), we include order due times as hard

constraints in the model in order to guarantee a high service level to customers. Each order is assigned to

a shipping truck. Order due times are defined by the schedule of shipping trucks. The assignment of orders

to shipping trucks as well as the shipping schedule are assumed to be fixed at an operational decision level.

The objective is to increase order picking efficiency, while avoiding tardiness of orders. From a managerial

point of view, the main order picking costs are defined by the number of pickers. At the decision level of

IBRSP, the number of pickers is assumed to be constant. Batching, routing and picker scheduling decisions

are usually made multiple times per day when a sufficient number of orders are available, while the number

of pickers has been defined based on forecasts before a shift starts (Van Gils et al., 2017). Therefore, total

order pick time is used as surrogate for order picking efficiency. Although orders arrive continuously

throughout the day, most warehouses release a large number of customer orders in single

wave taking advantage of economies of scale in picking operations (Çeven and Gue, 2015).

Assuming an order release mechanism, a smaller total order pick time enables an earlier release of new

orders resulting in more retrieved orders in a shift. Under the assumption of little idle capacity, the workload

tends to be additionally balanced and the makespan tends to be small when minimizing total picking time

and including order due times as hard constraints. As workload forecasts are used to determine the required

number of pickers in practice, the alignment of number of pickers and workload (i.e., little idle capacity) is

a reasonable assumption.

The total order picking time consists of following three elements: travel time, search and pick time, and

batch setup time (Van Gils et al., 2018a). The travel time is assumed to be directly proportional to the

travel distance, the search and pick time is assumed to be directly proportional to the number of order lines

in a batch, and the setup time is the fixed amount of time consumed for administrative and setup tasks for

a batch. Although travel velocity, search and pick time, and setup time may differ among order pickers, for

simplicity we assume the time components to be constant in the model. However, human factors could be

easily incorporated by assuming picker-dependent time components (Matusiak et al., 2017).

5

Batches are created by merging a particular number of orders on a pick list. Each order consists of

a number of order lines representing an ordered stock keeping unit (SKU). Each SKU has a unique pick

location in the warehouse. In accordance with previous research, the batch capacity is expressed in number

of order lines (Valle et al., 2017), assuming that sorting activities should be performed afterwards. An order

can be only assigned to a single batch (i.e., order integrity) (Van Gils et al., 2016). Each batch is assigned to

a batch position of an order picker in order to define the sequence in which a picker should pick the batches

assigned to him/her. Each batch can only be scheduled at one batch position and each batch position cannot

consist of more than one batch of orders.

3.2. Linear mixed integer programming model

A mixed integer linear programming (MIP) model is developed to formulate the problem. The efficient

formulation of Valle et al. (2017), describing the integrated batching and routing problem, is used as start

point for the new integrated batching, routing and picker scheduling problem. The formulation is adapted

by including the assignment of batches to order pickers, evaluating the total order pick time of each batch

and including order due times as hard constraints.

Sets

σ = {1, 2, ..., Q} set of order pickers with index q.

π = {1, 2, ..., P} set of batch positions of a picker with index p.

ψ = {0, 1, 2, ..., V } set of vertices with index v (depot is 0).

Ψ = {ψ1, ψ2, ..., ψS} set with all possible subsets of vertices ψs ⊂ ψ\0 : |ψs| > 1.

α = {1, 2, ..., A} set of arcs with index a connecting a start and end vertex (v′; v′′) : v′, v′′ ∈ ψ.

αψs ⊂ α subset of arcs with a = (v′; v′′) : v′, v′′ ∈ ψs.

α+
v ⊂ α subset of arcs ending in a vertex v.

α−v ⊂ α subset of arcs starting in a vertex v.

κ = {1, 2, ...,K} set of customer orders with index k.

ψk ⊂ ψ subset of vertices that should be visited in customer order k.

µ = {1, 2, ...,M} set of pick aisles with index m.

ε = {1, 2, ..., E} set of cross-aisles with index e.

ι = {1, 2, ..., J} set of storage levels with index j.

6

Parameters

ok number of order lines of order k.

c batch capacity (in number of order lines).

ta travel time when travelling across arc a (in seconds).

tsetup batch setup time (in seconds).

tsearch search and pick time for visiting a storage location (in seconds).

tk due time of customer order k with respect to the start of the

planning horizon (t = 0).

Decision variables

Xqpa binary decision variable which is equal to 1 if and only if arc a

is visited by order picker q at batch position p.

Wqpv the outdegree of vertex v (i.e., number of arcs leaving v) by order

picker q at batch position p.

Zqpv binary decision variable which is equal to 1 if and only if vertex v

is visited by order picker q at batch position p.

Rqpk binary decision variable which is equal to 1 if and only if order k is

is completed by order picker q at position p.

Tqp completion time of the batch completed by order picker q at

position p.

The routing problem is formulated as a Steiner Travelling Salesman Problem (TSP) (Cornuéjols et al.,

1985; Theys et al., 2010), as illustrated in Figure 1. White vertices, located at each intersection of a pick

aisle and cross-aisle, represent artificial vertices to model the warehouse. Black vertices represent the pick

locations. White vertices may be visited in a pick round, while black vertices should be visited in at least

one pick round (Valle et al., 2017). Arcs are used to connect the vertices: each black vertex is connected to

7

Figure 1: Directed graph of arcs and vertices representing the Steiner TSP.

the two neighbouring vertices within a pick aisle (either black or white), and arcs connect the neighbouring

artificial vertices within a cross-aisle. Furthermore, for each cross-aisle, the closest artificial vertex with

respect to the depot is connected to the depot. Compared to classical TSP formulations, the Steiner TSP

has shown substantial computational improvements (Scholz et al., 2016).

To model the batching and picker scheduling, a set of pickers and batch positions is used. Batches are

not explicitly modelled in the mathematical formulation. In this way, the number of sets is limited to four,

which simplifies the notation and makes the model easier to read. As each order picker q is able to pick a

single batch at each position p, each combination (q; p) represents a batch in the mathematical formulation.

The number of created batches (B) in the solution is equal to the number of depot visits:

B =
∑
q∈σ

∑
p∈π

Zqp0 (1)

In the discussion below, a batch refers to a combination of (q; p). The linear MIP model can be stated as

follows:

min
∑
q∈σ

TqP (2)

Subject to

∑
a∈α+

v

Xqpa =
∑
a∈α−v

Xqpa ∀q ∈ σ

∀p ∈ π

∀v ∈ ψ (3)

8

∑
a∈α−v

Xqpa = Wqpv ∀q ∈ σ

∀p ∈ π

∀v ∈ ψ (4)∑
v′∈ψs

Wqpv′ ≥ Zqpv +
∑
a∈αψs

Xqpa ∀q ∈ σ

∀p ∈ π

∀v ∈ ψs

∀ψs ∈ Ψ (5)

Xqpa ≤ Zqpv ∀q ∈ σ

∀p ∈ π

∀v ∈ ψ

∀a ∈ α−v (6)∑
a∈α+

0

Xqpa =
∑
a∈α−0

Xqpa = Zqp0 ∀q ∈ σ

∀p ∈ π

∀a ∈ α (7)

Xqpa ≤ Zqp0 ∀q ∈ σ

∀p ∈ π

∀a ∈ α (8)

Rqpk ≤ Zqp0 ∀q ∈ σ

∀p ∈ π

∀k ∈ κ (9)∑
a∈α−v

Xqpa ≥ Rqpk ∀q ∈ σ

∀p ∈ π

∀k ∈ κ

∀v ∈ ψk (10)∑
k∈κ

Rqpk ≥ Zqp0 ∀q ∈ σ

9

∀p ∈ π (11)∑
k∈K

okRqpk ≤ c ∀q ∈ σ

∀p ∈ π (12)∑
q∈σ

∑
p∈π

Rqpk = 1 ∀k ∈ κ (13)

tsetupZqp0 + tsearch
∑
k∈κ

okRqpk +
∑
a∈α

taXqpa = Tqp ∀q ∈ σ

p = 1 (14)

Tq(p−1) + tsetupZqp0 + tsearch
∑
k∈κ

okRqpk +
∑
a∈α

taXqpa = Tqp ∀q ∈ σ

∀p ∈ π\{1} (15)

Tqp ≤ tk +M(1−Rqpk) ∀q ∈ σ

∀p ∈ π

∀k ∈ κ (16)

Tqp ≤M
∑
k∈κ

Rqpk ∀q ∈ σ

∀p ∈ π (17)

Xqpa, Rqpk ∈ {0, 1} ∀q ∈ σ

∀p ∈ π

∀k ∈ κ

∀a ∈ α (18)

Zqpv ∈ [0; 1] ∀q ∈ σ

∀p ∈ π

∀v ∈ ψ (19)

Tqp ≥ 0 ∀q ∈ σ

∀p ∈ π (20)

The objective function (2) minimizes the total order pick time to retrieve all customer orders. Constraints

(3) ensure that the number of arcs visiting a vertex v is equal to the number of arcs leaving the vertex in

each batch. Constraints (4) define the outdegree of each vertex (i.e., the number of arcs leaving vertex v)

10

in each batch. Constraints (5) avoid the creation of sub–tours in a batch: the total outdegree of a subset

of vertices should be greater than the number of vertices and arcs visited in the subset. These sub–tour

elimination constraints are derived from the Vehicle Routing Problem (Laporte, 1992) and provide good

results in an order picking context (Valle et al., 2017). Constraints (6) allow vertices to be visited in a

batch only when an arc starts in the vertex. The number of depot visits (i.e., vertex 0) is defined by

constraints (7): if the depot is visited, a batch should contain an incoming and outgoing arc from the

depot. Furthermore, if the depot is included in a batch, at least one arc is used in a batch or at least one

order is picked in the batch, as stated by constraints (8) and (9), respectively. Constraints (10) ensure that

vertices of orders assigned to a batch are visited by enforcing at least one outgoing arc to be used in the

batch. Constraints (11) make sure that at least one order is assigned to the batch if the depot is visited.

Constraints (13) ensure that the number of order lines in each batch does not exceed the batch capacity and

constraints (12) ensure order integrity (i.e., each order is assigned to a single batch). Constraints (14) and

(15) incorporate the processing time of picking a batch for the first batch position and other batch positions,

respectively. Additionally, constraints (15) prevent overlapping batches that are assigned to the same order

picker. Constraints (16) guarantee that all orders are picked before due time, with M a sufficiently large

positive number (M = max{tk,∀k ∈ K}). Constraints (17) ensure the calculation of a completion time

for all scheduled batches. The domain constraints are provided by constraints (18)-(20). Note that the

formulation forces the Zqpv to be binary as well.

The number of sub–tour elimination constraints (i.e., Constraints 5) grows exponentially with the number

of vertices in the problem. Therefore, initially these constraints are removed from the formulation and a

branch-and-cut procedure is employed to check each integral candidate solution on sub–tours. For each sub–

tour in the candidate solution, Constraints (5) are included with ψ′ containing only vertices of the created

sub–tour. To reduce the number of created subtours, and consequent number of cuts, Valle et al. (2017)

introduce a series of optimality cuts and symmetry breaking constraints which are shown to substantially

reduce the computation time to find the optimal total order pick time. Hence, we adapted these inequalities

to our problem setting and include these as well. The applied optimality cuts and symmetry breaking

constraints are provided in Appendix A. The reader is referred to Valle et al. (2017) for an comprehensive

discussion on the optimality cuts.

11

4. Iterated local search algorithm for IBRSP

Due to the complex nature of IBRSP, solving instances of realistic size to optimality in a reasonable

amount of computation time does not seem feasible. A metaheuristic algorithm, based on iterated local

search, is proposed to approximate the global optimal solution. Iterated local search algorithms have proven

to be efficient in optimizing order picking planning problems (Öncan, 2015; Scholz and Wäscher, 2017). The

aim is to provide a simple but effective ILS algorithm to solve IBRSP.

The general principle of ILS is introduced by Lourenço et al. (2003). The main components of ILS

include a procedure to generate an initial solution, a local search procedure, and a perturbation procedure.

In addition to the general ILS principles, the diversification is increased by maintaining a set of six solutions

S (instead of a single solution), as well as considering multiple operators during the local search procedure

which is commonly applied metaheuristic algorithms. While multi-start ILS algorithms start from a ran-

domly constructed new solution each iteration, the solution set allows starting from varying solutions in

each iteration and each starting solution is a good solution (i.e., a local optimum). Moreover, multiple local

search operators increase the quality of the local search, thereby improving the local optimum, compared to

a single local search operator (Sörensen and Glover, 2013).

The ILS algorithm is described in Algorithm 1. First, an initial solution s0 is created, followed by a

local search on s0 that results in a local optimum. All solutions in S are initialized by this local optimum.

Next, four steps are performed iteratively: (1) selecting a solution s∗ from S(s1; s2; sr1; sr2; sr3; sr4) with

probability Φ(φ1;φ2; φ3

4 ; φ3

4 ; φ3

4 ; φ3

4), respectively, and Φ a set of algorithm parameters; (2) perturbing s∗; (3)

applying local search to reach a new local optimum; (4) updating S. If this procedure results in a solution

with either a reduced tardiness or a reduced total order pick time without increasing tardiness, compared

to the best (s1) or second best (s2) solution, the solution is accepted as new best or second best solution,

respectively. Otherwise, the solution is saved as one of the four random solutions (i.e., sr1, sr2, sr3, and

sr4). These steps are repeated until there are γ consecutive iterations with an improvement in total order

pick time of the best solution s1picktime of ≤ 0.005% and a tardiness of zero in the best solution (with a

maximum of 5, 000 iterations). The number of consecutive iterations without improvement also determines

the intensity of the perturbation (see Algorithm 5).

The generation of an initial solution is described in Algorithm 2. Initially, each order is assigned to a

separate batch. Orders are sorted with respect to the due time: the customer order that should be shipped

most early (co1) is assigned to the first batch position (p = 1) of the first order picker (q = 1). The next

order on the sorted list of customer orders is assigned to the first batch position of the second order picker.

12

Algorithm 1 Iterated local search algorithm for IBRSP

create initial solution s0 (Algorithm 2)
local search batching and picker scheduling on s0 (Algorithm 3);
local search routing on s0 (Algorithm 4);
initialize solution set S(s1; s2; sr1; sr2; sr3; sr4) = (s0; s0; s0; s0; s0; s0);
repeat

select solution s∗ from S with probability Φ
(
φ1;φ2; φ3

4
; φ3

4
; φ3

4
; φ3

4

)
;

perturbation on s∗ (Algorithm 5);
local search batching and picker scheduling on s∗ (Algorithm 3);
local search routing on s∗ (Algorithm 4);

if
(
s∗picktime ≤ s

1
picktimeands

∗
tardiness ≤ s

1
tardiness

)
or s∗tardiness < s1tardiness then

new best solution: s1 = s∗;
count the number of non-improving iterations: I∗ = 0;

else if
(
s∗picktime ≤ s

2
picktimeands

∗
tardiness ≤ s

2
tardiness

)
or s∗tardiness < s2tardiness then

new second best solution: s2 = s∗;
count the number of non-improving iterations: I∗ = min{10; I∗ + 1};

else
new random solution: sr4 = sr3;
new random solution: sr3 = sr2;
new random solution: sr2 = sr1;
new random solution: sr1 = s∗;
count the number of non-improving iterations: I∗ = min{10; I∗ + 1};

end if
until γ iterations with improvement ≤ 0.005% and s1tardiness = 0;

Algorithm 2 Create initial solution
sort all customer orders with respect to due time;
initialize customer order (k = 1), position (p = 1) and picker (q = 1);
while k ≤ K do

assign customer order cok to position p of picker q;
increase customer order: k = k + 1;
increase picker: q = q + 1;
if q > Q then

return to the first picker: q = 1;
increase position: p = p+ 1;

end if
end while
local search routing on s0 (Algorithm 4);

13

Once all picker’s first positions are occupied, orders are assigned to the second batch positions (p = 2).

These steps are repeated until all orders are assigned to a batch. Next, locations that should be visited to

retrieve all items of a batch are sequenced by the routing algorithm, explained in Algorithm 4, to create

initial routes.

The local search phase of the heuristic consists of a batching and order picker scheduling algorithm

(Algorithm 3), and a routing algorithm (Algorithm 4). The batching and picker scheduling local search

phase consists of four move types, applied in a fixed sequence: relocating a single customer order to another

batch position and/or picker (i.e., order shift), relocating a batch to the same batch position of another picker

(i.e., batch shift), exchanging two customer orders from different batches (i.e., order swap), and exchanging

all customer orders from two different batches (i.e., batch swap).

Batch swaps and batch shifts are performed for each batch position of each picker. The neighbourhood

of the batch moves consists of all positions and all pickers to which a move results in a new solution with

reduced or equal total tardiness compared to the current solution. The total order picking time remains

equal by shifting and swapping entire batches. In case of tardiness in the current solution, these move types

are able to move quickly to a feasible solution (i.e., stardiness = 0): efficient batches with urgent orders

can be scheduled earlier to pick the urgent customer orders timely. Therefore, a batch swap and

batch shift are only performed when the solution is still infeasible with respect to tardiness.

Order shift and order swap moves that result in either a reduced tardiness or a reduced total order pick

time (without increasing tardiness) are accepted as new solutions. Once a solution is feasible, a reduced total

order pick time is the only binding constraint for accepting new solutions. A first improving move strategy is

used to select a new solution. The order shift operator is efficient with respect to computational complexity

(O(BK)) and particularly effective to reduce the order pick time by reducing the number of batches very

fast. The order shift aims to shift all orders (one-by-one) of a single batch before orders of another batch

are considered. The order shift operator is the most efficient and effective operator. Therefore, this operator

is positioned first in the local search algorithm. Whereas the effectiveness of the shift operator strongly

decreases in case of fully loaded batches, the order swap operator can further decrease order pick times by

switching two orders of different batches, at the cost of additional computational complexity (O(K2)). To

prevent order shifts or order swaps that will probably be rejected because of tardiness, the completion time

of a batch is compared to the order due times of the order(s) considered in the move before the move is

performed. Parameter χ is defined as the maximum difference between the current batch completion time

and the order due time for a move to be considered (i.e., Tqp∗ ≤ tk + χ). The order shift and order swap

14

Algorithm 3 Batching and picker scheduling
repeat

repeat
for all batches (q; p) do

for all customer orders cok ∈ (q; p) do
for all batches (q; p)∗ do

if Tqp∗ ≤ tk + χ or s∗tardiness > 0 then
create temporary solution: st = s∗;
shift customer order cok ∈ (q; p) to batch (q; p)∗ in st;
insert each order line of cok on the cheapest position of the route in st;
if (stpicktime ≤ s

∗
picktime and sttardiness ≤ s

∗
tardiness) or sttardiness < s∗tardiness then

accept solution: s∗ = st;
break

end if
end if

end for
end for

end for
until no further improvement is possible;
if s∗tardiness > 0 then

for all batches (q; p) do
for all batches (q; p)∗ do

create temporary solution: st = s∗;
shift batch (q; p) to another picker q∗ and/or another position p∗ in st;
if sttardiness ≤ s

∗
tardiness then

accept solution: s∗ = st;
break

end if
end for

end for
end if
repeat

for all customer orders cok ∈ κ do
for all customer orders cok∗ ∈ κ do

if (Tqp∗ ≤ tk + χ and Tqp ≤ tk∗ + χ) or s∗tardiness > 0 then
create temporary solution: st = s∗;
swap customer order cok ∈ (q; p) and an order cok∗ ∈ (q; p)∗ in st;
insert each order line of cok on the cheapest position of the route of (q; p)∗;
insert each order line of cok∗ on the cheapest position of the route of (q; p);
if (stpicktime ≤ s

∗
picktime and sttardiness ≤ s

∗
tardiness) or sttardiness < s∗tardiness then

accept solution: s∗ = st;
break

end if
end if

end for
end for

until no further improvement is possible;
if s∗tardiness > 0 then

for all batches (q; p) do
for all batches (q; p)∗ do

create temporary solution: st = s∗;
swap batch (q; p) and batch (q; p)∗ in temporary solution st;
if sttardiness ≤ s

∗
tardiness then

accept solution: s∗ = st;
break

end if
end for

end for
end if

until no further improvement is possible;

15

moves are repeated until no further improvement is possible. Note that there is no explicit repair method

in the move operators for solutions with tardiness: the move operators create highly efficient batches with

respect to travelling and batches are filled to capacity. In this way travel time and setup time are small,

reducing the probability of tardiness.

Algorithm 4 Routing
for all pickers q ∈ σ do

for all positions p ∈ π do
if number of locations to visit in batch (q; p) ≤ 8 then

calculate exact route length of batch (q; p);
else

LKH-routing of batch (q; p);
end if

end for
end for

The routing algorithm minimizes the order picker travel distance by sequencing items in a batch. Only

for a small number of locations to be visited, an optimal route can be calculated in reasonable computing

times. The Lin–Kernighan–Helsgaun (LKH) heuristic (Helsgaun, 2000) for the TSP is used as alternative to

approximate the optimal route length. The LKH heuristic has shown to provide excellent results, both in a

general TSP context, and in the context of routing order pickers in a warehouse (Theys et al., 2010). Pretests

of our algorithm showed that calculating the optimal route length by enumerating all feasible solutions is

faster compared to executing the LKH-routing heuristic if the number of storage locations to visit in a batch

is smaller than or equal to eight locations, including the depot. For all other batches, the routing problem

is solved by the LKH heuristic. The same settings for the LKH heuristic as in Theys et al. (2010) are used.

Despite switching off n-opt moves for n > 3 and the multi-start procedure, as well as limiting

route calculations to batches that have been changed during the local search batching and

picker scheduling (Algorithm 3), the large majority of computation effort is dedicated to the

local search routing (Algorithm 4).

Applying Algorithms 3 and 4 results in a local optimum. To escape from this local optimum, a large

change (i.e., perturbation) is performed to a solution included in solution set Φ. The perturbation of the

ILS algorithm consists of splitting I batches: in each of the I perturbation iterations a random number of

orders from an existing batch are assigned to a new batch, created at a random position of a random picker.

After the creation of a new batch, the local search routing algorithm is performed to sequence the locations

in the initial batch as well as the new batch. A perturbation iteration is repeated (for at most 50 times),

starting from the current solution, if the tardiness of the perturbed solution is larger than the tardiness

of the current solution. The perturbation intensity (i.e., the number of split batches) depends on the last

16

Algorithm 5 Perturbation
for it = 1 to I do

Initialize count variable: a = 0;
repeat
st = s∗;
choose a random batch (q; p) in st;
choose a random number of orders k∗ ∈

[
1;
∑
k∈κRqpk

]
to shift;

shift k∗ orders from (q; p) to a new batch (q; p)∗ in st;
local search routing of (q; p) on st (Algorithm 4);
local search routing of (q; p)∗ on st (Algorithm 4);
count perturbation attempts: a = a+ 1

until sttardiness ≤ s
∗
tardiness or a > 50

if a ≤ 50 then
accept solution: s∗ = st;

end if
increase iterator: it = it+ 1;

end for

found best solution and is defined as I = dθ ×B × I∗e, with θ a parameter and I∗ calculated in Algorithm

1. Note that there is a risk of continuing to the local search without perturbing the solution if

all perturbation attempts a in all I perturbation iterations fail because of tardiness. Although

this risk cannot be eliminated, this scenario never happens when testing the algorithm.

5. Computational results

To assess the performance of the proposed ILS algorithm, a series of numerical experiments is performed.

All algorithms are implemented in C++. To solve the MIP formulation, ILOG Cplex 12.7 is used with a

runtime limit of 4 h. In accordance with Valle et al. (2017), branching priority is given to Rqpk. Other

parameter settings are left as default as these parameters have minor impact. Cplex and ILS are run on an

Intel Xeon Processor E5-2680 at 2.8 gigahertz, using a single thread, provided by the Flemish Supercomputer

Center.

The properties of the problem instances are introduced in Section 5.1 and algorithm parameters are

tuned in Section 5.2. First, the ILS algorithm is tested on small problem instances. Results are compared

with the optimal solutions of the MIP formulation (Section 5.3). In a second experimental design (Section

5.4), the ILS algorithm is performed on a set of large problem instances to demonstrate its applicability in

practice and analyze the effects of different warehouse parameters. Finally, a real-life case is used in Section

5.5 to show the real-life benefits of optimizing IBRSP.

5.1. Problem instances

The problem parameters from Van Gils et al. (2016) are adopted in this paper. Table 2 summarizes the

warehouse layout parameters and the time components of the picking operation. Picking aisles are two-sided

17

and wide enough for two-way travel: the effect of picker blocking is assumed to be negligibly small.

Table 2: Warehouse parameter values

Warehouse parameter Parameter value

Small
instances

Large
instances

B number of warehouse blocks 2 blocks 2 blocks
J number of levels 1 level 1 level
llength storage location length 1.3 m 1.3 m
lwidth storage location width 0.9 m 0.9 m
mwidth pick aisle width 3.0 m 3.0 m
ewidth cross-aisle width 6.0 m 6.0 m
v picker travel velocity 1

3
m/s 1 m/s

ta travel time for arc a da
v

s da
v

s
tsetup setup time 540 s 180 s
tsearch search and pick time 30 s 10 s
tpicking planning period 4 h 4 h

The heuristic algorithm is tested for a wide range of warehouse parameters. Three layouts, three storage

location assignment policies, three batch capacity levels, three different order structures, as well as a varying

distribution of due times among orders are included in the experimental design. The five factors and their

associated factor levels are summarized in Table 3. All problem instances are available from XXX (instances

will be made available after paper acceptance).

Table 3: Experimental factor setting

Factor Factor levels
Small instances Large instances

Layout (1) 6× 60 locations 6× 60 locations
(2) 12× 120 locations 12× 120 locations
(3) 18× 180 locations 18× 180 locations

Storage policy (1) random (Ran) random (Ran)
(2) within-aisle (WA) within-aisle (WA)
(3) across-aisle (AA) across-aisle (AA)

Batch capacity (1) 4 order lines 15 order lines
(2) 8 order lines 30 order lines
(3) 12 order lines 45 order lines

Order struct.a (1) 18 orders (β = 4
3

) 300 orders (β = 8
3

)
(2) 12 orders (β = 2) 200 orders (β = 4)
(3) 6 orders (β = 4) 100 orders (β = 8)

Due time distr.b (1) uniform (Uni) uniform (Uni)
(2) progressive (Prog) progressive (Prog)
(3) degressive (Deg) degressive (Deg)

a the number of order lines for each order is generated using following formula: min(c; bExp(β) + 0.5c), with Exp(β) an
exponential distribution with mean β.
b the uniform due time distribution corresponds to U(1.0; tpicking), progressive and degressive due time distributions are
approximated by triangular distributions as follows: TRIA(1.0; 3.0; tpicking) and TRIA(1.0; 1.5; tpicking), respectively.

The two-block warehouse layout differs in number of aisles, as well as number of storage location per aisle.

The layout varies between 360 (6 aisles × 60 locations per aisle × 1 level) and 3, 240 (18 aisles × 180 locations

per aisle × 1 level) storage locations. An example of the smallest order picking layout is illustrated in Figure

18

1. Other layouts are equivalent. Note that the MIP model and optimality cuts provided in Appendix A are

only valid if following assumption is fulfilled: ta1 = ta2 + ta3 with a1 = (v1; v3), a2 = (v1; v2), a3 = (v2; v3).

This is only true in case of a linear distance approximation function (e.g., rectilinear distance metric), which

is the case for low-level storage systems. In case of high-level storage systems, the Chebychev distance

metric includes vertical travel as follows: the travel time between two vertices equals the maximum of the

horizontal travel time and lifting time (Clark and Meller, 2013). Consequently, the number of arcs increases

tremendously compared to the general Steiner TSP formulation as all vertices within a pick aisle need to be

connected by arcs, making the MIP model too hard to solve even for very small instances. Therefore, the

performance of the ILS algorithm is compared with the MIP model for a low-level storage system (J = 1)

in the experimental design. In the real-life case, high-level storage locations are taken into account.

Besides randomly assigning SKUs to storage locations, a within-aisle as well as an across-aisle storage

location assignment policy are tested. SKUs are grouped into classes in such a way that class A contains

1
6 of the SKUs stored in the warehouse. These SKUs account for 60% of the picking activity. Class B

and class C contain 1
3 and 1

2 of the storage locations and account for 30% and 10% of the order frequency,

respectively. From the problem formulation, the complexity of the integrated batching, routing and picker

scheduling problem seems to be independent of the layout and storage policy. Therefore, small and larger

instances are tested on the same factor levels with regard to layout and storage policy.

Batch capacity and order structure impact the number of created batches and consequently the com-

plexity of the planning problem, as shown in the formulation. Different factor levels for small and large

instances are considered during the analysis, as shown in Table 3. Finally, the due time distribution factor

describes the distribution of due times of customer orders. The complexity of the planning problem seems

to be independent from this factor. Besides a uniform distribution over the planning period tpicking, a pro-

gressive and a degressive due time distribution are considered. For the progressive distribution most orders

are picked at the end of the planning period. In a degressive situation, most orders have a due time in the

first time intervals. Note that a planning horizon of 4 h is assumed consisting of 100-300 customer

orders, at least for the large instances. Without loss of generality, this planning horizon can

be easily reduced or enlarged. In practice, the length of the planning horizon is a trade-off: a

large number of orders (large tpicking) typically result in more efficient batches, while a short

time between order entry and deadline forces the use of a small tpicking in practice as all orders

in the algorithm are assumed to be known at the beginning of the planning period.

This factorial setting results in a 3× 3× 3× 3× 3 full factorial design. Among the 243 possible factor com-

19

binations, thirty large instances (i.e., test instances) are randomly selected to derive the relation between the

required number of order pickers and the properties of the warehouse. In practice, the required number of

order pickers may be predicted based on demand forecasts (Van Gils et al., 2017). Consequently, the number

of order pickers is included as warehouse parameter and assumed to be fixed and known when orders are being

batched. To experiment in this paper with a reasonable number of pickers as input, the input pa-

rameter is derived from following regression equation: Q∗ = d1.20 (0.254M + 0.006O − 0.072c+ 1.383Deg)e

with O the number of order lines. The regression analysis is performed based on results of our algorithm

with the test instances. The 30 test instances are used to derive the regression coefficients as follows: each

test instance is solved using the heuristic with Q = 10 order pickers, next the instance is resolved with

Q = 9 pickers, and so on. The procedure stops when the heuristic provides a solution with tardiness and

the required number of pickers for a test instance is defined as Q′ + 1, with Q′ the last value of Q. Using

a regression analysis on these results, layout, batch capacity, order structure and due time distribution are

proven to be statistically significantly related with the required number of order pickers (R2
adjusted = 0.987).

In this artificial context, productivity of pickers can be nearly perfectly predicted as random-

ness is limited to the random component of order due times, order size and assignment of

SKUs to storage locations. The regression equation is only used to experiment with a reason-

able number of pickers as input given the warehouse characteristics of the instance (without

intending to support decisions in practice). Note that the number of pickers for each instance in the

experiments is increased with 20 % to ensure that the number of pickers is large enough to prevent tardiness

in all large instances.

Without loss of generality, the number of pickers is fixed at 2 for the small benchmark instances. More-

over, for running the MIP model, the parameter P , describing the number of batch positions, should be

defined. For simplicity, P is set large enough by fixing it at
⌈
K
Q

⌉
. A more complex upper bound for pa-

rameter P could slightly improve the computational efficiency. However, as the MIP model is only used

as benchmark, this upper bound provides acceptable solutions to evaluate the solution quality of the ILS

heuristic. Note that with respect to the ILS algorithm, only parameter Q is relevant as batch positions

could easily be created and removed during computation.

5.2. Parameter tuning

Tuning algorithm parameters may result in significant performance benefits of the tested algorithm

(Pellegrini and Birattari, 2011). With respect to the ILS algorithm, parameter tuning is performed on the

set of thirty randomly selected test instances. Table 4 introduces the experimental design that is used to

20

tune the three algorithm parameters: γ (i.e., parameter defining the algorithm stop criterion), (φ1;φ2;φ3)

(i.e., parameters defining which solution is selected in each iteration), and θ (i.e., parameter defining the

intensity of the perturbation). Pretests of the ILS algorithm were performed to select these factors and fix

the factor levels. Note that χ (i.e., parameter limiting the moves in the local search) is not included in the

experiments as χ is not related to other algorithm parameters. Based on pretests, the parameter value is

fixed at 1h. This value is large enough in order not to exclude promising moves and small enough to prevent

a large number of non-promising moves, probably resulting in tardiness.

Table 4: Experimental factor setting to tune the ILS algorithm

Factor Factor levels

γ (Algorithm 1) (1) 100
(2) 200
(3) 300
(4) 400

(φ1;φ2;φ3) (Algorithm 1) (1)
(
1; 0; 0

)
(2)

(
1
2

; 1
6

; 1
3

)
(3)

(
1
3

; 1
3

; 1
3

)
(4)

(
1
3

; 1
6

; 1
2

)
θ (Algorithm 5) (1) 0.000

(2) 0.005
(3) 0.010
(4) 0.015
(5) 0.020
(6) 0.025
(7) 0.030

Each factor level combination is tested on all thirty test instances. Five replications per factor level

combination are performed. Consequently, the 4× 4× 7 factorial design results in 16, 800 observations.

Figure 2 shows the results of the parameter tuning procedure. Both the average total order picking time

and the average CPU time for each factor level combination are illustrated on the graph. Due to the bad

performance of θ = 0 (i.e., no perturbation), this factor level is removed from the graph for visibility reasons.

Computation time increases about linearly with increasing values of γ. Total order pick time is strongly

reduced as γ is increased from 100 to 200. Further increasing γ has a much weaker effect on pick time.

Therefore, 200 non-improving iterations as stop criterion seems a good compromize between computation

time and solution quality. CPU time increases when intensifying the perturbation, while the total order pick

time turns out to be minimal with medium values of θ. Therefore, θ is set at 0.015. Finally, (φ1;φ2;φ3) seem

to have little effect on both solution quality and CPU time, except for the first factor level that shows an

increased order pick time, demonstrating the positive effect of maintaining a solution pool. As the number

of iterations in the algorithm is large, the impact of the probability values for choosing a solution from the

21

Figure 2: Comparison of average total order pick time and CPU time per factor level combination.

solution pool is negligible. The values of (φ1;φ2;φ3) are fixed at the second factor level:
(
1
2 ; 1

6 ; 1
3

)
.

5.3. Comparison between exact algorithm and ILS algorithm

To assess the performance of the proposed algorithm, its results are compared with the optimal solutions

obtained by solving the MIP model with Cplex. Due to the complex nature of the integrated problem, Cplex

is only able to solve small instances, i.e., a small batch capacity and a limited number of customer orders, in

reasonable computing times. Ten order lists are generated for each factor level combination of the factorial

design (see Table 3) in order to reduce the stochastic effect of order generation. This setting results in 2, 430

small instances.

Table 5 shows the results of the MIP model. For each factor level, the number of observations that have

not been solved to optimality by Cplex within the run time limit of 4 h is given. In total, 40.6 % instances (987

out of 2, 430) have not been solved to optimality. Among these, for 84 instances no feasible integer solution

has been formed. The right-hand side of the table presents the minimum, mean and maximum optimality

gap of the non-optimal instances for which a feasible integer solution was found (i.e., 903 instances). Layout,

storage policy, and due time distribution have a limited effect on the number of non-optimal solutions. Non-

optimal solutions are strongly concentrated in the two smallest batch capacity levels and the largest order

structure level. These levels result in a large number of batches and increase the number of feasible solutions.

Overall, the mean optimality gap of the instances (i.e., 16.2 %) is rather high, even for these small problem

sizes. This demonstrates the complexity of the problem.

To assess the ILS performance, the total order pick time of ILS is compared to the optimal solution. The

22

Table 5: Optimality gap after solving the MIP model

Instances Optimality gap (in %)
% Min. Mean Max.

Layout
6× 60 289 35.7 0.2 13.7 38.9
12× 120 325 40.1 0.9 17.5 50.7
18× 180 373 46.0 0.6 17.2 48.7

Storage policy
Ran 352 43.5 0.2 16.4 45.2
WA 335 41.4 0.6 16.8 50.7
AA 300 37.0 0.9 15.4 48.7

Batch capacity
4 487 60.1 0.2 19.8 50.7
8 328 40.5 0.6 14.9 40.2
12 172 21.2 0.8 9.5 25.8

Order struct.
18 685 84.6 0.9 18.6 50.7
12 302 37.3 0.2 11.5 38.4
6 0 0.0 - - -

Due time distr.
Uni 328 40.5 0.6 16.5 50.7
Prog 337 41.6 0.9 16.5 48.7
Deg 322 39.8 0.2 15.4 43.0

Total 987 40.6 0.2 16.2 50.7

Figure 3: Percentage gap in order picking time between ILS and MIP for small problems.

23

Figure 4: CPU time (in s) of MIP and ILS for small problems.

instances for which no feasible integer solution could be obtained by Cplex have been excluded from the

analysis. From the 1, 443 instances that could be solved to optimality using Cplex, the ILS algorithm is able

to provide this optimal solution for 86.9 % of the instances in a single run per instance. The remaining 189

instances yield a mean gap between the ILS solution and the optimal order pick time of only 1.74 %. Figure

3 provides an overview of the performance of the ILS algorithm with respect to the total order picking time.

The solid line on the graph illustrates the average gap between the optimal solution and the ILS objective

function value for 1, 443 instances solved to optimality by Cplex, while the other two lines compare the ILS

solution to the lower bound and best MIP integer solution for all 2, 346 instances for which Cplex finds a

feasible solution within the run time limit. The size of the optimality gaps is rather equally distributed

across the factor levels. With respect to the lower bound, gaps are substantial, at least for the factor levels

with a high number of non-optimal instances (i.e., small batch capacity and a large number of orders). This

can be explained by the large gaps between Cplex’ best integer solution and corresponding lower bound.

In general, the ILS algorithm is providing equal or even smaller order pick times compared to Cplex’ best

integer solution. To conclude, this analysis indicates that the ILS algorithm is able to effectively solve the

integrated batching, routing and picker scheduling problem, at least for small problem sizes.

In order to evaluate the efficiency of the ILS algorithm, the computation times of the ILS algorithm

are compared with the computation times for solving the MIP model with Cplex (Figure 4). Computation

times decrease substantially when the problem is solved by the ILS algorithm. Furthermore, computation

times of both approaches are rather insensitive to the order picking layout, storage policy and due time

24

Figure 5: Order pick time and CPU time (in s) of ILS algorithm for large problems.

distribution of orders. With respect to the order structure, computation times strongly increase as the

number of orders increases. Contradicting effects can be observed for the MIP model and the ILS algorithm

with respect to the batch capacity factor. Computation times of the heuristic algorithm are mainly defined

by the complexity of the routing problem. An increasing batch capacity results in more complex TSPs and

thus increasing CPU times, whereas computation times of solving the MIP model are mainly defined by the

number of created batches. Results show that the ILS algorithm is an efficient tool for solving the integrated

batching, routing and picker scheduling problem, at least for small instances.

5.4. Analysis of the ILS algorithm for large problems

This section shows the performance of the ILS algorithm with respect to practically relevant problem

sizes. Thirty order lists are generated for each factor level combination (see Table 3). A single ILS run is

performed on each of the 7, 290 resulting instances. Additionally, a full factorial ANOVA is presented to

analyze the effect of the experimental factors on the order pick time and CPU time of the ILS algorithm.

Appendix B shows the statistical significance of the different factors on total order pick time as well as

CPU time. The graph of Figure 5 illustrates the average order pick time and mean CPU time for each factor

level.

With respect to the order picking layout, the order pick time increases linearly with increasing number of

aisles and storage locations as the travel distance of order pickers rises. The computation time for running

the ILS rises slightly when enlarging the order picking area. As more storage locations (and more SKUs)

are included, while the number of order lines remains equal, the similarity of orders decreases (i.e., the

25

probability of equal locations in multiple orders decreases), resulting in increasing computation times.

Given the position of the depot and the location of the pick aisles, the within-aisle and across-aisle storage

policies yield the smallest average order pick time. When designing order picking systems, the choice of the

storage location assignment policy may yield significant performance benefits. Even in case of optimal order

batching, routing and picker scheduling, order picking efficiency can be statistically significantly increased by

choosing the right storage policy. On average, a reduction of 14 % (i.e., 1.7 hours in the four hour planning

period) can be achieved by within-aisle storage classes, compared to random storage. The effect on CPU

time is only minor, except for the slightly increased computation time in case of across-aisle storage location

assignment.

A strong and statistically significant negative relation can be observed between batch capacity and order

pick time. Batching more order lines in a single pick round significantly reduces travelling and setup time,

resulting in a substantially lower order pick time. On the other hand, increasing batch capacity leads to a

larger number of storage locations to be visited in each pick round. This complicates the routing problems,

increasing CPU time of the ILS algorithm.

Figure 5 indicates a small statistically significant effect of the order structure level on average total

order pick time. As more orders should be picked, average pick time increases slightly. However, the order

structure does substantially influence the CPU time of the algorithm. A larger number of small orders

increases the complexity as the neighbourhood size of the local search increases. Small orders facilitate

shifting and swapping of orders, because of a decreasing probability of violating the batch capacity. Within

each local search iteration, a larger number of order shifts and order swaps are tested, resulting in a strongly

increased CPU time.

Finally, both average order pick time and CPU time are slightly depending on the due time distribution of

orders. This small effect can be explained by the large number of orders that is included in the experiments,

which facilitates combining similar orders in terms of SKUs. So, even with tight due times (i.e., degressive),

the ILS algorithm is able to organize order picking operations efficiently. This means that the ILS algorithm

can easily handle the arrival of new orders. As computation times are small enough, even if due times are

tight, the initial schedule can be revised in case of the arrival of a significant number of new orders during

the planned period, which allows to use the ILS in a dynamic setting as well.

In summary, the findings show that the proposed heuristic is able to find good solutions in reasonable

computation times for problems of realistic size. The mean CPU time is less than four minutes (124 s). The

proposed algorithm yields good performances for a wide range of realistic warehouse factors.

26

5.5. Analysis of the ILS algorithm for a real-life case

In order to show the benefits of integrating batching, routing, and picker scheduling in a real-life situation,

the IBRSP is solved for a real-life case. Real-life data of a warehouse storing automotive spare parts are used

to compare the performance of the ILS algorithm to the current operation of the warehouse (i.e., earliest

due time (EDT) batching, return routing, batch assignment to the first available picker).

The experiments in this section focus on the order pick zone that stores the automotive spare parts that

are ordered on-line. Order picking operations are performed 24 hours a day, divided into three 8 h shifts.

As time windows for picking e-commerce orders are tight, orders are released multiple times during the day

by supervisors. To simulate this order release mechanism, we assume a planning period of 4 h, meaning

that during each release, the set of orders whose due time is within the next four hours is

released. We simulate a high demand during each release, consisting of 200 orders. Due times of orders

are approximated by an empirical distribution based on historical data of two weeks. The historical data

are used to set the other warehouse parameters, as summarized in Table 6.

Table 6: Warehouse parameter values of the real-life case

Warehouse parameter Parameter value

B 3 warehouse blocks
M 11 aisles
L 140 locations per level per aisle
J 7 levels
llength 0.9 m
lwidth 0.9 m
lheight 1.0 m
mwidth 1.5 m
ewidth 6.0 m
v 1.0 m/s
vlift 0.2 m/s

ta max
{
da
v

;
jlheight
vlift

}
s

tsetup 187 s
tsearch 33 s
tpicking 4 h
Q 6 to 8 order pickers
c 13 order lines
K 200 orders
β 4 order lines

The layout of the order pick zone is shown in Figure 6. Arrows on the figure indicate the direction that

order pickers should follow due to safety reasons. The high-level storage system consists of three warehouse

blocks, two cross-aisles. Each storage rack consists of seven levels. Consequently, travelling in vertical

direction is taken into account when creating order picker routes by using the Chebychev distance metric.

SKUs are assigned to storage locations based on the across-aisle storage policy.

Thirty order lists, each consisting of 200 orders, are generated and evaluated using the ILS algorithm.

27

Figure 6: Layout of the order picking area.

The warehouse solves the problem sequentially: batches are created using EDT and assigned to the first

available order picker. Order pickers follow a return routing policy. The currently applied policies in the

warehouse are used as benchmark to evaluate the performance of the ILS algorithm. To illustrate that

efficiency improvements are not possible by only optimizing routes, the LKH heuristic is applied to the

batches created by EDT and compared to the integrated solution.

Figure 7 illustrates the average order picking time as well as the average CPU time for the real-life case.

The EDT batching and return routing results in an average order pick time of 20.5 h (73, 669 s), thereby

employing 8 order pickers to prevent infeasible solutions due to tardiness. Optimizing order pick routes

using the LKH heuristic results in a decline of 4.1 %, while the warehouse under consideration can reduce

total order pick time with 16.9 % on average by integrating batching, routing and picker scheduling. The

ILS algorithm provides an average order pick time of 17.5 h (62, 995 s) with 8 pickers. This means that the

effect of optimizing routes is small compared to the efficiency benefits of solving the IBRSP. Notice that

the CPU time of the current policy combination is negligibly small. The ILS algorithm requires 79 s of

computation time to find the integrated solution with 8 order pickers. This is acceptable in practice, given

the strongly reduced order pick time. At the short term, this reduced order picking time enables

an earlier release of a new set of orders. This not only results in more retrieved orders, but

also reduces the risk of tardiness due to unforeseen issues as the buffer between order retrieval

and deadline is larger.

The reduction of 10, 674 s (73, 669 s−62, 995 s) by solving the IBRSP using the ILS algorithm, could

eventually reduce the number of pickers as the productivity of pickers increases. The workload

forecast and mean productivity defines the daily required number of pickers. Therefore, a

productivity increase reduces the required number of pickers to retrieve the forecast workload.

This effect is tested by simulating the experiments with a reduced number of order pickers. Reducing the

28

Figure 7: Order pick time and CPU time (in s) of the real-life case.

available number of pickers from 8 to 7 provides some infeasible instances (i.e., 13.3 %) with respect to the

tardiness constraint if the benchmark policies are applied. When only routes are optimized, tardiness occurs

in 10 % of the instances. This means that 8 pickers are required to prevent tardiness with respect to the

benchmark. Due to the infeasible solutions, these results are not shown in Figure 7. When solving the

IBRSP for all instances, even 6 order pickers are enough to pick all orders before the due time. Figure 7

shows that the experiments with 6 pickers result in a slightly higher mean order pick time and a substantial

increase in computation time (i.e., from 79 s to 235 s) due to the tight solution space: a large number

of moves is tested and rejected during the local search because of tardiness. However, results

of Figure 7 show that even with a tight solution space, similar picking efficiency benefits are

possible compared to the scenario with 8 pickers. Given the strongly increased productivity causing

a substantially reduced number of pickers, the mean computation time of 235 s is acceptable in practice.

In summary, the ILS algorithm shows significant performance benefits compared to the current operation

of the warehouse. For picking the same orders, the spare parts warehouse can significantly reduce the order

pick time, without reducing the service level. Solving the IBRSP using the ILS algorithm increases the

productivity of order pickers, requiring a smaller number of pickers. This reduces the required number of

pickers by 25 % in this particular order picking zone of the spare parts warehouse. The ILS algorithm is

able to solve the integrated batching, routing and picker scheduling efficiently even in case of high-level

storage locations, in addition to the low-level storage systems that have been tested in previous sections.

29

Consequently, the ILS algorithm can be easily transferred to other order picking zones as well, either low-level

or high-level storage locations.

6. Conclusions

Serving e-commerce markets forces warehouses to handle a larger number of orders in shorter time

windows. This paper considers the integrated batching, routing and picker scheduling problem, ensuring a

high customer service level. The proposed ILS algorithm accounts for order due times, a limited availability

of order pickers as well as high-level storage locations to increase the applicability of the algorithm in practice.

Results show that the proposed ILS algorithm is able to solve practically relevant problems in reasonable

computation times.

Since batching, routing and picker scheduling are operational order picking planning problems, the new

heuristic algorithm is rather easy to implement. Furthermore, solving the integrated problem results in

substantial performance benefits of 16.9 % on average for the real-life spare parts warehouse of our case

study. This makes the ILS algorithm an excellent decision support tool for managers to organize order

picking operations and face the new market developments.

As order picking operations are labour-intense activities, future research may focus on integrating human

factors while planning batching, routing and picker scheduling. Individual employee skills and capabilities

may significantly impact the order pick time. This research opportunity is highly relevant to practice as

considering these human factors can reduce the risk of tardiness due to unforeseen issues: assigning the most

critical batches to the best performing pickers reduces the risk of orders that are picked too late, and in this

way improves customer service. Furthermore, besides order due times, a limited availability of order pickers

and high-level storage locations, respecting precedence constraints while creating order picker routes due to

weight or fragility restrictions, or considering multiple locations of a single SKU (i.e., scattered storage) may

further increase order picking efficiency and practical applicability. Considering these real-life characteristics

may be highly relevant to practice and is largely unexplored in literature integrating order picking planning

problems.

Acknowledgments

This work is supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Sci-

ence Policy Office (research project COMEX, Combinatorial Optimization: Metaheuristics & Exact Meth-

ods).

30

The computational resources and services used in this work were provided by the VSC (Flemish Super-

computer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government –

department EWI.

References

Çeven E, Gue KR. Optimal Wave Release Times for Order Fulfillment Systems with Deadlines. Transportation Science

2015;51(1):52–66. doi:10.1287/trsc.2015.0642.

Chen TL, Cheng CY, Chen YY, Chan LK. An efficient hybrid algorithm for integrated order batching, sequencing and routing

problem. International Journal of Production Economics 2015;159:158–67. doi:10.1016/j.ijpe.2014.09.029.

Cheng CY, Chen YY, Chen TL, Jung-Woon Yoo J. Using a hybrid approach based on the particle swarm optimization and

ant colony optimization to solve a joint order batching and picker routing problem. International Journal of Production

Economics 2015;170, Part C:805–14. doi:10.1016/j.ijpe.2015.03.021.

Clark KA, Meller RD. Incorporating vertical travel into non-traditional cross aisles for unit-load warehouse designs. IIE

Transactions 2013;45(12):1322–31. doi:10.1080/0740817X.2012.724188.

Cornuéjols G, Fonlupt J, Naddef D. The traveling salesman problem on a graph and some related integer polyhedra. Mathe-

matical Programming 1985;33(1):1–27. doi:10.1007/BF01582008.

De Koster RBM, Poort ESVD, Wolters M. Efficient orderbatching methods in warehouses. International Journal of Production

Research 1999;37(7):1479–504. doi:10.1080/002075499191094.

Ene S, Öztürk N. Storage location assignment and order picking optimization in the automotive industry. The International

Journal of Advanced Manufacturing Technology 2012;60(5-8):787–97. doi:10.1007/s00170-011-3593-y.

Helsgaun K. An effective implementation of the Lin–Kernighan traveling salesman heuristic. European Journal of Operational

Research 2000;126(1):106–30. doi:10.1016/S0377-2217(99)00284-2.

Henn S. Order batching and sequencing for the minimization of the total tardiness in picker-to-part warehouses. Flexible

Services and Manufacturing Journal 2015;27(1):86–114. doi:10.1007/s10696-012-9164-1.

Henn S, Schmid V. Metaheuristics for order batching and sequencing in manual order picking systems. Computers & Industrial

Engineering 2013;66(2):338–51. doi:10.1016/j.cie.2013.07.003.

Henn S, Wäscher G. Tabu search heuristics for the order batching problem in manual order picking systems. European Journal

of Operational Research 2012;222(3):484–94. doi:10.1016/j.ejor.2012.05.049.

Kennedy WJ, Wayne Patterson J, Fredendall LD. An overview of recent literature on spare parts inventories. International

Journal of Production Economics 2002;76(2):201–15. doi:10.1016/S0925-5273(01)00174-8.

Kulak O, Sahin Y, Taner ME. Joint order batching and picker routing in single and multiple-cross-aisle warehouses us-

ing cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal 2012;24(1):52–80. doi:10.1007/

s10696-011-9101-8.

Laporte G. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational

Research 1992;59(3):345–58. doi:10.1016/0377-2217(92)90192-C.

Li J, Huang R, Dai JB. Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China.

International Journal of Production Research 2016;55(2):447–61. doi:10.1080/00207543.2016.1187313.

31

http://dx.doi.org/10.1287/trsc.2015.0642
http://dx.doi.org/10.1016/j.ijpe.2014.09.029
http://dx.doi.org/10.1016/j.ijpe.2015.03.021
http://dx.doi.org/10.1080/0740817X.2012.724188
http://dx.doi.org/10.1007/BF01582008
http://dx.doi.org/10.1080/002075499191094
http://dx.doi.org/10.1007/s00170-011-3593-y
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1007/s10696-012-9164-1
http://dx.doi.org/10.1016/j.cie.2013.07.003
http://dx.doi.org/10.1016/j.ejor.2012.05.049
http://dx.doi.org/10.1016/S0925-5273(01)00174-8
http://dx.doi.org/10.1007/s10696-011-9101-8
http://dx.doi.org/10.1007/s10696-011-9101-8
http://dx.doi.org/10.1016/0377-2217(92)90192-C
http://dx.doi.org/10.1080/00207543.2016.1187313

Lin CC, Kang JR, Hou CC, Cheng CY. Joint order batching and picker Manhattan routing problem. Computers & Industrial

Engineering 2016;95:164–74. doi:10.1016/j.cie.2016.03.009.

Lourenço HR, Martin OC, Stützle T. Iterated Local Search. In: Glover F, Kochenberger GA, editors. Handbook of Meta-

heuristics. Boston, MA: Springer US; International Series in Operations Research & Management Science; 2003. p. 320–53.

Marchet G, Melacini M, Perotti S. Investigating order picking system adoption: a case-study-based approach. International

Journal of Logistics Research and Applications 2015;18(1):82–98. doi:10.1080/13675567.2014.945400.

Matthews J, Visagie S. Order sequencing on a unidirectional cyclical picking line. European Journal of Operational Research

2013;231(1):79–87. doi:10.1016/j.ejor.2013.05.011.

Matusiak M, De Koster RBM, Kroon L, Saarinen J. A fast simulated annealing method for batching precedence-constrained

customer orders in a warehouse. European Journal of Operational Research 2014;236(3):968–77. doi:10.1016/j.ejor.2013.

06.001.

Matusiak M, De Koster RBM, Saarinen J. Utilizing individual picker skills to improve order batching in a warehouse. European

Journal of Operational Research 2017;263(3):888–99. doi:10.1016/j.ejor.2017.05.002.

Öncan T. MILP formulations and an Iterated Local Search Algorithm with Tabu Thresholding for the Order Batching Problem.

European Journal of Operational Research 2015;243(1):142–55. doi:10.1016/j.ejor.2014.11.025.

Pan JCH, Shih PH, Wu MH. Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega

2015;57:238–48. doi:doi:10.1016/j.omega.2015.05.004.

Pan JCH, Wu MH, Chang WL. A travel time estimation model for a high-level picker-to-part system with class-based storage

policies. European Journal of Operational Research 2014;237(3):1054–66. doi:10.1016/j.ejor.2014.02.037.

Pellegrini P, Birattari M. Out-of-the-Box and Custom Implementation of Metaheuristics. A Case Study: The Vehicle Routing

Problem with Stochastic Demand. In: Intelligent Computational Optimization in Engineering. Springer, Berlin, Heidelberg;

Studies in Computational Intelligence; 2011. p. 273–95. doi:10.1007/978-3-642-21705-0_10.

Roodbergen KJ, De Koster RBM. Routing order pickers in a warehouse with a middle aisle. European Journal of Operational

Research 2001;133(1):32–43. doi:10.1016/S0377-2217(00)00177-6.

Scholz A, Henn S, Stuhlmann M, Wäscher G. A New Mathematical Programming Formulation for the Single-Picker Routing

Problem. European Journal of Operational Research 2016;253(1):68–84. doi:10.1016/j.ejor.2016.02.018.

Scholz A, Schubert D, Wäscher G. Order picking with multiple pickers and due dates – Simultaneous solution of Order

Batching, Batch Assignment and Sequencing, and Picker Routing Problems. European Journal of Operational Research

2017;263(2):461–78. doi:10.1016/j.ejor.2017.04.038.

Scholz A, Wäscher G. Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing.

Central European Journal of Operations Research 2017;:1–30doi:10.1007/s10100-017-0467-x.

Sörensen K, Glover FW. Metaheuristics. In: Encyclopedia of operations research and management science. Springer; 2013. p.

960–70.

Theys C, Bräysy O, Dullaert W, Raa B. Using a TSP heuristic for routing order pickers in warehouses. European Journal of

Operational Research 2010;200(3):755–63. doi:10.1016/j.ejor.2009.01.036.

Tsai CY, Liou JJH, Huang TM. Using a multiple-GA method to solve the batch picking problem: considering travel distance

and order due time. International Journal of Production Research 2008;46(22):6533–55. doi:10.1080/00207540701441947.

Valle CA, Beasley JE, Da Cunha AS. Optimally solving the joint order batching and picker routing problem. European Journal

of Operational Research 2017;262(3):817–34. doi:10.1016/j.ejor.2017.03.069.

32

http://dx.doi.org/10.1016/j.cie.2016.03.009
http://dx.doi.org/10.1080/13675567.2014.945400
http://dx.doi.org/10.1016/j.ejor.2013.05.011
http://dx.doi.org/10.1016/j.ejor.2013.06.001
http://dx.doi.org/10.1016/j.ejor.2013.06.001
http://dx.doi.org/10.1016/j.ejor.2017.05.002
http://dx.doi.org/10.1016/j.ejor.2014.11.025
http://dx.doi.org/doi:10.1016/j.omega.2015.05.004
http://dx.doi.org/10.1016/j.ejor.2014.02.037
http://dx.doi.org/10.1007/978-3-642-21705-0_10
http://dx.doi.org/10.1016/S0377-2217(00)00177-6
http://dx.doi.org/10.1016/j.ejor.2016.02.018
http://dx.doi.org/10.1016/j.ejor.2017.04.038
http://dx.doi.org/10.1007/s10100-017-0467-x
http://dx.doi.org/10.1016/j.ejor.2009.01.036
http://dx.doi.org/10.1080/00207540701441947
http://dx.doi.org/10.1016/j.ejor.2017.03.069

Van Gils T, Braekers K, Ramaekers K, Depaire B, Caris A. Improving Order Picking Efficiency by Analyzing Combinations of

Storage, Batching, Zoning, and Routing Policies. In: Paias A, Ruthmair M, Voß S, editors. Lecture Notes in Computational

Logistics. Springer International Publishing; number 9855 in Lecture Notes in Computer Science; 2016. p. 427–42. doi:10.

1007/978-3-319-44896-1_28.

Van Gils T, Ramaekers K, Braekers K, Depaire B, Caris A. Increasing Order Picking Efficiency by Integrating Storage,

Batching, Zone Picking, and Routing Policy Decisions. International Journal of Production Economics 2018a;197(Part

C):243–61. doi:10.1016/j.ijpe.2017.11.021.

Van Gils T, Ramaekers K, Caris A, Cools M. The use of time series forecasting in zone order picking systems to predict order

pickers’ workload. International Journal of Production Research 2017;55(21):6380–93. doi:10.1080/00207543.2016.1216659.

Van Gils T, Ramaekers K, Caris A, De Koster RBM. Designing Efficient Order Picking Systems by Combining Planning

Problems: State-of-the-art Classification and Review. European Journal of Operational Research 2018b;267(1):1–15. doi:10.

1016/j.ejor.2017.09.002.

Won J, Olafson S. Joint order batching and order picking in warehouse operations. International Journal of Production

Research 2005;43(7):1427–42. doi:10.1080/00207540410001733896.

Wruck S, Vis IFA, Boter J. Risk control for staff planning in e-commerce warehouses. International Journal of Production

Research 2017;55(21):6453–69. doi:10.1080/00207543.2016.1207816.

Zhang J, Wang X, Chan FTS, Ruan J. On-line order batching and sequencing problem with multiple pickers: A hybrid

rule-based algorithm. Applied Mathematical Modelling 2017;45:271–84. doi:10.1016/j.apm.2016.12.012.

Appendix A. Optimality cuts

This appendix outlines the optimality cuts used to strengthen the formulation. For a detailed discussion

on the optimality cuts, the reader is referred to Valle et al. (2017). To describe the optimality cuts, each

arc a is defined by its starting and ending vertex (v′; v′′). Let Ime be the number of vertices between the

subaisle defined by cross-aisle e and cross-aisle e + 1 in pick aisle m: a subaisle is defined as the part of a

pick aisle between two cross-aisles. Each vertex v can be additionally expressed with respect to the location

of intersection between the pick aisle, the cross-aisle neighbouring to the subaisle and most closely located

to the depot (i.e., the cross-aisle to the left of the pick location in Figure 1) and the other vertices in the

subaisle: let vme {i} be the ith vertex located in pick aisle m, with e the cross-aisle on the left-hand side of

the pick location and i the position of an ordered set of vertices within subaisle between cross-aisle e and

e+ 1 in pick aisle m. For artificial vertices, i = 0 (i.e., the intersection of a pick aisle and cross-aisle) and i

is dropped in the notation. Let v00{0} be the vertex located at the depot, or simply v0.

Order picking performance is assumed to be independent of the individual order picker. Therefore, for-

mulation (3)-(20) may be subject to symmetry issues (i.e., swapping all orders assigned to two pickers yields

an equivalent solution). This symmetry may increase computation times (Valle et al., 2017). Symmetry

33

http://dx.doi.org/10.1007/978-3-319-44896-1_28
http://dx.doi.org/10.1007/978-3-319-44896-1_28
http://dx.doi.org/10.1016/j.ijpe.2017.11.021
http://dx.doi.org/10.1080/00207543.2016.1216659
http://dx.doi.org/10.1016/j.ejor.2017.09.002
http://dx.doi.org/10.1016/j.ejor.2017.09.002
http://dx.doi.org/10.1080/00207540410001733896
http://dx.doi.org/10.1080/00207543.2016.1207816
http://dx.doi.org/10.1016/j.apm.2016.12.012

breaking constraints (A.1) are added to the formulation to overcome this issue by forcing the first order to

be assigned to the first order picker, the second order to the first or second picker, and so on.

Rqpk = 0 ∀k ∈ κ ∀q ∈ σ, q > k ∀p ∈ π (A.1)

As distance is a symmetric function, incoming and outgoing arcs from the depot may be subject to

symmetry issues (i.e., travelling is equal when performing a pick round clockwise or counter clockwise).

Therefore, constraints (A.2) break symmetry by enforcing that the arc from the depot to a cross-aisle

should be closer to the depot compared to the arc from a cross-aisle to the depot.

∑
e′∈ε
e′≥e

Xqp(v1
e′ ;v0)

≥
∑
e′∈ε
e′≥e

Xqp(v0;v1e′)
∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{1} (A.2)

In addition to symmetry breaking constraints, the feasible region can be reduced by including cuts that

should be fulfilled in case of optimality. Let κe ⊂ κ be a subset of orders for which other subaisles than the

first pick aisle between cross-aisle e and e+ 1 should be visited to retrieve all order lines. This implies that

the route should visit other pick aisles before returning to the depot as stated by constraints (A.3)-(A.5).

For each vertex connected to the depot (i.e., for each cross-aisle), the constraint should be included.

Xqp(v11{I11};v12) +Xqp(v11 ;v
2
1)
≥ Xqp(v0;v11)

− (1−Rqpk) ∀q ∈ σ ∀p ∈ π ∀k ∈ κ1

(A.3)

Xqp(v1e{I1e};v1e+1)
+Xqp(v1e ;v

2
e)

+Xqp(v1e−1{1};v1e−1)
≥ Xqp(v0;v1e)

− (1−Rqpk) ∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{1;E} ∀k ∈ κe

(A.4)

Xqp(v1E ;v2E) +Xqp(v1E−1{1};v1E−1)
≥ Xqp(v0;v1E) − (1−Rqpk) ∀q ∈ σ ∀p ∈ π ∀k ∈ κE

(A.5)

Furthermore, cross-aisle and pick aisle cuts can be included. Each pick aisle (cross-aisle) cut separates

the warehouse in two horizontal (vertical) parts, of which one part contains the depot (i.e., depot part). If

a pick location of an order is not located in the depot part, at least one arc crossing the separation line

34

from the depot part to the other warehouse part should be used. In addition, at least one arc crossing the

separation line in the other direction should be used. Optimality cuts (A.6)-(A.9) provide the cross-aisle

cuts, equations (A.10)-(A.11) illustrate pick aisle cuts. Let κ′ ⊂ κ be the subset of orders containing at least

one pick location not located in the depot part.

∑
m∈µ

Xqp(vme ;vme {1}) ≥ Rqpk ∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{E} ∀k ∈ κ′ (A.6)

∑
m∈µ

Xqp(vme ;vme {1}) =
∑
m∈µ

Xqp(vme {1};vme) ∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{E} ∀k ∈ κ′ (A.7)

∑
m∈µ

Xqp(vme−1{Ime−1};vme) ≥ Rqpk ∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{1} ∀k ∈ κ′ (A.8)

∑
m∈µ

Xqp(vme−1{Ime−1};vme) =
∑
m∈µ

Xqp(vme ;vme−1{Ime−1}) ∀q ∈ σ ∀p ∈ π ∀e ∈ ε\{1} ∀k ∈ κ′ (A.9)

∑
e∈ε

Xqp(vm−1
e ;vme) ≥ Rqpk ∀q ∈ σ ∀p ∈ π ∀m ∈ µ\{1} ∀k ∈ κ′ (A.10)

∑
e∈ε

Xqp(vm−1
e ;vme) =

∑
e∈ε

Xqp(vme ;vm−1
e) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ\{1} ∀k ∈ κ′ (A.11)

In addition to pick aisle and cross-aisle cuts, computation time is improved by including subaisle cuts

(Constraints (A.12)-(A.18)). Let X1
qpv be the minimum Xqpa value over all arcs a in the unique path from

the left cross-aisle artificial vertex to a vertex v in the subaisle associated with the cross-aisle artificial vertex.

X2
qpv is similarly defined from the right cross-aisle artificial vertex to the left. Furthermore, let κv ⊂ κ be

the subset of orders containing at least one pick location at vertex v.

X1
qpvme {1} = Xqp(vme ;vme {1}) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} (A.12)

X1
qpvme {i} ≤ Xqp(vme {i−1};vme {i}) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} ∀i ∈ [1; Ime]}

(A.13)

X1
qpvme {i} ≤ X

1
qpvme {i−1} ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} ∀i ∈ [1; Ime]}

(A.14)

X2
qpvme {Ime } = Xqp(vme+1;v

m
e {Ime }) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} (A.15)

X2
qpvme {i−1} ≤ Xqp(vme {i};vme {i−1}) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} ∀i ∈ [1; Ime]}

(A.16)

35

X2
qpvme {i−1} ≤ X

2
qpvme {i} ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E} ∀i ∈ [1; Ime]}

(A.17)

X1
qpvme {i} +X2

qpvme {i} ≥ Rqpk ∀q ∈ σ ∀p ∈ π ∀vme {i} ∈ ψ, i > 0 ∀k ∈ κvme {i} (A.18)

Computation time is further reduced by including optimality cuts that prevent routes to return in an

artificial vertex. Constraints (A.19) prevent reversals between two artificial vertices, while Constraints

(A.20)-(A.23) deal with reversals between a pick location vertex and artificial vertex.

∑
(v′′;v∗)∈α−

v′′
v∗ 6=v′

Xqp(v′′;v∗) ≥ Xqp(v′;v′′) ∀q ∈ σ ∀p ∈ π ∀v′, v′′ ∈
⋃
m∈µ

⋃
e∈ε
{vme } : (v′; v′′) ∈ α+

v′′

(A.19)∑
(vme ;v−)∈α−

vme

v− 6=vme {1}

Xqp(vme ;v−) ≥ Xqp(vme {1};vme) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E}

(A.20)∑
(v−;vme)∈α+

vme

v− 6=vme {1}

Xqp(v−;vme) ≥ Xqp(vme ;vme {1}) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{E}

(A.21)∑
(vme ;v−)∈α−

vme

v− 6=vme−1{I
m
e−1}

Xqp(vme ;v−) ≥ Xqp(vme−1{Ime−1};vme) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{1}

(A.22)∑
(v−;vme)∈α+

vme

v− 6=vme−1{I
m
e−1}

Xqp(v−;vme) ≥ Xqp(vme ;vme−1{Ime−1}) ∀q ∈ σ ∀p ∈ π ∀m ∈ µ ∀e ∈ ε\{1}

(A.23)

Finally, pass through optimality cuts prevent reversals at pick location vertices where no picking occurs.

Let κvme {i} ⊂ κ be the set of orders that have a pick location at vertex vme {i}. Then, constraints (A.24)-(A.27)

ensure that the route passes through the vertices where no picking occurs, instead of returning.

36

∑
k∈κvme {i}

−Rqpk ≤ Xqp(vme {i−1};vme {i}) −Xqp(vme {i};vme {i+1}) ≤
∑

k∈κvme {i}

Rqpk

∀q ∈ σ ∀p ∈ π ∀m ∈ µ

∀e ∈ ε ∀i ∈ [1; Ime − 1]}

(A.24)∑
k∈κvme {Ime }

−Rqpk ≤ Xqp(vme {Ime −1};vme {Ime }) −Xqp(vme {Ime };vme+1)
≤

∑
k∈κvme {Ime }

Rqpk

∀q ∈ σ ∀p ∈ π ∀m ∈ µ

∀e ∈ ε (A.25)∑
k∈κvme {i}

−Rqpk ≤ Xqp(vme {i+1};vme {i}) −Xqp(vme {i};vme {i−1}) ≤
∑

k∈κvme {i}

Rqpk

∀q ∈ σ ∀p ∈ π ∀m ∈ µ

∀e ∈ ε ∀i ∈ [1; Ime]}

(A.26)∑
k∈κvme {Ime }

−Rqpk ≤ Xqp(vme+1;v
m
e {Ime }) −Xqp(vme {Ime };vme {Ime −1}) ≤

∑
k∈κvme {Ime }

Rqpk

∀q ∈ σ ∀p ∈ π ∀m ∈ µ

∀e ∈ ε (A.27)

37

Appendix B. ANOVA results on large problems

Tables B.7 and B.8 present results of a 3×3×3×3×3 full factorial ANOVA on average order pick time

and mean CPU time, respectively. Results show the statistical significance of the main effects and the

two-way interactions among the warehouse factors.

Table B.7: 3×3×3×3×3 full factorial ANOVA on average order pick time

Sum of squares df Mean square F p-value

Main effects

Layout 912,819,618,087 2 456,409,809,043 43,780.31 0.000
Storage policy 58,916,943,244 2 29,458,471,622 2,825.75 0.000
Batch capacity 475,507,803,914 2 237,753,901,957 22,806.13 0.000
Order struct. 6,243,561,363 2 3,117,280,681 299.02 0.000
Due time distr. 332,652,634 2 166,326,317 15,95 0.000

Two-way interaction

Layout × Storage policy 15,022,966,698 4 3,755,741,674 360.26 0.000
Layout × Batch capacity 21,362,500,968 4 5,340,625,242 512.29 0.000
Layout × Order struct. 640,314,732 4 160,078,683 15.36 0.000
Layout × Due time distr. 215,727,537 4 53,931,884 5.17 0.000
Storage policy × Batch capacity 426,029,184 4 106,507,296 10.22 0.000
Storage policy × Order struct. 253,013,230 4 63,253,308 6.07 0.000
Storage policy × Due time distr. 21,315,277 4 5,328,819 0.51 0.728
Batch capacity × Order struct. 25,553,283,352 4 6,388,320,838 612.79 0.000
Batch capacity × Due time distr. 41,810,928 4 10,452,732 1.00 0.405
Order struct. × Due time distr. 38,378,577 4 9,594,644 0.92 0.451

Residuals

Between subjects 75,466,590.370 7,239 10,425,002

Total 1,592,862,510,095 7,289

Table B.8: 3×3×3×3×3 full factorial ANOVA on CPU time

Sum of squares df Mean square F p-value

Main effects

Layout 103,129 2 51,565 13.01 0.000
Storage policy 928,521 2 464,261 117.12 0.000
Batch capacity 13,049,663 2 6,524,832 1,646.08 0.000
Order struct. 26,607,029 2 13,303,514 3,356.20 0.000
Due time distr. 1,059,850 2 529,925 133.69 0.000

Two-way interaction

Layout × Storage policy 224,468 4 56,117 14.16 0.000
Layout × Batch capacity 267,300 4 66,825 16.86 0.000
Layout × Order struct. 236,227 4 59,057 14.90 0.000
Layout × Due time distr. 55,270 4 13,818 3.49 0.008
Storage policy × Batch capacity 275,010 4 68,753 17.34 0.000
Storage policy × Order struct. 444,193 4 111,048 28.02 0.000
Storage policy × Due time distr. 58,342 4 14,585 3.68 0.005
Batch capacity × Order struct. 2,147,753 4 536,938 135.46 0.000
Batch capacity × Due time distr. 84,043 4 21,011 5.30 0.000
Order struct. × Due time distr. 446,724 4 111,681 28.17 0.000

Residuals

Between subjects 28,694,378 7,239 3,964

Total 74,701,900 7,289

38

