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Designing efficient order picking systems: the effect of real-life features on
the relationship among planning problems

Abstract

This study illustrates the relevance and importance of incorporating safety constraints, picker blocking,

and vertical travel due to high level storage locations when developing order picking systems (i.e., deciding

on zoning, storage, batching, and routing). Results show that safety constraints induce wait times, and

cause additional traveling, picker blocking and consequent wait time can be minimized at the expense of

additional setup time, and slow vertical travel results in additional travel and wait times. Consequently,

ignoring these real-life features causes substantial performance inefficiencies. Robust policies for organizing

operations efficiently are provided, even if the system is subject to real-life features.

Keywords: picker zoning, storage location assignment, order batching, picker routing, warehouse
management

1. Introduction

As industrial land is expensive, especially in Western Europe, the area dedicated for storing stock keep-

ing units (SKUs) by warehouses is limited. As customers expect unique products (a wide assortment of

SKUs), more storage capacity is required. Moreover, Western European countries are characterized by high

labor costs, making productivity improvements especially beneficial. To deal with these market conditions,

warehouses typically consist of narrow aisle, high level order picking systems to store SKUs densely, while

still allowing individual access to retrieve them rapidly to fill customer orders. Narrow aisles and high level

storage locations increase the storage capacity per square meter. These order picking systems allow a large

number of SKUs to be stored in a small area and reduce unproductive travel of narrow aisle order pick

trucks compared to, for example, wide aisle order picking systems. However, narrow aisles cause wait times

due to picker blocking, especially when multiple order pickers retrieve products in the same area. Moreover,

multiple order pickers working in a small area increases the risk of accidents in the warehouse (De Koster

et al., 2011; Mowrey and Parikh, 2014; Venkitasubramony and Adil, 2017).

Although pick robots are upcoming because of their efficiency (Azadeh et al., 2018), manual picker-

to-parts order picking systems are still predominantly used in practice (De Koster et al., 2007; Marchet
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et al., 2015), especially in for example spare parts warehouses; human order pickers can handle unexpected

changes in the process, are flexible with respect to capacity, and can retrieve a large variety of SKUs in

terms of size and weight, which is particularly applicable to spare parts (Marchet et al., 2015; Van Gils

et al., 2017). Moreover, the high investment costs (Lamballais et al., 2017) and the risk of interrupting

order picking operations during the implementation are additional barriers for using pick robots (Marchet

et al., 2015). Though these barriers may fade in the next decades enabling (spare parts) warehouses to

consider the implementation of robotized order picking systems, this study supports managers to cope with

market developments such as increased customer expectations, expensive industrial land and high labor

costs immediately.

Managing order picking operations effectively and efficiently is identified as an important but complex

planning process. While order picking costs account for the majority of all warehouse operations costs

(Dijkstra and Roodbergen, 2017; Parikh and Meller, 2008), the performance of the order picking process

drives the customer service level. A wide range of planning problems need to be solved to manage order

picking processes efficiently. Dependencies among order picking planning problems further increase the

complexity of managing order picking operations (Altarazi and Ammouri, 2018; Van Gils et al., 2018b). At

an operational level, picker zoning, storage location assignment, order batching, and picker routing are the

main drivers of order picking performance. Combining decisions on these planning problems is essential for

designing an effective and efficient order picking process (Van Gils et al., 2018b).

Although many studies address individual order picking planning problems (De Koster et al., 2007) and

combinations of multiple planning problems (Dijkstra and Roodbergen, 2017; Petersen and Aase, 2004;

Van Gils et al., 2016, 2018b), managers often do not implement findings from academic research and at

the same time researchers rarely integrate real-life features while developing new planning models (Carter,

2008). This study flew in the face with conventional assumptions in academic literature: a single picker

or pick aisles wide enough to overtake, using travel distance of travel time as single performance metric,

and low level storage systems thereby ignoring the effect of a very slow lifting speed compared to horizontal

travel (e.g., Altarazi and Ammouri (2018); Petersen and Aase (2004); Van Gils et al. (2018b)). Several picker

zoning, storage location assignment, order batching, and picker routing policies (i.e., solution methods) are

simulated to investigate relationships among these planning problems under the constraints of safety rules,

picker blocking, and high level storage locations, with the aim of finding robust and efficient order picking

policy combinations.

The research methodology of this study is similar to Van Gils et al. (2018b), who investigate the same
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operational planning problems in wide aisle order picking systems, thereby ignoring real-life features. How-

ever, this study significantly differs as including the real-life features changes the nature of the problem,

resulting in substantially different results. Instead of comparing our study repeatedly throughout the paper

with Van Gils et al. (2018b) and other studies simulating order picking policies that ignore real-life features

(e.g., Petersen and Aase (2004); Roodbergen et al. (2015)), we refer to wide aisle systems in general to com-

pare our study with throughout the paper. The problem context of this study is inspired by a real-life B2B

spare parts warehouse (Van Gils et al., 2018a). The research methodology of empirically-driven simulation

is relatively new in a warehousing context (e.g., Altarazi and Ammouri (2018); Chackelson et al. (2013)).

The main contributions of this study, which illustrate the main differences with wide aisle order picking

systems, are as follows. First, existing picker zoning, storage location assignment, order batching, and

picker routing policies that are suitable for wide aisle picking systems are adapted to manage real-life

features in narrow aisle systems (i.e., safety constraints, picker blocking, and high level storage locations).

Second, the simulation results and statistical analyses give evidence on how and why picker zoning, storage

location assignment, order batching, and picker routing are related with respect to travel time and picker

blocking (instead of travel distance that is generally used in wide aisle systems). The relations are analyzed

and explained using the constraints and consequences of the real-life features. Third, the empirical study

illustrates the relevance and importance of incorporating real-life features while planning order picking

operations and provides insights into the negative effects on performance if existing real-life features are

ignored. Fourth, robust and efficient policy combinations of the four main order picking planning problems

are identified under various practical situations. Results of wide aisle picking systems are strongly biased

when picking systems are subject to the considered real-life features. The provided policies can be used by

warehouse managers to improve overall order picking performance and to support new market developments.

The remainder of the paper is organized as follows. Section 2 provides the state-of-the-art and formulates

research hypotheses on how order picking planning problems are related with respect to travel and picker

blocking in a manual order picking system. The methodology to analyze the relationship among the order

picking planning problems is described in Section 3. Section 4 provides empirical findings. Section 5 discusses

implications of this study for researchers as well as for practitioners; the importance of incorporating real-life

features is illustrated, and robust and efficient policy combinations are provided. Finally, Section 6 concludes

and suggests future research directions.
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2. Literature review and hypotheses

The recent literature review of Van Gils et al. (2018c) shows the importance of combining order picking

planning problems while designing manual order picking systems, whereas planning problems of robotized

picking systems are mainly optimized without addressing the relation between planning problems (Azadeh

et al., 2018; Boysen et al., 2018). In this section, we review and develop the relevant constructs and

theories, focusing on real-life features in manual order picking operations (Section 2.1) and formulate research

hypotheses on the relationships among the operational order picking planning problems subject to the

constraints of the real-life features (Section 2.2).

2.1. Real-life features in order picking operations

Although many studies have optimized a single planning problem or a combination of order picking

planning problems, they have not sufficiently considered real-life features when optimizing order picking

planning problems (Van Gils et al., 2018c). In this paper, real-life features are defined as characteristics

(e.g., high level storage locations and varying SKUs in terms of size and weight), constraints (e.g., safety and

precedence constraints), and conditions (e.g., picker blocking and human factors) that have a substantial

impact on the planning and performance of order picking systems in practice. Based on numerous warehouse

visits by the authors in the context of a valorization project on revealing the needs and challenges of

logistical companies in Limburg (Belgium), multiple interviews with warehouse managers and the specific

case of a B2B spare parts warehouse (see Section 3.2), the effects of safety constraints, picker blocking, and

high level storage locations are expected to be the most essential and relevant factors to include in order

picking policies. Safety constraints, picker blocking, and high-level storage locations impact the nature of

the problem, which is expected to result in substantially different results when these features are ignored.

Literature incorporating each of these three real-life features is discussed below.

Safety constraints. Despite the large number of accidents that happen in warehouses (De Koster et al.,

2011), safety constraints are not considered sufficiently when optimizing order picking operations. Safety

rules, such as prohibiting truck backing to avoid that retrieved products fall on the picker, ensure the safety

of individual order pickers (Chabot et al., 2018). However, time pressure is high and pick trucks work in

close proximity, resulting in an enhanced risk of accidents involving multiple order pickers (De Koster et al.,

2011). Traffic rules, such as limiting the number of pickers within aisles, imposing one-way traffic directions

within aisles, and prohibiting vehicle turns, prevent routes from crossing which reduces the risk of accidents

(Çelik and Süral, 2016).
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Picker blocking. Multiple order pickers, who operate concurrently in the same order picking area inevitably

cause wait times as pickers can block each other when picking in the same region of the order picking system

(Pan and Wu, 2012). Picker blocking induces idle time of order pickers, increasing the total order picking

time (Parikh and Meller, 2008, 2009). Areas storing fast moving SKUs, which are introduced to reduce

travel, are particularly subject to substantial wait times due to picker blocking. Picker blocking occurs

when a picker cannot reach a storage rack because another picker is retrieving items at that storage rack

(i.e., storage-rack blocking), or when a picker cannot overtake in an aisle (i.e., within-aisle or in-the-aisle

blocking). The latter is caused by narrow pick aisles, whereas storage-rack blocking can occur in both wide

aisle and narrow aisle order picking systems (Mowrey and Parikh, 2014). Traffic rules to increase safety,

such as limiting the number of pickers within aisles, can induce additional blocking in cross aisles (i.e.,

aisle-entrance blocking): pickers should wait in the cross aisle before entering the pick aisle if the maximum

allowable number of pickers has already entered the pick aisle (Hong et al., 2012).

High level storage systems. Storage racks in high level storage systems consist of multiple levels, storing

multiple SKUs in a single storage rack section, in contrast to low level storage systems (single level storage

rack sections). In addition to horizontal travel, high level storage systems require order pickers to travel

vertically to pick products from storage locations at higher levels (i.e., pick truck lifting) (Pan et al., 2014).

The footprint of a storage system (i.e., the number of aisles and aisle length) strongly impacts horizontal

travel time, whereas the amount of vertical travel is defined by the number of levels in a storage system

(Thomas and Meller, 2015). The Chebychev distance metric measures vertical travel in narrow aisles: the

high level pick truck can move both horizontally and vertically making within-aisle travel time equal to the

maximum of the horizontal travel time and vertical travel time (Clark and Meller, 2013). In case of using

higher levels as storage and replenishment locations and lower levels (i.e., floor locations) for picking, the

impact of high level storage systems on travel time is negligible: vertical travel is limited to replenish a

pick location, while picking is performed on floor locations requiring only horizontal travel. The high level

storage system under consideration uses all locations as pick locations. Bulk storage locations are assumed

to be in a separate system (e.g., automated storage and retrieval system).

2.2. Combining storage, batching, zoning, and routing planning problems

Table 1 describes the four operational planning problems that should be solved to design efficient order

picking systems. Although layout and other strategic decisions may have a substantial impact on the

performance (Pohl et al., 2009), these strategic planning problems are fixed in the short term. The total

5



description

zoning Zoning policies decide on how to split the order picking
area into zones and determine the location of the order
pick zones. Each order picker is assigned to a single
zone. In narrow aisle high level picking systems, parallel
zoning is more applicable than sequential zoning.

storage Storage location assignment policies describe rules to
determine the allocation of SKUs to storage locations.
Storage location assignment defines the distribution of
fast moving SKUs across the order picking area.

batching Order batching policies define rules on combining cus-
tomer orders in a single pick round.

routing Routing policies define the sequence of storage locations
that should be visited in each pick round to retrieve all
items on a pick list.

Table 1: Definition of the four main order picking planning prob-
lems (Van Gils et al., 2018c).

order pick time, which consists of setup time for preparing batches, pick and search time at each visited

location, travel time and wait time due to picker blocking, is used as surrogate for order picking performance

in this paper. As the first two time components have proven to be of minor importance when evaluating

combinations of planning problems in wide aisle systems (Van Gils et al., 2018b) and the considered real-life

features would have a minor impact on setup and pick and search time, these components are not included

in the research hypotheses.

The recent simulation study of Van Gils et al. (2018b) shows strong relationships among operational

planning problems with respect to mainly horizontal travel distance in wide aisle order picking systems,

thereby ignoring the real-life features. The question remains to what extent these relationships have an

effect on the order picking performance of picking systems that are subject to crucial real-life features, such

as narrow aisle order picking systems. Compared to wide aisle systems, travel times are expected to increase

as a result of the real-life features and additional wait times due to picker blocking should be taken into

account. This section reviews relevant theories on interactions among operational order picking planning

problems in wide aisle order picking systems and transforms existing knowledge to narrow aisle systems

taking the real-life features into account. To structure the section, research hypotheses on the combined

effect are formulated, sorted from the planning problem combination with the longest time horizon to the

shortest time horizon of the resulting decisions.

Table 2 summarizes state-of-the-art publications on combining operational order picking planning prob-

lems and examines to what extent these articles include the real-life features that are studied in this paper.

Studies simulating combinations of order picking planning problems and analyzing the relations are included,

as these studies are most closely related to our paper. While ignoring safety constraints, picker blocking,

and high level storage locations, most papers show significant benefits in terms of travel by combining order
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picking planning problems. However, there is clearly a need to include real-life features in such studies; the

empty cells in Table 2 are dominant in the real-life features columns, especially in the upper part of the

table (note that papers are included in chronological order). Recent papers are starting to include additional

real-life features, but to a limited extent. This study goes beyond the current state-of-the-art by analyzing

and explaining relationships among the four main operational order picking planning problems, thereby

accounting for the three crucial real-life features.

planning problems real-life features
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Petersen and Schmenner (1999) •
Petersen (2002) •

Petersen and Aase (2004) • • •
Hsieh and Tsai (2006) •
Ho and Tseng (2006) • ◦ ◦
Manzini et al. (2007) •

Ho et al. (2008) • ◦ ◦
Yu and De Koster (2009) •

Chen et al. (2010) • • •
Theys et al. (2010) •
Pan and Wu (2012) • ∗ ∗

Chackelson et al. (2013) ◦ ◦ •
Pan et al. (2014) • ∗

Shqair et al. (2014) •
Chen et al. (2017) • ∗

Dijkstra and Roodbergen (2017) •
Franzke et al. (2017) • ∗

Quader and Castillo-Villar (2018) ◦
Van Gils et al. (2018b) • • • • • •

Table 2: State-of-the-art publications (• significant relationship; ◦ no significant
relationship; ∗ real-life feature included).

To formulate our research hypotheses on the relationship among order picking planning problems, we

first investigate the main effect of each planning problem on order picking efficiency. Table 3 provides a

summary of the main effects when evolving from a bad policy for a particular planning problem to a more

efficient policy in terms of travel and in terms of picker blocking. Dividing the order picking area into zones

results in smaller covered areas of order pickers during a pick round and consequently lead to shorter travel

times: a picker can only travel in a limited number of aisles during each pick round (De Koster et al.,

2012). Moreover, wait times due to picker blocking decrease as zoning limits the order picking area covered

by pickers in a pick round (De Koster et al., 2012). Storage location assignment policies aim to reduce

travel by concentrating fast moving SKUs in a small order picking area, resulting in a large pick density

in certain areas and thus increasing the risk of picker blocking compared to randomly assigning SKUs to
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travel picker blocking

zoning ↘ ↘
storage ↘ ↗
batching ↘ ↘
routing ↘ ↗

Table 3: Main effect of order picking
planning problems.

storage locations (Franzke et al., 2017). Order batching aims to limit travel by combining similar orders in

a pick round. Efficient batches consist of closely located storage locations, thereby reducing picker blocking

as the covered area in a pick round is limited (Hong et al., 2012). Routing policies aim to reduce travel by

sequencing the order lines (and resulting storage locations) within each batch (Theys et al., 2010). While

sequences may be optimal with respect to travel, these routing policies are subject to stricter traffic rules

to limit the chance of crossing routes of different order pickers. Stricter traffic rules, expressed as a smaller

allowable number of pickers within an aisle, result in higher wait times (Van Gils et al., 2018a). Based on the

main effects, research hypotheses are formulated, stating whether or not a planning problem combination

is expected to be related as well as hypothesizing the expected direction of the relation (i.e., increasing or

decreasing marginal effects). Research hypotheses are formulated with respect to travel (thereby excluding

setup time and pick time at storage locations) and picker blocking. The travel hypotheses formulate the

expected combined effect of planning problems in a new context by transforming existing knowledge in wide

aisle picking systems to narrow aisle picking systems, thereby accounting for safety constraints and high

level storage locations. Hypotheses stating the combined effect of planning problems on picker blocking

have not been investigated before.

Zoning-storage relation. If the real-life features of safety constraints, picker blocking, and high level storage

systems are ignored, the relationship between the number of zones and storage location assignment is

significant with respect to travel distance (or time): order pickers cover smaller areas if there are more pick

zones and if turnover-based storage location assignment policies are adopted (Petersen, 2002; Van Gils et al.,

2018b). As both planning problems have a positive effect on travel, we expect fewer benefits if picker zoning

and storage location assignment are combined (see Hypothesis 1a). The number of zones is also expected to

significantly influence the efficiency of the storage location assignment policies with respect to wait times.

Picker zoning policies divide pickers across the order picking area by assigning them to a single pick zone,

thereby reducing the possibility of picker blocking, whereas storage location assignment policies increase the

pick density in a small area, thereby increasing the probability of picker blocking. As picker zoning reduces
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the number of pickers in each zone, we propose that the negative picker blocking effects of turnover-based

storage location assignment policies are smaller when the order picking area is divided into pick zones as

stated in Hypothesis 1b.

Hypothesis 1a The marginal travel benefits from turnover-based storage location assignment policies de-

crease when the order picking area is divided into pick zones.

Hypothesis 1b The marginal picker blocking effect from turnover-based storage location assignment policies

decreases when the order picking area is divided into pick zones.

Zoning-batching relation. As picker zoning and order batching both aim to increase the pick density in

small areas, the marginal effect of batching policies on travel decreases significantly with more pick zones in

wide aisle systems (Yu and De Koster, 2009; Van Gils et al., 2018b). Increasing the number of zones and

consequently decreasing the zone size, increases the probability of visiting all aisles within a zone during a

pick round, thereby reducing the negative travel effects of traffic rules. Moreover, incorporating the effect

of traffic rules (e.g., one-way travel) while creating batches may limit the negative effects of these safety

constraints on travel. As both planning problems have a positive effect on travel and both limit the negative

effects of traffic rules on travel, the joint effect of picker zoning and order batching on travel is expected

to be significant under the constraints of the real-life features (Hypothesis 2a). Moreover, as both zoning

and batching reduce picker blocking by decreasing the area covered during a pick round, we expect that the

combined effect of planning problems on wait time is significant as stated in Hypothesis 2b.

Hypothesis 2a The marginal travel benefits from efficient batching policies decrease when the order picking

area is divided into pick zones.

Hypothesis 2b The marginal picker blocking benefits from efficient batching policies decrease when the

order picking area is divided into pick zones.

Zoning-routing relation. Only one study (Van Gils et al., 2018b) has investigated the combined effect of

picker zoning and routing: both decisions jointly influence travel distance in wide aisle order picking systems.

More pick zones and consequently small zone sizes reduce the effect of routing policies on travel. The effect

of routing policies depends on the traffic rules in narrow aisle order picking systems. Especially when pick

densities are low (i.e., a small number of pick zones), the travel differences among the routing policies is

expected to be much higher compared to small pick zones, indicating a strong relationship (see Hypothesis

3a). Moreover, picker zoning and routing may jointly affect picker blocking as stated in Hypothesis 3b:
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routing policies cause picker blocking by the imposed traffic rules, while picker zoning reduces picker blocking

by assigning pickers to dedicated order picking areas. The marginal picker blocking effect from efficient

routing policies (subject to stricter traffic rules) is expected to decrease as picker zoning reduces the number

of pickers in each zone.

Hypothesis 3a The marginal travel benefits from efficient routing policies decrease when the order picking

area is divided into pick zones.

Hypothesis 3b The marginal picker blocking effect from efficient routing policies decreases when the order

picking area is divided into pick zones.

Storage-batching relation. The joint effect of storage location assignment and order batching on travel is

rather consistent in literature. The efficiency of batching policies increases when the rules for assigning

SKUs to storage locations when creating batches are taken into account (Ho and Tseng, 2006; Ho et al.,

2008; Hsieh and Tsai, 2006; Petersen and Aase, 2004; Van Gils et al., 2018b). Travel differences among

storage location assignment policies are expected to be greater in high level storage systems (i.e., more fast

moving SKUs in a small number of aisles causes more fast moving SKUs to be stored at higher locations)

as vertical travel is typically very slow. Considerable travel benefits can be gained from efficient batching

policies if vertical travel is limited, which is the case when fast moving SKUs are more evenly divided across

the order picking area (see Hypothesis 4a). Furthermore, picker blocking may be significantly influenced by

the combined storage-batching decision as well. Both planning problems aim to limit the covered area of

a pick round. However, storage policies increase picker blocking as this small covering area is equal for all

pickers (i.e., the locations that store fast moving SKUs), while batching policies may reduce wait times as the

small covering areas can be different across pickers. Therefore, Hypothesis 4b states that the marginal picker

blocking effect from efficient batching policies decreases when turnover-based storage location assignment

policies assign fast moving SKUs to a small picking area.

Hypothesis 4a The marginal travel benefits from efficient batching policies decrease when turnover-based

storage location assignment policies assign fast moving SKUs to a small picking area.

Hypothesis 4b The marginal picker blocking effect from efficient batching policies decreases when turnover-

based storage location assignment policies assign fast moving SKUs to a small picking area.

Storage-routing relation. Storage location assignment and picker routing is by far the most intensively

studied combination of planning problems. Besides studies simulating a limited number of storage and/or
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routing policies (Chackelson et al., 2013; Ho and Tseng, 2006; Ho et al., 2008; Quader and Castillo-Villar,

2018), the storage-routing combination is found to strongly affect travel in wide aisle order picking systems:

taking information about the location of fast moving SKUs into account while determining the routing

policy can significantly reduce travel (Dijkstra and Roodbergen, 2017; Manzini et al., 2007; Petersen and

Schmenner, 1999; Petersen and Aase, 2004; Shqair et al., 2014; Van Gils et al., 2018b). In narrow aisle

order picking systems, routing policies are revised to meet safety constraints (e.g., one-way travel in pick

aisles and limited number of allowable pickers within aisles). By including aisle-entrance blocking and only

allowing one order picker in each narrow aisle, the efficiency of storage and routing policy combinations is

found to be strongly related by a single study, both in terms of travel and wait time. Pan et al. (2014)

develop analytical models to evaluate the storage-routing relationship. These relationships are summarized

in Hypotheses 5a and 5b.

Hypothesis 5a The marginal travel benefits from efficient routing policies decrease when turnover-based

storage location assignment policies assign fast moving SKUs to a small picking area.

Hypothesis 5b The marginal picker blocking effect from efficient routing policies increases when turnover-

based storage location assignment policies assign fast moving SKUs to a small picking area.

Batching-routing relation. The substantial effect of batching and routing on travel has been proven by inte-

grating both planning problems instead of solving the batching and routing planning problems sequentially

(Won and Olafson, 2005; Van Gils et al., 2018c). In wide aisle order picking systems, the length of the routes

mainly define the performance of the created batches (Chackelson et al., 2013; Van Gils et al., 2018b). In

narrow aisle order picking systems, this performance depends on the travel time, defined by the routing pol-

icy, as well as on the wait time, defined by the traffic rules (Chen et al., 2017). Travel time (both horizontal

and vertical travel) and picker blocking are defined by the routing policy and traffic rules. As an efficient

batching policy is used, the covered area of a pick round is small, reducing the travel benefits from efficient

routing policies (see Hypothesis 6a). Furthermore, the marginal picker blocking effect from efficient routing

policies is expected to decrease when the covered area of a pick round is limited by efficient batching policies

in narrow aisle order picking systems (see Hypothesis 6b).

Hypothesis 6a The marginal travel benefits from efficient routing policies decrease when the covered area

of a pick round is limited by efficient batching policies.

Hypothesis 6b The marginal picker blocking effect from efficient routing policies decreases when the cov-

ered area of a pick round is limited by efficient batching policies.
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In summary, twelve research hypotheses are formulated of which six hypotheses transforming existing

knowledge in a new context and six complete new research hypotheses. These hypotheses are used as

theoretical ground to explain how and why order picking planning problems are related when real-life

features play a crucial role.

3. Methodology for empirical study

We conducted an interaction analysis with simulation and comprehensive statistical tests to test our

research hypotheses. Interactions are defined as the combined effect that multiple planning problems have

on a performance goal (Van Gils et al., 2018b). An interaction analysis is considered to be especially useful

if the time horizon of the resulting decisions is different (Van Gils et al., 2018c). Although picker zoning,

storage location assignment, batching, and picker routing are all operational planning problems, the time

horizons of the resulting decisions differ. Batches and routes are created multiple times per hour, while

decisions on picker zoning and storage assignment have a longer time horizon.

This section outlines the research methodology used to achieve the objectives of this study. The simu-

lation modeling approach is presented in Section 3.1. Sections 3.2 and 3.3 describe the business case and

the operational measures. The experimental design and data generation are outlined in Sections 3.4 and

3.5. Section 3.6 describes the statistical analysis used to provide insights into the relationships among order

picking planning problems.

3.1. Simulation model

Using simulation as modeling method allows to include the stochastic elements of order generation and

assignment of SKUs to pick zones and storage locations. Although analytical-based modeling methods are

faster and can provide accurate performance estimates (Schleyer and Gue, 2012), they are usually subject

to assumptions that simplify the real system (Azadeh et al., 2018). Empirically-driven simulation, i.e.,

simulation studies based on real-life operations, have been frequently used to model and analyze order

picking operations (e.g., Altarazi and Ammouri (2018), Chackelson et al. (2013), Dekker et al. (2004), and

Petersen and Aase (2004)).

Simulation can accurately present the four order picking problems and easily incorporate the real-life

features (Chen et al., 2010; Manzini et al., 2007). While Monte Carlo simulations are adequate for calculating

travel distances in wide aisle order picking systems (Petersen and Aase, 2004), even in case of high level

storage locations, including safety constraints and picker blocking require more comprehensive simulation
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models. Discrete-event simulation facilitates the modeling of a sequence of events in time, thereby allowing to

take safety constraints and picker blocking into account. Results of the simulation are statistically analyzed

to evaluate the policy decisions covered in the research hypotheses and assess the effect of real-life features

on order picking performance. Simulation experiments allow us to include the necessary stochastic elements

needed to generalize the results (i.e., unsystematic variation), while in the meantime controlling stochasticity

when varying the operational policies of the four planning problems (i.e., systematic variation).

To generate customer orders, including a random number of order lines, Monte Carlo simulation is

employed in Visual Studio using C++ programming language. Monte Carlo simulation is also used to convert

the order lists into pick lists, thereby accounting for the zoning, storage, batching, and routing policy. In this

way, the computational intensive batching and routing policy are computed using C++, thereby benefiting

from the high computational efficiency of C++ compared to the lower computational efficiency of discrete-

event simulation software. The created pick lists, representing batches of orders and sequences of locations

to be visited in each batch, form the input of the discrete-event simulation model. The discrete-event

simulation model, created using Arena, simulates the pick events over time. In this way waiting times due

to picker blocking and safety constraints could be taken into account as the discrete-event simulation model

is able to derive where each order picker is operating at each moment in time.

3.2. Case study

The problem context of this study is motivated by a real-life B2B spare parts warehouse located in

Belgium. A preliminary study focused on the combined effect of storage location assignment and picker

routing and was dedicated to the unconventional layout of the real-life spare parts warehouse (Van Gils et al.,

2018a). The current study goes beyond this previous study by analyzing and explaining the relationship

among the four main order picking planning problems in a general rectangular parallel aisle warehouse that

is commonly used in research (Gue et al., 2012; Schleyer and Gue, 2012; Thomas and Meller, 2015). Narrow

and parallel aisles are commonly used in practice as well, especially for distributing spare parts.

The layout under consideration comprises two warehouse blocks, each consisting of 16 pick aisles. There

are 70 storage rack sections in each pick aisle, each with eight levels. The storage capacity equals 17, 920

SKUs. A single SKU can be assigned to each storage location. The layout is shown in Figure 1. The depot

is marked with a D on the figure. Distance and time measures described in this and the next sections are

based on the real-life case and are similar to measures used in other academic studies.
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Figure 1: Warehouse layout.

3.3. Operational measures

The components of total order picking time (i.e., setup time, search and pick time, travel time, and

wait time) are used to measure order picking efficiency (Chen et al., 2010). The setup time is directly

proportional to the number of pick rounds and time for searching and picking is assumed to be proportional

to the number of items to be picked at each storage location. Based on the observations of the real-life case,

the setup time (i.e., collecting pallets and packaging material and printing a pick list) is fixed at 180 seconds

and search and pick time are set to 15 seconds plus 1.5 seconds per item. The number of items per order

line is approximated by a geometric distribution with a mean of five items. This is a reasonable number

assuming B2B warehouses deal with larger order sizes than B2C warehouses. However, conclusions will be

similar in a B2C context as the effect of the policy decisions of the planning problems on the time to setup

a pick round as well as to search and pick items are assumed to be only minor.

Travel is measured by dividing the distance traveled by the travel speed of the high level pick trucks.

Distance parameters are provided in Table 4. Travel in pick aisles is faster than in cross aisles because high

level pick trucks are induction guided in the narrow lanes. However, when returning (i.e., turning around)

in a pick aisle, an additional ’turn’ time is included due to truck backing in and out the aisle. Order pickers

can travel at a speed of 1.0 m
s in the wide cross aisles compared to 1.5 m

s in pick aisles. High level pick trucks

have a vertical lifting speed of only 0.2 m
s . As high level storage systems are considered, both horizontal and

vertical travel distances are included in the travel metric. The distance within aisles is calculated by the

Chebychev scenario, where the pick truck can concurrently lift vertically and move horizontally. As a result,
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travel time within aisles equals the maximum of horizontal and vertical travel (Clark and Meller, 2013).

parameter parameter value
depot location single decentralized depot
number of blocks 2 blocks
number of cross aisles 3 cross aisles
number of pick aisles 16 pick aisles per block
number of storage racks 70 storage rack sections per pick aisle
number of levels 8 levels per storage rack
storage rack section length 1.3 m
storage rack section depth 0.9 m
storage rack section height 1.0 m
pick aisle width 1.5 m
cross aisle width 6.0 m

Table 4: Layout parameters of the order picking area.

Wait times are measured by accumulating within-aisle blocking, storage-rack blocking, and aisle-entrance

blocking for each narrow pick aisle. Within-aisle blocking and storage-rack blocking only occur when multiple

pickers are allowed in an aisle. Aisle-entrance blocking occurs when the maximum allowable number of order

pickers is either travel or picking in an aisle and another picker attempts to enter this pick aisle. The main

factors influencing the decision on the maximum allowable number of pickers in each pick aisle in practice are

the aisle width, attitudes of warehouse managers towards safety, and the routing policy. Practitioners may

allow more pickers per aisle in case of wider aisles as pickers can overtake. Therefore, blocking is assumed to

be negligible in cross aisles, as these aisles are wide enough to overtake. Limiting the number of allowable

pickers induces waiting times, thereby reducing order picking efficiency. On the other hand, reducing the

number of pickers in an aisle decreases the risk of accidents. The maximum allowable number of pickers in

each pick aisle depends on the routing policy and is discussed in Section 3.4.

The analysis and explanation of the relationship among order picking planning problems (i.e., Section

4) is based on the mean total travel time for picking all orders of a replication (i.e., travel) and the mean

total wait time occurred when picking all orders of a replication (i.e., picker blocking) as it is important

to understand the behavior of the order picking planning problems on each of the performance measures

to explain a potential relation. Section 5 adds travel, picker blocking, and setup and pick time to evaluate

the implications of this study in terms of total order picking time (i.e., the mean total order pick time per

replication).

3.4. Experimental design

The relationships among the four order picking planning problems are analyzed by simulating a compre-

hensive experimental design. Table 5 outlines the experimental design, comprising four decision factors and

two factors to generalize the conclusions of our study.
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factor factor levels

picker zoning policy (1) 1 zone
(2) 2 single-block zones
(3) 4 single-block zones
(4) 2 multi-block zones
(5) 4 multi-block zones

storage location assignment (1) random
policy (2) within-aisle

(3) across-aisle
(4) diagonal
(5) perimeter

order batching policy (1) FIFO
(2) seed
(3) saving

routing policy (1) traversal

(2) traversal+

(3) return
(4) midpoint
(5) optimal (approximated by LKH)

batch capacity (1) 12 orders
(2) 8 orders
(3) 4 orders

picker density (1) 4 pickers
(2) 8 pickers
(3) 12 pickers

Table 5: Experimental factor setting of the empirical case.

Picker zoning policies decide on how the order picking area is split into zones. Besides a single zone,

the order picking area may be split into two or four pick zones, each with two different configurations. The

location of each pick zone is outlined in Table 6. The effect of varying pick zone configurations is analyzed

for the first time in combination with other planning problems. SKUs are randomly assigned to the pick

zones: each zone consists of the same number of fast and slow moving SKUs. Thus, the demand distribution

of SKUs is equally distributed across pick zones and the number of order lines that should be picked in each

zone is assumed to be similar. As all pick zones consist of an equal number of order lines and the number of

pickers in each zone is equal, the workload across zones is balanced. As the workload is balanced, situations

in which no jobs are assigned to a particular zone are very rare and thus not taken into account. Orders

are picked in parallel in case of multiple pick zones, a common practice in spare part warehouses to reduce

order throughput time (Van Gils et al., 2017). As order consolidation is typically performed in the dock

lanes, the additional time for consolidating a single order from different zones is assumed to be negligible.

picker zoning policy zone 1 zone 2 zone 3 zone 4
1 zone 1-32 - - -
2 single-block zones 1-32

(odd)
1-32
(even)

- -

4 single-block zones 1-16
(odd)

1-16
(even)

17-32
(odd)

17-32
(even)

2 multi-block zones 1-16 17-32 - -
4 multi-block zones 1-8 9-16 17-24 25-32

Table 6: Location of picker zoning policies.
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Storage location assignment policies decide on how SKUs are assigned to storage locations within a

zone. Besides randomly assigning SKUs to storage locations (see Figure 2(a)), four turnover-based storage

location assignment policies are simulated. The turnover-based storage policies consist of three classes with

the following demand distributions: 4 (class A), 1.4 (class B), and 0.25 (class C) expressed as the mean

number of picks per storage location. The location of the storage classes for each turnover-based storage

policy is illustrated in Figures 2(b)–2(e). When multiple storage classes are assigned to a pick aisle, the

fast moving items are stored at the most easily accessible storage locations: the storage locations with the

shortest travel time starting at aisle entrance. When multiple zones are applied, the size of the storage

classes (in number of locations) is equal in each pick zone and the location of the storage classes is similar

as in Figure 2.

(a) Random (b) Within-aisle (c) Across-aisle (d) Diagonal (e) Perimeter

Figure 2: Storage location assignment policies.

Order batching policies define which customer orders are combined in a single pick round. First-in-first-

out (FIFO) batching results in a random composition of batches as the location of SKUs is not considered

while creating batches. A seed and a savings batching policy are additionally considered to reduce travel.

The seed batching policy creates batches by selecting the order that requires visiting the smallest number of

aisles, and adding orders to the pick list that minimize the number of additional aisles to be visited in the

pick round until batch capacity is reached. The number of additional aisles to be visited is recalculated when

an order is assigned to a batch (i.e., cumulative seed selection rule). Combining this seed order selection rule

and this accompanying order selection rule provided efficient pick rounds for various storage and routing

policies in previous research. This seed batching policy is interesting for practical applications as it is simple

and produces good results (De Koster et al., 1999; Ho and Tseng, 2006; Ho et al., 2008). The basic Clarke

and Wright savings batching policy (i.e., combining customer orders in a batch to maximize travel time

savings) can further reduce travel. Therefore, the C&W(i) savings policy is included in the simulation

experiments. We are aware of more sophisticated heuristic batching algorithms that minimize travel (e.g.,
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C&W(ii) savings policy (De Koster et al., 1999) or local search algorithms (Öncan, 2015)) or even algorithms

that include the negative picker blocking effects (e.g., (Hong et al., 2012)), but these policies greatly increase

computing times and are thus inapplicable in this comprehensive simulation study. Additionally, due to this

complexity and simplifying assumptions, these heuristic policies are rarely used in practice. The batches

created using FIFO, seed or savings policy are assigned to the first available order picker. Consequently,

the order pick time is rather balanced across order pickers (i.e., the order pick time per picker is similar for

each picker). Therefore, the order pick time per picker is not considered as separate performance measure.

After a pick list has been created by the batching algorithm, the routing policy defines the sequence of the

locations on the pick list. Existing routing policies are revised to include the safety constraints considered in

the experiments. The width of pick aisles and a risk-averse strategy towards traffic accidents is considered

when deciding on the maximum allowable number of pickers in a pick aisle. Figure 3 depicts an example of

each of the five routing policies. Traversal routes are included in the experiments with the constraint that

a single order picker is allowed in each pick aisle (Figure 3(a)). An alternative traffic rule is considered in

combination with traversal routes (i.e., traversal+): all pick aisles are strictly unidirectional as indicated

by the traffic signs in Figure 3(b), allowing two order pickers in a pick aisle. In this way, travel times are

expected to increase, but picker blocking reduces as more pickers can work concurrently within an aisle

compared to traversal routing. Return and midpoint routes allow two-directional travel. To prevent routes

of multiple pickers from crossing within aisles, the maximum allowable number of pickers is limited to a

single picker in return routing and two pickers (i.e., one at each side of the pick aisle) in midpoint routing.

Finally, an optimal routing policy is considered. In this simulation, optimal routes are approximated by

solving a traveling salesman problem using the Lin Kernighan Helsgaun (LKH) heuristic (Helsgaun, 2000).

On average, resulting routes deviate only 0.1 % from optimality in an order picking context (Theys et al.,

2010). Aisle entrance is possible from both sides. However, only a single picker is allowed to work in each

pick aisle: other pickers should wait until the first picker has left the aisle. Although a largest gap routing

policy outperforms midpoint routes with respect to travel distance, largest gap routes only prevent routes

from crossing within aisles if the number of pickers per aisle is limited to one. However, in that case largest

gap routes will be outperformed by the optimal routing policy, which is why we do not consider largest gap

routing in Table 5.

Note that most policies of the experimental design are revised in comparison to general wide aisle order

picking systems ignoring real-life features. Only picker zoning policies could be included in a similar way as

in wide aisle picking systems. The storage location assignment problem enlarges due to the high level storage
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(a) Traversal (b) Traversal+ (c) Return

(d) Midpoint (e) Optimal

Figure 3: Picker routing policies.

locations: storage classes need to be assigned to multiple levels taking the slow lifting speed into account

(i.e., the fast moving items are stored at locations with the shortest travel time starting at aisle entrance).

Moreover, the Chebychev distance metric should be included while calculating the savings between orders

in case of a savings batching policy. Finally, the general principles of the routing policies (Roodbergen and

De Koster, 2001) are revised to include traffic rules and reduce the risk of traffic accidents (e.g., strictly

unidirectional pick aisles in combination with traversal routes). Consequently, the real-life features are taken

into account as follows. Safety constraints are incorporated in the simulation study by imposing traffic rules

(i.e., traffic directions and a maximum number of allowable pickers working concurrently in a pick aisle).

Picker blocking is included by accounting for the waiting times that result from the maximum number of

allowable pickers and the inability to overtake within pick aisles. Finally, the Chebychev distance metric

accounts for the slow lifting speed to include the effect of high level storage locations.

In order to generalize the conclusions of the empirical study, the planning problem combinations are
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simulated in multiple warehouse settings. Two main variations have been proposed in literature to generalize

experiments: a varying number of picks during a pick round (Manzini et al., 2007; Theys et al., 2010; Yu

and De Koster, 2009) and a varying picker density (Petersen, 2002; Theys et al., 2010), both consisting of

three levels. To capture a varying number of picks during a pick round, a varying batch capacity is included

in the experimental design. Picker density can be expressed as the number of pickers relative to the number

of storage locations. Picker density is varied by changing the number of pickers given the number of storage

locations.

3.5. Data generation

Based on historical data of the real-life spare parts case warehouse, 500 orders are randomly generated

for each replication, which corresponds to the number of orders that should be picked in an eight-hour

shift. The number of order lines per order is geometrically distributed with a mean of three order lines. As

variations in this parameter value would result in a varying number of picks during a pick round (Van Gils

et al., 2018b), these variations are captured by varying the batch capacity in the experimental design.

The same randomly generated order list is used to test policy combinations of the picker zoning, storage

location assignment, order batching, and routing planning problems. In this way, the variation in the results

among the four planning problem factors is only systematic variation as a result of a revised operational

policy. This systematic variation allows us to control the policy decisions covered in the research hypotheses.

A new list of 500 orders is generated for each factor in the experimental design. In this way, unsystematic

variation resulting from revising the batch capacity and/or picker density is induced in addition to the

systematic variation. To reduce the stochastic effect from order generation, each factor level combination is

replicated 30 times. In total, 30 × 3 × 3 lists of orders are generated (each list consisting of 500 orders) and

tested with respect to the policies of the four planning problems. As the unsystematic variation is limited to

the order generation and the assignment of SKUs to pick zones and storage locations and each factor level

combination is replicated 30 times, 15, 000 orders have been simulated for each factor level combination.

This seems to be large enough to draw reliable conclusions.

Note that orders are generated based on the real-life case instead of using existing historical order data.

The generation of new order lists prevents results that are only applicable to a particular order list. It enables

us to broaden experiments to contexts other than the real-life case, making conclusions easily generalizable

to a wide range of warehouses.
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3.6. Statistical analysis

The results of the simulation experiments provide the required data for performing the statistical tests

that evaluate the research hypotheses formulated in Section 2.2. To test whether or not a relation is

statistically significant, an analysis of variance (ANOVA) is performed, both on travel (i.e., travel time for

picking 500 orders in a single replication) and picker blocking (i.e., total wait time per replication). Although

multiple ANOVAs are performed that may justify performing a multivariate analysis of variance (MANOVA),

we want to explain the effect of planning problem decisions on each of the performance measures. In this

case, multiple ANOVAs pertained to individual performance measures meet the research objectives of this

study (Huberty and Morris, 1989). ANOVA tests are subject to independency, variance, and normality

assumptions (Altarazi and Ammouri, 2018) as discussed below.

The empirical study consists of a 5 × 5 × 3 × 5 × 3 × 3 full factorial design with a mixture of between-

groups and repeated-measures factors. The between-groups factors consist of the two independent factors

(i.e., batch capacity and picker density), while the repeated-measures factors correspond to the picker zoning,

storage, batching, and routing policy factors. This mixed factorial design requires a mixed model ANOVA

(Petersen, 1997).

The assumption of homogeneity of variance with respect to the between-groups factors, and sphericity

(i.e., variances of the differences between results from a single order list are equal) of repeated-measures

factors are likely to be violated as we expect certain factor level combinations to be more strongly varying.

For example, when a picker covers a smaller area (e.g., increasing the number of zones), the effect of routing

policies on travel is likely to be much smaller compared to the effect of these policies in a single pick zone.

Appendix A.1 shows that all sphericity hypotheses are rejected at a 5 % significance level by Mauchly’s

test. Furthermore, 31 % of the 375 homogeneity of variance hypotheses with respect to travel are rejected

by Levene’s test at a 5 % significance level. All Levene’s test hypotheses on wait times are rejected. ANOVA

F statistics are quite robust to violations in homogeneity of variance when group sizes are equal (as in

this study). However, violating the sphericity assumption increases the probability that a genuine effect

is shown, while in reality, there is no effect. The degrees of freedom are adjusted by the conservative

Greenhouse-Geisser (G-G) correction to compensate for this increased Type I error rate (Geisser et al.,

1958).

The last ANOVA assumption is normality. The F statistic controls the Type I error rate well under

conditions of non-normality (Glass et al., 1972), especially when the degrees of freedom are sufficiently large

(at least 20) and group sizes are equal (Field, 2013). To ensure these conditions, the simulation is replicated
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30 times to ensure sufficient degrees of freedom. Moreover, the experimental design is balanced, meaning

that group sizes are equal. These elements prevent negative effects of non-normality, making robust checks,

such as bootstrapping, redundant in this context.

With respect to the relations among planning problems that can be confirmed by ANOVA, interaction

plots and post hoc tests provide insights into the direction of the relation (i.e., increasing or decreasing

marginal effect) and allows us to explain why relationships among the four order picking planning problems

exist. A post hoc test is performed to compare the performance of policies. The Bonferroni correction of

the significance level is used to ensure the overall Type I error rate across all comparisons remains at 0.05.

When evaluating multiple hypotheses, the Bonferroni correction approach is robust in terms of power and

control of the Type I error rate (Field, 2013). Post hoc tests are performed for each combination of two

planning problems; all policies of the first planning problem are evaluated for each policy of the second

planning problem. In this way, the test results create subsets of policies for which the performance is not

statistically significantly different. If two policies (e.g., return and midpoint routing) are listed in the same

subset, differences between the respective policies fail to be statistically significant. In case of a statistically

significant interaction between two planning problems, the post hoc tests will likely create varying subsets

for each policy of the second planning problem.

4. Empirical findings

This section presents the results of the study. The ANOVA results to test the expected relation formulated

in the research hypotheses are discussed in Section 4.1. Section 4.2 analyses the direction of the relation

and explains the interactions using interaction plots and post hoc tests. Section 4.3 summarizes whether or

not the research hypotheses are supported.

4.1. Factor analysis

All relations formulated in the research hypotheses of Section 2.2 are supported by the mixed-model

ANOVA. Note that ANOVA does not provide insights into the direction of the relation, but only support

that a significant relation exists. Appendix B.1 and Appendix B.2 provide the results with respect to travel

and picker blocking. The first columns are devoted to the sum of squares (SS), the G-G adjusted degrees of

freedom (df) and the mean squares (MS) of the main and interaction effects. The F statistic and p-value

for testing the statistical significance of the six experimental factors and the interaction effects are shown

in the last two columns. Due to limited relevance and intricate interpretation of three-way and four-way

interactions among planning problems, these effects are ignored in the analysis.
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The mixed-model ANOVA on travel reveals that all main effects of the four planning problems, as well as

all interaction effects among zoning, storage, batching, and routing are statistically significant. This means

that the joint effect of the planning problems significantly impacts the mean travel time of order pickers in

narrow aisle order picking systems. In other words, the decision on which zoning, storage, batching, and

routing policy to use in order picking operations influences the travel time of order pickers. Additionally, the

joint effect of these policy decisions substantially impacts travel. Note that the number of pickers (picker

density) is irrelevant since the total distance traveled is independent of the number of available order pickers.

We find similar results when evaluating the hypotheses with respect to picker blocking. All main effects as

well as all interaction effects are statistically significantly influencing wait time as a result of picker blocking.

This means that there is a significant difference in mean wait time of order pickers between the five zoning

and five storage policies, the three batching policies and the five routing policies. Moreover, picker blocking

is substantially influenced by the combined effect of these policy decisions.

To summarize, all relations formulated in the research hypotheses are supported by the ANOVA tests.

This implies that warehouse managers should consider decisions on zoning, storage, batching, and routing

simultaneously to minimize order picking time. Travel measures are insufficient to evaluate the efficiency of

the planning problems. Only considering travel measures will not necessarily reduce the order completion

time or order throughput, which is of main interest for warehouse managers (Giannikas et al., 2017). Wait

times should be taken into account, at least in narrow aisle order picking systems.

4.2. Discussion

Although the experimental design gives rise to a large number of instances, and null hypotheses are

much easier to reject in larger samples (i.e., the probability that at least one of the factor levels interacts

with another factor level increases), the ANOVA shows strong statistically significant effects. Therefore, the

directions of each planning problem combination are further analyzed and relations are explained in this

section, providing insights into the behavior of order picking policies for both travel and picker blocking. For

each planning problem combination, this section provides interaction plots with respect to travel (i.e., the

mean total travel time per replication) and picker blocking (i.e., the mean total wait time per replication),

illustrating the planning problem with the shortest time horizon of the resulting decision on the horizontal

axis. Furthermore, post hoc tests are provided in this section for each combination of two planning problems,

where all policies of the planning problem with the shortest time horizon are evaluated for each policy of

the planning problem with the longest time horizon. Post hoc tests with planning problems in the other

direction are provided in Appendix C.
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4.2.1. Zoning-storage relationship

The relation formulated in Hypotheses 1a and 1b are supported by the ANOVA results. Figures 4, 5,

and C.21 illustrate that the direction of the picker zoning and storage location assignment relation (i.e.,

decreasing marginal effects) is supported as well.

(a) Travel (b) Picker blocking

Figure 4: Interaction plot of zoning-storage combinations.

(a) Travel (b) Picker blocking

Figure 5: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies by zoning policies (in s).

Both picker zoning and storage location assignment aim to reduce the area covered by pickers in a

pick round, resulting in a significant travel relationship. Due to the large travel benefits of across-aisle

or perimeter storage classes (see Figure 5(a)), travel times are minimal irrespective of the applied picker

zoning policy. The effect of picker zoning policies on travel is stronger when combined with the other three

storage location assignment policies. This relationship is illustrated in Figure 4(a) by similar travel times

of the picker zoning policies in combination with across-aisle and perimeter storage classes, while travel

times are more varying in combination with other storage policies. This interaction can be explained by

the dominant effect of vertical travel: across-aisle and perimeter storage classes locate fast moving items
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to the easiest accessible locations with respect to the point of entrance of a pick aisle, making the effect of

zoning negligible. The locations with minimal Chebychev travel time with respect to the point of entrance

are dedicated to the fast moving SKUs in across-aisle or perimeter storage classes, whereas within-aisle and

diagonal storage classes concentrate fast moving SKUs within a few aisles and are consequently assigned to

higher locations as well. Moreover, the effect of zone location is negligible (i.e., both single-block and both

multi-block zones yield similar travel times).

The combined effect on picker blocking is depicted in Figures 4(b) and 5(b). The interaction plot reveals

no effect of zone location, and the post hoc test creates identical subsets. However, the interaction plot

shows a strong relationship between the concentration of fast moving items and picker blocking. A single

pick zone in combination with within-aisle or diagonal storage classes substantially increases wait times due

to picker blocking. In these combinations, class A SKUs are most strongly concentrated resulting in a high

pick density in a small area, thereby increasing the probability of picker blocking. Either changing the picker

zoning policy or storage location assignment policy (or both) significantly reduces wait times as fast moving

SKUs are distributed more equally across the order picking area. So, the marginal picker blocking effect of

from turnover-based storage location assignment policies decreases when the order picking area is divided

into pick zones, as illustrated by the smaller fluctuating lines of the interaction plot (Figure 4(b)) in case of

more pick zones.

4.2.2. Zoning-batching relationship

The relations formulated in Hypotheses 2a and 2b are supported by the ANOVA results. Although the

relation is found to be significant, the expected decreasing marginal travel and picker blocking effects from

efficient batching policies when the order picking area is divided into pick zones are not supported by Figures

6, 7, and C.22.

The interaction plot illustrating the travel interaction between zoning and batching (Figure 6(a)) reveals

diverging lines (i.e., increasing marginal effect) when moving from FIFO to a more efficient batching policy.

This can be explained by the trade-off between creating a small number of batches (i.e., a small number

of zones combined with FIFO or seed batching) or creating a larger number of batches that cover a small

area (i.e., multiple zones and savings batching). Multiple zones require more batches as orders are split into

different zones and the batch capacity is expressed in number of orders. Moreover, the savings algorithm

results in a larger number of batches compared to FIFO or seed batching as batches are unlikely to be

filled to capacity under a savings batching policy. Under the assumptions of these experiments, the savings

batching policy outperforms the seed and FIFO batching policy in combination with all picker zoning policies
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(a) Travel (b) Picker blocking

Figure 6: Interaction plot of zoning-batching combinations.

(a) Travel (b) Picker blocking

Figure 7: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies by zoning policies.

as shown by the post hoc tests of Figure 7(a).

Similar to the zoning-storage relationship, the joint effect of zoning and batching on picker blocking is not

caused by the location of order pick zones. Both single-block and both multiple-block zoning policies result

in equal mean wait times as can be seen in Figure 6(b). The significant relationship can be explained by the

combined effect of the seed batching policy and multiple zones. The seed batching policy outperforms the

FIFO and savings batching policies with respect to picker blocking (see Figure 7(b)). The seed policy is in

accordance with the traffic rules: orders are batched to minimize the total number of aisle visits, and traffic

rules cause picker blocking by allowing a maximum number of pickers to work concurrently within aisles.

Under an efficient zoning policy, the marginal wait time benefits of seed batching are smaller compared

to, for example, a single pick zone. This decreasing marginal effect is not shown with respect to the most

efficient batching policy (i.e., savings batching).
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4.2.3. Zoning-routing relationship

The relations formulated in Hypotheses 3a and 3b are supported by the ANOVA results. Furthermore,

the marginal travel and picker blocking effects from efficient routing policies decrease when the order picking

area is divided into pick zones, as illustrated in Figures 8, 9, and C.23.

(a) Travel (b) Picker blocking

Figure 8: Interaction plot of zoning-routing combinations.

(a) Travel (b) Picker blocking

Figure 9: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies by zoning policies.

The optimal routing policy results in the shortest travel time, irrespective of the picker zoning policy (see

Figure 9(a)). Only minor differences exist among the picker zoning policies in combination with optimal

routes in terms of travel time (i.e., small marginal effect). In combination with other routing policies,

travel time increases. The interaction plot (Figure 8(a)) reveals that the unidirectional traversal routes (i.e.,

traversal+) favor more zones, either single-block or multi-block zones. More and thus smaller zones limit the

probability of visiting a pick aisle without picks forced by the imposed traffic directions of traversal+ routes.

There is an even number of aisles in the experiment to ensure that a route ends at the side of the depot.

Moreover, midpoint routes are preferred in combination with single-block zones as routes are created along
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the periphery of each warehouse block. Figure 9(a) illustrates that the effect of zoning policies is substantial

in combination with the routing policies yielding the largest travel times (i.e., traversal+ and midpoint),

while the marginal travel effect decreases in combination with efficient routing policies.

While the optimal route length results in the shortest travel time, optimal routes are in the lowest subsets

with respect to picker blocking in combination with most picker zoning policies (see Figure 9(b)). Traversal+

and midpoint routes benefit from safety constraints since two pickers can work concurrently in a pick aisle.

Only a single picker can enter an aisle in traversal, return, or optimal routes, resulting in increased wait

times, particularly with inefficient picker zoning combinations as shown in Figure 8(b). The marginal picker

blocking effect of from efficient routing policies decreases when the order picking area is divided into pick

zones, as illustrated by the smaller fluctuating lines of the interaction plot (Figure 8(b)) in case of more pick

zones.

4.2.4. Storage-batching relationship

The ANOVA results turn out that the combined effect of storage location assignment and order batching

significantly influences travel as well as picker blocking. Based on Figures 10, 11, and C.24, the expected

direction of the relation (see Hypotheses 4a and 4b) is not supported.

(a) Travel (b) Picker blocking

Figure 10: Interaction plot of storage-batching combinations.

Although the savings batching policy outperforms seed and FIFO batching, in combination with all

storage location assignment policies with respect to travel (see Figure 11(a)), the interaction plot in Figure

10(a) provides insights into the interaction. The aisle-based seed batching algorithm and the random FIFO

batching policy neglect the vertical travel when creating batches. As more fast moving SKUs are stored

in high level locations in within-aisle or diagonal storage classes, the interaction plot shows a large travel
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(a) Travel (b) Picker blocking

Figure 11: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies by storage policies.

gap compared to, for example, across-aisle storage classes. Since vertical travel is taken into account with

the savings algorithm when creating batches, the four turnover-based storage location assignment policies

show only minor travel differences. So, the varying marginal effects of the within-aisle and diagonal storage

classes over the batching policies explains the relation. The hypothesized decreasing marginal travel benefits

from efficient batching policies when turnover-based storage location assignment policies assign fast moving

SKUs to a small picking area is not clearly illustrated in Figure 10(a).

ANOVA results show a significant storage-batching effect on picker blocking as well. The interaction plot

in Figure 10(b) does not provide the expected decreasing marginal picker blocking effect from efficient batch-

ing policies in combination with turnover-based storage classes as explanation for the significant relation.

Reducing the number of aisles to be visited in a pick round (i.e., seed batching policy) in combination with

storage policies that diffuse fast moving SKUs across pick aisles (i.e., random, across-aisle, and perimeter

storage policies) minimizes wait times due to picker blocking (see Figure 11(b)). Concentrating fast moving

SKUs in a small number of aisles or batching orders randomly (i.e., FIFO) or based on a travel metric signifi-

cantly increases wait times, particularly when FIFO batching and random storage are combined. This effect

is illustrated for the seed batching policy in Figure 10(b) when comparing picker blocking for within-aisle

and diagonal storage with e.g., random storage.

4.2.5. Storage-routing relationship

The relation formulated in Hypotheses 5a and 5b is supported by the ANOVA results. Figures 12, 13,

and C.25 illustrate that the marginal picker blocking effect from efficient routing policies increases when

turnover-based storage location assignment policies assign fast moving SKUs to a small picking area, while

the expected direction of the travel effect is not supported.

The interaction plot of Figure 12(a) reveals strong variations in mean travel time among combinations

of storage and routing policies as shown by the crossing lines on the graph (i.e., results do not provide an
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(a) Travel (b) Picker blocking

Figure 12: Interaction plot of storage-routing combinations.

(a) Travel (b) Picker blocking

Figure 13: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies by storage policies.

increasing or decreasing marginal effect). The optimal route performs best in combination with all storage

policies (see Figure 13(a)). However, optimal routes are rarely used in practice (Van Gils et al., 2018b).

The composition of the other subsets differs considerably across the storage policies. Excluding optimal

routes, return routes are favored in combination with across-aisle storage classes as fast moving SKUs are

stored at the beginning of an aisle, thereby minimizing travel within aisles. Midpoint routes result in the

shortest travel time in combination with perimeter storage classes. Including information about the location

of fast moving SKUs while composing routes favors certain routing heuristics. Because pick trucks have to

travel vertically to reach high level storage locations, dominant in within-aisle storage classes, the generally

well performing combination of within-aisle storage and traversal routing policies yields long travel times in

high level order picking systems. Perimeter and across-aisle storage classes outperform within-aisle storage

location assignment in combination with both traversal and the traversal+ routing policies.

In terms of wait time, the negative effects of safety constraints are minimal in traversal and midpoint

routes, as these routing policies allow two order pickers to work concurrently within pick aisles. The
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interaction effect can be explained by the converging and diverging lines in the graph (Figure 12(b)) and

the creation of varying subsets by the post hoc test (Figure 13(b)). The storage location assignment policy

is of less importance when allowing multiple pickers to work concurrently within a pick aisle, whereas strong

variations among the storage policies are found in case of traversal, return, or optimal routing (i.e., the

routing policies that turn out to be efficient in terms of travel time).

4.2.6. Batching-routing relationship

The relation formulated in Hypotheses 6a and 6b are supported by the ANOVA results. The decreased

marginal travel effect is fully supported by Figures 14, 15, and C.26, in contrast to the expected decreased

marginal picker blocking effect from efficient routing policies when the covered area of a pick round is limited

by efficient batching policies.

(a) Travel (b) Picker blocking

Figure 14: Interaction plot of batching-routing combinations.

(a) Travel (b) Picker blocking

Figure 15: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies by batching policies.

The interaction between batching and routing originates from the increased marginal travel effects of the

traversal+ and midpoint routing policies over the batching policies (see Figure 15(a)). The seed and savings
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travel picker blocking
relation direction relation direction

zoning-storage • • • •
zoning-batching • ◦ • ◦
zoning-routing • • • •
storage-batching • ◦ • ◦
storage-routing • ◦ • •
batching-routing • • • ◦

Table 7: Results summary (• hypothesized relation/direction is
supported; ◦ hypothesized relation/direction is not supported).

batching policy can partly compensate the inefficiency with respect to travel of the traversal+ and midpoint

routing policies caused by the traffic rules. However, applying these routing policies in combination with

FIFO batching, substantially increases travel in comparison to the more efficient routing policies (see Figure

14(a)). As the savings algorithm integrates the routing policy while creating batches (i.e., savings between

orders are calculated according to the routing policy), this batching algorithm results in the shortest travel

time.

The mean time that order pickers are blocked while picking SKUs is significantly influenced by the

combined effect of batching and routing as well. Post hoc tests reveal strong varying subset creations as

illustrated in Figure 15(b). Especially wait times of optimal routes vary significantly across the batching

policies. Figure 14(b) illustrates the diverging lines when combining batching policies with the optimal

routing policy. However, as the most efficient batching policy and least efficient batching policy (in terms

of travel time) result in similar picker blocking effects, the decreased marginal picker blocking effect is not

shown in Figure 15(b).

4.3. Results summary

Table 7 summarizes the results of the research hypotheses. The ANOVA results support all relations

formulated in the research hypotheses with respect to both travel time and picker blocking. However, the

expected direction of the relation could not be supported for all research hypotheses.

5. Implications

This section outlines the implications of the existing relationships to academics (Section 5.1) and practice

(Section 5.2). It also shows the negative effects on performance if existing real-life features are ignored and

provides robust and efficient policy combinations that can be used in practice.
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5.1. Academic implications

The graph in Figure 16 shows the effects of safety constraints for the example of routing policies, as

traffic rules are integrated in the routing policies. It describes the mean wait time for a pick aisle visit

under all picker zoning, storage, and batching policies. Figure 16 reveals that the safety constraints result in

considerably increased wait times, especially in a high pick density area (e.g., pick aisles 1–4) in combination

with traversal, return, or optimal routing. Within-aisle, and to a minor extent diagonal, storage classes cause

high pick densities in the first pick aisles (see Figure 2). Depending on the picker zoning policy, these pick

densities vary across pick aisles 1–4 (e.g., pick aisles 1–2 mostly contain fast moving SKUs in combination

with all zoning policies, whereas pick aisles 3–4 do so only in a single zone or two pick zones). With respect to

the routing policies, traversal, return, and optimal routes limit the number of pickers working concurrently

in a pick aisle to a single order picker, resulting in high wait times. Midpoint routes allow two order pickers

to work concurrently in a pick aisle, with the constraint of one picker at each side of the pick aisle, resulting

in significantly reduced wait times. Finally, traversal+ routes further reduce wait times as the capacity of

pick aisles is two without constraints. Within-aisle blocking and storage-rack blocking seem to be negligible

in this case. However, the single direction traffic significantly increases travel (see for example Figure 15(a)).

Thus, safety constraints not only induce picker blocking but also increase travel with certain routing policies

due to one-way traffic. Ignoring safety constraints in planning models results in infeasible solutions if traffic

rules exist or the predicted order picking time by the model underestimates real performance, resulting in

the risk of choosing an inefficient policy combination. By considering the most efficient combination of order

picking policies while accounting for safety constraints, the negative effects of the safety rules are minimized,

thereby optimizing order picking operations.

Figure 16: Mean wait time (in s) for a pick aisle visit (limited to pick aisles 1–16) per routing policy in case of twelve pickers
and batch capacity of twelve orders.
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Safety constraints induce aisle-entrance blocking, but reduce the other two blocking components (i.e.,

within-aisle blocking and storage-rack blocking). In traversal, return, midpoint, or optimal routes, the

within-aisle and storage-rack blocking are reduced to zero as order pickers cannot approach each other

within pick aisles, reducing the probability of accidents compared to traversal+ routes. Moreover, dividing

the order picking area into zones can additionally reduce aisle-entrance blocking as fewer pickers work in

the same area (see for example Figure 8(b)). Limiting the working area of pickers by including pick zones

reduces the probability of crossing vehicles and the consequent risk of traffic accidents in the warehouse.

However, picker zoning may increase setup time (i.e., more batches are created and orders should be sorted),

especially when batch capacity is limited to a small number of orders (see Figure 17). Thus, picker blocking

induces inefficient wait times, which can be minimized at the expense of additional setup time. Travel time

or travel distance metrics alone are inadequate to evaluate the efficiency of planning problems, especially in

narrow aisle order picking systems. Wait times due to picker blocking should be included to optimize order

picking operations.

Figure 17: Mean number of batches per zone picking policy and batch capacity level.

The effect of high level storage locations is illustrated by the relatively slow lifting speed of pick trucks.

The additional vertical travel increases travel time within pick aisles for the large majority of storage

locations as can be seen by the large number of storage locations above the bold line in Figure 18, especially

when SKUs at higher levels are retrieved in an aisle. The effect of high level storage locations on both

travel and picker blocking is mostly pronounced when within-aisle storage location is applied as many fast

moving SKUs are assigned to high level locations. As a result of more within-aisle travel, aisles are occupied

longer, increasing aisle-entrance blocking. Neglecting the effect of vertical travel would result in significantly

underestimated travel and wait times. Consequently, the effect of vertical travel should be taken into account
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while evaluating order picking policies.

Figure 18: Shortest travel time (in s) to reach each location within a pick aisle (vertical travel time is dominant for locations
above the bold line).

5.2. Managerial implications

The relationships among the order picking planning problems as well as the effect of real-life features

in narrow aisle order picking systems have been thoroughly discussed. The question remains which policy

combination optimizes the order picking system. Figure 19 provides the best performing policy combination

for each batch capacity and each picker density factor level. Additionally, the graph shows the distribution

of the total order picking time across the different time components. Note that the proportion of each time

component in these experiments is equivalent to the typical distribution of order pickers’ time (Tompkins

et al., 2010), making the conclusions of this study easily generalizable to other narrow aisle order picking

systems.

Figure 19: Total order picking time distribution for the best performing policy combination per batch capacity and picker
density factor level.

Figure 19 shows a varying distribution of time components across batch capacities and picker densities.
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Increasing batch capacity appears to reduce total order picking time. A closer look at the order picking

policies reveals that the efficiency of the cumulative seed batching algorithm and the division of order picking

area into zones tends to increase as batch capacity grows. Increasing batch capacity results in fewer pick

rounds which reduces travel from and to the depot, making pick zones more favorable. Customer orders

are split in picker zoning which leads to more pick rounds to retrieve items. Consequently, travel from and

to the depot with a small batch capacity is more expensive compared to the distance reduction of travel in

a small pick zone. Furthermore, increasing batch capacity causes a cumulative variant of batching policies

to be more efficient as information about the location of all orders in a batch is taken into account while

adding an additional order to a batch (e.g., the seed batching policy in these experiments). This effect is

larger with more picks in a pick round. Other external factors impacting the number of picks per pick round

(e.g., variations in order size) are expected to provide similar results.

Figure 19 reveals a slightly increased total order picking time with a larger picker density. This effect

is mainly due to increased wait times if there are more pickers in a given layout. Note that wait times in

the best policy combinations are relatively short compared to the total order pick time. However, choosing

a less efficient order picking policy combination increases wait times significantly (see for example Figure

8(b)). Other external factors impacting the density of order pickers (e.g., varying layout) are expected to

provide similar results.

Figure 19 illustrates that the optimal routing policy is robust to batch capacity and picker density. The

travel benefits of optimal routes far outweigh the rather long wait times compared to other routing policies.

However, complex algorithms to solve the routing problem are not widely used in practice as the optimal

routing policy requires relatively long CPU times, and optimal routes are subject to the effects of maverick

picking (Glock et al., 2017). By excluding the optimal routing policy from the analysis, the combination of

a single pick zone, perimeter storage, seed batching, and traversal routing is the most efficient with respect

to total order pick time. Moreover, this combination results in an increased total pick time of only 5.6 %

and performs best for all levels of batch capacity and picker density.

Figure 20 shows that results of studies that ignore existing real-life features fail to be useful when order

picking systems are subject to safety constraints, picker blocking, and high level storage locations. The

graph shows the percentage increase in total order pick time when comparing the best policy combination of

this study and applying the best policy combination (i.e., four zones, within-aisle storage, savings batching,

and optimal routing) proposed by Van Gils et al. (2018b); warehouse characteristics are similar, but real-life

features are ignored. Additionally, the gap is shown if complex policies are excluded (i.e., optimal routing
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and savings batching) from the analysis as these policies are rarely used in practice. In this case, the best

combination when including real-life features is a single pick zone, perimeter storage, seed batching, and

traversal routing; the best combination of Van Gils et al. (2018b) corresponds to four zones, within-aisle

storage, seed batching, and traversal routing. The results show that ignoring real-life features when designing

order picking systems results in substantial increases of up to 30 % in order pick times, especially when picker

density is large.

Figure 20: Percentage increase in total order pick time when ignoring existing real-life features (baseline is best policy combi-
nation).

In summary, the simulation results provide a robust policy combination (i.e., single pick zone, perimeter

storage, seed batching, and optimal/traversal routing) for organizing order picking operations efficiently

(i.e., wait times are limited), even if the system is subject to safety constraints, picker blocking, or high level

storage locations. When one or more of these real-life features apply, which is the case in most order picking

systems, total order pick time increases substantially as inefficient policy combinations are chosen.

6. Conclusions

Decisions on locating pick zones, assigning SKUs to storage locations, creating batches as well as routing

order pickers should be considered carefully when planning order picking operations to face new market

developments. Simulation results show strong relationships among the four operational planning problems.

Recent academic literature has failed to examine the effect of real-life features such as safety constraints,

picker blocking, and vertical travel in high level order picking systems on order picking planning problems.

This empirical study shows the relevance, benefits, and necessity of considering and incorporating these

real-life features when optimizing order picking operations. This study has considered a varying number of

picks in a pick round as well as varying picker densities. In this way, variations in batch capacity, order

size, number of pickers, and size of the order picking area are captured making conclusions about the effects

of real-life features easily generalizable to other order picking systems that are subject to these real-life

features.
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Most unexplored real-life features negatively impact order picking efficiency or result in infeasible solu-

tions if these practical factors are not incorporated. Empirical results show that travel distance and travel

time measures are insufficient to evaluate the efficiency of order picking policies. Warehouse managers may

choose an inefficient order picking policy combination when only horizontal travel is considered, as this

performance metric ignores the impact of wait times and vertical travel. Moreover, traffic rules as a result

of safety constraints limit movements of pickers and lead to additional waiting.

Investigating the effects of other real-life features, such as human factors and precedence constraints, may

further reduce the gap between academic research and practice. Future research could focus on optimizing

order picking operations while considering human factors, such as learning and forgetting. Human factors

may be incorporated by worker dependent pick times and travel speeds. Moreover, ignoring precedence

constraints while proposing picker routes results in infeasible solutions, especially in case of varying SKUs

in terms of shape and weight, because small products can be damaged or additional sorting activities are

required if the required routing sequence is violated. The effects of these real-life features will be valuable

knowledge for practitioners to further reduce picker blocking and to design efficient order picking systems.

In addition to analyzing and explaining the effects of the real-life features, new solution approaches

(e.g., metaheuristic algorithms) that use the knowledge and insights about the effects of real-life features

are needed. Multiple order picking planning problems should be solved and optimized simultaneously while

integrating the negative effects of these real-life features. This is a necessary condition for the use of complex

academic algorithms in practice.

Finally, there is a growing trend towards robotized order picking systems (e.g., robotic mobile fulfillment

systems), especially for particular segments such as B2C e-commerce orders. The question remains to what

extent the relations among order picking planning problems have an effect on the order picking performance

of robotized picking systems, and which real-life features should be included when planning operations.

Theoretical constructs and findings of this study can support future research analyzing and explaining

planning problems of robotized picking systems.
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Çelik M, Süral H. Order picking in a parallel-aisle warehouse with turn penalties. International Journal of Production Research

2016;54(14):4340–55. doi:10.1080/00207543.2016.1154624.
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Appendix A. Mauchly’s test results on sphericity

factor Mauchly’s W χ2 df p-value

travel

zoning 0.871 36.3 9 0.000
storage 0.171 465.1 9 0.000
batching 0.151 498.8 2 0.000
routing 0.003 1,516.9 9 0.000
zoning × storage 0.223 389.4 135 0.000
zoning × batching 0.086 642.3 35 0.000
zoning × routing 0.008 1,241.1 135 0.000
storage × batching 0.246 368.1 35 0.000
storage × routing 0.004 1,459.9 135 0.000
batching × routing 0.041 839.7 20 0.000

picker blocking

zoning 0.263 352.0 9 0.000
storage 0.016 1, 081.5 9 0.000
batching 0.820 52.4 2 0.000
routing 0.142 513.8 9 0.000
zoning × storage 0.001 1, 739.0 135 0.000
zoning × batching 0.114 569.6 35 0.000
zoning × routing 0.002 1, 606.7 135 0.000
storage × batching 0.011 1, 183.9 35 0.000
storage × routing < 0.001 3, 028.3 135 0.000
batching × routing 0.066 710.7 20 0.000

Table Appendix A.1: Mauchly’s test results on sphericity.
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Appendix B. ANOVA Results

Sum of squares df Mean square F p-value

Main effects

zoning 128,568,345,320 3.72 34,519,689,885 5,393.46 0.000
storage 4,218,438,335,278 1.99 2,116,071,668,468 83,602.59 0.000
batching 16,373,786,713,729 1.08 15,136,030,814,730 618,503.75 0.000
routing 3,628,588,696,977 1.26 2,875,938,701,982 135,016.63 0.000
capacity 23,423,604,753,572 2.00 11,711,802,376,786 6,791.67 0.000
picker density 212,645,930 2.00 106,322,965 0.06 0.940

Two-way interaction

zoning × storage 53,824,631,240 13.53 3,977,054,213 650.08 0.000
zoning × batching 107,002,822,203 4.47 23,954,000,941 7,172.10 0.000
zoning × routing 519,311,668,853 8.61 60,308,399,816 67,568.56 0.000
zoning × capacity 363,108,750,009 7.45 48,746,063,479 3,446.28 0.000
zoning × picker density 70,541,906 7.45 9,470,001 1.48 0.166
storage × batching 408,853,054,506 5.73 71,397,279,167 35,807.75 0.000
storage × routing 155,210,457,286 7.63 20,346,287,849 18,418.06 0.000
storage × capacity 71,043,841,612 3.99 17,818,662,797 703.99 0.000
storage × picker density 57,574,884 3.99 14,440,484 0.57 0.684
batching × routing 326,381,072,529 4.03 80,953,931,134 114,650.70 0.000
batching × capacity 546,985,914,833 2.16 252,818,599,842 10,330.93 0.000
batching × picker density 44,549,391 2.16 20,590,868 0.84 0.440
routing × capacity 176,652,606,703 2.52 70,005,463,673 3,286.54 0.000
routing × picker density 10,781,543 2.52 4,272,606 0.20 0.865

Three-way interaction

zoning × storage× capacity 4,788,013,921 27.07 176,891,049 28.91 0.000
zoning × storage × picker density 156,004,301 27,07 5,763,510 0.94 0.550
zoning × batching × capacity 14,718,752,935 8.93 1,647,494,030 493.28 0.000
zoning × batching × picker density 38,978,562 8.93 4,362,934 1.31 0.229
zoning × routing × capacity 51,208,732,317 17.22 2,973,471,316 3,331.43 0.000
zoning × routing × picker density 11,920,905 17.22 692,196 0.78 0.725
storage × batching × capacity 3,113,552,896 11.45 271,857,092 136.34 0.000
storage × batching × picker density 16,486,592 11.45 1,439,512 0.72 0.724
storage × routing × capacity 47,911,704,019 15.26 3,140,333,900 2,842.72 0.000
storage × routing × picker density 7,336,607 15.26 480,872 0.44 0.970
batching × routing × capacity 132,221,006,587 8.06 16,397,719,051 23,223.21 0.000
batching × routing × picker density 4,682,277 8.06 580,684 0.82 0.584

Residuals

between subjects 456,975,452,002 265.00 1,724,436,668
within zoning 6,317,028,530 986.99 6,400,292
within storage 13,371,429,621 528.28 25,311,078
within batching 7,015,403,693 286.67 24,472,011
within routing 7,121,908,028 334.35 21,300,626
within zoning × storage 21,941,161,733 3,586.46 6,117,785
within zoning × batching 3,953,619,941 1,183.76 3,339,888
within zoning × routing 2,036,710,314 2,281.90 892,551
within storage × batching 3,025,770,995 1,517.51 1,993,906
within storage × routing 2,233,175,613 2,021.54 1,104,692
within batching × routing 754,386,872 1,068.40 706,092

total 51,280,700,977,564 14,325.15

Table Appendix B.1: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on travel.
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Sum of squares df Mean square F p-value

Main effects

zoning 431,902,771,197 2.47 175,119,725,879 25,983.78 0.000
storage 558,237,310,703 1.48 376,762,412,369 17,850.89 0.000
batching 120,074,595,920 1.58 75,782,689,676 6,477.06 0.000
routing 334,304,704,517 1.92 174,197,324,680 22,587.57 0.000
capacity 19,830,419,280 2.00 9,915,208,640 123.82 0.000
picker density 945,235,580,200 2.00 472,617,790,100 5,901.79 0.000

Two-way interaction

zoning × storage 126,225,176,131 8.58 14,705,543,203 3,765.99 0.000
zoning × batching 19,290,903,395 5.00 3,855,800,798 879.56 0.000
zoning × routing 68,974,650,529 8.53 8,084,024,102 3,874.76 0.000
zoning × capacity 1,671,754,167 4.93 338,915,551 50.29 0.000
zoning × picker density 57,705,717,923 4.93 11,698,708,805 1,735.82 0.000
storage × batching 7,485,575,064 3.21 2,332,397,398 300.25 0.000
storage × routing 98,358,422,301 4.34 22,658,818,968 3,845.62 0.000
storage × capacity 1,353,604,488 2.96 456,783,596 21.64 0.000
storage × picker density 271,360,204,028 2.96 91,572,457,744 4,338.68 0.000
batching × routing 13,203,802,172 4.04 3,266,545,738 994.89 0.000
batching × capacity 9,417,180,226 3,17 2,971,732,868 253.99 0.000
batching × picker density 34,984,823,881 3.17 11,039,987,398 943.58 0.000
routing × capacity 2,475,856,448 3.84 645,051,601 83.64 0.000
routing × picker density 141,317,523,315 3.84 36,818,408,714 4,774.12 0.000

Three-way interaction

zoning × storage× capacity 152,318,538 17.17 8,872,742 2.27 0.002
zoning × storage × picker density 30,453,866,781 17.17 1,773,975,158 453.30 0.000
zoning × batching × capacity 1,606,019,272 10.01 160,502,861 36.61 0.000
zoning × batching × picker density 1,160,765,802 10.01 116,004,980 26.46 0.000
zoning × routing × capacity 1,213,079,946 17.06 71,088,200 34.07 0.000
zoning × routing × picker density 12,655,494,549 17.06 741,629,875 335.47 0.000
storage × batching × capacity 5,710,053,625 6.42 889,585,243 114.52 0.000
storage × batching × picker density 1,993,600,356 6.42 310,588,582 30.98 0.000
storage × routing × capacity 2,519,597,317 8.68 290,219,679 49.26 0.000
storage × routing × picker density 57,525,651,664 8.68 6,626,089,035 1,124.57 0.000
batching × routing × capacity 13,203,802,172 8.08 417,234,179 127.08 0.000
batching × routing × picker density 3,859,634,726 8.08 477,425,866 145.41 0.000

Residuals

between subjects 21,221,316,780 265.00 80,080,441
within zoning 4,404,833,430 653.58 6,739,578
within storage 8,287,142,085 392.64 21,106,082
within batching 4,912,683,983 419.88 11,700,161
within routing 3,922,101,596 508.57 7,712,088
within zoning × storage 8,882,047,070 2,274.63 3,904,831
within zoning × batching 5,812,080,515 1,325.82 4,383,770
within zoning × routing 4,717,264,232 2,261.04 2,086,327
within storage × batching 6,606,816,881 850.49 7,768,260
within storage × routing 6,777,839,016 1,150.32 5,892,113
within batching × routing 3,516,971,221 1,071.16 3,283,316

total 3,464,694,792,850 11,382.94

Table Appendix B.2: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on picker blocking.

Appendix C. Multiple Bonferroni t-tests
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(a) Travel (b) Picker blocking

Figure C.21: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by storage policies (in s).

(a) Travel (b) Picker blocking

Figure C.22: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by batching policies.

(a) Travel (b) Picker blocking

Figure C.23: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by routing policies.
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(a) Travel (b) Picker blocking

Figure C.24: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies by batching policies.

(a) Travel (b) Picker blocking

Figure C.25: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies by routing policies.

(a) Travel (b) Picker blocking

Figure C.26: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies by routing policies.
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