
 





ABSTRACT

C
omplex market conditions and new developments make a warehouse manager’s

job hard. E-commerce and globalisation intensify competition among ware-

houses. The high expectations of customers to provide unique products and quick

deliveries force warehouses to increase storage capacity, while at the same time reducing

pick times. Additionally, expensive industrial land and high labour costs put pressure on

the warehouse costs. To cope with these challenges, a wide range of order picking plan-

ning problems need to be optimised. Previous academic research focusses mainly on in-

dividual planning problems, without accounting for existing real-life features. Optimizing

order picking planning problems sequentially may yield a suboptimal overall warehouse

performance. Furthermore, excluding real-life features when developing algorithms and

decision support tools prevents managers from using the academic findings in practice.

Therefore, the objective of this thesis is to design efficient manual order picking systems

by combining order picking planning problems and accounting for real-life features (e.g.,

safety constraints, due time constraints, workload peaks).

The main contributions of this PhD research are as follows. First, a classification of

existing literature on tactical and operational order picking planning problems identifies

interesting and relevant research directions to narrow the gap between academic research

and practice. Second, an interaction analysis explains how and why the four main order

picking planning problems (i.e., picker zoning, storage assignment, order batching and

routing) are related. It also provides insights into the relevance and importance of incor-

porating real-life features (i.e., picker blocking, safety constraints and high-level storage)

while planning order picking operations. Third, the value of incorporating workload re-

lated features is demonstrated by presenting a proof of concept of time series forecasting

models in a warehouse context and by introducing a new mathematical programming

model that balances the workload of order pickers over a short term planning horizon.

Fourth, the benefits of optimising the integrated order batching, routing and job assign-

ment problem are demonstrated, while coping with resource and due time constraints as

well as high-level storage locations. Finally, the research provides future research opportu-

nities that will be highly relevant to practice and which are largely unexplored in literature,

thereby further reducing the research-practice gap.
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Results show that the total order pick time can be substantially reduced by combining

order picking planning problems. Combining existing order picking policies may yield

performance benefits of 60-75% compared to the current operation in practice. More-

over, this PhD research illustrates the relevance and importance of incorporating real-life

features in academic modelling approaches. Results show that safety constraints induce

wait times, and cause additional travelling, picker blocking turns out to be minimised at

the expense of additional setup time, and slow vertical travel results in additional travel

and wait times. Consequently, ignoring these real-life features causes substantial perfor-

mance inefficiencies. Robust policies for organizing operations efficiently are provided

for a wide range of practical order picking systems, thereby including the effect of real-life

features. Finally, time series forecasting techniques and the operational workload balanc-

ing model supports managers to define the daily resource capacity and how to allocate

these resources. On average, these decision support tools are able to strongly reduce the

daily over- or underestimated resources compared to the individual gut feeling and ex-

perience of supervisors. These insights and results can be used to integrate operational

order picking planning problems, which may result in additionally reduced pick times of

15-20% in the real-life warehouse. The provided managerial insights and decision sup-

port tools increase the control and efficiency of order picking operations and reduces the

research-practice gap.
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INTRODUCING AN ORDER PICKING STORY

W
arehouses are challenged with fulfilling the ever increasing customer require-

ments, differentiating from competitors, and facing the rising costs of resources.

This PhD research provides solution methods and insights to deal with these

challenges. This chapter introduces the motivation of this PhD research and discusses

the main research challenges (Section 1.1). The research objectives are summarised in

Section 1.2 and the thesis outline is presented in Section 1.3.

1.1 Motivation and Challenges

As customer markets globalise, supply chains increasingly depend on efficient and ef-

fective logistical systems in order to distribute products in a large geographical area. A

warehouse is defined as a facility where activities of receiving, storing, order picking, and

shipping are performed. Although warehouses may also perform activities like kitting, la-

belling, and/or customised packaging (De Koster et al., 2007), most warehouse operations

do not add value to the product. However, these non-value adding operations are critical

to each supply chain (Gong and De Koster, 2011). Therefore warehouse operations need

to work in an efficient and effective way in order to create value in the service they provide

to customers (e.g., fast delivery).

Among the main warehouse operations, order picking (i.e., retrieval of items in the

warehouse to fulfil customer orders) is the most costly warehouse activity (Marchet et al.,

2015). Order picking as a warehouse function arises because goods are received in large

volumes and customers order small volumes of different products. Each customer or-
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der is composed of one or more order lines, with every order line representing a single

stock-keeping unit (SKU) (De Koster et al., 2007). Although pick robots are very efficient

(Azadeh et al., 2018), manual picker-to-parts order picking systems (i.e., the order picker

travels along the aisles to retrieve products) are still widely used in practice; human order

pickers can handle unexpected changes in the process, are flexible with respect to ca-

pacity, and can retrieve a large variety of stock-keeping-units (SKUs) in terms of size and

weight, which is particularly applicable to spare parts (Marchet et al., 2015; Van Gils et al.,

2017c). Moreover, the high investment costs (Lamballais et al., 2017) and the risk of inter-

rupting order picking operations during the implementation of pick robots are currently

additional barriers for using pick robots (Marchet et al., 2015). These barriers are con-

firmed in the results of a recent valorisation project performed by our research group (i.e.,

Smart Logistics Limburg, see Appendix A) on revealing the needs and challenges of logis-

tical companies in Limburg (Belgium). Therefore, this PhD research focusses on manual

picker-to-parts order picking systems.

Order picking management, in particular organising efficient and flexible order pick-

ing systems, has been identified as an important and complex planning operation

(Marchet et al., 2015), especially as a result of new market developments. These market

developments include (1) e-commerce and globalisation, (2) increased customer expec-

tations, (3) expensive industrial land and (4) high labour costs. First, e-commerce and

globalisation have intensified competition among supply chains and forces warehouses

to handle a large number of small orders within tight time windows (Marchet et al., 2015).

In order to differentiate from competitors in terms of customer service, warehouses accept

late orders from customers while providing delivery in a quick and timely way. By accept-

ing late orders, the remaining time to pick an order is reduced. Furthermore, the order

behaviour of customers has changed from ordering few and large orders to many orders

consisting of only a limited number of order lines (Van Gils et al., 2018e). Second, cus-

tomers expect unique products, increasing the assortment of SKUs. Consequently, more

storage capacity is required. However, third, industrial land is expensive, especially in

Western Europe. The area dedicated for storing SKUs by warehouses is limited. Finally,

Western European countries are characterised by high labour costs, making productivity

improvements especially beneficial. Since warehouses deliver labour-intensive services

to customers, under-performance may result in high (labour) costs and unsatisfied cus-

tomer demand (Wruck et al., 2017).

In the context of dealing with the complex market conditions, the task of managing

order picking operations is perceived as difficult by warehouse managers (Gu et al., 2007).

Decisions to manage order picking can be classified into strategic, tactical and operational

decisions (see Figure 1.1). Strategic management decisions refer to policies and plans for

using the resources in order to fulfil the long term competitive strategy. Examples of strate-
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FIGURE 1.1: Examples of strategic, tactical and operational planning problems.

gic decisions are the layout of the storage area (i.e., shape, number of warehouse blocks

and depot location), as well as the selection of storage systems, in particular the level of

automation and the material handling equipment to retrieve items. Typical strategic de-

cisions are discussed in Rouwenhorst et al. (2000), Davarzani and Norrman (2015) and

Marchet et al. (2015). At the tactical level, decisions are taken that impact the medium

term. The determination of the resource dimensions, like storage capacity and the size of

pick zones, are examples of tactical decisions. Finally, operational decisions typically con-

cern daily operations like batch formation and job assignment. Decisions of operational

nature should be considered within the constraints set by the strategic and tactical deci-

sions. This PhD research focusses on planning problems (e.g., order batching and picker

routing) for which the time horizon of the resulting decision is short or medium (i.e., op-

erational and tactical planning problems) as optimising these planning problems results

in substantial performance benefits with limited capital investments.

1.2 Research Objective

Over the last decades, researchers have developed a wide range of planning models that

help to increase the efficiency of order picking systems. Even literature overviews that

review and classify existing research on order picking planning problems are compre-

hensive (Van den Berg, 1999; Rouwenhorst et al., 2000; Gu et al., 2007; De Koster et al.,
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2007; Gong and De Koster, 2011; Davarzani and Norrman, 2015; Grosse et al., 2015, 2017;

Azadeh et al., 2018; Van Gils et al., 2018e; Aerts et al., 2018; Boysen et al., 2018b). Currently,

literature mainly focusses on warehouse design (Dallari et al., 2009; Baker and Canessa,

2009; Marchet et al., 2015; Sprock et al., 2017) and individual warehouse planning prob-

lems, such as order batching or picker routing (Davarzani and Norrman, 2015; De Koster

et al., 2007; Gu et al., 2007; Gong and De Koster, 2011). These review papers conclude that

there seems to be a gap between research and practice (Davarzani and Norrman, 2015;

De Koster et al., 2007; Van Gils et al., 2018e). Managers often do not implement findings

from academic research and at the same time researchers rarely integrate real-life features

while developing new planning models (Carter, 2008). Therefore, the general objective of

this PhD research is as follows:

Designing efficient manual order picking systems by combining order picking planning

problems and accounting for real-life features.

Optimising each planning problem separately may lead to a suboptimal solution for

the total warehouse. The new trends in the logistical industry may require even more

efficient picking operations, while additionally accounting for crucial real-life features.

Real-life features are defined as characteristics (e.g., high-level storage locations, human

factors, and varying SKUs in terms of size and weight), constraints (e.g., safety and prece-

dence constraints), and conditions (e.g., picker blocking and workload peaks) that have

a substantial impact on the planning and performance of order picking systems in prac-

tice. Multiple order picking planning problems need to be considered simultaneously and

real-life features need to be integrated in order to solve planning problems that deal with

the complex market conditions.

Although fully closing the research-practice gap would be impossible in a single PhD

research, the aim is to at least reduce the gap substantially. Past research especially fo-

cussed on rigour (i.e., coherent, logically developed theory, and the various dimensions

of methodological and analytical validity that are necessary to test theory), while this the-

sis focusses on relevance of creating knowledge that managers can use to better under-

stand phenomena (Carter, 2008). Following solutions proposed by Carter (2008) are ap-

plied to bridge the gap: case study based research, involving practitioners and presenting

results to managers, and including a comprehensive discussion on the managerial impli-

cations of each chapter. Numerous warehouse visits and multiple interviews with ware-

house managers in the context of the Smart Logistics Limburg project reveal the needs

and challenges of warehouses and other logistical companies located in Limburg (Bel-

gium) and identify the most relevant real-life features that have been insufficiently taken

into account in past research. These results provide the required fundamentals to fulfil

the objective of this PhD research. Each of the research parts in this thesis is thoroughly
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checked and validated using the problem context and data of a real-life warehouse. The

problem context and data of three different B2B warehouses are used in this PhD research.

All three warehouses deliver B2B customers, distribute spare parts, and operate manually

(24 hours per day). However, the order pick design strongly differs among the warehouses,

ranging from wide-aisles to narrow-aisles, low-levels to high-levels and single zoned to

multi-zone warehouses. The main characteristics of the three warehouses are introduced

in Table 1.1, as well as the chapter in which data of the warehouse are used. In addition to

the real-life cases, all experiments are generalised by for example varying order structures

and varying layouts, in order to provide general insights.

TABLE 1.1: Introduction real-life warehouses.

Warehouse A Warehouse B Warehouse C

B2B automotive spare parts warehouse
Fully manually operated

Low-level storage racks High-level storage racks Low- and high-level storage racks
Wide aisles Narrow aisles Wide aisles
Single pick zone Multiple pick zones Multiple pick zones
Similar (small) SKUs Varying SKU types across zones, sim-

ilar SKU types within a pick zone
Varying SKU types across zones, sim-
ilar SKU types within a pick zone

Applied in Chapter 3 Applied in Chapters 4 & 7 Applied in Chapters 5 & 6

The main contributions of this PhD research are as follows. First, a classification of ex-

isting literature on combining tactical and operational order picking planning problems

and real-life features identifies interesting and relevant research directions to narrow the

gap between academic research and practice. Second, an interaction analysis, including

simulation and comprehensive statistical tests, analyses and explains how and why the

four main order picking planning problems (i.e., picker zoning, storage, order batching

and routing) are related and provides insights into the relevance and importance of in-

corporating real-life features while planning order picking operations. Third, the value of

incorporating workload related factors is demonstrated by presenting a proof of concept

of time series forecasting models in a warehouse context and introducing a new mathe-

matical programming model that balances the workload of order pickers over a short term

planning horizon. Fourth, the benefits of optimising the integrated order batching, rout-

ing and job assignment problem are demonstrated, using the insights provided by the in-

teraction analysis, by developing a new heuristic algorithm that is able to cope with multi-

ple order pickers, high-level storage locations and avoiding tardiness of orders. Finally, the

research provides future research opportunities that will be highly relevant to practice and

which are largely unexplored in literature, thereby further reducing the research-practice

gap.
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FIGURE 1.2: Thesis structure.

1.3 Thesis Outline

To fulfil the general research objective and realise the contributions discussed in the pre-

vious section, this thesis is organised into five parts, including eight chapters in total. The

thesis structure is illustrated in Figure 1.2. In addition to an introductory part (i.e., Part I)

and concluding part (Part V), Parts II until IV are based on the planning cycle of a ware-

house, sorted from a tactical time horizon of the resulting decision to planning problems

with an operational (i.e., hourly) time horizon. The content of each part and chapter as

well as the corresponding structure are discussed in this section.

Part I consists of the problem introduction and the academic state-of-the-art. Chap-

ter 2 classifies literature combining order picking planning problems, as well as identifies
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real-life features that have a substantial impact on the planning and performance of order

picking systems in practice. The literature classification of articles combining multiple

tactical and operational planning problems in manually operated order picking systems

is based on Van Gils et al. (2018e) and extended with the most recent research articles.

This part provides insights into which planning problems should be considered simul-

taneously, as well as which research methodology is suitable to combine planning prob-

lems. The findings on interesting and relevant planning problem combinations and re-

search methods to investigate and optimise these combinations are used throughout the

remainder of the thesis. Additionally, this chapter identifies real-life features, based on the

results of the Smart Logistics Limburg project and existing academic literature. The im-

portance and relevance of the real-features are provided. The insights from the literature

and from the warehouse visits are used to combine planning problems and incorporate

real-life features throughout the remainder of this PhD thesis.

At a tactical decision level of a warehouse planning cycle (Part II), order picking plan-

ning problem with different time horizons of the resulting decision are combined. In-

teraction analyses, by means of simulation, experimental design and statistical tests, are

performed to get insights into the relation among order picking planning problems and

create generic explanations with respect to the combined effect of these planning prob-

lems on order picking performance. First, in Chapter 3, the four main order picking plan-

ning problems are combined: picker zoning, storage location assignment, order batching,

and picker routing. The interaction analyses of Van Gils et al. (2016a) and Van Gils et al.

(2018c) are discussed in wide-aisle order picking systems (without considering real-life

features), thereby focussing on why and how order picking planning problems are related.

Several policies (i.e., solution methods) for each planning problem are simulated to inves-

tigate relationships among these planning problems. Second, in Chapter 4, an interaction

analysis is performed to explore to what extent these relationships have an effect on the

order picking performance of picking systems that are subject to safety constraints, picker

blocking, and high-level storage locations, such as narrow-aisle order picking systems.

The incorporation of these real-life features changes the nature of the problem, result-

ing in substantially different results. This interaction analysis is based on Van Gils et al.

(2018a) and Van Gils et al. (2019b).

With the knowledge and insights of the real-life features considered in the interac-

tion analyses of Part II, Part III explores the effect of the resource constraint and workload

peaks and how to cope with these workload related real-life features while planning daily

order picking operations. Based on Van Gils et al. (2017c), Chapter 5 forecasts order pick-

ers’ workload in a zoned order picking system in order to determine the daily required

number of order pickers as well as how to divide the order pickers across pick zones (i.e.,

defining the resource constraint). Based on the forecast workload, this workload can be
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additionally balanced throughout the daily planning horizon by assigning groups of or-

ders to certain time slots. In this way, workload peaks are avoided, reducing the probabil-

ity of missing deadlines. A new mathematical programming model balancing the work-

load throughout the short-term planning horizon (i.e., usually a single day) is presented

in the second chapter of this part (Chapter 6). The workload balancing problem is based

on Vanheusden et al. (2019). This chapter is joined work with my appreciated colleague

Sarah Vanheusden.

At an operational level, Part IV incorporates the workload related real-life features

while integrating and optimising order picking planning problems. Chapter 7 provides

an effective and efficient algorithm, using the insights of the existing relationships iden-

tified in the previous chapters, that integrates and solves three operational order picking

planning problems (i.e., order batching, picker routing, and job assignment). As the time

horizon of the resulting decisions is similar, order picking operations’ efficiency can be im-

proved by integrating these planning problems. Moreover, the algorithm is able to cope

with the following real-life features: resource constraints, high-level storage locations and

order due time constraints. This chapter is based on Van Gils et al. (2019a).

Finally, Part V concludes the PhD research. Chapter 8 provides the implications of this

research as well as interesting and relevant future research directions to further close the

gap between academic research and practice.
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2
COMBINING PLANNING PROBLEMS AND IDENTIFYING REAL-LIFE

FEATURES: STATE-OF-THE-ART

R
ecent literature reviews on warehouse planning, such as Rouwenhorst et al. (2000),

Gu et al. (2007), De Koster et al. (2007), Gong and De Koster (2011), Davarzani and

Norrman (2015), Marchet et al. (2015) and Boysen et al. (2018b) primarily focus on

individual planning problems, without considering real-life features such as safety con-

straints and high-level storage locations. These review papers conclude that order picking

planning problems seem to be interdependent and that future research should be more

valuable to practice. Optimizing each problem separately may lead to a suboptimal so-

lution for the total warehouse. New trends in the logistical industry require even more

efficient picking operations. Multiple order picking planning problems need to be consid-

ered simultaneously in order to face these new market developments. Moreover, real-life

features need to be considered and integrated while developing new planning models.

This chapter1 provides a comprehensive classification and review of articles combin-

ing multiple tactical and operational planning problems (Section 2.1). Section 2.2 iden-

tifies the most crucial real-life features with respect to order picking performance that

should be taken into account when planning order picking operations. Finally, Section 2.3

presents conclusions and gaps in current research that will be filled in this PhD thesis.

1This chapter is based on Van Gils, T., Ramaekers, K., Caris, A., De Koster, R. B. M., 2018e. Designing Efficient
Order Picking Systems by Combining Planning Problems: State-of-the-art Classification and Review. European
Journal of Operational Research 267 (1), 1–15 and Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., De Koster, R.
B. M., 2019b. Designing efficient order picking systems: the effect of safety constraints, picker blocking, and high-
level storage on the relation among planning problems. Transportation Research Part E: Logistics and Trans-
portation Review 125, 47–73.
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2.1 Combining Order Picking Planning Problems

This section provides a state-of-the-art review and classifies the scientific literature inves-

tigating combinations of tactical and operational order picking planning problems with

the aim of answering three research questions. First, based on the classification, we aim

to determine how individual order picking planning problems are related and which plan-

ning problems should be considered simultaneously in order to optimise the overall order

picking performance. Second, by analysing combinations of planning problems, we aim

to identify excellent methods for solving combinations of planning problems that may

help managers to take better decisions. Third, while order picking systems in previous re-

search are subject to a large number of assumptions to simplify order picking operations

(De Koster et al., 2007; Davarzani and Norrman, 2015), our classification is used to iden-

tify future research directions narrowing the gap between practice and academic research.

This review and classification differs from previous literature reviews by focusing on how

warehouse managers can benefit from combining multiple tactical and operational plan-

ning problems in manually operated order picking systems.

The remainder of this classification and review section is organised as follows: Sec-

tion 2.1.1 describes the scope of the review. Section 2.1.2 discusses the classification

scheme used to categorise publications investigating combinations of order picking plan-

ning problems. The selected publications are classified in Sections 2.1.3, 2.1.4, and 2.1.5

according to the defined classifiers. The managerial implications resulting from the liter-

ature overview are discussed in Section 2.1.6.

2.1.1 Scope of the Review

The state-of-the-art classification and review section reviews and classifies recent order

picking planning literature, in particular studies that combine multiple tactical and op-

erational planning problems. We do not intend to provide an exhaustive overview of all

warehousing literature, but we restrict the reviewed literature by focusing on specific plan-

ning problems published in high-quality journals.

Figure 2.1 shows the tactical and operational order picking planning problems that

are considered in this review. The overview is based on the planning problems defined

by De Koster et al. (2007), complemented with several recent innovative planning prob-

lems, such as zone assignment, workforce allocation and job assignment. The reader

is referred to Appendix B for an overview and discussion of all order picking planning

problems considered in the selection of the literature. Only planning problems that af-

fect an economic goal, such as time or productivity related performance measures, are

considered, as these objectives are the most important in any warehouse operation. Con-

sequently, behavioural aspects and ergonomics objectives are beyond the scope of this

12
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FIGURE 2.1: Overview of tactical and operational order picking planning problems.

review. Moreover, warehouse layout (Pohl et al., 2009), as well as other strategic plan-

ning problems, such as storage and material handling technology choice (Marchet et al.,

2015), depot location (Petersen, 1997), and number of warehouse blocks (Roodbergen and

De Koster, 2001a) are mostly fixed in practice, especially in the short and medium term.

Therefore, the scope is limited to tactical and operational order picking planning prob-

lems, as these problems are expected to be the most relevant to combine.

In order to meet the objectives of the study, two types of publications are considered:

articles integrating multiple planning problems and articles examining interactions be-

tween planning problems in manual order picking systems. Problem integration refers

to formulating and solving two or more planning problems jointly, and thus integrating

multiple planning problems. Interactions are defined as the joint effect that two or more

planning problems have on a performance goal, which can be investigated by considering

multiple policies (i.e., solution methods or techniques for organizing a planning problem)

for each planning problem and analysing the effect of these policies on warehouse perfor-

mance. Consequently, the scope of the review is restricted to articles examining multiple

policies for at least two planning problems, since these studies are able to show a poten-

tial relation between two or more planning problems. For example a study that combines

multiple storage location assignment policies (e.g., random storage and turnover based

storage) and multiple routing methods (e.g., traversal, largest gap and optimal routing) is

included in the overview, whereas articles assuming a single and fixed routing method in

combination with different storage location assignment policies (e.g., Yu et al. (2015) and

Guo et al. (2016)) are excluded since these studies are not able to provide knowledge on
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FIGURE 2.2: Time distribution of the reviewed articles.

how to benefit from combining multiple planning problems. Furthermore, studies that se-

quentially optimise multiple planning problems (e.g., Çelik and Süral (2014)) or optimise

a single planning problem (e.g., Scholz et al. (2016)) are excluded from the classification

as well.

Only articles published in English-language journals with an Impact Factor of at least

0.500 (based on the Impact Factors of 2015 by Thomson Reuters) are considered. Books

and conference proceedings are excluded from the classification, as these publications are

often preliminary versions of journal publications.

An initial set of articles is selected by searching for at least two of the defined plan-

ning problems in articles’ titles. The set of articles is extended by considering the citations

of the initial set of articles. Each article is evaluated on the investigated planning prob-

lems, as well as on the journal selection criteria mentioned above. This search strategy

resulted in a final set of 71 representative publications, which are classified in this litera-

ture overview.

Figure 2.2 illustrates graphically the distribution in time of the selected studies. The

number of articles considering the combination of different order picking planning prob-

lems has grown strongly in the last decade. 73% of all considered articles are published

in the last decade. While the number of publications on examining a single order pick-

ing planning problem was already substantial before 2007, as outlined in De Koster et al.

(2007), Gu et al. (2007), Rouwenhorst et al. (2000), and Van den Berg (1999), analysing mul-

tiple order picking planning problems at once has only been a focus since the last decade.

The strong increasing line shows the importance of studying multiple order picking plan-

ning problems jointly.
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2.1.2 Classification Scheme

This section introduces a classification scheme to categorise the selected articles. Ta-

ble 2.1 lists the classification criteria and features used in this review to categorise the

articles. The first classifier divides papers into categories based on the performance mea-

sure used to analyse the relation between planning problems with the aim of identifying

relevant performance indicators to evaluate the effect of combining planning problems.

Next, all 71 considered articles are classified with respect to the research method used to

analyse the combination of planning problems. This classification identifies methods for

solving combinations of planning problems that may help managers to take better deci-

sions. Finally, articles are classified according to the investigated combination of order

picking planning problems in order to identify how planning problems are related and

which planning problems should be considered simultaneously to optimise the overall

order picking performance. Moreover, the classification identifies how warehouse man-

agers could solve the combination of planning problems.

TABLE 2.1: Classification scheme.

Classifier Features

Performance measure Time
Cost
Productivity
Service

Research method Analytical models
Simulation
Mathematical models

Combination Storage location assignment & routing
Storage location assignment & order batching
Order batching & routing
Combinations of other order picking planning problems

First, all considered articles are classified according to the order picking performance

evaluation used to analyse the relations among planning problems. Note that articles are

only classified in the performance measures categories that have been used to analyse

the combined effect of multiple planning problems. In case of for example analysing the

combined effect of batching and routing policies on picker travel time and evaluating the

effect of batching policies on the service level, this article is only classified in the time re-

lated performance indicator. Articles are classified according to the performance evalua-

tion dimensions distinguished by Staudt et al. (2015), in particular time, cost, productivity,

and service (or quality) related performance indicators. These performance evaluation di-

mensions are commonly used and help warehouse managers to assess the performance

of the operations and to make consequential decisions.

Next, the literature is classified according to the research method used to analyse the

effect of combining two or more order picking planning problems or to formulate and

solve the integrated problem. The reviewed articles either use analytical models, perform
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a simulation study, or use mathematical programming to evaluate the combined effect

of order picking planning problems. Simulation experiments can be used to determine

which combination of factors results in the best order picking performance (Chan and

Chan, 2011) and how these factors influence each other. Analytical models predict the

performance by relating the performance variable to the main order picking parameters,

such as batch capacity and layout (Caron et al., 1998). Mathematical programming mod-

els refer to the set of equations and related mathematical expressions that describe the

problem. An objective function and constraints define the overall structure of the prob-

lem (Hillier and Lieberman, 2010).

Finally, the combination classifier categorises articles according to the investigated

combination of order picking planning problems. The overview of Figure 2.1 is used to

classify the articles.

2.1.3 Classification by Performance Measure

Based on the indicator definitions of Staudt et al. (2015), the reviewed articles are classified

according to the performance measure. Table 2.2 gives an overview of the performance

metrics applied to evaluate the combined effect of order picking planning problems. Note

that the performance metrics are not mutually exclusive: studies can use more than one

performance metric.

All publications, except for Bartholdi et al. (2001), Parikh and Meller (2008) and Tsai

et al. (2008), evaluate order picking performance using time related performance indi-

cators, either order picking time (i.e., lead time to pick a set of orders (Van Nieuwenhuyse

and De Koster, 2009)) or earliness/tardiness (i.e., difference between the order completion

time and order due time (Henn, 2015)). The process of order picking starts by composing

a pick order for which setup time is required. After setting up, the order picker can start

travelling to the storage locations (i.e., travel time) and search and retrieve items (i.e., re-

trieve time). In case orders are split across zones or batches, these orders should be sorted,

consolidated and packed before shipping (i.e., sorting time). Idle time refers to unproduc-

tive time, for example time caused by blocking of order pickers within an aisle (Chen et al.,

2016), or the time an order spends waiting for a pick batch to be formed (Van Nieuwen-

huyse and De Koster, 2009). Other time components include for example the time trans-

ferring orders from picking to sorting operations (Yu and De Koster, 2009). Thus, the order

picking time metric includes setup time, travel time, search and pick time, waiting time,

sorting time and other time consuming activities. Besides order picking time, the time

performance indicator can be expressed as the earliness or tardiness of orders. As orders

should be picked within tight time windows, earliness and tardiness measures are able

to evaluate the extent to which these time windows are fulfilled. Thus, earliness and tar-

diness are especially useful to analyse combinations of operational planning problems.
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TABLE 2.2: Overview of the classification by performance measurement.

Performance indicator # articles

Time
Order picking time 63 Caron et al. (1998); De Koster et al. (1999); Petersen and Schmenner (1999);

Ruben and Jacobs (1999); Petersen (2000); Dekker et al. (2004); Hwang et al.
(2004); Jewkes et al. (2004); Petersen and Aase (2004); Petersen et al. (2004);
Won and Olafson (2005); Ho and Tseng (2006); Hsieh and Tsai (2006); Manzini
et al. (2007); Gong and De Koster (2008); Ho et al. (2008); Yu and De Koster
(2008); Koo (2009); Van Nieuwenhuyse and De Koster (2009); Yu and De Koster
(2009); Chen et al. (2010); Theys et al. (2010); Chan and Chan (2011); Hsieh and
Huang (2011); Rubrico et al. (2011); De Koster et al. (2012); Ene and Öztürk
(2012); Henn (2012); Henn and Wäscher (2012); Hong et al. (2012a,b); Kulak
et al. (2012); Pan and Wu (2012); Chackelson et al. (2013); Heath et al. (2013);
Matthews and Visagie (2013); Matusiak et al. (2014); Pan et al. (2014); Shqair
et al. (2014); Cheng et al. (2015); Hong et al. (2015); Öncan (2015); Roodber-
gen et al. (2015); Chen et al. (2016); Hong et al. (2016); Li et al. (2016); Lin et al.
(2016); Chen et al. (2017); Dijkstra and Roodbergen (2017); Franzke et al. (2017);
Giannikas et al. (2017); Hong and Kim (2017); Matusiak et al. (2017); Scholz et al.
(2017); Schrotenboer et al. (2017); Valle et al. (2017); Zhang et al. (2017); Ardj-
mand et al. (2018); Chabot et al. (2018); Hong (2018); Quader and Castillo-Villar
(2018); Žulj et al. (2018a,b)

Earliness/tardiness 5 Henn and Schmid (2013); Chen et al. (2015); Henn (2015); Menéndez et al.
(2017); Scholz and Wäscher (2017)

Cost
Order picking cost 2 Tsai et al. (2008); Parikh and Meller (2008)
Productivity
Labour 1 Quader and Castillo-Villar (2018)
Picking 6 Ruben and Jacobs (1999); Bartholdi et al. (2001); Koo (2009); Chen et al. (2010);

Hong et al. (2016); Quader and Castillo-Villar (2018)
Equipment 3 Ruben and Jacobs (1999); Yu and De Koster (2008); Hsieh and Huang (2011)
Service
Service level 3 Petersen (2000); Gong and De Koster (2008); Chen et al. (2010)

Earliness and tardiness are mainly used to evaluate models that integrate batching and

routing in a dynamic context, allowing orders to arrive during the planning period (Tsai

et al., 2008; Henn and Schmid, 2013; Chen et al., 2015; Henn, 2015). Table 2.3 illustrates

the number of articles including the components of order picking time. Among all order

picking activities, travelling is considered as the most time consuming component (Chen

et al., 2015). All articles considering time related performance indicators include at least

travel time (or travel distance), assuming other time components to be constant. Espe-

cially, the effect of picker blocking on order picking efficiency is underestimated in current

literature analysing combinations of planning problems, despite the fact that congestion

among workers can be a significant issue in picking areas with high pick densities (Chen

et al., 2016). Most articles aim to increase the pick density in order to reduce the travel

time by varying combinations of storage location assignment and order batching policies,

without taking the picker blocking effect into account (Ruben and Jacobs, 1999; Hsieh and

Huang, 2011).

In order to efficiently manage order picking operations, time related performance in-

dicators are used in the large majority of articles to evaluate combinations of order picking

planning problems. These time consuming components of order picking time can be ex-

pressed in terms of costs: all time depending components are multiplied with a fixed cost,
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TABLE 2.3: Overview of articles including each component of time.

Time component # articles

Setup 20 Petersen (2000); Gong and De Koster (2008); Yu and De Koster (2008);
Van Nieuwenhuyse and De Koster (2009); Yu and De Koster (2009); Chen et al.
(2010); De Koster et al. (2012); Hong et al. (2012a); Henn (2012); Pan and Wu
(2012); Heath et al. (2013); Henn and Schmid (2013); Henn (2015); Hong et al.
(2016); Giannikas et al. (2017); Matusiak et al. (2017); Menéndez et al. (2017);
Scholz et al. (2017); Zhang et al. (2017); Quader and Castillo-Villar (2018)

Travel 67 Caron et al. (1998); De Koster et al. (1999); Petersen and Schmenner (1999);
Ruben and Jacobs (1999); Petersen (2000); Dekker et al. (2004); Hwang et al.
(2004); Jewkes et al. (2004); Petersen and Aase (2004); Petersen et al. (2004);
Won and Olafson (2005); Ho and Tseng (2006); Hsieh and Tsai (2006); Manzini
et al. (2007); Gong and De Koster (2008); Ho et al. (2008); Yu and De Koster
(2008); Koo (2009); Van Nieuwenhuyse and De Koster (2009); Yu and De Koster
(2009); Chen et al. (2010); Theys et al. (2010); Chan and Chan (2011); Hsieh and
Huang (2011); Rubrico et al. (2011); De Koster et al. (2012); Ene and Öztürk
(2012); Henn (2012); Henn and Wäscher (2012); Hong et al. (2012a,b); Kulak
et al. (2012); Pan and Wu (2012); Chackelson et al. (2013); Heath et al. (2013);
Henn and Schmid (2013); Matthews and Visagie (2013); Matusiak et al. (2014);
Pan et al. (2014); Shqair et al. (2014); Chen et al. (2015); Cheng et al. (2015); Henn
(2015); Hong et al. (2015); Öncan (2015); Roodbergen et al. (2015); Chen et al.
(2016); Hong et al. (2016); Li et al. (2016); Lin et al. (2016); Chen et al. (2017);
Dijkstra and Roodbergen (2017); Franzke et al. (2017); Giannikas et al. (2017);
Hong and Kim (2017); Matusiak et al. (2017); Menéndez et al. (2017); Scholz
and Wäscher (2017); Scholz et al. (2017); Schrotenboer et al. (2017); Valle et al.
(2017); Zhang et al. (2017); Ardjmand et al. (2018); Chabot et al. (2018); Quader
and Castillo-Villar (2018); Žulj et al. (2018a,b)

Retrieve 29 Petersen (2000); Petersen and Aase (2004); Petersen et al. (2004); Gong and
De Koster (2008); Yu and De Koster (2008); Koo (2009); Van Nieuwenhuyse
and De Koster (2009); Yu and De Koster (2009); Chen et al. (2010); Chan and
Chan (2011); Rubrico et al. (2011); De Koster et al. (2012); Hong et al. (2012a);
Henn (2012); Pan and Wu (2012); Chackelson et al. (2013); Heath et al. (2013);
Henn and Schmid (2013); Henn (2015); Hong et al. (2015); Chen et al. (2016);
Hong et al. (2016); Giannikas et al. (2017); Matusiak et al. (2017); Menéndez
et al. (2017); Scholz et al. (2017); Schrotenboer et al. (2017); Zhang et al. (2017);
Quader and Castillo-Villar (2018)

Sort 5 Van Nieuwenhuyse and De Koster (2009); Yu and De Koster (2009); Chen et al.
(2010); De Koster et al. (2012); Žulj et al. (2018a)

Idle 17 Petersen (2000); Gong and De Koster (2008); Koo (2009); Van Nieuwenhuyse
and De Koster (2009); Rubrico et al. (2011); Hong et al. (2012a); Pan and Wu
(2012); Heath et al. (2013); Hong et al. (2015); Chen et al. (2016); Hong et al.
(2016); Quader and Castillo-Villar (2018); Chen et al. (2017); Schrotenboer et al.
(2017); Zhang et al. (2017); Chabot et al. (2018); Hong (2018)

Other 2 Won and Olafson (2005); Yu and De Koster (2009)

such as travel cost per time unit (Tsai et al., 2008). Although order picking time is often

used as a proxy for cost, time related measures can additionally inform managers whether

due times and operating time windows can be met, while cost performance indicators

can include non-time related cost components, such as fixed equipment cost related to a

batch or zone order picking system (Parikh and Meller, 2008), to evaluate different order

picking systems.

The productivity metric can be either labour productivity, i.e., ratio of the amount of

value-added time and the total picking time (Quader and Castillo-Villar, 2018), picking

productivity, i.e., the number of items picked per picker per time interval (Ruben and Ja-

cobs, 1999), or productivity of the equipment, e.g., the extent to which the picking vehicle

capacity is used (Ruben and Jacobs, 1999; Hsieh and Huang, 2011). Labour and picking

productivity mainly evaluate combinations of zone picking and job assignment (Bartholdi
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et al., 2001; Koo, 2009; Hong et al., 2016; Quader and Castillo-Villar, 2018), while equip-

ment productivity has been used to analyse the relation between storage location assign-

ment and order batching.

Finally, service or quality refers to the service level expressed as the percentage of or-

ders that is picked on time (Gong and De Koster, 2008). The joint effect of combining

planning problems on the service level has been analysed in only three articles, despite

the fact that quality is the main service delivered to customers. Warehouses aim to in-

crease the order picking efficiency (i.e., using minimal time to handle more orders), while

maintaining a high service level to customers (Chen et al., 2010). The increased time pres-

sure as a result of the e-commerce market developments may increase the chance of pick

errors. However, most articles do not take the service level or other quality performance

indicators (e.g., pick errors) into account.

2.1.4 Classification by Research Method

This section classifies publications with respect to the research method used to analyse

or solve the combined problem. The following research methods have been proposed

in literature to analyse interactions of order picking policies or to integrate multiple or-

der picking planning problems: analytical models, simulation experiments, and mathe-

matical programming. Analytical models refer to a set of mathematical equations that

approximate the performance of a system by relating the performance variable to mul-

tiple system parameters. Simulation experiments are defined as methods to imitate the

system’s operations or characteristics with the purpose of conducting numerical experi-

ments to provide insights into the behaviour of the system. Mathematical programming

models refer to the set of mathematical expressions that describe the problem consisting

of an objective function and constraints to define the overall structure of the problem.

Figure 2.3 illustrates the distribution of these research methods in the scientific literature.

Simulation is by far the most popular technique to analyse combinations of order picking

planning problems, followed by mathematical programming.

Analytical models have not been considered very often as approach to analyse the im-

pact of combining order picking planning problems. Fourteen articles develop an an-

alytical model to evaluate planning problem combinations. An analytical approach for

approximating the systems performance has proven to be accurate in evaluating com-

binations of order picking planning problems, such as storage location assignment and

routing (Caron et al., 1998; Hwang et al., 2004), zone location and workforce allocation

(De Koster et al., 2012), and batching and routing (Gong and De Koster, 2008). This last

combination is an application of polling models in the context of order picking: a sys-

tem of multiple queues of orders accessed by a single or multiple order pickers (Gong and

De Koster, 2008). The proposed analytical models can be used by warehouse managers
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FIGURE 2.3: Research method used to analyse order picking planning problem combina-
tions.

to predict the system performance under different policies, and to compare these alter-

natives in a stochastic setting. Analytical models outperform simulations with respect to

modelling and computing time. While simulation requires model and scenario develop-

ment time, a thorough validation process and long runs to reduce the stochastic effect of

order generation (i.e., to prevent drawing conclusions dedicated to a limited number of

orders), analytical models can compare policy combinations by simply defining param-

eter values and evaluating the performance value resulting from the equation. However,

analytical models are complex to develop. Consequently, these models often provide a

simplified representation of order picking operations investigating a limited number of

policy combinations. Under the assumptions of the analytical model, the provided op-

timal combination of policies can be used as benchmark policies for real-life operations

(Van Nieuwenhuyse and De Koster, 2009).

Simulation studies form the largest category of research methods in this literature clas-

sification. Like analytical models, warehouse managers may use simulation results to

evaluate the combined effect of multiple order picking planning problems in order to de-

sign efficient order picking systems. Simulation models are able to provide a more detailed

representation of order picking operations compared to analytical models. A large num-

ber of policy combinations can be easily tested once a simulation model has been created.

Table 2.4 summarises all publications simulating combinations of order picking planning

problems. A large number of articles simulate combinations of order picking planning

problems without further analysing the relation between these problems. These studies

are mentioned in the footnote of Table 2.4. In most of these studies, a new solution tech-

nique is proposed for solving a single order picking planning problem. This new policy

is compared with other policies of the same planning problem, and validated for several

policies of other order picking planning problems. Their main objective is not to analyse

interactions between order picking planning problems. For example, Öncan (2015) intro-
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TABLE 2.4: Studies analysing combinations of order picking planning problems using sim-
ulation.

Interaction
plots

ANOVA Multiple com-
parison tests

Other

Petersen and Schmenner (1999) • •
Ruben and Jacobs (1999) • • •
Petersen (2000) •
Ho and Tseng (2006) • •
Hsieh and Tsai (2006) • •
Manzini et al. (2007) • •
Ho et al. (2008) • •
Chen et al. (2010) • •
Theys et al. (2010) •
Hsieh and Huang (2011) • •
Chackelson et al. (2013) • •
Shqair et al. (2014) • • •
Roodbergen et al. (2015) •
Chen et al. (2016) •
Quader and Castillo-Villar (2018) •
Žulj et al. (2018a) •

Following studies simulate combinations of order picking planning problems without further analysing the relation between
these problems: De Koster et al. (1999); Dekker et al. (2004); Petersen and Aase (2004); Petersen et al. (2004); Chan and Chan
(2011); De Koster et al. (2012); Henn (2012); Henn and Wäscher (2012); Hong et al. (2012a,b); Heath et al. (2013); Henn and
Schmid (2013); Pan et al. (2014); Henn (2015); Öncan (2015); Chen et al. (2017); Franzke et al. (2017); Giannikas et al. (2017);
Scholz and Wäscher (2017); Schrotenboer et al. (2017); Žulj et al. (2018b).

duces an iterated local search algorithm to solve a mathematical programming formula-

tion of the batching problem. This novel batching policy is compared with two savings

algorithms and other metaheuristic batching algorithms, and validated by simulating the

batching policies in combination with a traversal, return and midpoint routing policy. As

the simulation of multiple batching and routing policies provides insights into the effect of

combining planning problems, and the heuristic algorithm is only used to solve a single

planning problem (e.g., batching (Henn, 2012; Henn and Wäscher, 2012; Öncan, 2015)),

these type of studies are classified as simulation.

More comprehensive studies show interaction plots, and/or perform an analysis of

variance (ANOVA) and multiple comparison tests to analyse potential interactions among

order picking planning problems. These articles are listed in Table 2.4. Some papers use

interaction plots to show the mean performance values of two order picking planning

problems in which the mean values of policies of one planning problem are shown at dif-

ferent levels of the other planning problem. These graphs are used to illustrate interaction

effects. A wide range of combinations have been graphically illustrated in literature, such

as storage location assignment & order batching (Ruben and Jacobs, 1999), storage loca-

tion assignment & picker routing (Petersen and Schmenner, 1999; Manzini et al., 2007;

Theys et al., 2010; Shqair et al., 2014), and order batching & picker routing (Chackelson

et al., 2013). ANOVA is the most popular tool to determine the order picking planning

problems that have the most significant effect on warehouse performance and confirm

whether interactions among order picking planning problems are statistically significant.

While lines on the interaction graph can indicate significant interactions, ANOVA is able
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to prove the statistical significance of interaction terms. All reviewed articles performing

an ANOVA analysis test for two-way interactions among planning problems, while Ho and

Tseng (2006), Hsieh and Tsai (2006), Ho et al. (2008), and Hsieh and Huang (2011) also test

and confirm a statistically significant three-way interaction between storage, batching,

and routing. Additionally, a multiple comparison test can give insight into which policies

of an order picking planning problem differ and how policies are ranked under different

policies of a second order picking planning problem. For example, Ho and Tseng (2006)

rank different batching policies under random and turnover based storage location as-

signment. Performance rankings of the batching policies are different under random and

turnover based storage. This result explains why the two-way interaction between stor-

age location assignment and order batching is statistically significant. Other techniques

of Table 2.4 refer to multi-level factorial analysis (Manzini et al., 2007), data envelopment

analysis (Chen et al., 2010), and ranking and selection procedures (Chen et al., 2010; Rood-

bergen et al., 2015).

Finally, mathematical programming models use mathematical expressions, i.e., an

objective function and constraints, to describe a complex problem concisely. The use

of mathematical programming as a research method to integrate different order picking

planning problems is limited. Besides exact solution approaches (Jewkes et al., 2004; Hong

et al., 2016; Valle et al., 2017), metaheuristic algorithms are mostly used to solve com-

plex mathematical programming problems in warehouses. Metaheuristic algorithms find

a good solution for complex planning problems. As optimizing most single order pick-

ing planning problems, such as the order batching problem or the picker routing prob-

lem, have proven to be NP-hard, combining several planning problems will also result

in NP-hard problems (Li et al., 2016). Metaheuristics have proven to solve complex plan-

ning problems within reasonable computing times. Despite the popularity of metaheuris-

tics for solving large real-life mathematical programming problems (Sörensen and Glover,

2013), only the integrated problem of batching & routing, job assignment & batching and

job assignment & batching & routing have been solved by metaheuristic algorithms (see

Table 2.5). Planning job assignment, batching, and routing are operational decisions that

have to be made frequently, compared to the other defined planning problems. Each of

these decisions is taken multiple times each hour. For this reason, warehouses require fast

and effective algorithms to fulfil all customer orders.

Metaheuristic algorithms are especially useful for combining order picking planning

problems of operational nature. However, integrating planning problems of tactical and

operational nature seems to be less meaningful, due to the different time horizons for de-

ciding on both problems. For example, integrating zone location and batching makes little

sense, as batches are created multiple times every hour, while the zone location decision

is a constant in short term. Simulation and analytical models are more useful to evaluate
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TABLE 2.5: Studies using metaheuristics to solve mathematical programming problems of
planning problem combinations (B, J , and R, the batching, job assignment, and routing
planning problem, respectively).

Local search Constructive Genetic Other

Won and Olafson (2005) B&R

Tsai et al. (2008) B&R

Ene and Öztürk (2012) B&R

Rubrico et al. (2011) B&J

Kulak et al. (2012) B&R B

Matthews and Visagie (2013) R&J

Matusiak et al. (2014) B R

Chen et al. (2015) R B&J

Cheng et al. (2015) R B

Li et al. (2016) R R B

Lin et al. (2016) R B

Matusiak et al. (2017) B&J

Menéndez et al. (2017) B&J

Scholz et al. (2017) B&R&J

Zhang et al. (2017) B&J

Ardjmand et al. (2018)a B B&R B&R

Chabot et al. (2018) B&R

a The authors tested multiple algorithms.

the efficiency of tactical and operational planning problem combinations.

2.1.5 Classification by Investigated Combination of Planning Problems

This section classifies all articles analysing at least two order picking planning problems

simultaneously. Appendix C provides a detailed overview of the selected articles accord-

ing to the investigated planning problems. Figure 2.4 illustrates the distribution of tac-

tical and operational order picking planning problems across the reviewed articles. The

zoning (i.e., zone location, zone assignment, and zone picking) and workforce (i.e., work-

force level, workforce allocation, and job assignment) related planning problems, as well

as the problem of order consolidation and sorting have received little research attention

in combination with other planning problems. Note that publications examining a single

order picking planning problem have devoted little attention to the last mentioned plan-

ning problems either (Gu et al., 2007). Recent publications combining order picking plan-

ning problems have strongly focused on storage location assignment, order batching, and

picker routing as these three problems should be solved by each warehouse, either small

or large, whereas for example picker zoning related planning problems are typically faced

in the larger warehouses. Moreover, the relation among these three planning problems

could be most easily recognised and explained.

The classification of these studies helps warehouse managers to determine how dif-

ferent individual planning problems are related to each other, at least the combinations

that have been investigated, and thus which planning problems should be considered si-

multaneously (Section 2.1.5.1). Furthermore, the performance of policy combinations is
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FIGURE 2.4: Distribution of the considered order picking planning problems (in number
of articles).

TABLE 2.6: Overview of investigated combination of order picking planning problems.
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Zone location - 1 - 1 - 2 - - -

Zone assignment 1 - - - - - - -
Storage location assignment 4 2 1 16 1 29 2

Workforce level 1 4 6 1 7 2
Workforce allocation - 2 - - 1

Job assignment 11 6 7 1
Order batching 2 30 4

Zone picking 1 -
Picker routing -

Order cons. & sorting

analysed in order to establish several good performing combinations which can be used

in practice to optimise order picking performance (Section 2.1.5.2).

2.1.5.1 Relations among Planning Problems

Table 2.6 provides an overview of all investigated combinations of order picking planning

problems. The ten defined order picking planning problems give rise to a large number

(i.e., 45) of planning problems combinations. However, only 27 combinations have been

investigated to improve order picking efficiency, though it makes sense to combine most

planning problems. Only combinations that have been analysed in at least six research

articles are discussed in this section, in particular storage & batching, storage & routing,

batching & routing, workforce level & batching, job assignment & batching, job assign-

ment & routing, workforce level & routing, and job assignment & zoning. Research inves-
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tigating the effects of combining other order picking planning problems is too limited to

draw valid conclusions.

Articles analysing the combination of storage location assignment and order batching

are rather consistent about the statistical significance of these two planning problems (Pe-

tersen and Aase, 2004; Ho and Tseng, 2006; Ho et al., 2008). The storage policy defines rules

for assigning items to locations in the order picking area. The batching policy should take

these item location rules into account while creating batches in order to efficiently man-

age the batching planning problem. The use of item location information in batching

results in significant performance benefits (Ruben and Jacobs, 1999).

In contrast to the storage and batching interaction, studies are less consistent about

the significance of storage location assignment and picker routing. In a limited factorial

setting, in particular a limited number of analysed policies, storage location assignment

and routing are found to be unrelated (Ho and Tseng, 2006; Ho et al., 2008; Chackelson

et al., 2013). However, other articles do find a statistically significant interaction between

storage and routing, both in single block warehouses (Petersen and Schmenner, 1999;

Manzini et al., 2007), and in multiple block warehouses (Theys et al., 2010; Shqair et al.,

2014), as these studies take information about the location of fast moving products into

account while composing picker routes. Furthermore, storage location assignment poli-

cies define the pick density within aisles, which can result in blocking of order pickers if

routes do not account for blocking effects. Thus, whether interactions between storage

and routing exist or not, depends on which policy combinations are evaluated and which

order picking time components are taken into account.

Order batching and picker routing problems have been analysed most often. Several

articles analysing combinations of batching and routing policies reveal that these plan-

ning problems are unrelated, both in a single block warehouse (Ho and Tseng, 2006; Ho

et al., 2008) and a multiple block warehouse (Hsieh and Tsai, 2006), while other studies

find significant performance benefits by combining batching and routing in a single block

layout (De Koster et al., 1999; Chackelson et al., 2013). These contradicting results may be

due to the considered policies, which are more extensive in the studies that find signifi-

cant effects. The operational planning issues of batching and routing are the most often

solved planning problems in warehouses. The construction of batches and the creation

of picker routes are the most appropriate problems to be solved jointly as the processing

time of a batch is mainly defined by the length of the constructed route. The integrated

problem of batching and routing yields significant performance benefits compared to se-

quentially solving both problems (Won and Olafson, 2005), indicating a strong relation

between batching and routing.

Compared to the relations among storage location assignment, batching, and rout-

ing, other combinations have not received much research attention. Especially research
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analysing the effects of a varying workforce level, that mainly affects the waiting times due

to picker blocking (Chen et al., 2016), in combination with other planning problems is

scarce. Most articles analysing workforce level in combination with other planning prob-

lems evaluate the combined effect of order batching and workforce level, while disregard-

ing picker blocking. Typically, the mean time for picking an order increases as the number

of pickers increase, as more order pickers may increase aisle congestion (Ruben and Ja-

cobs, 1999). However, integrating the picker blocking effects while constructing batches

prevents the picking efficiency to decrease when the number of order pickers increases

(Hong et al., 2012a).

Similar findings are shown while analysing workforce level and picker routing. While

considering the effect of picker blocking, certain routing policies (i.e., return routing and

optimal routing) yield stronger increased waiting times in comparison with a traversal

routing policy in case of increasing the number of pickers (Pan and Wu, 2012). The mean

travel time within an aisle, and consequently the time an aisle is occupied by an order

picker, is shorter by applying traversal routes in this case. Waiting times can strongly re-

duce by considering the picker blocking effects while construction routes (Chen et al.,

2016).

Few studies are found that integrate order batching and job assignment. In a single

order picker system, the job assignment problem is limited to sequencing batches of or-

ders (Chen et al., 2015; Menéndez et al., 2017), while the job assignment problem is more

challenging for multiple order pickers as batches need to be assigned to order pickers be-

fore sequencing the batches (Henn, 2015; Scholz et al., 2017). Compared to a due-date

first assignment of jobs, the integrated problem of job assignment and batching of orders

yields improved order picking performance with respect to the tardiness of customer or-

ders (Henn and Schmid, 2013; Chen et al., 2015; Henn, 2015).

Furthermore, most studies analysing batching and job assignment additionally con-

sider the picker routing planning problem (Henn and Schmid, 2013; Chen et al., 2015;

Henn, 2015). Different routing policies affect the processing time of batches and may

cause tardiness if the order due date is missed. Combining job assignment and straight-

forward routing policies result in similar performances, while integrating routing and job

assignment, and thus finding a (near) optimal combination of routes and job assignments,

results in significant performance benefits (Matthews and Visagie, 2013; Chen et al., 2015).

Finally, the combination of zone picking and job assignment is mainly studied by inte-

grating both planning problems in the context of bucket brigades. Bucket brigades zoning

is defined as a sequential flexible zone picking policy in which order pickers are assigned

to flexible zones and sequentially pick an order (or a batch of orders). In contrast to se-

quential fixed zone picking, the boundaries of each zone vary dynamically as downstream

order pickers take over jobs from their predecessors when they are available. If the most
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downstream order picker completes his order, this picker takes over the order of the im-

mediately upstream order picker. The latter takes over the order of his predecessor, and so

on. The first order picker in line can start with a new order or batch. In this way, the job as-

signment is formulated as the dynamic assignment of orders to order pickers, integrated

in the zone picking problem. The efficiency benefits resulting from bucket brigades show

the importance of integrating zone picking and job assignment (Bartholdi et al., 2001; Koo,

2009; Hong, 2018).

2.1.5.2 Generally Good Performing Planning Problem Combinations

As recent literature has mainly focused on three order picking planning problems in or-

der to improve the order picking efficiency by combining planning problems, this section

establishes several generally good performing policy combinations divided into combi-

nations of these three planning problems: storage location assignment & order batching,

storage location assignment & picker routing, and order batching & picker routing. Com-

binations that have been proven to be efficient in multiple articles are discussed.

Storage Location Assignment and Order Batching Due to the different planning hori-

zons of storage location assignment (tactical) and order batching (operational), literature

has focused on analysing the relation between both planning problems. Efficient combi-

nations of storage location assignment and order batching can be achieved by incorpo-

rating location information of fast moving items, defined by the applied storage location

assignment policy, into the creation of batches. For example seed rules minimizing the

number of aisles are preferred in combination with within-aisle turnover based storage

location assignment. As fast moving items are assigned to the aisles closest to the depot,

batches should be created with the objective of minimizing the number of aisles visited.

Selecting the order with the smallest number of picking aisles to visit as seed order and

adding orders to the seed that minimises the number of additional aisles that an order

picker needs to visit to complete the batch, in combination with within-aisle storage, out-

performs other seed batching policies (Ho and Tseng, 2006).

Several more sophisticated batching algorithms have proven to increase the order

picking performance in combination with within-aisle turnover based storage location

assignment, both in a static (i.e., all orders known in advance) (Hsieh and Huang, 2011;

Henn and Wäscher, 2012), and a dynamic (i.e., real time order arrival) context (Henn,

2012). Most studies only consider random and within-aisle storage in combination with

these complex batching policies, which may be explained by the fact that straightforward

batching algorithms (e.g., FCFS and seed batching) in combination with within-aisle stor-

age outperform other batching and storage policy combinations (Ruben and Jacobs, 1999;

Petersen and Aase, 2004; Chen et al., 2010). Disregarding real-life features (e.g., no picker
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(A) Within-aisle–traversal. (B) Across-aisle–return. (C) Perimeter–largest gap.

FIGURE 2.5: Examples of good performing combinations of turnover based storage loca-
tion assignment policies and routing policies.

blocking, single depot), metaheuristic batching algorithms in combination with within-

aisle storage is a general good performing storage & batching combination.

Storage Location Assignment and Picker Routing Figure 2.5 illustrates several good

performing combinations of storage location assignment policies and straightforward

routing policies. In order to reduce order picking travel distance, within-aisle turnover

based storage location assignment is preferred while using traversal routing. Since the

goal is to reduce the number of aisles visited, fast moving items are assigned to the aisles

closest to the depot. Return routing is preferred in combination with across-aisle storage

classes, because the aim is to reduce the travel distance within aisles (Caron et al., 1998).

Furthermore, the combination of the perimeter storage and the largest gap routing policy

on average results in shorter travel times compared to the two previously discussed com-

binations. Since fast moving stock keeping units (SKUs) are stored along the periphery

of the warehouse blocks and largest gap routes tend to follow the periphery of the order

picking area, this policy combination increases the order picking performance (Petersen

and Schmenner, 1999). Note that the sizing of each storage class does not significantly

influence the routing decision and resulting picking performance. Introducing a turnover

based storage location assignment policy is more important than selecting the composi-

tion of storage classes (Manzini et al., 2007).

Because of simplicity, these straightforward routing heuristics are often used in prac-

tice, despite the efficiency benefits of following (near)optimal routes. Optimal routes in

combination with within-aisle storage location assignment outperform all other combi-

nations of storage location assignment and routing (Petersen and Schmenner, 1999; Pe-

tersen and Aase, 2004; Theys et al., 2010). However, calculating optimal routes for each

pick tour may require long computing times depending on the number of storage loca-
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tions to visit in a pick tour. For single block layouts, the combined routing heuristic is

able to approximate the optimal route (Roodbergen and De Koster, 2001a; Petersen and

Aase, 2004). The Lin-Kernighan-Helsaun routing heuristic (Helsgaun, 2000) has shown to

provide excellent results to approximate the optimal route of order pickers for multiple

warehouse blocks as well. Theys et al. (2010) reported an average optimality gap of 0.01%

for the combination of within-aisle storage and LKH-routing.

Order batching and Picker Routing Publications examining the relation between order

batching and picker routing have mainly focused on solving the integrated problem of

routing and batching, rather than considering interactions between batching and routing

policies. As batching and routing are both operational decisions, these planning prob-

lems are particularly suitable for being solved in an integrated way. Efficient heuristic

algorithms have been proposed for the simultaneous construction of batches and picking

tours (Kulak et al., 2012; Cheng et al., 2015; Li et al., 2016; Lin et al., 2016), compared to

combinations of more straightforward batching and routing policies.

2.1.6 Managerial Implications

The results of this literature study show the importance of combining multiple order pick-

ing planning problems in order to efficiently manage order picking operations. This sec-

tion discusses the practical implications of this research for warehouse managers. We

provide guidelines how warehouse managers can solve combinations of tactical and op-

erational planning problems to support decision making processes.

Results of the literature review show that the time horizon of the resulting decisions

substantially influences the appropriate approach for solving combined order picking

planning problems. On the one hand, problems could be combined by analysing interac-

tions among specific predefined policies for each planning problem. On the other hand,

two or more planning problems can be formulated and solved in an integrated manner.

Figure 2.6 shows an overview of the approach applied in the majority of the considered ar-

ticles to solve each combination of order picking planning problems, as well as the num-

ber of articles analysing each combination.

Interaction analysis is most often applied to evaluate the joint effect of combining

planning problems. Interaction analysis by means of analytical or simulation models has

proven to be especially useful to evaluate the joint effect of planning problems with dif-

ferent time horizons of the resulting decision, such as storage location assignment and

routing (e.g., Caron et al. (1998); Petersen and Schmenner (1999); Chen et al. (2010); Dijk-

stra and Roodbergen (2017)). The results of analytical and simulation models can be used

by warehouse managers as decision support tool to design efficient order picking systems

taking the interactions among order picking planning problems into account.
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FIGURE 2.6: Best approach to solve each planning problems combination (numbers indi-
cate the number of articles considered in this review).

Problem integration is the appropriate approach to combine order picking planning

problems with an operational time horizon, such as batching, routing and job assignment.

Mathematical programming models are able to describe integrated planning problems,

especially at an operational decision level, while accounting for real-life constraints (e.g.,

Matusiak et al. (2014, 2017); Zhang et al. (2017)). A wide range of heuristic algorithms

have been proposed to provide fast and efficient solutions for the integrated problem of

batching, routing and job assignment (e.g., Chen et al. (2015); Scholz et al. (2017)) in accor-

dance with practical needs: in case of short time horizons of decisions, fast and efficient

algorithms are required to organise order picking operations.

Finally, we should note that the sample size for most planning problem combinations

in Figure 2.6 is rather small . For example, the limited number of articles that combine job

assignment and workforce allocation with the workforce level planning problem use inter-

action analysis, while an integrated model to solve a combination of these three planning

problems seems to be more appropriate to support order picking operations. A model

that provides the number of required order pickers and allocates this workforce, based

on the expected workload, may be highly relevant to practice, as shown in Part III of this

thesis. Most combinations of tactical and operational order picking planning problems

have not been widely investigated so far. However, articles in this review have proven the

importance of combining these planning problems in order to optimise the order picking

performance. Warehouse managers should be aware of the strong relation among order

picking planning problems to optimise the performance and face the new market devel-

opments.
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2.2 Identifying Real-life Features

Although many studies optimised order picking planning problems, the developed solu-

tion methods often do not sufficiently consider real-life features. The complex nature of

order picking operations, caused by the large number of planning problems and resulting

relation among these planning problems, require decision supporting tools to manage

operations efficiently and effectively. The assumption-restricted models that have been

proposed in literature have only limited applicability in practice as real-life features are

insufficiently supported by these models. This section provides the main real-life features

that are crucial to account for when developing new solution methods in order to sup-

port order picking operations in practice. In this PhD thesis, real-life features are defined

as characteristics (e.g., high-level storage locations and varying SKUs in terms of size and

weight), constraints (e.g., safety and precedence constraints), and conditions (e.g., picker

blocking and workload peaks) that have a substantial impact on the planning and perfor-

mance of order picking systems in practice.

Based on current literature and results of our experience in the Smart Logistics Lim-

burg project, in which over 100 warehouses have been visited, a non-exhaustive list of

real-life features is identified. These real-life features are expected to be the most influen-

tial factors with respect to the order picking performance. The features affect the nature of

one or more planning problems and may have a substantial influence on the order picking

performance. Articles incorporating one or more real-life features are summarised in Ta-

ble 2.7. The main real-life characteristics, real-life constraints, and real-life conditions are

provided in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. The effect of the real-life features

on different planning problems is discussed to show the relevance of integrating them.

TABLE 2.7: Articles incorporating real-life features when combining planning problems.

Real-life feature # articles

High-level storage 2 Chan and Chan (2011); Pan et al. (2014)
Scattered storage -
Varying SKU properties 1 Dekker et al. (2004)
Human factors 1 Matusiak et al. (2017)
Precedence constraints 2 Matusiak et al. (2014); Žulj et al. (2018a)
Safety constraints 1 Chabot et al. (2018)
Resource constraints 20 Ruben and Jacobs (1999); Yu and De Koster (2008, 2009); Van Nieuwenhuyse

and De Koster (2009); Rubrico et al. (2011); De Koster et al. (2012); Hong et al.
(2012a); Pan and Wu (2012); Heath et al. (2013); Henn (2015); Chen et al. (2016,
2017); Franzke et al. (2017); Matusiak et al. (2017); Menéndez et al. (2017);
Scholz et al. (2017); Zhang et al. (2017); Ardjmand et al. (2018); Hong (2018);
Quader and Castillo-Villar (2018)

Due time constraints -
Workload peaks 6 Bartholdi et al. (2001); Yu and De Koster (2008); Koo (2009); Hong et al. (2015,

2016); Hong and Kim (2017)
Product returns 1 Schrotenboer et al. (2017)
Picker blocking 5 Hong et al. (2012a); Pan and Wu (2012); Chen et al. (2016, 2017); Franzke et al.

(2017)
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2.2.1 Identifying Real-life Characteristics

Real-life characteristics are defined as generally existing attributes of order picking sys-

tems in practice that are fixed in short term due to strategic decisions such as layout and

system selection. Tactical and operational planning problems should integrate these real-

life characteristics in order to benefit from the strategic decisions. Following characteris-

tics can be identified, among others: high-level storage locations, scattered storage, vary-

ing SKU properties, and human factors. These characteristics are found in existing litera-

ture and identified as highly relevant during interviews in practice.

Storage racks in high-level storage systems consist of multiple levels, storing multiple

SKUs in a single storage rack section, in contrast to low-level storage systems (single-level

storage rack sections). Figure 2.7 illustrates a high-level storage system. In addition to hor-

izontal travel, high-level storage systems require order pickers to travel vertically to pick

products from storage locations at higher levels (i.e., pick truck lifting) (Pan et al., 2014).

The footprint of a storage system (i.e., the number of aisles and aisle length) strongly im-

pacts horizontal travel time, whereas the amount of vertical travelling is defined by the

number of levels in a storage system (Thomas and Meller, 2015). In addition to the slow

lifting speed that impacts the picker routing problem, the storage location assignment

problem is directly influenced. In case of low-level storage systems, SKUs should be only

distributed among pick aisles. High-level storage locations require to distribute and as-

sign SKUs among the different levels of the storage racks (Pan et al., 2014; Chan and Chan,

2011), thereby considering that a substantial amount of lifting time is needed to reach the

highest storage locations. In case of using higher levels as storage and replenishment lo-

cations and lower levels (i.e., floor locations) for picking, the impact of high-level storage

systems on travel time is negligible: vertical travel is limited to the replenishment of a pick

location, while picking is performed on floor locations requiring only horizontal travel.

FIGURE 2.7: Illustration of high-level storage racks.

Scattered storage, the assignment of an SKU to multiple storage locations, may be valu-

able to warehouses to increase order picking performance. Instead of assuming a single

storage location for each SKU as in the large majority of planning models in literature,

scattered storage can be beneficial, requiring a sufficient storage capacity. Assigning fast
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moving SKUs to multiple locations most directly influences the nature of the storage lo-

cation assignment and picker routing problem (Weidinger and Boysen, 2018). In case of

small ordered quantities per SKU (e.g., e-commerce orders), items of a single SKU should

be distributed all over the warehouse in order to benefit from scattered storage; the prob-

ability that a picker is close to one of the locations of the required SKU is large when the

SKUs are widely spread. To retrieve higher quantities of an SKU in a pick tour, items of the

same SKU should be stored close to each other (Weidinger, 2018). Planning the route be-

tween storage locations of a general picker routing problem is extended by selecting the

storage positions to be visited; the required SKU can be retrieved from multiple storage

locations (Weidinger, 2018). Moreover, in a dynamic context (i.e., real time order arrival),

multiple locations of a single SKU may substantially affect the routing problem, as orders

can be more easily added to a pick list while the order picker has already started his pick

tour.

Varying SKU properties such as weight, size, and/or temperature conditions further

complicate the planning of order picking operations. The commonly used assumptions

of similar SKUs should be reconsidered. Properties of the SKUs limit the storage location

assignment problem as not all SKUs are allowed at all storage locations (Chabot et al.,

2017; Dekker et al., 2004). Accorsi et al. (2018) provide a decision support tool to assign

temperature-sensitive SKUs to storage locations, thereby optimizing the picking efficiency

while considering the safe conservation conditions. Moreover, varying SKU properties re-

sult in varying retrieve times at storage locations and different handling methods: retriev-

ing large and heavy SKUs requires substantially more time than small and light SKUs (Jane

and Laih, 2005). This results in varying picker productivity levels, especially as most ware-

houses are divided into pick zones and SKUs are assigned to pick zones based on product

properties. The average productivity is low in pick zones storing heavy SKUs, while zones

storing smaller items are designed to maximise productivity. Consequently, these produc-

tivity differences, as a result of varying SKU properties, strongly influence the zone picking

problem, workforce related planning problems (i.e., workforce level and workforce alloca-

tion) and the consequent order consolidation and sorting problem. Finally, in the context

of the order batching problem, varying SKU properties may result in a varying number

of SKUs per batch when the batch capacity is proportional to the SKU property. Conse-

quently, batching orders should take the varying batch capacity into account (instead of a

fixed batch capacity).

Human factors impact most of the considered tactical and operational order picking

planning problems. Individual employee skills and capabilities significantly impact the

order pick time. Incorporating human factors in planning models can improve the model

predictability. Planning models should be able to find the best fit between an order pick-

ing job and the individual picker in order to benefit from the capabilities of each indi-
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vidual picker (Grosse et al., 2015, 2017). In addition to defining the required number of

order pickers, pickers should be assigned to a pick zone (i.e., workforce allocation) and

jobs need to be assigned to individual picker (i.e., job assignment) taking physical (e.g.,

posture), mental (e.g., competency), perceptual (e.g., human information processing) and

psychosocial aspects (e.g., motivation or stress) into account.

2.2.2 Identifying Real-life Constraints

Real-life constraints are defined as restrictions the order picking system is subject to in

practice. Solution algorithms ignoring these constraints seem to provide efficient solu-

tions, but these solutions lack effectiveness as they are mostly infeasible. Consequently,

these models overestimate the real order picking performance. For example, a routing pol-

icy that creates routes that are not able to be performed in practice because of safety con-

straints (e.g., traffic rules) or precedence constraints. Furthermore, resource constraints

and order due time constraints may further limit the solution possibilities.

Precedence constraints are introduced because certain SKUs should be retrieved before

other SKUs due to weight, fragility, shape and/or size restrictions, or because of customer’s

preferences. Most studies assume similar SKUs and no customer’s preferences and thus

ignore precedence constraints. In practice, the picker routing planning problem is most

strongly influenced by imposing precedence constraints (Matusiak et al., 2014; Žulj et al.,

2018a). To avoid SKUs to be sorted during or at the end of a pick tour, the picker routing

problem should incorporate the imposed precedence constraints and for example retrieve

heavy SKUs before light SKUs (Žulj et al., 2018a). Precedence constraints may result in

longer travelling compared to a picking system without precedence constraints, but avoid

additional sorting.

Despite the large number of accidents that happen in warehouses (De Koster et al.,

2011; Hofstra et al., 2018), safety constraints are not considered sufficiently when optimiz-

ing order picking operations. Safety rules, such as prohibiting truck backing to avoid that

retrieved products fall on the picker, ensure the safety of individual order pickers (Chabot

et al., 2018). However, time pressure is high and pick trucks work in close proximity, re-

sulting in an enhanced risk of accidents involving multiple order pickers (De Koster et al.,

2011; De Vries et al., 2016b). Traffic rules, such as limiting the number of pickers within

aisles, imposing one-way traffic directions within aisles, and prohibiting vehicle turns,

prevent routes from crossing which reduces the risk of accidents (Çelik and Süral, 2016).

Resources, such as space, labour, and equipment, need to be allocated among the dif-

ferent warehouse functions, including order picking (Gu et al., 2007). In practice, these

resources are limited. Although the resource capacities drive the service quality to cus-

tomers and resulting order picking performance, labour and equipment resources are

mostly assumed to be infinite in literature (De Koster et al., 2007). However, resource ca-
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pacity is limited and orders or batches need to be assigned to the available resources, such

as order pickers. Consequently, these constraints are especially dominant when assigning

jobs to resources.

Finally, each customer order is constrained by the due time in order to be shipped on

time. As accuracy in delivery times is an essential performance indicator for warehouses

(Wruck et al., 2017), respecting due time constraints is a critical issue when batching orders

and assigning batches to pickers (Henn and Schmid, 2013; Chen et al., 2015). Most studies

aim at minimizing total tardiness of all customer orders (i.e., the positive difference be-

tween the order due time and the batch completion time to which the order is assigned)

(Chen et al., 2015; Scholz et al., 2017) or ignore due times of orders (De Koster et al., 1999;

Henn and Wäscher, 2012). These solution algorithms often provide a solution in which

one or more customer orders will be picked after the picking due time, resulting in orders

that miss the shipping deadline (Henn and Schmid, 2013). In practice, such solutions may

not be accepted by most warehouses, as this reduces the customer service level. Rather

than accepting tardiness, the resource capacity will be increased (e.g., by shifting workers

from other departments) to prevent orders being picked after due time. Consequently,

order due time constraints most strongly affect the order batching, job assignment and

workforce allocation planning problems.

2.2.3 Identifying Real-life Conditions

Real-life conditions are defined as external situations warehouses should face with in

practice on a daily base without having direct control on these conditions. However, these

situations substantially impact planning problems. For example, workload peaks, result-

ing from the moment in time that customers order their products, disturb order picking

operations in practice. Although pricing and other stimulating policies may influence the

customer order process, this condition is fixed in the short term. Furthermore, the effect

of product returns and picker blocking are discussed in this section.

Workload peaks can be defined as time periods for which the required order through-

put exceeds the resource capacity. This moment results in a high risk of missed deadlines

and therefore may result in a lower customer satisfaction due to delayed order deliver-

ies. In manual order picking systems, order pickers are the most critical resource who

undergo a high work pressure during peak periods, resulting in extra stress and fatigue

(Vanheusden et al., 2019). Dividing the order picking area into zones can cause workload

imbalances among pick zones, which can be solved by varying the size and location of pick

zones and varying assignments of SKUs to pick zones (Jane, 2000; Jane and Laih, 2005; Yu

and De Koster, 2009). However, the proposed solution methods balance the workload in

the long run. Avoiding workload peaks at an operational level (i.e., workload balancing
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among time slots during the day) can be seen as a new challenging order picking planning

problem.

A substantial number of products are ordered by customers and, after receiving, re-

turned to a warehouse without being purchased. First, the returned products are checked

in a depot. Next, these products should be returned to the storage location storing the

particular SKU . In this way the product is available to be retrieved for another customer

order. Consequently, these product returns cause a flow of SKUs from a depot to storage

locations in addition to the regular order picking flow of SKUs from storage locations to

the depot to fulfil customer orders. Restocking of returned SKUs differs from replenish-

ment as replenishing fills a single (or a few) storage location(s), while restocking requires

to visit a large number of storage locations in a single pick round (Schrotenboer et al.,

2017). Taking product returns into account requires to increase the workforce level, which

increases the probability of picker blocking.

Multiple order pickers, who operate concurrently in the same order picking area in-

evitably cause wait times as pickers can block each other when picking in the same region

of the order picking system (Pan and Wu, 2012). Picker blocking induces idle time of or-

der pickers, increasing the total order picking time (Parikh and Meller, 2008, 2009). Areas

storing fast moving SKUs, which are introduced to reduce travel in most existing planning

models, are particularly subject to substantial wait times due to picker blocking. Picker

blocking occurs when a picker cannot reach a storage rack because another picker is re-

trieving items at that storage rack (i.e., storage-rack blocking), or when a picker cannot

overtake in an aisle (i.e., within-aisle or in-the-aisle blocking). The latter is caused by nar-

row pick aisles, whereas storage-rack blocking can occur in both wide aisle and narrow

aisle order picking systems (Mowrey and Parikh, 2014). Traffic rules to increase safety,

such as limiting the number of pickers within aisles, can induce additional blocking in

cross-aisles (i.e., aisle-entrance blocking): pickers have to wait in the cross-aisle before

entering the pick aisle if the maximum allowable number of pickers has already entered

the pick aisle (Hong et al., 2012a).

2.3 Research Gaps

New market developments such as e-commerce and globalisation, and increased cus-

tomer expectations force warehouses to handle a growing number of orders in shorter

time. Awareness of the influence of an individual order picking planning problem on the

overall performance is required to manage operations, resulting in enhanced customer

service. This chapter differs from previous warehouse planning overviews by focusing on

combinations of order picking planning problems and identifying relevant real-life fea-

tures. In this research, we provide an overview and classification of the relevant literature
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with respect to the research method used to combine order picking planning problems,

the performance measurement to evaluate the combined problems, as well as with re-

spect to the investigated combination of order picking planning problems. Additionally,

the most common real-life characteristics, constraints and conditions are identified based

on academic literature and practice. These features need to be incorporated while devel-

oping new efficient solution methods.

Articles analysing different tactical and operational order picking planning prob-

lems simultaneously are reviewed and classified in this study, with the aim of determin-

ing which planning problems are interdependent and how different individual planning

problems are related to each other, as well as how warehouse managers can benefit from

combining multiple order picking planning problems in order to face new market devel-

opments. It does not make sense to integrate all planning problems due to the different

time horizons of the resulting decisions. For example, integrating warehouse layout de-

cisions and order batching does not seem relevant as batching is a daily decision, while

layout is fixed in short and medium term.

Table 2.8 presents the current academic state-of-the-art of existing literature that com-

bines at least two planning problems (Section 2.1) and additionally integrates one or more

of the critical real-life features from Section 2.2. From the 71 articles in Section 2.1, only

32 articles integrate one of the identified real-life features. Note that resource constraints

form the main real-life feature, although the problem of defining how to fix the resource

capacity has been rarely investigated (Van Gils et al., 2017c; Kim et al., 2018). The table

shows a need to include real-life features in studies analysing and optimising order pick-

ing operations. Although, there is a trend towards integrating real-life features in recent

years, most real-life features have been either not analysed or only to a limited extent.

This PhD thesis goes beyond the current academic state-of-the-art by combining the

main order picking planning problems (i.e., zone location, storage location assignment,

order batching, picker routing, and job assignment) and additionally considering the large

majority of most common real-life features. Different approaches to combine planning

problems, provided by the literature review, are applied to a wide range of planning prob-

lems. Additionally, most of the identified real-life features are either incorporated when

combining planning problems or accounted for when providing new solution methods.

First in Part II, by means of an interaction analysis combinations of zone location, stor-

age, batching and routing policies are analysed and explained, thereby showing the rel-

evance and importance of incorporating high-level storage locations, safety constraints

and picker blocking. Second in Part III, workload related factors (i.e., resource constraints

and workload peaks) are analysed by providing two new solution methods to determine

the resource capacity as well as to balance the workload, thereby additionally account-

ing for order due times. Finally in Part IV, when the resource capacity is determined and
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TABLE 2.8: Academic state-of-the-art.
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High-level storage
Chan and Chan (2011) • •
Pan et al. (2014) • •

Scattered storage
-

Varying SKU properties
Dekker et al. (2004) • •

Human factors
Matusiak et al. (2017) • •

Precedence constraints
Matusiak et al. (2014) • •
Žulj et al. (2018a) • •

Safety constraints
Chabot et al. (2018) • •

Resource constraints
Ruben and Jacobs (1999) • • •
Yu and De Koster (2008) • • •
Yu and De Koster (2009) • •
Van Nieuwenhuyse and De Koster (2009) • • • •
Rubrico et al. (2011) • •
De Koster et al. (2012) • • •
Hong et al. (2012a) • • • •
Pan and Wu (2012) • • •
Heath et al. (2013) • • •
Henn (2015) • • • •
Chen et al. (2016) • •
Chen et al. (2017) • •
Franzke et al. (2017) • • •
Matusiak et al. (2017) • •
Menéndez et al. (2017) • •
Scholz et al. (2017) • • • •
Zhang et al. (2017) • •
Ardjmand et al. (2018) • • •
Hong (2018) • • •
Quader and Castillo-Villar (2018) • • • •

Due time constraints
-

Workload peaks
Bartholdi et al. (2001) • •
Yu and De Koster (2008) • • •
Koo (2009) • •
Hong et al. (2015) • •
Hong et al. (2016) • •
Hong and Kim (2017) • • •

Product returns
Schrotenboer et al. (2017) • •

Picker blocking
Hong et al. (2012a) • • • •
Pan and Wu (2012) • • •
Chen et al. (2016) • •
Chen et al. (2017) • •
Franzke et al. (2017) • • •

the workload is balanced, the three order picking planning problems with the shortest

time horizon of the resulting decision (i.e., batching, routing and job assignment) are in-

tegrated and optimised, thereby taking high-level storage locations, resource constraints
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and order due time constraints into account. Although the remaining real-life features

may be important as well for certain warehouses, the considered real-life features are the

most crucial and relevant for the different real-life cases included in this PhD research.

The considered real-life features have been proposed by warehouse managers and super-

visors as the most complex to account for in practice. In addition, generic explanations

with respect to the combined effect of planning problems on the order picking perfor-

mance and general insights into the consequences of real-life features are missing in cur-

rent academic literature.

39





P
A

R
T

II
INTERACTION ANALYSIS ON PLANNING

PROBLEM RELATIONS

41





C
H

A
P

T
E

R

3
INTERACTION ANALYSIS IN A WIDE-AISLE ORDER PICKING SYSTEMS

N
ew market developments force warehouses to increase the order picking effi-

ciency. One way to increase the efficiency is to combine multiple order picking

planning problems. While the number of publications dealing with one specific

order picking planning problem is extensive, only a limited number of researchers ex-

amine different planning problems simultaneously, even though the efficiency of differ-

ent order picking planning problems seems to be interdependent (Van Gils et al., 2018e;

Davarzani and Norrman, 2015). The effect of zone location and zone assignment in com-

bination with other order picking planning problems, such as storage location assign-

ment, order batching and picker routing, has received especially little research attention

as shown in the literature classification of previous chapter.

In this chapter1, zone location (and zone assignment), storage location assignment,

order batching, and picker routing are combined without considering real-life features.

As the effect of real-life features is expected to be limited in wide-aisle low-level order

picking systems, this order picking system is used to illustrate the effect of combining the

four order picking planning problems. An interaction analysis has proven to be suitable to

analyse relations among planning problems for which the time horizon of the decisions

is different. Therefore, several existing policies (i.e., solution methods) for each planning

problem are simulated and potential interactions among these planning problems are sta-

1This chapter is based on Van Gils, T., Braekers, K., Ramaekers, K., Depaire, B., Caris, A., 2016a. Improving
Order Picking Efficiency by Analyzing Combinations of Storage, Batching, Zoning, and Routing Policies. In: Paias,
A., Ruthmair, M., Voß, S. (Eds.), Lecture Notes in Computational Logistics. No. 9855 in Lecture Notes in Computer
Science. Springer International Publishing, pp. 427–442 and Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B.,
Caris, A., 2018c. Increasing Order Picking Efficiency by Integrating Storage, Batching, Zone Picking, and Routing
Policy Decisions. International Journal of Production Economics 197 (Part C), 243–261
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tistically investigated and explained in order to manage order picking operations more

efficiently. By combining these four tactical and operational order picking planning prob-

lems, we aim to fulfil three research objectives. First, based on a simulation study, we

aim to determine which planning problems are statistically significantly related and, con-

sequently, which planning problems should be considered simultaneously. Second, if a

relationship is significant, this study analyses why and how the individual planning prob-

lems of picker zoning (i.e., zone location and zone assignment), storage, batching, and

routing are related. Third, by analysing combinations of picker zoning, storage, batching,

and routing, we aim to identify excellent performing policy combinations in several prac-

tical situations in order to improve overall order picking performance. Results of the study

provide insights in how combining the four main order picking planning problems sup-

port new market developments (i.e., e-commerce and globalisation, increased customer

expectations, expensive industrial land, and high labour costs).

To the best of our knowledge, this study is the first that explicitly analyses and statis-

tically proves the relationships between zone location (and zone assignment), storage lo-

cation assignment, order batching, and picker routing. Simulation experiments show the

impact of combining order picking planning problems in a real-life warehouse as well as

for more generic warehouse designs, both wide-aisle low-level order picking systems. In-

sights into the interactions among the four main order picking planning problems are pro-

vided by performing a full factorial analysis of variance (ANOVA). Furthermore, the study

contributes to both practitioners and academia by explaining how the planning problems

are related and by formulating guidelines on which planning problem policies to combine

in order to improve order picking activities.

The remainder of the chapter is organised as follows. Section 3.1 is devoted to for-

mulating research hypotheses on how order picking planning problems are expected to

be related. Section 3.2 introduces the experimental design and the assumptions linked

to the case. The first two research objectives are fulfilled in Section 3.3 that provides the

empirical results. Section 3.4 discusses the managerial implications of this study and sum-

marises excellent performing policy combinations that help to improve the overall order

picking performance in several practical situations. Section 3.5 concludes the chapter.

3.1 Research Hypotheses

This section discusses literature combining picker zoning, storage, batching, and routing

planning problems in order to formulate research hypotheses on the relationship among

these order picking planning problems. Appendix B defines the four considered order

picking planning problems as well as multiple policies for each planning problem to or-

ganise operations in a manual order picking system. As zone location (including the num-
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ber of zones) and zone assignment are closely related, picker zoning refers to the combi-

nation of both problems in this chapter.

The majority of studies improving order picking operations focus on either picker zon-

ing (e.g., Ho and Lin (2017); Jane and Laih (2005); Petersen (2002)), storage (e.g., Guo et al.

(2016); Manzini et al. (2015); Yu et al. (2015)), batching (e.g., Gademann and Van De Velde

(2005); Muter and Öncan (2015)), or routing (e.g., Elbert et al. (2017); Scholz et al. (2016);

Theys et al. (2010)), assuming all other decisions being given. The reader is referred to

De Koster et al. (2007), Gu et al. (2007), and Boysen et al. (2018b) for an extensive overview

of publications optimizing a single order picking planning problem.

In accordance with the previous chapter, this section summarises studies analysing in-

teractions among the four tactical and operational order picking planning problems (i.e.,

picker zoning, storage, batching, and routing), with the aim of constructing hypotheses

on which interactions among planning problems are found to be significantly related. In-

teractions are defined as the joint effect that two or more planning problems have on a

performance goal, which can be investigated by considering multiple policies (i.e., solu-

tion methods or techniques for organizing a planning problem) for each planning prob-

lem and analysing the effect of these policies on the order picking performance (Van Gils

et al., 2018e). Table 3.1 gives an overview of studies analysing combinations of order pick-

ing planning problems, mainly using simulation. Based on the findings of the literature,

we formulate research hypotheses on the expected relationship among the four main or-

der picking planning problems. Note that the hypothesis construction is sorted from plan-

ning problems with the longest to the shortest time horizon of the resulting decision.

TABLE 3.1: Previous research combining operational order picking planning problems.

Significant relationship No significant relationship

Zoning–storage Petersen (2002) De Koster et al. (2012)
Zoning–batching Petersen (2000); Yu and De Koster (2009) -

Zoning–routing - -
Storage–batching Ho and Tseng (2006); Ho et al. (2008); Hsieh

and Tsai (2006); Petersen and Aase (2004);
Ruben and Jacobs (1999)

Chackelson et al. (2013)

Storage–routing Manzini et al. (2007); Petersen and Schmen-
ner (1999); Petersen and Aase (2004); Shqair
et al. (2014); Theys et al. (2010); Žulj et al.
(2018a)

Chackelson et al. (2013); Ho and Tseng
(2006); Ho et al. (2008); Quader and Castillo-
Villar (2018)

Batching–routing Chen et al. (2015); Cheng et al. (2015);
Chackelson et al. (2013); Kulak et al. (2012);
Petersen and Aase (2004); Scholz and
Wäscher (2017); Won and Olafson (2005)

Ho and Tseng (2006); Ho et al. (2008)

Picker zoning decisions in combination with other order picking planning problems

have received little research attention yet (Van Gils et al., 2018e), despite of its importance

in order picking system performance (Petersen, 2002). The relationship between zone

size and storage location assignment planning problems has been investigated, but stud-

ies show contradicting results about the significance of the relation between zone size and
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storage location assignment (De Koster et al., 2012; Petersen, 2002). As the size of the zone

defines the number of aisles within each pick zone, the zone size is expected to signifi-

cantly influence the efficiency of the storage location assignment. Furthermore, the joint

effect of zone assignment and storage location assignment has not been analysed so far.

Both zone assignment policies and storage location assignment policies impact the pick

densities in the order picking area. Consequently, the zone picking planning problem and

the storage location assignment planning problem are expected to be significantly related

(Hypothesis 3.1).

HYPOTHESIS 3.1 The joint effect of picker zoning and storage location assignment on order

picking performance is significant.

Just as the storage location assignment and picker zoning relation, research analysing

the relation between order batching and picker zoning is limited. By only comparing

whether or not to batch (FCFS batching) and varying the number of zones, the batching

and zoning problem are found to be interrelated (Petersen, 2000; Yu and De Koster, 2009).

In case more sophisticated batching policies are used, the effect of zoning on the order

picking performance is expected to reduce as these batching rules help order pickers to

avoid travelling throughout the entire order picking area. Furthermore, storage zone as-

signment as well as batching impact the density of picking activities and, consequently,

we expect the picker zoning and batching planning problem to be strongly interrelated as

stated in Hypothesis 3.2.

HYPOTHESIS 3.2 The joint effect of picker zoning and order batching on order picking per-

formance is significant.

The joint effect of the picker zoning and routing planning problems is currently un-

known (Van Gils et al., 2018e). As zoning decisions have substantial impact on the distri-

bution of pick density across the order picking area, and the efficiency of routing policies

is determined by the distribution of pick densities, we hypothesise that both planning

problems will be significantly related (Hypothesis 3.3).

HYPOTHESIS 3.3 The joint effect of picker zoning and picker routing on order picking per-

formance is significant.

Articles analysing the combination of storage location assignment and order batching

are rather consistent about the statistical significance of the storage and batching rela-

tion (Ho and Tseng, 2006; Ho et al., 2008; Hsieh and Tsai, 2006; Petersen and Aase, 2004).

The storage location assignment policy defines rules for assigning items to locations in

the order picking area. The batching policy should take these item location rules into ac-

count while creating batches in order to efficiently manage the batching planning prob-
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lem (Ruben and Jacobs, 1999). Therefore, Hypothesis 3.4 states that storage location as-

signment and order batching are related as the use of item location information while

batching orders is expected to result in significant performance benefits.

HYPOTHESIS 3.4 The joint effect of storage location assignment and order batching on order

picking performance is significant.

In contrast to the storage–batching interaction, publications investigating the relation

between storage location assignment and routing are less consistent about the signifi-

cance of the storage location assignment and routing relation. In a limited factorial set-

ting, in particular a limited number of analysed policies, storage location assignment and

routing are found to be unrelated (Chackelson et al., 2013; Ho and Tseng, 2006; Ho et al.,

2008). However, other articles do find a statistically significant interaction between the

storage and routing planning problems, both in single block warehouses (Manzini et al.,

2007; Petersen and Schmenner, 1999), and in multiple block warehouses (Shqair et al.,

2014; Theys et al., 2010). These studies take information about the location of fast moving

products into account while composing picker routes. Therefore, the efficiency of routing

policies is expected to be strongly depending on the applied storage location assignment

policy as indicated by Hypothesis 3.5.

HYPOTHESIS 3.5 The joint effect of storage location assignment and picker routing on order

picking performance is significant.

A large number of articles analysing the combination of batching and routing policies

reveal that these planning problems are unrelated (Ho and Tseng, 2006; Ho et al., 2008),

while other studies do find significant performance benefits by combining batching and

routing (Chackelson et al., 2013). Moreover, integrating the construction of routes while

creating batches results in considerable performance benefits compared to solving the

planning problems sequentially (Chen et al., 2015; Cheng et al., 2015; Kulak et al., 2012;

Won and Olafson, 2005). This can be explained by the fact that the performance of the

created batch is mainly defined by the length of the constructed route. Therefore, Hy-

pothesis 3.6 states that a significant interaction exists between the batching and routing

planning problems.

HYPOTHESIS 3.6 The joint effect of order batching and picker routing on order picking per-

formance is significant.

In summary, several articles analysed storage-batching, storage-routing and batching-

routing. Whether interactions among these three planning problems exist or not, depends

on the number of analysed policies for each planning problem, as well as which policies
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have been evaluated. Most articles of Table 3.1 are limited to analysing two or three poli-

cies for each planning problem. Furthermore, research evaluating the effect of picker zon-

ing on other order picking planning problems is scarce. To the best of our knowledge, this

study is the first to analyse the interaction among the four main order picking planning

problems. In order to evaluate the contradicting findings, a wide range of policies for each

planning problem are included in the simulation experiments. Additionally, the effect of

the number of zones and the zone assignment in relation with storage location assign-

ment, order batching, and picker routing on the order picking efficiency is analysed for

the first time.

3.2 Methodology for Empirical Study

This section outlines the research methodology used to achieve the objectives of this

study. The general approach is presented in Section 3.2.1. Sections 3.2.2 and 3.2.3 de-

scribe the business case and the operational measures. The experimental design and data

generation are outlined in Sections 3.2.4 and 3.2.5. Section 3.2.6 describes the statisti-

cal analysis used to provide insights into the relationships among order picking planning

problems.

3.2.1 General Approach

An interaction analysis with simulation and comprehensive statistical tests is performed

to test our research hypotheses. Interactions are defined as the combined effect that mul-

tiple planning problems have on a performance goal. An interaction analysis is considered

to be especially useful if the time horizon of the resulting decisions is different (Van Gils

et al., 2018e). Although picker zoning, storage location assignment, batching, and picker

routing are all tactical or operational planning problems, the time horizons of the resulting

decisions differ. Batches and routes are created multiple times per hour, while decisions

on picker zoning and storage assignment have a longer time horizon.

Using simulation as modelling method allows to include the stochastic elements of

order generation and assignment of SKUs to pick zones and storage locations. Although

analytical-based modelling methods are faster and can provide accurate performance es-

timates (Schleyer and Gue, 2012), they are usually subject to assumptions that simplify the

real system (Azadeh et al., 2018). Simulation can accurately present the four order pick-

ing problems (Chen et al., 2010; Manzini et al., 2007). Monte Carlo simulation is adequate

for calculating travel distances in wide-aisle order picking systems (Petersen and Aase,

2004). Results of the simulation are statistically analysed to evaluate the policy decisions

covered in the research hypotheses. Simulation experiments allow us to include the nec-

essary stochastic elements needed to generalise the results (i.e., unsystematic variation),
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while in the meantime controlling stochasticity when varying the operational policies of

the four planning problems (i.e., systematic variation). Unsystematic variation is included

by the stochastic elements of order generation and assignment of SKUs to pick zones and

individual storage locations, while varying planning problem policies induce systematic

variation in the experiments of this study.

3.2.2 Case Study

Real-life data of a large warehouse located in Belgium are used to show the practical rele-

vance of combining picker zoning, storage, batching, and routing policy decisions. The

warehouse stores approximately 90,000 SKUs on a surface of 30,000 square meter. All

stored SKUs are rather homogeneous with respect to volume and weight, implicating that

the sequence in which SKUs are retrieved from the storage locations is not restricted and

all storage locations are equally sized. The warehouse delivers four customer types: each

SKU belongs to a single customer type and orders consist of SKUs of a single customer

type.

FIGURE 3.1: Warehouse layout.

The warehouse part under consideration is a new building. The layout is shown in

Figure 3.1. The traditional multiple-block warehouse layout is frequently used in practice

(Roodbergen, 2012), making results of the study easily transferable to other warehouses.
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Furthermore, cross-aisles (denoted by e) have proven to result in significant efficiency

benefits (Roodbergen and De Koster, 2001a). The order picking area is divided into two

warehouse blocks, each consisting of sixteen pick aisles (denoted by m). The pick aisles

are two-sided and wide enough for two-way travel. However, crossing the aisle is required

in order to pick items from both sides of the same aisle, as the aisle width is 2.7 m. The

warehouse block configuration is shown in Figure 3.1. The depot is marked with a D in

the figure. The dimensions of the warehouse are provided in Table 3.2.

TABLE 3.2: Layout parameters of the wide-aisle order picking system.

Warehouse parameter Parameter value

Depot location D single decentralised depot
Number of blocks E −1 2 blocks
Number of cross-aisles E 3 cross-aisles
Number of pick aisles M 16 pick aisles per block
Number of storage rack sections

West warehouse block L1 40 storage rack sections per pick aisle
East warehouse block L1 30 storage rack sections per pick aisle

Number of levels J 1 levels per storage rack
Storage rack section length ll eng th 1.0 m
Storage rack section depth ldepth 1.0 m
Pick aisle width mwi d th 2.7 m
Cross-aisle width ewi d th 4.0 m

The warehouse is fully manually operated, consisting of a single pick zone. Prod-

ucts are currently assigned randomly to the storage locations. Customer orders are trans-

formed into pick lists according to the FCFS rule. A sort-while-pick strategy is used, main-

taining order integrity, so that no downstream sorting is required. As the picking vehicle

can transport 26 boxes, the batch capacity is fixed at 26 customer orders per pick round in

order to prevent the need of a downstream sorter. Order pickers follow the aisle-by-aisle

routing policy to retrieve all items on the pick list. Each picking tour starts and ends at the

decentralised depot. The depot is marked as D in the top left corner of Figure 3.1. Pick-

ing vehicles travel at one side of a pick aisle and the pick aisle width is taken into account

when the picker should retrieve SKUs from both sides of the pick aisle. The policy combi-

nation of a single zone, random storage, FCFS order batching, and aisle-by-aisle routing

is used as benchmark in order to evaluate other storage, batching, zoning, and routing

policies. This simple policy combination has been applied by the warehouse to ensure a

smooth transition of integrating this new warehouse part in the current operations. After

the implementation phase, choosing the optimal combination of different order picking

policies is crucial for warehouse managers in order to improve the overall order picking

performance and consequently improving the service to customers.
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3.2.3 Operational Measures

In order to handle the large number of orders in short time intervals, the efficiency of or-

der picking operations needs to be improved. Manual order picking is characterised by

the large number of time consuming activities: setup time, search time, retrieve time, and

travelling to, from, and between pick locations. These four time components account for

95% of the total order pick time (Tompkins et al., 2010). The simulated order picking poli-

cies are evaluated with respect to the setup activity, the search activity, as well as travelling

of order pickers. Travelling is the most substantial time consuming activity (50%). Search-

ing and setup account for 20% and 10% of the total order pick time, respectively. The time

spent on retrieving items (15%) at storage locations is assumed to be independent of the

applied zoning, storage, batching, and routing policy.

Minimizing total order pick time is a convenient way for evaluating a non-dynamic or-

der picking system in which orders are assumed to be known at the beginning of the plan-

ning period (Petersen and Aase, 2004; Quader and Castillo-Villar, 2018). In a dynamic or-

der picking system, order throughput time is more convenient to evaluate performances.

As in our case a non-dynamic order picking system is assumed and both performance

measures are highly correlated, total order pick time is minimised in this study as this

mostly results in the smallest order throughput time as well (Giannikas et al., 2017).

The setup activity refers to the time consumed by administrative and setup tasks at

the beginning and end of each pick round. The setup time is assumed to be proportional

to the number of pick rounds. Searching is defined as the time to identify the storage

locations and identification of SKUs. The search time is approximated by evaluating the

number of locations that should be visited to retrieve all orders. Remark that the number

of locations may be smaller than the number of order lines in a pick round as order lines

of different orders can contain the same SKU and thus the same storage location. Finally,

the average travel speed in both cross-aisles and pick aisles is assumed to be equal. Given

a constant travel velocity, minimizing the distance travelled by order pickers is equivalent

to minimizing the average travel time of order pickers. Order pickers are assumed to be

able to traverse aisles in both directions and to be able to change direction within aisles.

Pick aisles are assumed to be wide enough to allow order pickers to pass each other within

aisles, preventing wait times as a result of aisle congestion.

3.2.4 Experimental Design

First, the experimental design of the simulation experiments in the real-life warehouse is

discussed (Section 3.2.4.1). In order to validate and generalise the results of the case study,

the Section 3.2.4.2 describes a second experimental factor setting that is used in addition

to the experiments of the real-life case (i.e., generalised experimental design).
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3.2.4.1 Experimental Design of Real-life Case Study

In the experiments of the wide-aisle real-life order picking system, a wide range of policies

is evaluated: five picker zoning policies, five storage location assignment policies, three

order batching policies, as well as five routing policies are analysed. The four factors and

their associated factor levels of the real-life case are summarised in Table 3.3. The base-

line scenario of this experiment, indicated in italic in Table 3.3, corresponds to the current

operation of the warehouse. In the simulation experiments, policies that are widely used

in practice (e.g., FCFS batching, traversal routing), as well as policies that have often been

considered in academic literature (e.g., savings batching algorithms, largest gap and opti-

mal routing) are tested and evaluated. Due to technological or practical constraints, such

as the effects of maverick picking (i.e., pickers deviate from the proposed optimal route)

(Glock et al., 2017), warehouses are not able to apply the complex policies provided by

academics (Chen et al., 2010). Section 3.4 returns to this point by providing policy combi-

nations that are able to improve the overall picking performance under different techno-

logical and practical constraints.

TABLE 3.3: Experimental factor setting of the real-life case.

Factor Factor levels

Picker zoning policy (1) 1 zone
(2) 2 zones & customer type (CT) zone assignment
(3) 2 zones & pick frequency (PF) zone assignment
(4) 4 zones (CT)
(5) 4 zones (PF)

Storage location assignment policy (1) Random
(2) Within-aisle
(3) Across-aisle
(4) Diagonal
(5) Perimeter

Order batching policy (1) FCFS
(2) Seed
(3) Saving

Picker routing policy (1) Aisle-by-aisle
(2) Traversal
(3) Return
(4) Largest gap
(5) Optimal (approximated by LKH)

The order picking area consisting of a single zone is compared to four picker zoning

policies. Both the number of zones as well as the storage zone assignment policy should

be determined in case of zone picking. In the simulation experiments, the warehouse is

divided into either two or four pick zones, and SKUs are assigned to pick zones based on

customer type (CT) or pick frequency (PF). This setting results in four additional picker

zoning policies. The location of the zones is provided in Table 3.4.

Besides randomly assigning SKUs to storage locations, four turnover-based storage

location assignment policies are simulated, in particular across-aisle assignment, within-

aisle assignment, diagonal assignment and assigning SKUs across the perimeter of the
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TABLE 3.4: Location of picker zoning policies.

# zones (picker zoning policy) Zone 1 Zone 2 Zone 3 Zone 4

1 zone (1) 1-32 - - -
2 zones (2)-(3) 1-16 17-32 - -
4 zones (4)-(5) 1-8 9-16 17-24 25-32

order picking area. The turnover-based policies consists of three product classes: class A

stores the fast moving SKUs, class B represents the moderate ordered SKUs and class C

stores slow moving SKUs. Within each product class each SKU is randomly assigned to a

single storage location. The location of the product classes is shown on Figure 3.2. In case

multiple zones are combined with a turnover-based storage location assignment policy,

the location of storage classes in each pick zone is similar to the location of storage classes

in a single pick zone as shown on Figure 3.2.

(A) Random. (B) Within-aisle. (C) Across-aisle.

(D) Diagonal. (E) Perimeter.

FIGURE 3.2: Storage location assignment policies.

The currently used FCFS batching policy actually results in a random creation of pick

lists in terms of travel distance, as FCFS batching does not take the location of SKUs in the
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order picking area into account. A seed order batching algorithm is used as an alternative

to create batches. The order that requires the smallest number of pick aisles to visit, is

selected as seed order. Next, the order that minimises the number of additional pick aisles

to visit in the route is added to the pick list. This algorithm is repeated until the batch

contains 26 orders. Subsequently, a new seed order is selected. The cumulative variant

of the seed selection rule is simulated, where the number of aisles that should be visited

in a batch is renewed every time an order has been added to a batch. The combination

of this seed order selection rule and this accompanying order selection rule has yielded

good results for different storage location assignment and routing policies in previous re-

search (De Koster et al., 1999; Ho and Tseng, 2006; Ho et al., 2008). Both FCFS and the seed

algorithm are often used in practice because of their simplicity. Additionally, a more so-

phisticated savings algorithm is tested to compose batches. Savings algorithms are based

on the algorithm of Clarke and Wright (1964) for the vehicle routing problem. Pick orders

are composed based on the distance saving that can be obtained by combining two or

more customer orders into a single pick round. Due to computing time limitations, the

basic variant of Clarke-and-Wright, denoted by C&W(i), is analysed in the simulation ex-

periments: the savings matrix is calculated only once, the savings are sorted in decreasing

order, and orders are combined in a batch if the batch capacity constraint is not violated

by combining both orders. In case both orders have been assigned to a batch, the C&W(i)

algorithm tries to combine both batches. Other Clarke-and-Wright algorithm variants re-

sult in strong increasing computing times and only minor improvements (De Koster et al.,

1999).

In addition to the aisle-by-aisle routing heuristic, the travel distance for return, traver-

sal, largest gap, and the optimal route is computed. Examples of the four dedicated rout-

ing heuristics are shown on Figure 3.3. As the routing problem cannot be solved to opti-

mality for a multiple-block warehouse in reasonable computing times, the Lin-Kernighan-

Helsgaun (LKH) heuristic for the travelling salesman problem (TSP) is used to approxi-

mate the optimal route (Helsgaun, 2000). The LKH heuristic has shown to provide excel-

lent results, both in a general TSP context, and in the context of routing order pickers in

a warehouse. Theys et al. (2010) reported an average optimality gap of 0.1 % for different

warehouse settings.

To sum up, the simulation experiment consists of 375 possible combinations of poli-

cies (i.e., five picker zoning policies × five storage location assignment policies × three

order batching policies × five routing policies). The factorial setting results in a 5×5×3×5

full factorial design.
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(A) Aisle-by-aisle. (B) Traversal. (C) Return.

(D) Largest gap. (E) Optimal.

FIGURE 3.3: Picker routing policies.

3.2.4.2 Generalised Experimental Design

In order to validate the conclusions of the case study, the simulation experiment of the

real-life warehouse is enlarged to other warehouse settings. As the real-life case study is

dedicated to a single warehouse setting, findings should be validated to generalise the

conclusions of this study to other warehouse settings. Validation is performed by test-

ing and analysing the research hypotheses for more generic warehouse designs. In this

way, findings and explanations on the relationships among order picking planning prob-

lems can be used to identify generally well performing policy combinations and formu-

late general conclusions. Three additional factors that are frequently used in literature to

validate new solution methods, will be used to generalise the conclusions of the real-life

case: a varying warehouse layout (Petersen, 2002; Theys et al., 2010), a varying order size

(De Koster et al., 2012; Petersen, 2002; Theys et al., 2010), and a varying batch capacity

(Manzini et al., 2007; Yu and De Koster, 2009). Each of the additional factors consists of

three factor levels. Other factors and assumptions formulated in the previous section are
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similar to the case study.

Compared to the case study (i.e., 32 pick aisles), the warehouse is enlarged to 64 pick

aisles and 96 pick aisles. Additionally a more general order picking layout is simulated: the

two unequal warehouse blocks are replaced by two equal warehouse blocks in correspon-

dence with the traditional warehouse layouts used in academic literature (Roodbergen

and De Koster, 2001a; Roodbergen, 2012; Shqair et al., 2014; Theys et al., 2010). Further-

more, order sizes are exponentially distributed with a mean of one, three, and five order

lines. Finally, the batch capacity factor is set to 10 orders, 25 orders, and 40 orders. Ta-

ble 3.5 summarises the experimental factor setting of the generalised case.

TABLE 3.5: Experimental factor setting of the generalised case.

Factor Factor levels

Picker zoning policy (1) 1 zone
(2) 2 zones (CT)
(3) 2 zones (PF)
(4) 4 zones (CT)
(5) 4 zones (PF)

Storage location assignment policy (1) Random
(2) Within-aisle
(3) Across-aisle
(4) Diagonal
(5) Perimeter

Order batching policy (1) FCFS
(2) Seed
(3) Saving

Routing policy (1) Aisle-by-aisle
(2) Traversal
(3) Return
(4) Largest gap
(5) Optimal (approximated by LKH)

Warehouse layout (1) 32 aisles
(2) 64 aisles
(3) 96 aisles

Order size (1) 1 order line
(2) 3 order lines
(3) 5 order lines

Batch capacity (1) 10 orders
(2) 25 orders
(3) 40 orders

To sum up, the simulation experiment of the generalised case consists of 10,125 possi-

ble combinations of policies (i.e., five picker zoning policies × five storage location assign-

ment policies × three order batching policies × five routing policies × three warehouse

layout levels × three order size levels × three batch capacity levels). The factorial setting

results in a 5×5×3×5×3×3×3 full factorial design.

3.2.5 Data generation

All combinations of picker zoning, storage, batching, and routing are tested on the same

1,690 randomly generated orders (i.e., 65 pick lists × 26 orders in each batch). The order

size and composition of these 1,690 orders is based on the historical composition of more
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than 15,000 orders. Order sizes are exponentially distributed with a mean of 2.65 order

lines and more frequently ordered SKUs have a higher probability to be generated as order

line.

The performance of the combination of the four planning problems is evaluated using

the same randomly generated order list. With respect to the real-life case study, the 375

possible combinations of zoning, storage, batching, and routing policies are tested on the

same list of 1,690 customer orders. In this way, the variation in the results among the four

planning problem factors is only systematic variation as a result of a revised operational

policy. This systematic variation allows us to control the policy decisions covered in the

research hypotheses. To induce unsystematic variation, thirty lists of customer orders are

randomly created for the experimental design of the real-life case to reduce the stochastic

effect from order generation.

By varying the warehouse layout, mean order size, and batch capacity, additional un-

systematic variation is induced in the experiments by generating new lists of orders for

each of these factor levels. In total, 30×3×3×3 lists of orders are generated for the ex-

perimental design of the generalised case (each list consisting of 1,690 orders) and tested

with respect to the policies of the four planning problems. These unsystematic variation

allows us to easily generalise the conclusions of the experiments to other warehouses.

Note that customer orders are generated based on the real-life case data instead of

using existing historical order data. The generation of new order lists prevents results

that are only applicable to a particular order list. It enables us to broaden experiments to

contexts other than the real-life case, making conclusions easily generalizable to a wide

range of warehouses.

3.2.6 Statistical analysis

The results of the simulation experiments provide the required data for performing the

statistical tests that evaluate the research hypotheses formulated in Section 3.1. To test

whether or not a relationship is statistically significant, an analysis of variance (ANOVA)

is performed, both on travel distance (i.e., distance for picking 1,690 orders in a single

replication), number of pick rounds (per replication), and number of visited locations (per

replication). Although multiple independent ANOVAs are performed which may justify

performing a multivariate analysis of variance (MANOVA), we want to explain the effect of

planning problem decisions on each of the performance measures. In this case, multiple

ANOVAs pertained to individual performance measures meet the research objectives of

this study (Huberty and Morris, 1989). ANOVA tests are subject to independency, variance,

and normality assumptions (Altarazi and Ammouri, 2018) as discussed below.

The empirical study consists of a full factorial design with a mixture of between-

groups (only in the generalised experimental design) and repeated-measures factors. The
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between-groups factors consist of the three independent factors (i.e., warehouse layout,

order size and batch capacity), while the repeated-measures factors correspond to the

picker zoning, storage, batching, and routing factors. This mixed factorial design requires

a mixed model ANOVA (Petersen, 1997), at least for the generalised experimental design.

The experiments of the real-life case require a simple repeated measures design as the

experimental design consists of only repeated-measures factors.

The assumption of homogeneity of variance with respect to the between-groups fac-

tors, and sphericity (i.e., variances of the differences between results from a single order

list are equal) of repeated-measures factors are likely to be violated as we expect certain

factor level combinations to be more strongly varying. For example, when a picker covers

a smaller area (e.g., increasing the number of zones), the effect of routing policies on travel

is likely to be much smaller compared to the effect of these policies in a single pick zone.

Due to the large number of tested factor combinations, sphericity and homogeneous vari-

ances are rather unlikely. ANOVA F statistics are quite robust to violations in homogeneity

of variance when group sizes are equal (as in this study). However, violating the sphericity

assumption increases the probability that a genuine effect is shown, while in reality, there

is no effect. The degrees of freedom are adjusted by the conservative Greenhouse-Geisser

(G-G) correction to compensate for this increased Type I error rate (Geisser et al., 1958).

The last ANOVA assumption is normality. The F statistic controls the Type I error rate

well under conditions of non-normality (Glass et al., 1972), especially when the degrees

of freedom are sufficiently large (at least 20) and group sizes are equal (Field, 2013). To

ensure these conditions, the simulation is replicated 30 times to ensure sufficient degrees

of freedom. Moreover, the experimental design is balanced, meaning that group sizes are

equal. These elements prevent negative effects of non-normality, making robust checks,

such as bootstrapping, redundant in this context.

With respect to the relationhips among planning problems that can be confirmed by

ANOVA, interaction plots and post hoc tests provide insights into the direction of the rela-

tion (i.e., increasing or decreasing marginal effect) and allows us to explain why relation-

ships among the four order picking planning problems exist. A post hoc test is performed

to compare the performance of policies. The Dunnett’s correction of the significance level

is used to ensure the overall Type I error rate across all comparisons remains at 0.05. When

evaluating multiple hypotheses, Dunnett’s correction approach (as well as for example

Bonferroni) is robust in terms of power and control of the Type I error rate (Field, 2013).

Post hoc tests are performed for each combination of two planning problems; all policies

of the first planning problem are evaluated for each policy of the second planning prob-

lem. In this way, the test results create subsets of policies for which the performance is

not statistically significantly different. If two policies (e.g., return and midpoint routing)

are listed in the same subset, differences between the respective policies fail to be statis-
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tically significant. In case of a statistically significant interaction between two planning

problems, the post hoc tests will likely create varying subsets for each policy of the second

planning problem.

3.3 Empirical Results

In order to get a first insight into the results of the simulation experiments, the perfor-

mance measures of the different factor combinations are analysed by a full factorial re-

peated measures ANOVA on average travel distance, average number of pick rounds and

average number of visited locations. The results of the ANOVA are presented in the next

sections as follows: first, Section 3.3.1 fulfils the first two research objectives of this study:

results of the real-life warehouse simulation are analysed to test the research hypotheses

and to explain why and how the individual planning problems of zoning, storage, batch-

ing, and routing are related. The conclusions of the real-life case study are validated and

generalised to other warehouses by analysing the simulation results of the generalised

case in Section 3.3.2.

3.3.1 Results of Real-life Case Study

In the simulation experiments of the real-life warehouse, a balanced 5×3×5×5 full facto-

rial repeated measures ANOVA, with zoning, storage, batching, and routing as the within-

subjects factors, is used to prove the value of combining the four order picking planning

problems. The results of the repeated measures ANOVA on average travel distance, num-

ber of pick rounds, and number of visited locations are shown in Tables 3.6, 3.7, and 3.8,

respectively. The first three columns show the sum of squares, the G-G degrees of free-

dom (df) and the resulting mean square for the main and interactions effects, as well as

for the residuals. The last two columns are devoted to the F statistic and the p-value for

testing the statistical significance of zoning, storage, batching, and routing, as well as the

interactions among the four planning problems.

Tables 3.6, 3.7, and 3.8 indicate that the main effects of picker zoning, storage location

assignment, order batching, and routing are statistically significant with respect to the

three performance measures. This means that there is a significant difference between

the five zoning policies, the five storage location policies, the three order batching poli-

cies, as well as the five different routing policies on the average distance travelled by order

pickers, the average number of pick rounds, and the number of visited storage locations.

The decision on which storage, which batching, which zoning, and which routing policy

to use does influence the order picking performance.

Furthermore, Tables 3.6, 3.7, and 3.8 show that all factors in the simulation experiment

are significantly interacting with each other with respect to each of the three performance
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TABLE 3.6: 5×3×5×5 full factorial repeated measures ANOVA on average travel distance.

Sum of squares df Mean square F p-value

Main effects
Zoning 303,589,976,898 2.40 126,491,824,693 51,642.26 0.000
Storage 28,565,916,920 3.00 9,528,113,270 19,512.62 0.000
Batching 421,484,570,256 1.81 232,630,801,415 502,015.57 0.000
Routing 52,259,090,330 3.14 14,663,524,503 94,142.19 0.000
Two-way interaction
Zoning × storage 17,292,769,630 7.76 2,228,256,294 3,812.92 0.000
Zoning × batching 50,034,223,170 5.25 9,529,532,547 23,747.10 0.000
Zoning × routing 7,651,407,057 4.14 1,848,894,174 5,230.31 0.000
Storage × batching 2,115,987,384 6.16 343,569,720 2,357.78 0.000
Storage × routing 9,970,923,340 6.92 1,440,588,668 8,359.33 0.000
Batching × routing 6,756,931,911 3.27 2,065,561,184 13,980.56 0.000
Residuals
Between subjects 1,652,597 29.00 56,986
Within zoning 146,767,923 72.54 2,023,312
Within storage 42,455,169 86.94 488,305
Within batching 24,347,955 52.54 463,394
Within routing 16,098,134 91.03 176,850
Within zoning × storage 137,355,065 219.48 625,831
Within zoning × batching 61,101,886 152.26 401,293
Within zoning × routing 42,424,016 120.01 353,496
Within storage × batching 26,026,054 178.61 145,718
Within storage × routing 34,590,906 200.72 172,333
Within batching × routing 14,015,963 94.87 147,745

Total 900,342,164,257 1,338.72

TABLE 3.7: 5×3×5×5 full factorial repeated measures ANOVA on average number of pick
rounds.

Sum of squares df Mean square F p-value

Main effects
Zoning 1,367,788.93 2.56 533,355.21 13,804.38 0.000
Storage 2.51 3.40 0.74 26.95 0.000
Batching 28.87 1.00 28.87 201.96 0.000
Routing 6.7 2.96 2.26 53.87 0.000
Two-way interaction
Zoning × storage 1.85 8.70 0.21 4.64 0.000
Zoning × batching 14.26 2.14 6.65 21.48 0.000
Zoning × routing 7.05 5.90 1.19 13.72 0.000
Storage × batching 5.02 3.40 1.47 26.95 0.000
Storage × routing 5.77 7.84 0.74 14.26 0.000
Batching × routing 13.40 2.96 4.53 53.87 0.000
Residuals
Between subjects 2,305 29.00 0.08
Within zoning 2,873.43 74.37 38.64
Within storage 2.70 98.70 0.03
Within batching 4.15 29.00 0.14
Within routing 3.61 85.83 0.04
Within zoning × storage 11.60 252.33 0.05
Within zoning × batching 19.25 62.16 0.31
Within zoning × routing 14.91 171.19 0.09
Within storage × batching 5.40 98.70 0.05
Within storage × routing 11.74 227.34 0.05
Within batching × routing 7.21 85.83 0.08

Total 1,373,133.36 1,255.32

measures. As three out of the four factors in the experiment contain five levels, the 30

replications give rise to a large number of observations. Null hypotheses are much easier
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TABLE 3.8: 5×3×5×5 full factorial repeated measures ANOVA on average number of vis-
ited locations.

Sum of squares df Mean square F p-value

Main effects
Zoning 538,617,997 2.82 190,785,132 14,516.94 0.000
Storage 19,857,165 3.44 5,774,199 2,801.40 0.000
Batching 1,606,293,435 1.21 1,322,451,977 50,892.63 0.000
Routing 2,556,886 3.22 794,644 4,689.53 0.000
Two-way interaction
Zoning × storage 3,731,458 9.12 409,260 121.47 0.000
Zoning × batching 68,883,249 4.69 14,672,337 2,622.27 0.000
Zoning × routing 446,489 9.96 44,835 202.84 0.000
Storage × batching 16,008,512 5.31 3,013,365 1,803.96 0.000
Storage × routing 140,542 10.08 13,945 57.63 0.000
Batching × routing 5,113,772 3.22 1,589,288 4,689.53 0.000
Residuals
Between subjects 80,942 29.00 2,791
Within storage 205,561 99.73 2,061
Within batching 915,309 35.22 25.985
Within zoning 1,075,979 74.10 14,520
Within routing 15,812 93.31 169
Within storage × batching 257,349 154.06 1,670
Within storage × zoning 890,827 264.41 3,369
Within storage × routing 70,719 292.27 242
Within batching × zoning 761,788 136.15 5,595
Within batching × routing 31,624 93.31 339
Within zoning × routing 63,836 288.79 221

Total 2,266,019,250 1,613.17

rejected with a large number of factor levels and a large number of observations because

of a greater probability that one of the factor levels is interacting with another factor level

(Field, 2013). However, the ANOVA shows strong statistically significant effects, at least

with respect to the travel distance, and for some interactions regarding the number of

visited locations (e.g., zoning-batching, storage-batching, and batching-routing).

The next six paragraphs are devoted to explaining and discussing why planning prob-

lems are related. As ANOVA results show that interaction terms are most strong in terms

of travel distance and travelling is the most time consuming activity, each combination

of planning problems is discussed with respect to the distance travelled by order pick-

ers. As differences in number of pick rounds are too small to be relevant in practice, this

performance measure does not contribute to the discussion on why planning problems

are related. For example, the maximum difference in number of pick rounds between the

combinations of storage and batching policies is only 0.16 pick rounds. The number of

pick rounds only slightly increase in case of a savings batching policy (i.e., batches are

created in parallel and not necessarily filled to capacity), or increase significantly in case

of increasing the number of zones (i.e., batch capacity is expressed as number of orders).

Consequently, the main effects on number of pick rounds are relevant, but interactions

among planning problems with respect to the number of pick rounds are not relevant in

practice and thus not discussed throughout the next sections. The performance measure

’number of visited locations’ is discussed only for combinations that show substantial dif-
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ferences (i.e., zoning-batching, storage-batching, and batching-routing).

Zoning and Storage The order picking system’s performance is expected to be signif-

icantly influenced by the combined effect of picker zoning and storage location assign-

ment. Table 3.6 shows that the two-way interaction is statistically significant with respect

to the travel distance. In the context of the two other performance measures, the joint

effect of picker zoning and storage location assignment on order picking performance is

statistically significant as well. Thus, Hypothesis 3.1 is supported by the ANOVA results.

However, variations are practically irrelevant with respect to the number of pick rounds

and the number of visited locations. The next paragraphs focus on explaining why the

interaction between picker zoning and storage location assignment is statistically signifi-

cant with respect to the travel distance.

FIGURE 3.4: Multiple Dunnett’s t-test (familywise error rate = 0.01) for storage policies by
zoning policies (travel distance in m).

Results of the post hoc tests, shown in Figure 3.4, explain why picker zoning and stor-

age location assignment are strongly related. If two order picking policies are listed in

the same subset in Figure 3.4, differences fail to be statistically significant. In case of

assigning SKUs to pick zones based on the pick frequency, the applied storage location

assignment policy seems to be irrelevant. A single subset containing all storage policies

is created in case of pick frequency assignment of SKUs to pick zones, indicating that the

travel distance is not statistically significantly different for each of the five storage policies.

Products assigned to each pick zone are characterised by a similar demand. If demand is

distributed uniformly, turnover-based storage location assignment policies are not able

to reduce picker travelling compared to randomly assigning products to storage locations.

This effect is illustrated on Figure 3.5a by the rather flat line for 2 zones (PF) and 4 zones

(PF).

The single zone, as well as the customer type assignment of SKUs to zones (2 zones

(CT) and 4 zones (CT)) result in the same composition of subsets. Within-aisle storage

and diagonal storage outperform other storage assignment policies with respect to travel

distance. The example shown in Figure 3.5 further illustrates why the statistically signif-

icant interaction exists: the effect of different storage location assignment policies is not
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(A) Zoning–storage interaction. (B) Storage–zoning interaction.

FIGURE 3.5: Average travel distance (in meters) for each combination of zoning and stor-
age policy.

consistent over all levels of zoning. By dividing the warehouse into pick zones, the effect

of shifting to a more efficient storage policy on the route length is reduced compared to

the single pick zone. The reason for this significant interaction term can be found in the

smaller area that is crossed by order pickers to retrieve all items on the pick list in case of

two or four pick zones, as well as in case of turnover-based storage location assignment.

Zoning policies as well as storage policies aim to increase the density of SKUs retrieved

in each aisle. Consequently, the performance impact resulting from changing the storage

policy is far greater in combination with a single zone, compared to other picker zoning

policies. Thus, decreasing the zone size by increasing the number of zones diminishes the

efficiency benefits resulting from turnover-based storage as order pickers are limited to a

small pick area. Dividing the order picking area into more than four zones may adversely

affect the order picking efficiency in the case study. If the number of zones exceeds the

number of customer types, sorting operations increase and more order picking routes are

composed. Order pickers are operating at less than full capacity, especially for unpopular

zones. Since orders should be picked before due dates, pick lists are released before the

capacity has been reached.

Zoning and Batching ANOVA results of Tables 3.6, 3.7 and 3.8 support Hypothesis 3.2

that picker zoning and order batching planning problems are strongly related. The joint

effect on the number of pick rounds is not discussed due to the lack of practical signifi-
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cance of the observed differences among the policy combinations. Especially with respect

to the distance travelled by order pickers to retrieve all items, Table 3.6 shows a strong two-

way interaction between picker zoning and order batching.

(A) Travel distance (in m). (B) # visited locations.

FIGURE 3.6: Multiple Dunnett’s t-test (familywise error rate = 0.01) for batching policies
by zoning policies.

The post hoc test, shown in Figure 3.6, creates three identical subsets for each picker

zoning policy. All five picker zoning policies result in the same composition of subsets.

The three batching policies result in statistically significantly different performances, in

terms of both travel distance and number of visited locations. The seed batching policy

yields the shortest routes, while the C&W(i) savings algorithm scores better on ’number

of visited locations’ by combining more orders that should visit identical storage locations

on the created pick lists. Differences between the seed and savings batching policy with

respect to the number of visited locations are minor in practice, except for the pick fre-

quency assignment of SKUs to pick zones (i.e., 2 zones (PF) and 4 zones (PF)). The num-

ber of visited locations decreases in combination with the savings batching policy. Orders

within each zone are smaller, because the pick frequency zone assignment results in split-

ting orders across zones. So, within each pick zone, the small orders are more likely to be

identical in terms of visited locations. These orders are combined more likely by the C&W

batching algorithm. Therefore, the number of visited locations strongly decreases while

combining the savings batching algorithm with the pick frequency zone assignment.

Figure 3.7 further explains the relationship between picker zoning and order batching.

Lines on the graph strongly converge when changing from a straightforward FCFS batch-

ing policy to more complex batching policies. The efficiency benefits resulting from zon-

ing decrease in combination with smart batching algorithms compared to FCFS batching.

SKUs on the pick list are diffused over the entire order picking area in case of a single zone

and FCFS batching. Batching policies resulting in short travel distances reduce the effect

of zoning (e.g., varying picker zoning policies show small route length differences in com-

bination with seed batching). Moreover, increasing the number of zones, resulting in a

smaller order picking area, reduces the effect of batching algorithms (e.g., the savings al-

gorithm approximates the seed batching travel distance in combination with four zones).
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This can be explained by the fact that both batching and zoning aim to reduce the pick

area during each pick round by combining equivalent orders and splitting the pick area,

respectively.

(A) Zoning–batching interaction. (B) Batching–zoning interaction.

FIGURE 3.7: Average travel distance (in meters) for each combination of zoning and batch-
ing policy.

Zoning and Routing This paragraph analyses the currently unknown effect of combin-

ing the picker zoning and routing planning problems. Hypothesis 3.3, that expects the

joint effect of zoning and routing to be related, is tested using the full factorial repeated

measures ANOVA on mean travel distance, the average number of pick rounds and the

average number of visited locations. Based on the results shown in Tables 3.6, 3.7, and

3.8, the hypothesis is statistically supported: the joint effect of picker zoning and picker

routing on order picking performance is found to be statistically significant. Practical rel-

evance lacks with respect to differences in number of pick rounds and number of visited

locations.

The results of the post hoc test decomposed in picker zoning policies are summarised

in Figure 3.8. The different composition of subsets explains the statistical significance of

the picker zoning and picker routing planning problem. Again, the optimal routing pol-

icy is found to outperform all dedicated routing heuristics in combination with all picker

zoning policies. Since routing policies only determine the sequence of SKUs on the pick

list, in other words, since SKUs on the pick list are distributed over the order picking area

in the same way for all routing policies, the average route length differences among the

65



CHAPTER 3. INTERACTION ANALYSIS IN WIDE-AISLE SYSTEM

FIGURE 3.8: Multiple Dunnett’s t-test (familywise error rate = 0.01) for routing policies by
zoning policies (travel distance in m).

(A) Zoning–routing interaction. (B) Routing–storage interaction.

FIGURE 3.9: Average travel distance (in meters) for each combination of zoning and rout-
ing policy.

routing policies increases as the pick area of a pick tour increases: decreasing the number

of zones, slightly increases the effects of the routing policies as shown on Figure 3.9.

Storage and Batching The fourth hypothesis states that the joint effect of storage lo-

cation assignment and order batching significantly impacts order picking performance

(Hypothesis 3.4). The ANOVA results of Tables 3.6, 3.7 and 3.8 support the hypothesis of

the relationship between storage and batching. The two-way interaction of storage and

batching is statistically significant with respect to the distance travelled, the number of

pick rounds, and the number of visited locations. However, differences in number of pick

rounds are too small to be relevant in practice.

In order to analyse why the relationship between storage and batching planning prob-

lems is important, the statistical significance of all levels of the batching factor is analysed
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(A) Travel distance (in m). (B) # visited locations.

FIGURE 3.10: Multiple Dunnett’s t-test (familywise error rate = 0.01) for batching policies
by storage policies.

(A) Storage–batching interaction. (B) Batching–storage interaction.

FIGURE 3.11: Average travel distance (in meters) for each combination of storage and
batching policy.

for each storage factor level using Dunnett’s method. Figure 3.10 summarises the test re-

sults of a post hoc test. Minor differences exists in the composition of subsets among

different storage location assignment policies. In terms of travel distance, all batching

policies are located in a separate subset except for the combination with within-aisle stor-

age classes. Results of the post hoc tests indicate that the route length difference between

the seed and savings batching policies is not statistically significant in combination with

within-aisle storage classes, while in combination with other storage policies, the seed

batching outperforms other batching policies. FCFS batching is situated in the last subset

for each storage assignment policy.

No differences in the composition of subsets can be observed with respect to the num-

ber of visited locations. However, the seed algorithm shows strong differences among

storage location assignment policies. A decreased number of visited locations can be ob-

67



CHAPTER 3. INTERACTION ANALYSIS IN WIDE-AISLE SYSTEM

served in combination with random, across-aisle and perimeter storage classes. This can

be explained as follows: fast moving items are located in all pick aisles in case of random,

across-aisle and perimeter storage and the considered seed batching policy minimises

the number of aisles to visit. Consequently, if a particular aisle should be visited in a pick

round, the limited number of A-locations in the aisle are most likely to be visited, while

aisles of within-aisle and diagonal storage classes consist of a large number of A-locations

with equal probability of being visited.

The interaction plots of Figure 3.11 further illustrate why storage location assignment

and order batching are related with respect to travel distance. The savings algorithm

shows strong performance improvements in combination with within-aisle and diagonal

storage location assignment policies, compared to the other storage policies. The savings

algorithm is able to approximate the average travel distance of the cumulative seed batch-

ing algorithm in case of within-aisle or diagonal storage classes. These storage policies

locate classes over the entire subaisle and storage locations within each subaisle have an

equal probability of being visited. As seed batching only aims to minimise the number

of visited subaisles in a pick round and the savings algorithm additionally takes the travel

distance within a pick aisle into account while creating batches, the efficiency benefits re-

sulting from within-aisle and diagonal storage are much larger in combination with sav-

ings batching. In case the number of A-locations is small in each subaisle, seed batching

results in shorter route lengths.

Storage and Routing Simulation results support the fifth hypothesis (Hypothesis 3.5):

Tables 3.6, 3.7 and 3.8 show that storage location assignment and picker routing are statis-

tically significantly related with respect to the travel distance, the number of pick rounds,

and the number of visited locations. Differences in number of pick rounds and number of

visited locations are negligibly small.

FIGURE 3.12: Multiple Dunnett’s t-test (familywise error rate = 0.01) for routing policies
by storage policies (travel distance in m).

The statistical significance of all levels of the storage factor, decomposed in routing

policies, is analysed using Dunnett’s method for pairwise comparisons in order to explain

why both planning problems are related. Figure 3.12 presents the results of the post hoc
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(A) Storage–routing interaction. (B) Routing–storage interaction.

FIGURE 3.13: Average travel distance (in meters) for each combination of storage and
routing policy.

test. The strong statistically significant interaction between storage and routing planning

problems gives rise to the creation of varying subsets for each storage location assignment

policy. Over all storage levels, the optimal routing policy outperforms the other routing

policies that are often used in practice with respect to the average travel distance. The

composition of the other subsets strongly differs across the different storage location as-

signment policies.

When randomly assigning SKUs to storage locations, only minor differences exist in

the performance of the dedicated routing heuristics. All pick aisles and all storage loca-

tions have an equal probability of being visited in a pick tour. In other words, as pick

densities are equally distributed across aisles as well as within each pick aisle, random

storage does not clearly favour any of the dedicated routing heuristics. No clear subsets of

routing policies in combination with random storage have been formed by the post hoc

test.

Including information about the location of fast moving products while composing

picker routes favours certain routing heuristics. From Figure 3.13, the combination of

perimeter storage policy and largest gap routing policy is an example of a well performing

combination. Since fast moving SKUs are stored along the periphery of the warehouse

blocks and the largest gap routes tend to follow the periphery of the warehouse, this

policy combination outperforms aisle-by-aisle and return routing in combination with

perimeter storage location assignment. Other routing policies show a strong increase in
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travel distance in combination with the perimeter storage compared to other storage lo-

cation assignment policies. Furthermore, return routes are preferred in combination with

across-aisle storage classes: return routes aim to reduce the travel distance within aisles

and across-aisle storage location assignment increases pick densities in the front of each

pick aisle. Equivalent to the perimeter-largest gap combination, routing methods show in-

creasing route lengths in combination with across-aisle storage, except for return routing.

Finally, the traversal routing is preferred in combination with within-aisle and diagonal

storage classes as the aim is to increase the pick density within an aisle (i.e., within-aisle

and diagonal) and reduce the number of visiting aisles in a pick tour (i.e., traversal). How-

ever, this difference is not found to be statistically significant by the post hoc tests.

In summary, the statistically significant interaction between storage location assign-

ment and order picker routing originates from the fact that some combinations of stor-

age and routing policies yield excellent performances, while other combinations result in

large average travel distances. Fast moving items should be assigned to storage locations

that could be accessed most easily, which strongly depends on the routing policy.

Batching and Routing Hypothesis 3.6 states that a significant interaction exists between

the batching and routing planning problems. The two-way interaction between order

batching and picker routing is found to be statistically significant with respect to all three

performance measures. ANOVA results do not reject Hypothesis 3.6: the efficiency of or-

der batching is significantly influenced by the applied routing method. With respect to the

number of pick rounds, differences between policy combinations of batching and routing

are too small to discuss them meaningfully.

In order to analyse why the batching and routing planning problems are related, the

simulation results are analysed using Dunnett’s post hoc test (see Figure 3.14). Addition-

ally, the results are illustrated on the interaction plots of Figure 3.15.

(A) Travel distance (in m). (B) # visited locations.

FIGURE 3.14: Multiple Dunnett’s t-test (familywise error rate = 0.01) for routing policies
by batching policies.

Combinations of more straightforward routing policies (i.e., aisle-by-aisle and return)

with FCFS batching appear to be inefficient in terms of travel distance (see Figure 3.15).
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(A) Batching–routing interaction. (B) Routing–batching interaction.

FIGURE 3.15: Average travel distance (in meters) for each combination of batching and
routing policy.

The post hoc test shows that aisle-by-aisle and return routing form the last subset in com-

bination with FCFS batching. FCFS batching, which in fact results in a random creation

of batches, generates pick lists with SKUs located in a large number of aisles and SKUs

are diffused within each aisle. Aisle-by-aisle routes can work efficiently only if the num-

ber of aisles to be visited is minimised, while return routes aim to minimise the travel

distance within a pick aisle. This results in a large travel distance when combining FCFS

batching with either the aisle-by-aisle or return routing policy. The average route length

difference between FCFS batching and seed or savings batching is much larger when com-

bined with aisle-by-aisle and return routing compared to other routing policies. Moreover,

the efficiency of the return routing policy strongly increases in combination with the seed

batching policy and the savings batching policy. Especially, when integrating the rout-

ing policy while creating batches (i.e., savings batching), the importance of the decision

which routing policy to use substantially reduces. As the savings algorithm is based on the

travel distance reduction of combining orders, the route length of combinations of orders,

depending on the applied routing policy, is calculated before batches are composed. As

a result traversal, return and largest gap routing policies form a single subset in case of

savings batching.

Minor differences exist in the number of visited locations between the combinations

of batching and routing (see Figure 3.14). In case of FCFS batching and seed batching, the

number of visited locations is insensitive to the routing policy. As the savings algorithm
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takes the routing policy into account while calculating the savings between combinations

of orders, the composition of batches differ between the routing policies. Consequently,

the number of visited locations varies for different routing policies in combination with

the savings batching policy. However, the statistically significant differences between the

routing policies are rather small: the number of visited locations vary only 4.8 % in case of

savings batching.

3.3.2 Generalised Results

In order to validate and generalise the results and findings of case study to other ware-

houses, other warehouse properties have been included in the second simulation experi-

ment. The hypotheses formulated in Section 3.1 are tested and analysed using the gener-

alised experimental design. A 5×5×3×5×3×3×3 full factorial mixed model ANOVA, with

zoning, storage, batching, and routing as within-subjects factors is used to test the hy-

potheses and validate the results of the real-life case study. The ANOVA results are pre-

sented in Appendix D.

In accordance with the findings of the real-life case study, the results of the mixed

model ANOVA show that the main effects of picker zoning, storage location assignment,

order batching and routing are statistically significant. Furthermore, all six formulated

hypotheses about the relationships among the four order picking planning problems are

statistically proven with respect to the distance travelled in Table D.1 of Appendix D. In ad-

dition to the real-life warehouse, the relationships among zoning, storage, batching, and

routing are found to be statistically significantly related under varying warehouse layout,

varying order size and varying batch capacity: warehouse layout, order size and batch ca-

pacity statistically significantly impact the joint effect of the order picking planning prob-

lems. Besides travelling, the six hypotheses are supported with respect to the number of

pick rounds and the number of visited locations as well, as shown in Appendix D.

Results of the full factorial mixed model ANOVA on average travel distance indicate

that the order picking layout, the order size and the batch capacity statistically signifi-

cantly influence the relationship among the order picking planning problems. Two exam-

ples that demonstrate the most clear interaction are discussed. Figure 3.16 illustrates the

impact of order picking layout on the combination of picker zoning and storage location

assignment. The average travel distance for each combination of zoning and storage pol-

icy is shown for the three layout factor levels. The three interaction plots illustrate different

patterns for each level of the order picking layout. The combined effect of zoning and stor-

age strongly increases as the number of aisles in the order picking area increases. In case

of 16 aisles, the pick frequency assignment of SKUs to pick zones outperforms other zon-

ing policies in combination with most storage location assignment policies. Increasing

the number of aisles results in an increased travel distance of the pick frequency assign-
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ment compared to assigning SKUs to zones based on customer type in combination with

all storage location assignment policies. This effect may be explained by the larger dis-

tance for travelling from the depot to the first storage location and returning to the depot

at the end of a pick round. Assigning SKUs to pick zones based on pick frequency results

in an increased number of pick rounds due to order splitting. Thus, orders pickers should

travel more often to the depot compared to customer type zoning policies, and this travel

distance has been increased in the 64 aisles and 96 aisles layout.

(A) Layout: 32 aisles. (B) Layout: 64 aisles. (C) Layout: 96 aisles.

FIGURE 3.16: Average travel distance (in meters) for each combination of zoning and stor-
age policy.

In a second example, Figure 3.17 illustrates the impact of the capacity of the picking ve-

hicle on the joint effect of batching and routing. The average travel distance resulting from

the seed and savings algorithm under different routing policies are of particular interest.

In case of a small batch capacity the savings algorithm results in a smaller route length in

case of return, largest gap and optimal routing, whereas the route length differences are

insignificant in combination with aisle-by-aisle and traversal routing. This effect reverses

as the batch capacity increases. The seed algorithm outperforms the savings algorithm in

combination with the aisle-based routing policies (i.e., aisle-by-aisle and traversal), while

the mean route lengths are at the same level in combination with the other three routing

policies. The seed selection and accompanying order selection rule under consideration

aim to minimise the number of aisles to visit in a pick tour. Consequently, this seed al-

gorithm favours the aisle-based routing policies. As the batch capacity increases, the effi-

ciency of the basic Clarke-and-Wright variant slightly decreases: orders are combined in a
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pick tour based on large savings with a single order in the batch, but the combination with

other orders that have already been assigned to the batch may be small (savings between

orders are calculated only at the start of the algorithm). This effect is larger when a batch

consists of a large number of orders. Consequently the savings algorithm is outperformed

by the seed batching policy, at least in combination with aisle-based routing policies.

(A) Batch capacity: 10 orders. (B) Batch capacity: 25 orders. (C) Batch capacity: 40 orders.

FIGURE 3.17: Average travel distance (in meters) for each combination of batching and
routing policy.

3.4 Managerial Implications

The results of the simulation experiments show the importance of combining picker zon-

ing, storage, batching, and routing decisions in order to manage order picking activities

efficiently. This section discusses the practical implications of this research for warehouse

managers and provides policy combinations that help to improve the overall order picking

performance in several practical situations.

Compared to the benchmark of the real-life warehouse (i.e., a single pick zone in com-

bination with random storage assignment, FCFS batching, and aisle-by-aisle routing), all

proposed combinations perform better, except for the benchmark including perimeter

instead of random storage. Over the 30 replications, the benchmark results in an aver-

age travel distance of 57,406 meters. The order picking process can be performed 79.3 %

more efficiently by dividing the warehouse into four pick zones in combination with cus-

tomer type zone assignment, within-aisle storage location assignment, savings batching,
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and optimal routing. This combination results in a mean route length of 11,886 meters.

The benefits are huge in this case as the real-life warehouse can divide their orders across

customer types and consequently prevent additional order consolidation operations.

Similar travelling savings (77.9 %) can be observed when evaluating the best perform-

ing combination (i.e., 4 zones (CT), within-aisle storage, savings batching, and optimal

routing) and the benchmark policy combination in the context of the generalised case.

Note that the savings batching policy outperforms the seed batching policy in this spe-

cific combination in contrast to the previous discussed results. Four zones (CT), within-

aisle storage, savings batching, and optimal routing yields to a mean of 95 pick rounds

and 3,269 visited locations, which is only 1.7 % and 4.7 % larger than the best performing

policy combination in terms of ’number of pick rounds’ and ’number of visited locations’,

respectively. In the discussion below, the overall best performing combination refers to

the policy combination that yields the shortest mean route length: 4 zones (CT), within-

aisle storage, savings batching, and optimal routing. As the simulation experiments have

focused on tactical and operational order picking planning problems only, the proposed

combinations are rather easy to implement and result in large performance benefits.

The applicability of the best performing combination is subject to several practi-

cal constraints (e.g., order integrity, policy complexity, picker blocking) that will be dis-

cussed below with respect to the simulation results of the generalised experiment. Due to

the practical constraints, several policies should be eliminated from the original results,

thereby making other policy combinations preferable. The best performing policy com-

bination under the practical constraints are discussed and the implications with respect

travel distance, number of visited locations and number of pick rounds is discussed.

First, maintaining order integrity can not be generalised to all warehouses as not all

warehouses can divide their orders across customer types. When SKUs are assigned to

zones based on pick frequency (i.e., 4 zones (PF), within-aisle storage, savings batching,

and optimal routing), the average route length increases by 18.8 % compared to the best

performing combination. Additionally, this combination of 4 zones (PF) zoning, within-

aisle storage, savings batching, and optimal routing, may result in sorting activities in case

of parallel picker zoning, an increased number of visited locations (6.4 %) and a strong

increasing number of pick rounds (39.4 %) as orders are split across zones.

Second, the use of complex algorithms to solve the batching and routing planning

problems have not been widely used in practice as calculating optimal batches and routes

for each pick round may require long computing times and solutions may seem illogical

pickers (Glock et al., 2017). In the context of the factor levels in this simulation study, the

savings batching algorithm and LKH-routing heuristic (i.e., optimal) have a substantial

impact on computing times compared to other batching and routing policies. Especially,

the combination of savings batching and optimal routing requires a large amount of com-
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puting time. Furthermore, the effects of maverick picking prevent warehouses from using

optimal routes to visit storage locations. Ignoring the savings and LKH-heuristic, the best

performing policy combination includes 4 zones (CT) zoning within-aisle storage location

assignment, seed batching, and traversal routing. This combination yields an increased

route length of 15.0 % and an increased number of visited locations of 5.4 % compared to

the overall best policy combination. The number of pick rounds remains similar.

Finally, the experiments under consideration assume a wide-aisle warehouse, disre-

garding picker blocking. Narrow-aisle picking systems are designed to increase storage

capacity, but multiple order pickers may require to enter the same aisle which results

in blocking of order pickers. The within-aisle and diagonal storage location assignment

policy strongly concentrates picking activities in a small number of aisles, increasing the

probability of picker blocking in aisles that mainly consist of class A locations. The prob-

ability of picker blocking in narrow-aisle warehouses will be substantially smaller in com-

bination with other storage policies as class A locations are diffused across pick aisles. An

increased route length of only 9.6 % compared to the overall best policy combination, can

reduce efficiency losses due to picker blocking. Moreover, the search time, in terms of

number of visited locations, reduces with 2.7 % and the setup time, in terms of number of

pick rounds, is similar compared to the overall best policy combination. Thus, in narrow-

aisle order picking systems, the combination of across-aisle storage, savings batching, 4

zones (CT) and optimal routing is expected to improve the overall order picking perfor-

mance as within-aisle and diagonal storage are expected to result in picker blocking. We

return to this point in Chapter 4 which directly accounts for picker blocking.

3.5 Conclusions

The simulation results and statistical analysis provide insights and general findings into

the relationships among picker zoning, storage, batching, and routing. In contrast to pre-

vious studies (see Table 3.1), all main effects as well as all interaction effects have been

proven to be statistically significant. Warehouse managers should take these interactions

among order picking planning problems into account to design efficient order picking

systems. For example, picker zoning increases pick efficiency substantially, but reduces

potential efficiency benefits resulting from optimizing other order picking planning prob-

lems. Furthermore, policies for each planning problem need to aim at increasing the pick

density in the same area of the warehouse to reduce travelling: examples are the combi-

nation of the cumulative seed batching algorithm and traversal routing, seed batching in

combination with within-aisle storage classes, and return routes combined with across-

aisle storage.

Decisions on locating pick zones, assigning SKUs to storage locations, creating batches
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as well as routing order pickers should be considered carefully when planning order pick-

ing operations to face new market developments. Simulation results show strong rela-

tionships among the four planning problems. The results of the study clearly indicate that

warehouses can achieve significant benefits by considering picker zoning, storage, batch-

ing, and routing decisions simultaneously. The simulation results and statistical analysis

provide policy combinations that help practitioners to improve the overall order picking

performance in several practical situations. The simulated order picking policies can be

easily implemented and immediately result in significant performance benefits.
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4
INTERACTION ANALYSIS INCORPORATING REAL-LIFE FEATURES IN

NARROW-AISLE ORDER PICKING SYSTEMS

A
s industrial land is expensive, especially in Western Europe, the area dedicated for

storing SKUs by warehouses is limited. As customers expect unique products (a

wide assortment of SKUs), more storage capacity is required. Moreover, Western

European countries are characterised by high labour costs, making productivity improve-

ments especially beneficial. To deal with these market conditions, warehouses typically

consist of narrow-aisle, high-level order picking systems to store SKUs densely, while still

allowing individual access to retrieve them rapidly to fill customer orders. Narrow aisles

and high-level storage locations increase the storage capacity per square meter. These

order picking systems allow a large number of SKUs to be stored in a small area and re-

duce unproductive travelling of narrow-aisle order pick trucks compared to, for example,

wide-aisle order picking systems. However, narrow aisles cause wait times due to picker

blocking, especially when multiple order pickers retrieve products in the same area. More-

over, multiple order pickers working in a small area increases the risk of accidents in the

warehouse (De Koster et al., 2011; Mowrey and Parikh, 2014; Venkitasubramony and Adil,

2017).

Although many studies address individual order picking planning problems (De Koster

et al., 2007) and some articles combine planning problems (Dijkstra and Roodbergen,

2017; Petersen and Aase, 2004; Van Gils et al., 2016a, 2018c), real-life features, such as

safety constraints, picker blocking, and high-level storage locations, are rarely taken into

account (Van Gils et al., 2018a). This chapter goes beyond the current state-of-the-art lit-

erature by statistically analysing combinations of picker zoning, storage location assign-
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ment, order batching, and picker routing policies taking real-life features into account in

a picker-to-parts order picking system. The research methodology of this study is similar

to the previous chapter, that investigates the same planning problems in wide-aisle or-

der picking systems, without considering real-life features. This chapter analyses to what

extent these relationships have an effect on the order picking performance if real-life fea-

tures are included. This study significantly differs from the previous chapter as including

the real-life features changes the nature of the problem, resulting in substantially different

results. We refer to wide-aisle systems in general to compare our study with throughout

the paper.

Existing wide-aisle order picking policies are adapted to manage the real-life features

and simulated to investigate relationships among these planning problems under the con-

straints of safety rules, picker blocking, and high-level storage locations. We aim to find

robust and efficient order picking policy combinations. The problem context of this study

is inspired by a real-life B2B spare parts warehouse. Different from the real-life warehouse

of the previous chapter, the real-life case in this chapter1 consists of a narrow-aisle high-

level order picking system.

The main contributions of this study, which illustrate the main differences with wide-

aisle order picking systems, are as follows. First, existing picker zoning, storage location

assignment, order batching, and picker routing policies that are suitable for wide-aisle

picking systems are adapted to manage real-life features in narrow-aisle systems (i.e.,

safety constraints, picker blocking, and high-level storage locations). Second, the simula-

tion results and statistical analyses give evidence on how and why picker zoning, storage

location assignment, order batching, and picker routing are related with respect to travel

time and picker blocking (instead of travel distance that is generally used in wide-aisle sys-

tems). The relations are analysed and explained using the constraints and consequences

of the real-life features. Third, the empirical study illustrates the relevance and impor-

tance of incorporating real-life features while planning order picking operations and pro-

vides insights into the negative effects on performance if existing real-life features are ig-

nored. Fourth, robust and efficient policy combinations of the four main order picking

planning problems are identified under various practical situations, which are clearly dif-

ferent from the policies that are the most efficient in wide-aisle order picking systems.

These policies can be used by warehouse managers to improve overall order picking per-

formance and to support new market developments.

The remainder of this chapter is organised as follows. Section 4.1 provides the state-of-

1This chapter is based on Van Gils, T., Caris, A., Ramaekers, K., 2018a. Reducing picker blocking in a high-
level narrow-aisle order picking system: insights from a real-life spare parts warehouse. In: 2018 Winter Simula-
tion Conference (WSC). IEEE, Gothenborg, pp. 2953–2965 and Van Gils, T., Caris, A., Ramaekers, K., Braekers, K.,
De Koster, R. B. M., 2019b. Designing efficient order picking systems: the effect of safety constraints, picker block-
ing, and high-level storage on the relation among planning problems. Transportation Research Part E: Logistics
and Transportation Review 125, 47–73
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the-art and formulates research hypotheses on how order picking planning problems are

related with respect to travelling and picker blocking in a manual order picking system.

The methodology to analyse the relationship among the order picking planning problems

is described in Section 4.2. Section 4.3 provides empirical findings. Finally, Section 4.4

discusses implications of this study for researchers as well as for practitioners; the im-

portance of incorporating real-life features is illustrated, and robust and efficient policy

combinations are provided. Section 4.5 concludes the chapter.

4.1 Research Hypotheses

The previous interaction analysis of Chapter 3 shows strong relationships among the main

order picking planning problems with respect to mainly horizontal travel distance in wide-

aisle order picking systems, thereby ignoring the real-life features. The question remains

to what extent these relationships have an effect on the order picking performance of pick-

ing systems that are subject to crucial real-life features, such as narrow-aisle order picking

systems. Compared to wide-aisle systems, travel times are expected to increase as a result

of the real-life features and additional wait times due to picker blocking should be taken

into account. This section reviews relevant theories on interactions among order picking

planning problems and formulates research hypotheses on the relationship among the

four main order picking planning problems (i.e., picker zoning, storage location assign-

ment, order batching, and routing) in narrow-aisle order picking systems.

Based on numerous warehouse visits by the authors in the context of a valorisation

project on revealing the needs and challenges of logistical companies in Limburg (Bel-

gium), multiple interviews with warehouse managers and the specific case of a B2B spare

parts warehouse (see Section 4.2.2), the effects of safety constraints, picker blocking, and

high-level storage locations are expected to be the most essential and relevant factors to

include in order picking policies. Safety constraints, picker blocking, and high-level stor-

age locations impact the nature of the problem, which is expected to result in substantially

different results when these features are ignored. Table 2.8 shows that there is a need to

include real-life features while designing efficient order picking systems; the number of

articles including picker blocking, high-level storage and safety constraints is very lim-

ited. Recent papers are starting to include additional real-life features, but to a limited

extent. This study goes beyond the current state-of-the-art by analysing and explaining

relationships among the four main order picking planning problems and by accounting

for the three crucial real-life features.

To formulate our research hypotheses on the relationship among order picking plan-

ning problems, we first investigate the main effect of each planning problem on order

picking performance. Note that the total order pick time, which consists of setup time for
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TABLE 4.1: Main effect of order picking planning problems.

Travelling Picker blocking

Zoning ↘ ↘
Storage ↘ ↗
Batching ↘ ↘
Routing ↘ ↗

preparing batches, retrieve and search time at each visited location, travel time and wait

time due to picker blocking, is used as surrogate for order picking performance in this sec-

tion. As the first two time components have proven to be of minor importance when eval-

uating combinations of planning problems in wide-aisle systems (Van Gils et al., 2018c)

and the considered real-life features would have a minor impact on setup and retrieve

and search time, these components are not included in the research hypotheses.

Table 4.1 provides a summary of the main effects when evolving from an inefficient

policy for a particular planning problem to a more efficient policy in terms of travelling.

Dividing the order picking area into zones results in smaller covered areas of order pickers

during a pick round and consequently leads to shorter travel times: a picker can only travel

in a limited number of aisles during each pick round (De Koster et al., 2012). Moreover,

wait times due to picker blocking decrease as zoning limits the order picking area cov-

ered by pickers in a pick round (De Koster et al., 2012). Storage location assignment poli-

cies aim to reduce travelling by concentrating fast moving SKUs in a small order picking

area, resulting in a large pick density in certain areas and thus increasing the risk of picker

blocking compared to randomly assigning SKUs to storage locations (Franzke et al., 2017).

Order batching aims to limit travelling by combining similar orders in a pick round. Effi-

cient batches consist of closely located storage locations, thereby reducing picker blocking

as the covered area in a pick round is limited (Hong et al., 2012a). Routing policies aim to

reduce travelling by sequencing the order lines (and resulting storage locations) within

each batch (Theys et al., 2010). While sequences may be optimal with respect to travel-

ling, these routing policies are subject to stricter traffic rules to limit the chance of cross-

ing routes of different order pickers. Stricter traffic rules, expressed as a smaller allowable

number of pickers within an aisle, result in higher wait times (Van Gils et al., 2018a). Based

on the main effects, research hypotheses are formulated, stating whether or not a plan-

ning problem combination is expected to be related as well as hypothesizing the expected

direction of the relation (i.e., increasing or decreasing marginal effects).

Zoning-storage relation If the real-life features of safety constraints, picker blocking,

and high-level storage systems are ignored, the relationship between the number of zones

and storage location assignment is significant with respect to travel distance (or time): or-

der pickers cover smaller areas if there are more pick zones and if turnover-based storage
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location assignment policies are adopted (Petersen, 2002; Van Gils et al., 2018c). As both

planning problems have a positive effect on travelling, we expect fewer benefits if picker

zoning and storage location assignment are combined (see Hypothesis 4.1a). The number

of zones is also expected to significantly influence the efficiency of the storage location as-

signment policies with respect to wait times. Picker zoning policies divide pickers across

the order picking area by assigning them to a single pick zone, thereby reducing the pos-

sibility of picker blocking, whereas storage location assignment policies increase the pick

density in a small area, thereby increasing the probability of picker blocking. As picker

zoning reduces the number of pickers in each zone, we propose that the negative picker

blocking effects of turnover-based storage location assignment policies are smaller when

the order picking area is divided into pick zones as stated in Hypothesis 4.1b.

HYPOTHESIS 4.1a The marginal travelling benefits from turnover-based storage location as-

signment policies decrease when the order picking area is divided into pick zones.

HYPOTHESIS 4.1b The marginal picker blocking effect from turnover-based storage location

assignment policies decreases when the order picking area is divided into pick zones.

Zoning-batching relation As picker zoning and order batching both aim to increase the

pick density in small areas, the marginal effect of batching policies on travelling decreases

significantly with more pick zones in wide-aisle systems (Yu and De Koster, 2009; Van Gils

et al., 2018c). Increasing the number of zones and consequently decreasing the zone size,

increases the probability of visiting all aisles within a zone during a pick round, thereby

reducing the negative travelling effects of traffic rules. Moreover, incorporating the effect

of traffic rules (e.g., one-way travelling) while creating batches may limit the negative ef-

fects of these safety constraints on travelling. As both planning problems have a positive

effect on travelling and both limit the negative effects of traffic rules on travelling, the joint

effect of picker zoning and order batching on travelling is expected to be significant under

the constraints of the real-life features (Hypothesis 4.2a). Moreover, as both zoning and

batching reduce picker blocking by decreasing the area covered during a pick round, we

expect that the combined effect of planning problems on wait time is significant as stated

in Hypothesis 4.2b.

HYPOTHESIS 4.2a The marginal travelling benefits from efficient batching policies decrease

when the order picking area is divided into pick zones.

HYPOTHESIS 4.2b The marginal picker blocking benefits from efficient batching policies de-

crease when the order picking area is divided into pick zones.
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Zoning-routing relation Only one study (Van Gils et al., 2018c) has investigated the

combined effect of picker zoning and routing: both decisions jointly influence travel dis-

tance in wide-aisle order picking systems. More pick zones and consequently small zone

sizes reduce the effect of routing policies on travelling. The effect of routing policies de-

pends on the traffic rules in narrow-aisle order picking systems. Especially when pick

densities are low (i.e., a small number of pick zones), the travelling differences among the

routing policies is expected to be much higher compared to small pick zones, indicat-

ing a strong relationship (see Hypothesis 4.3a). Moreover, picker zoning and routing may

jointly affect picker blocking as stated in Hypothesis 4.3b: routing policies cause picker

blocking by the imposed traffic rules, while picker zoning reduces picker blocking by as-

signing pickers to dedicated order picking areas. The marginal picker blocking effect from

efficient routing policies (subject to stricter traffic rules) is expected to decrease as picker

zoning reduces the number of pickers in each zone.

HYPOTHESIS 4.3a The marginal travelling benefits from efficient routing policies decrease

when the order picking area is divided into pick zones.

HYPOTHESIS 4.3b The marginal picker blocking effect from efficient routing policies de-

creases when the order picking area is divided into pick zones.

Storage-batching relation The joint effect of storage location assignment and order

batching on travelling is rather consistent in literature. The efficiency of batching policies

increases when the rules for assigning SKUs to storage locations when creating batches

are taken into account (Ho and Tseng, 2006; Ho et al., 2008; Hsieh and Tsai, 2006; Petersen

and Aase, 2004; Van Gils et al., 2018c). Travelling differences among storage location as-

signment policies are expected to be greater in high-level storage systems (i.e., more fast

moving SKUs in a small number of aisles causes more fast moving SKUs to be stored at

higher locations) as vertical travelling is typically very slow. Considerable travelling ben-

efits can be gained from efficient batching policies if vertical travelling is limited, which

is the case when fast moving SKUs are more evenly divided across the order picking area

(see Hypothesis 4.4a). Furthermore, picker blocking may be significantly influenced by

the combined storage-batching decision as well. Both planning problems aim to limit the

covered area of a pick round. However, storage policies increase picker blocking as this

small covering area is equal for all pickers (i.e., the locations that store fast moving SKUs),

while batching policies may reduce wait times as the small covering areas can be different

across pickers. Therefore, Hypothesis 4.4b states that the marginal picker blocking effect

from efficient batching policies decreases when turnover-based storage location assign-

ment policies assign fast moving SKUs to a small picking area.
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HYPOTHESIS 4.4a The marginal travelling benefits from efficient batching policies decrease

when turnover-based storage location assignment policies assign fast moving SKUs to a

small picking area.

HYPOTHESIS 4.4b The marginal picker blocking effect from efficient batching policies de-

creases when turnover-based storage location assignment policies assign fast moving SKUs

to a small picking area.

Storage-routing relation Storage location assignment and picker routing is by far the

most intensively studied combination of planning problems. Besides studies simulating a

limited number of storage and/or routing policies (Chackelson et al., 2013; Ho and Tseng,

2006; Ho et al., 2008; Quader and Castillo-Villar, 2018), the storage-routing combination is

found to strongly affect travelling in wide-aisle order picking systems: taking information

about the location of fast moving SKUs into account while determining the routing policy

can significantly reduce travelling (Dijkstra and Roodbergen, 2017; Manzini et al., 2007;

Petersen and Schmenner, 1999; Petersen and Aase, 2004; Shqair et al., 2014; Van Gils et al.,

2018c). In narrow-aisle order picking systems, routing policies are revised to meet safety

constraints (e.g., one-way travelling in pick aisles and limited number of allowable pickers

within aisles). By including aisle-entrance blocking and only allowing one order picker

in each narrow aisle, the efficiency of storage and routing policy combinations is found

to be strongly related by a single study, both in terms of travelling and wait time. Pan

et al. (2014) develop analytical models to evaluate the storage-routing relationship. These

relationships are summarised in Hypotheses 4.5a and 4.5b.

HYPOTHESIS 4.5a The marginal travelling benefits from efficient routing policies decrease

when turnover-based storage location assignment policies assign fast moving SKUs to a

small picking area.

HYPOTHESIS 4.5b The marginal picker blocking effect from efficient routing policies in-

creases when turnover-based storage location assignment policies assign fast moving SKUs

to a small picking area.

Batching-routing relation The substantial effect of batching and routing on travelling

has been proven by integrating both planning problems instead of solving the batch-

ing and routing planning problems sequentially (Won and Olafson, 2005; Van Gils et al.,

2018e). In wide-aisle order picking systems, the length of the routes mainly define the

performance of the created batches (Chackelson et al., 2013; Van Gils et al., 2018c). In

narrow-aisle order picking systems, this performance depends on the travel time, defined

by the routing policy, as well as on the wait time, defined by the traffic rules (Chen et al.,

2017). Travel time (both horizontal and vertical travelling) and picker blocking are defined
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by the routing policy and traffic rules. As an efficient batching policy is used, the covered

area of a pick round is small, reducing the travelling benefits from efficient routing poli-

cies (see Hypothesis 4.6a). Furthermore, the marginal picker blocking effect from efficient

routing policies is expected to decrease when the covered area of a pick round is limited

by efficient batching policies in narrow-aisle order picking systems (see Hypothesis 4.6b).

HYPOTHESIS 4.6a The marginal travelling benefits from efficient routing policies decrease

when the covered area of a pick round is limited by efficient batching policies.

HYPOTHESIS 4.6b The marginal picker blocking effect from efficient routing policies de-

creases when the covered area of a pick round is limited by efficient batching policies.

4.2 Methodology for Empirical Study

This section outlines the research methodology used to achieve the objectives of this

study. The research methodology is similar to Chapter 3. Therefore, this section highlights

the main differences compared to the interaction analysis of the wide-aisle order picking

system. The general approach is presented in Section 4.2.1. Sections 4.2.2 and 4.2.3 de-

scribe the business case and the operational measures. The experimental design and data

generation are outlined in Sections 4.2.4 and 4.2.5. Section 4.2.6 describes the statisti-

cal analysis used to provide insights into the relationships among order picking planning

problems.

4.2.1 General Approach

We conducted an interaction analysis with simulation and comprehensive statistical tests

to test our research hypotheses in accordance with the previous section. In addition to

the Monte Carlo simulation that creates customer orders and pick lists and calculates the

distances for travelling through the warehouse, a discrete-event simulation model is cre-

ated using Arena. As the storage capacity of the considered narrow-aisle high-level order

picking systems is much larger compared to the picking system of Chapter 3, the Monte

Carlo simulation creates new customer orders. While Monte Carlo simulations are ade-

quate for calculating travel distances in wide-aisle order picking systems (Petersen and

Aase, 2004), even in case of high-level storage locations, including safety constraints and

picker blocking requires more comprehensive simulation models. The created pick lists

using the Monte Carlo simulation model form the input of the discrete-event simulation

model. Discrete-event simulation facilitates the modelling of a sequence of events in time,

thereby allowing to take safety constraints and picker blocking into account. Results of

the simulation are statistically analysed to evaluate the policy decisions covered in the re-

search hypotheses and assess the effect of real-life features on order picking performance.
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4.2.2 Case Study

The problem context of this study is motivated by a real-life B2B spare parts warehouse

located in Belgium. A preliminary study focused on the combined effect of storage loca-

tion assignment and picker routing and was dedicated to the unconventional layout of

the real-life spare parts warehouse (Van Gils et al., 2018a). The current study goes beyond

this previous study by analysing and explaining the relationship among the four main or-

der picking planning problems in a general rectangular parallel aisle warehouse that is

commonly used in research (Gue et al., 2012; Schleyer and Gue, 2012; Thomas and Meller,

2015). Narrow and parallel aisles are commonly used in practice as well, especially for

distributing spare parts.

The layout under consideration comprises two warehouse blocks, each consisting of

16 pick aisles. There are 70 storage rack sections in each pick aisle, each with eight levels.

The storage capacity equals 17,920 SKUs. A single SKU can be assigned to each storage

location. The layout is shown in Figure 4.1. The depot is marked with a D on the figure.

Distance parameters are provided in Table 4.2. Distance and time measures described in

this and the next sections are based on the real-life warehouse and are similar to measures

used in other academic studies.

FIGURE 4.1: Warehouse layout.
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TABLE 4.2: Layout parameters of the narrow-aisle order picking system.

Warehouse parameter Parameter value

Depot location D single decentralised depot
Number of blocks E −1 2 blocks
Number of cross-aisles E 3 cross-aisles
Number of pick aisles M 16 pick aisles per block
Number of storage racks L 70 storage rack sections per pick aisle
Number of levels J 8 levels per storage rack
Storage rack section length lleng th 1.3 m
Storage rack section depth ldepth 0.9 m
Storage rack section height lwi d th 1.0 m
Pick aisle width mwi d th 1.5 m
Cross-aisle width ewi d th 6.0 m

4.2.3 Operational Measures

The components of total order pick time (i.e., setup time, search and retrieve time, travel

time, and wait time) are used to measure order picking efficiency (Chen et al., 2010). The

setup time is directly proportional to the number of pick rounds and time for searching

and retrieving is assumed to be proportional to the number of items to be picked at each

storage location. Based on the observations of the real-life case, the setup time (i.e., col-

lecting pallets and packaging material and printing a pick list) is fixed at 180 seconds and

search and retrieve time are set to 15 seconds plus 1.5 seconds per item. The number of

items per order line is approximated by a geometric distribution with a mean of five items.

This is a reasonable number assuming B2B warehouses deal with larger order sizes than

B2C warehouses. However, conclusions will be similar in a B2C context as the effect of

the policy decisions of the planning problems on the time to setup a pick round as well

as to search and retrieve items are assumed to be only minor. All time components are

summarised in Table 4.3.

TABLE 4.3: Time components.

Parameter Parameter value

Picker travel velocity
in cross-aisles 1.0 m/s
in pick-aisles 1.5 m/s

Picker lifting velocity 0.2 m/s
Turn time 20 s
Setup time 180 s per pick round
Search and retrieve time 15 s + 1.5 s per item

Travelling is measured by dividing the distance travelled by the travel speed of the

high-level pick trucks. Travelling in pick aisles is faster than in cross-aisles because high-

level pick trucks are induction guided in the narrow lanes. However, when returning (i.e.,

turning around) in a pick aisle, an additional ’turn’ time of 20 s is included due to truck

backing in and out the aisle. Order pickers can travel at a speed of 1.0 m
s in the wide cross-

aisles compared to 1.5 m
s in pick aisles. High-level pick trucks have a vertical lifting speed
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of only 0.2 m
s . As high-level storage systems are considered, both horizontal and vertical

travel distances are included in the travel metric. The distance within aisles is calculated

by the Chebychev scenario, where the pick truck can concurrently lift vertically and move

horizontally. As a result, travel time within aisles equals the maximum of horizontal and

vertical travelling (Clark and Meller, 2013).

Wait times are measured by accumulating within-aisle blocking, storage-rack block-

ing, and aisle-entrance blocking for each narrow pick aisle. Within-aisle blocking and

storage-rack blocking only occur when multiple pickers are allowed in an aisle. Aisle-

entrance blocking occurs when the maximum allowable number of order pickers is either

travelling or picking in an aisle and another picker attempts to enter this pick aisle. The

main factors influencing the decision on the maximum allowable number of pickers in

each pick aisle in practice are the aisle width, attitudes of warehouse managers towards

safety, and the routing policy. Practitioners may allow more pickers per aisle in case of

wider aisles as pickers can overtake. Therefore, blocking is assumed to be negligible in

cross-aisles, as these aisles are wide enough to overtake. Limiting the number of allow-

able pickers induces waiting times, thereby reducing order picking efficiency. On the other

hand, reducing the number of pickers in an aisle decreases the risk of accidents. The max-

imum allowable number of pickers in each pick aisle depends on the routing policy and is

discussed in Section 4.2.4.

The analysis and explanation of the relationship among order picking planning prob-

lems (i.e., Section 4.3) is based on the mean total travel time for picking all orders of a

replication (i.e., travelling) and the mean total wait time occurred when picking all orders

of a replication (i.e., picker blocking) as it is important to understand the behaviour of the

order picking planning problems on each of the performance measures to explain a po-

tential relation. Section 4.4 accumulates travelling, picker blocking, setup and search and

retrieve time to evaluate the implications of this study in terms of total order pick time

(i.e., the mean total order pick time per replication).

4.2.4 Experimental Design

The relationships among the four order picking planning problems are analysed by sim-

ulating a comprehensive experimental design. Table 4.4 outlines the experimental de-

sign, comprising four decision factors and two factors to generalise the conclusions of our

study. Note that in contrast to the interaction analysis of the wide-aisle order picking sys-

tem, this section consists of a single experimental design simulating a generalised case.

Except for the generalised layout of the order picking area, all time and order related data

(see Section 4.2.3) are based on the real-life case. The reader is referred to Van Gils et al.

(2018a) for the experiments of the real-life case.

89



CHAPTER 4. INTERACTION ANALYSIS INCORPORATING REAL-LIFE FEATURES

TABLE 4.4: Experimental factor setting of the empirical case.

Factor Factor levels

Picker zoning policy (1) 1 zone
(2) 2 single-block zones
(3) 4 single-block zones
(4) 2 multi-block zones
(5) 4 multi-block zones

Storage location assignment policy (1) Random
(2) Within-aisle
(3) Across-aisle
(4) Diagonal
(5) Perimeter

Order batching policy (1) FIFO
(2) seed
(3) saving

Picker routing policy (1) Traversal
(2) Traversal+
(3) Return
(4) Midpoint
(5) Optimal (approximated by LKH)

Batch capacity (1) 12 orders
(2) 8 orders
(3) 4 orders

Picker density (1) 4 pickers
(2) 8 pickers
(3) 12 pickers

Picker zoning policies decide on how the order picking area is split into zones. Besides

a single zone, the order picking area may be split into two or four pick zones, each with

two different configurations. The location of each pick zone is outlined in Table 4.5. The

effect of varying pick zone configurations is analysed for the first time in combination with

other planning problems. SKUs are randomly assigned to the pick zones: each zone con-

sists of the same number of fast and slow moving SKUs. Thus, the demand distribution of

SKUs is equally distributed across pick zones and the number of order lines that should be

picked in each zone is assumed to be similar. As all pick zones consist of an equal number

of order lines and the number of pickers in each zone is equal, the workload across zones

is balanced. As the workload is balanced, situations in which no jobs are assigned to a par-

ticular zone are very rare and thus not taken into account. Orders are picked in parallel in

case of multiple pick zones, a common practice in spare part warehouses to reduce order

throughput time (Van Gils et al., 2017c). As order consolidation is typically performed in

the dock lanes, the additional time for consolidating a single order from different zones is

assumed to be negligible.

TABLE 4.5: Location of picker zoning policies.

Picker zoning policy Zone 1 Zone 2 Zone 3 Zone 4

1 zone 1-32 - - -
2 single-block zones 1-32 (odd) 1-32 (even) - -
4 single-block zones 1-16 (odd) 1-16 (even) 17-32 (odd) 17-32 (even)
2 multi-block zones 1-16 17-32 - -
4 multi-block zones 1-8 9-16 17-24 25-32

90



4.2. METHODOLOGY FOR EMPIRICAL STUDY

Storage location assignment policies decide on how SKUs are assigned to storage lo-

cations within a zone. Besides randomly assigning SKUs to storage locations (see Fig-

ure 4.2a), four turnover-based storage location assignment policies are simulated. The

turnover-based storage policies consist of three classes with the following demand distri-

butions: 4 (class A), 1.4 (class B), and 0.25 (class C) expressed as the mean number of picks

per storage location. The location of the storage classes for each turnover-based storage

policy is illustrated in Figures 4.2b–4.2e. When multiple storage classes are assigned to a

pick aisle, the fast moving items are stored at the most easily accessible storage locations:

the storage locations with the shortest travel time starting at aisle entrance. Although lo-

cations at higher levels could be used for bulk storage, all storage locations in the exper-

iments are assumed to be pick locations. Bulk storage locations are assumed to be in a

separate system (e.g., automated storage and retrieval system). When multiple zones are

applied, the size of the storage classes (in number of locations) is equal in each pick zone

and the location of the storage classes is similar as in Figure 4.2.

(A) Random. (B) Within-aisle. (C) Across-aisle.

(D) Diagonal. (E) Perimeter.

FIGURE 4.2: Storage location assignment policies.

Order batching policies define which customer orders are combined in a single pick

round. First-in-first-out (FIFO) batching results in a random composition of batches as
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the location of SKUs is not considered while creating batches. A seed and a savings batch-

ing policy are additionally considered to reduce travelling. The seed batching policy cre-

ates batches by selecting the order that requires visiting the smallest number of aisles, and

adding orders to the pick list that minimise the number of additional aisles to be visited

in the pick round until batch capacity is reached. The number of additional aisles to be

visited is recalculated when an order is assigned to a batch (i.e., cumulative seed selection

rule). Combining this seed order selection rule and this accompanying order selection

rule provided efficient pick rounds for various storage and routing policies in previous

research (De Koster et al., 1999; Ho et al., 2008). This seed batching policy is interest-

ing for practical applications as it is simple and produces good results (Ho and Tseng,

2006). The basic Clarke and Wright savings batching policy (i.e., combining customer or-

ders in a batch to maximise travel time savings) can further reduce travelling. Therefore,

the C&W(i) savings policy is included in the simulation experiments. We are aware of more

sophisticated heuristic batching algorithms that minimise travelling (e.g., C&W(ii) savings

policy (De Koster et al., 1999) or local search algorithms (Öncan, 2015)) or even algorithms

that include the negative picker blocking effects (e.g., (Hong et al., 2012a)), but these poli-

cies greatly increase computing times and are thus inapplicable in this comprehensive

simulation study. Additionally, due to this complexity and simplifying assumptions, these

heuristic policies are rarely used in practice. The batches created using FIFO, seed or sav-

ings policy are assigned to the first available order picker. Consequently, the order pick

time is rather balanced across order pickers (i.e., the order pick time per picker is similar

for each picker). Therefore, the order pick time per picker is not considered as separate

performance measure.

After a pick list has been created by the batching algorithm, the routing policy defines

the sequence of the locations on the pick list. Existing routing policies are revised to in-

clude the safety constraints considered in the experiments. The width of pick aisles and

a risk-averse strategy towards traffic accidents is considered when deciding on the maxi-

mum allowable number of pickers in a pick aisle. Figure 4.3 depicts an example of each

of the five routing policies. Traversal routes are included in the experiments with the con-

straint that a single order picker is allowed in each pick aisle (Figure 4.3a). An alternative

traffic rule is considered in combination with traversal routes (i.e., traversal+): all pick

aisles are strictly unidirectional as indicated by the traffic signs in Figure 4.3b, allowing

two order pickers in a pick aisle. In this way, travel times are expected to increase, but

picker blocking reduces as more pickers can work concurrently within an aisle compared

to traversal routing. Return and midpoint routes allow two-directional travelling. To pre-

vent routes of multiple pickers from crossing within aisles, the maximum allowable num-

ber of pickers is limited to a single picker in return routing and two pickers (i.e., one at each

side of the pick aisle) in midpoint routing. Finally, an optimal routing policy is consid-
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ered. In this simulation, optimal routes are approximated by solving a travelling salesman

problem using the Lin Kernighan Helsgaun (LKH) heuristic (Helsgaun, 2000). On aver-

age, resulting routes deviate only 0.1 % from optimality in an order picking context (Theys

et al., 2010). Aisle entrance is possible from both sides. However, only a single picker is

allowed to work in each pick aisle: other pickers should wait until the first picker has left

the aisle. Although a largest gap routing policy outperforms midpoint routes with respect

to travel distance, largest gap routes only prevent routes from crossing within aisles if the

number of pickers per aisle is limited to one. However, in that case largest gap routes will

be outperformed by the optimal routing policy, which is why we do not consider largest

gap routing in Table 4.4.

Note that most policies of the experimental design are revised in comparison to gen-

eral wide aisle order picking systems ignoring real-life features. Only picker zoning poli-

cies could be included in a similar way as in wide aisle picking systems. The storage loca-

tion assignment problem enlarges due to the high level storage locations: storage classes

need to be assigned to multiple levels taking the slow lifting speed into account (i.e., the

fast moving items are stored at locations with the shortest travel time starting at aisle en-

trance). Moreover, the Chebychev distance metric should be included while calculating

the savings between orders in case of a savings batching policy. Finally, the general princi-

ples of the routing policies (Roodbergen and De Koster, 2001a) are revised to include traffic

rules and reduce the risk of traffic accidents (e.g., strictly unidirectional pick aisles in com-

bination with traversal routes). Consequently, the real-life features are taken into account

as follows. Safety constraints are incorporated in the simulation study by imposing traffic

rules (i.e., traffic directions and a maximum number of allowable pickers working concur-

rently in a pick aisle). Picker blocking is included by accounting for the waiting times that

result from the maximum number of allowable pickers and the inability to overtake within

pick aisles. Finally, the Chebychev distance metric accounts for the slow lifting speed to

include the effect of high level storage locations.

In order to generalise the conclusions of the empirical study, the planning problem

combinations are simulated in multiple warehouse settings. Two main variations have

been proposed in literature to generalise experiments: a varying number of picks during a

pick round (Manzini et al., 2007; Theys et al., 2010; Yu and De Koster, 2009) and a varying

picker density (Petersen, 2002; Theys et al., 2010), both consisting of three levels. To cap-

ture a varying number of picks during a pick round, a varying batch capacity is included

in the experimental design. Picker density can be expressed as the number of pickers rel-

ative to the number of storage locations. Picker density is varied by changing the number

of pickers given the number of storage locations.
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(A) Traversal. (B) Traversal+.

(C) Return. (D) Midpoint.

(E) Optimal.

FIGURE 4.3: Picker routing policies.
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4.2.5 Data Generation

Based on historical data of the real-life spare parts case warehouse, 500 orders are ran-

domly generated for each replication, which corresponds to the number of orders that

should be picked in an eight-hour shift. The number of order lines per order is geomet-

rically distributed with a mean of three order lines. As variations in this parameter value

would result in a varying number of picks during a pick round (Van Gils et al., 2018c), these

variations are captured by varying the batch capacity in the experimental design.

The same randomly generated order list is used to test policy combinations of the

picker zoning, storage location assignment, order batching, and picker routing planning

problems. In this way, the variation in the results among the four planning problem fac-

tors is only systematic variation as a result of a revised operational policy. This systematic

variation allows us to control the policy decisions covered in the research hypotheses. A

new list of 500 orders is generated for all other factors in the experimental design. In this

way, unsystematic variation resulting from revising the batch capacity and/or picker den-

sity is induced in addition to the systematic variation. To reduce the stochastic effect from

order generation, each factor level combination is replicated 30 times. In total, 30×3×3

lists of orders are generated (each list consisting of 500 orders) and tested with respect

to the policies of the four planning problems. As the unsystematic variation is limited to

the order generation and the assignment of SKUs to pick zones and storage locations and

each factor level combination is replicated 30 times, 15,000 orders have been simulated

for each factor level combination. This seems to be large enough to draw reliable conclu-

sions. Note that the 500 customer orders are assumed to be released in a single wave and

due times are assumed to be at the end of the wave.

4.2.6 Statistical Analysis

The results of the simulation experiments provide the required data for performing the

statistical tests that evaluate the research hypotheses formulated in Section 4.1. To test

whether or not a relation is statistically significant, an analysis of variance (ANOVA) is per-

formed, both on travelling (i.e., travel time for picking 500 orders in a single replication)

and picker blocking (i.e., total wait time per replication). The underlying assumptions of

the ANOVA are similar to the generalised experimental design proposed in Section 3.2.4.

The empirical study consists of a 5×5×3×5×3×3 full factorial design with a mixture of

between-groups and repeated-measures factors. The between-groups factors consist of

the two independent factors (i.e., batch capacity and picker density), while the repeated-

measures factors correspond to the picker zoning, storage, batching, and routing policy

factors. This mixed factorial design requires a mixed model ANOVA (Petersen, 1997). Af-

terwards, interaction plots and post hoc tests are performed with respect to the relations
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that are confirmed by ANOVA.

4.3 Empirical Results

This section presents the results of the study. The ANOVA results to test the expected re-

lation formulated in the research hypotheses are discussed in Section 4.3.1. Section 4.3.2

analyses the direction of the relation and explains the interactions using interaction plots

and post hoc tests. Section 4.3.3 summarises whether or not the research hypotheses are

supported.

4.3.1 Factor Analysis

All relations formulated in the research hypotheses of Section 4.1 are supported by the

mixed-model ANOVA. Note that ANOVA does not provide insights into the direction of

the relation, but only support that a significant relation exists. Tables 4.6 and 4.7 provide

the results with respect to travelling and picker blocking. The first columns are devoted

to the sum of squares, the G-G adjusted degrees of freedom and the mean squares of the

main and interaction effects. The F statistic and p-value for testing the statistical signifi-

cance of the six experimental factors and the interaction effects are shown in the last two

columns. Due to limited relevance and intricate interpretation of three-way and four-way

interactions among planning problems, these effects are ignored in the analysis.

The mixed-model ANOVA on travelling reveals that all main effects of the four plan-

ning problems, as well as all interaction effects among zoning, storage, batching, and rout-

ing are statistically significant. This means that the joint effect of the planning problems

significantly impacts the mean travel time of order pickers in narrow-aisle order picking

systems. In other words, the decision on which zoning, storage, batching, and routing

policy to use in order picking operations influences the travel time of order pickers. Ad-

ditionally, the joint effect of these policy decisions substantially impacts travelling. Note

that the number of pickers (picker density) is irrelevant since the total distance travelled is

independent of the number of available order pickers. Routes are calculated independent

from the picker who is going to perform the pick round. Furthermore, route deviations in

case of picker blocking are not allowed, making the travel distance independent from the

picker density.

We find similar results when evaluating the hypotheses with respect to picker blocking.

All main effects as well as all interaction effects are statistically significantly influencing

wait time as a result of picker blocking. This means that there is a significant difference

in mean wait time of order pickers between the five zoning, five storage policies, the three

batching policies and the five routing policies. Moreover, picker blocking is substantially
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TABLE 4.6: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on travelling.

Sum of squares df Mean square F p-value

Main effects
zoning 128,568,345,320 3.72 34,519,689,885 5,393.46 0.000
storage 4,218,438,335,278 1.99 2,116,071,668,468 83,602.59 0.000
batching 16,373,786,713,729 1.08 15,136,030,814,730 618,503.75 0.000
routing 3,628,588,696,977 1.26 2,875,938,701,982 135,016.63 0.000
capacity 23,423,604,753,572 2.00 11,711,802,376,786 6,791.67 0.000
picker density 212,645,930 2.00 106,322,965 0.06 0.940
Two-way interaction
zoning × storage 53,824,631,240 13.53 3,977,054,213 650.08 0.000
zoning × batching 107,002,822,203 4.47 23,954,000,941 7,172.10 0.000
zoning × routing 519,311,668,853 8.61 60,308,399,816 67,568.56 0.000
zoning × capacity 363,108,750,009 7.45 48,746,063,479 3,446.28 0.000
zoning × picker density 70,541,906 7.45 9,470,001 1.48 0.166
storage × batching 408,853,054,506 5.73 71,397,279,167 35,807.75 0.000
storage × routing 155,210,457,286 7.63 20,346,287,849 18,418.06 0.000
storage × capacity 71,043,841,612 3.99 17,818,662,797 703.99 0.000
storage × picker density 57,574,884 3.99 14,440,484 0.57 0.684
batching × routing 326,381,072,529 4.03 80,953,931,134 114,650.70 0.000
batching × capacity 546,985,914,833 2.16 252,818,599,842 10,330.93 0.000
batching × picker density 44,549,391 2.16 20,590,868 0.84 0.440
routing × capacity 176,652,606,703 2.52 70,005,463,673 3,286.54 0.000
routing × picker density 10,781,543 2.52 4,272,606 0.20 0.865
Three-way interaction
zoning × storage× capacity 4,788,013,921 27.07 176,891,049 28.91 0.000
zoning × storage × picker density 156,004,301 27,07 5,763,510 0.94 0.550
zoning × batching × capacity 14,718,752,935 8.93 1,647,494,030 493.28 0.000
zoning × batching × picker density 38,978,562 8.93 4,362,934 1.31 0.229
zoning × routing × capacity 51,208,732,317 17.22 2,973,471,316 3,331.43 0.000
zoning × routing × picker density 11,920,905 17.22 692,196 0.78 0.725
storage × batching × capacity 3,113,552,896 11.45 271,857,092 136.34 0.000
storage × batching × picker density 16,486,592 11.45 1,439,512 0.72 0.724
storage × routing × capacity 47,911,704,019 15.26 3,140,333,900 2,842.72 0.000
storage × routing × picker density 7,336,607 15.26 480,872 0.44 0.970
batching × routing × capacity 132,221,006,587 8.06 16,397,719,051 23,223.21 0.000
batching × routing × picker density 4,682,277 8.06 580,684 0.82 0.584
Residuals
between subjects 456,975,452,002 265.00 1,724,436,668
within zoning 6,317,028,530 986.99 6,400,292
within storage 13,371,429,621 528.28 25,311,078
within batching 7,015,403,693 286.67 24,472,011
within routing 7,121,908,028 334.35 21,300,626
within zoning × storage 21,941,161,733 3,586.46 6,117,785
within zoning × batching 3,953,619,941 1,183.76 3,339,888
within zoning × routing 2,036,710,314 2,281.90 892,551
within storage × batching 3,025,770,995 1,517.51 1,993,906
within storage × routing 2,233,175,613 2,021.54 1,104,692
within batching × routing 754,386,872 1,068.40 706,092

total 51,280,700,977,564 14,325.15

influenced by the combined effect of these policy decisions. In contrast to travelling, the

picker density is significantly influencing picker blocking, as well as the batch capacity.

To summarise, all relations formulated in the research hypotheses are supported by

the ANOVA tests. This implies that warehouse managers should consider decisions on

zoning, storage, batching, and routing simultaneously to minimise order picking time.

Travelling measures are insufficient to evaluate the efficiency of the planning problems.

Wait times should be taken into account, at least in narrow-aisle order picking systems.
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TABLE 4.7: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on picker blocking.

Sum of squares df Mean square F p-value

Main effects
zoning 431,902,771,197 2.47 175,119,725,879 25,983.78 0.000
storage 558,237,310,703 1.48 376,762,412,369 17,850.89 0.000
batching 120,074,595,920 1.58 75,782,689,676 6,477.06 0.000
routing 334,304,704,517 1.92 174,197,324,680 22,587.57 0.000
capacity 19,830,419,280 2.00 9,915,208,640 123.82 0.000
picker density 945,235,580,200 2.00 472,617,790,100 5,901.79 0.000
Two-way interaction
zoning × storage 126,225,176,131 8.58 14,705,543,203 3,765.99 0.000
zoning × batching 19,290,903,395 5.00 3,855,800,798 879.56 0.000
zoning × routing 68,974,650,529 8.53 8,084,024,102 3,874.76 0.000
zoning × capacity 1,671,754,167 4.93 338,915,551 50.29 0.000
zoning × picker density 57,705,717,923 4.93 11,698,708,805 1,735.82 0.000
storage × batching 7,485,575,064 3.21 2,332,397,398 300.25 0.000
storage × routing 98,358,422,301 4.34 22,658,818,968 3,845.62 0.000
storage × capacity 1,353,604,488 2.96 456,783,596 21.64 0.000
storage × picker density 271,360,204,028 2.96 91,572,457,744 4,338.68 0.000
batching × routing 13,203,802,172 4.04 3,266,545,738 994.89 0.000
batching × capacity 9,417,180,226 3,17 2,971,732,868 253.99 0.000
batching × picker density 34,984,823,881 3.17 11,039,987,398 943.58 0.000
routing × capacity 2,475,856,448 3.84 645,051,601 83.64 0.000
routing × picker density 141,317,523,315 3.84 36,818,408,714 4,774.12 0.000
Three-way interaction
zoning × storage× capacity 152,318,538 17.17 8,872,742 2.27 0.002
zoning × storage × picker density 30,453,866,781 17.17 1,773,975,158 453.30 0.000
zoning × batching × capacity 1,606,019,272 10.01 160,502,861 36.61 0.000
zoning × batching × picker density 1,160,765,802 10.01 116,004,980 26.46 0.000
zoning × routing × capacity 1,213,079,946 17.06 71,088,200 34.07 0.000
zoning × routing × picker density 12,655,494,549 17.06 741,629,875 335.47 0.000
storage × batching × capacity 5,710,053,625 6.42 889,585,243 114.52 0.000
storage × batching × picker density 1,993,600,356 6.42 310,588,582 30.98 0.000
storage × routing × capacity 2,519,597,317 8.68 290,219,679 49.26 0.000
storage × routing × picker density 57,525,651,664 8.68 6,626,089,035 1,124.57 0.000
batching × routing × capacity 13,203,802,172 8.08 417,234,179 127.08 0.000
batching × routing × picker density 3,859,634,726 8.08 477,425,866 145.41 0.000
Residuals
between subjects 21,221,316,780 265.00 80,080,441
within zoning 4,404,833,430 653.58 6,739,578
within storage 8,287,142,085 392.64 21,106,082
within batching 4,912,683,983 419.88 11,700,161
within routing 3,922,101,596 508.57 7,712,088
within zoning × storage 8,882,047,070 2,274.63 3,904,831
within zoning × batching 5,812,080,515 1,325.82 4,383,770
within zoning × routing 4,717,264,232 2,261.04 2,086,327
within storage × batching 6,606,816,881 850.49 7,768,260
within storage × routing 6,777,839,016 1,150.32 5,892,113
within batching × routing 3,516,971,221 1,071.16 3,283,316

total 3,464,694,792,850 11,382.94

4.3.2 Discussion

Although the experimental design gives rise to a large number of instances, and null hy-

potheses are much easier to reject in larger samples (i.e., the probability that at least one

of the factor levels interacts with another factor level increases), the ANOVA shows strong

statistically significant effects. Therefore, the directions of each planning problem combi-

nation are further analysed and relations are explained in this section, providing insights

into the behaviour of order picking policies for both travelling and picker blocking. For

each planning problem combination, this section provides interaction plots with respect
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to travelling (i.e., the mean total travel time per replication) and picker blocking (i.e., the

mean total wait time per replication), illustrating the planning problem with the short-

est time horizon of the resulting decision on the horizontal axis. Furthermore, post hoc

tests are provided in this section for each combination of two planning problems, where

all policies of the planning problem with the shortest time horizon are evaluated for each

policy of the planning problem with the longest time horizon. Post hoc tests with planning

problems in the other direction are provided in Appendix E.

Zoning-storage relationship The relation formulated in Hypotheses 4.1a and 4.1b are

supported by the ANOVA results. Figures 4.4, 4.5, and E.1 illustrate that the direction of the

picker zoning and storage location assignment relation (i.e., decreasing marginal effects)

is supported as well.

(A) Travelling. (B) Picker blocking.

FIGURE 4.4: Interaction plot of zoning-storage combinations.

Both picker zoning and storage location assignment aim to reduce the area covered

by pickers in a pick round, resulting in a significant travelling relationship. Due to the

large travelling benefits of across-aisle or perimeter storage classes (see Figure 4.5a), travel

times are minimal irrespective of the applied picker zoning policy. The effect of picker

zoning policies on travelling is stronger when combined with the other three storage lo-

cation assignment policies. This relationship is illustrated in Figure 4.4a by similar travel

times of the picker zoning policies in combination with across-aisle and perimeter stor-

age classes, while travel times are more varying in combination with other storage policies.
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(A) Travelling. (B) Picker blocking.

FIGURE 4.5: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies by
zoning policies (in s).

This interaction can be explained by the dominant effect of vertical travelling: across-aisle

and perimeter storage classes locate fast moving items to the easiest accessible locations

with respect to the point of entrance of a pick aisle, making the effect of zoning negligible.

The locations with minimal Chebychev travel time with respect to the point of entrance

are dedicated to the fast moving SKUs in across-aisle or perimeter storage classes, whereas

within-aisle and diagonal storage classes concentrate fast moving SKUs within a few aisles

and are consequently assigned to higher locations as well. Moreover, the effect of zone lo-

cation is negligible (i.e., single-block and multi-block zones yield similar travel times).

The combined effect on picker blocking is depicted in Figures 4.4b and 4.5b. The in-

teraction plot reveals no effect of zone location, and the post hoc test creates identical

subsets. However, the interaction plot shows a strong relationship between the concen-

tration of fast moving items and picker blocking. A single pick zone in combination with

within-aisle or diagonal storage classes substantially increases wait times due to picker

blocking. In these combinations, class A SKUs are most strongly concentrated resulting in

a high pick density in a small area, thereby increasing the probability of picker blocking.

Either changing the picker zoning policy or storage location assignment policy (or both)

significantly reduces wait times as fast moving SKUs are distributed more equally across

the order picking area. So, the marginal picker blocking effect from turnover-based stor-

age location assignment policies decreases when the order picking area is divided into

pick zones, as illustrated by the smaller fluctuating lines of the interaction plot (Figure

4.4b) in case of more pick zones.

Zoning-batching relationship The relations formulated in Hypotheses 4.2a and 4.2b are

supported by the ANOVA results. Although the relation is found to be significant, the ex-

pected decreasing marginal travelling and picker blocking effects from efficient batching

policies when the order picking area is divided into pick zones are not supported by Fig-

ures 4.6, 4.7, and E.2.
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(A) Travelling. (B) Picker blocking.

FIGURE 4.6: Interaction plot of zoning-batching combinations.

(A) Travelling. (B) Picker blocking.

FIGURE 4.7: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies
by zoning policies.

The interaction plot illustrating the travelling interaction between zoning and batch-

ing (Figure 4.6a) reveals diverging lines (i.e., increasing marginal effect) when moving from

FIFO to a more efficient batching policy. This can be explained by the trade-off between

creating a small number of batches (i.e., a small number of zones combined with FIFO or

seed batching) or creating a larger number of batches that cover a small area (i.e., multiple

zones and savings batching). Multiple zones require more batches as orders are split into

different zones and the batch capacity is expressed in number of orders. Moreover, the

savings algorithm results in a larger number of batches compared to FIFO or seed batch-

ing as batches are unlikely to be filled to capacity under a savings batching policy. Under

the assumptions of these experiments, the savings batching policy outperforms the seed

and FIFO batching policy in combination with all picker zoning policies as shown by the
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post hoc tests of Figure 4.7a.

Similar to the zoning-storage relationship, the joint effect of zoning and batching on

picker blocking is not caused by the location of order pick zones. Both single-block and

both multiple-block zoning policies result in equal mean wait times as can be seen in Fig-

ure 4.6b. The significant relationship can be explained by the combined effect of the seed

batching policy and multiple zones. The seed batching policy outperforms the FIFO and

savings batching policies with respect to picker blocking (see Figure 4.7b). The seed policy

is in accordance with the traffic rules: orders are batched to minimise the total number of

aisle visits, and traffic rules cause picker blocking by allowing a maximum number of pick-

ers to work concurrently within aisles. Under an efficient zoning policy, the marginal wait

time benefits of seed batching are smaller compared to, for example, a single pick zone.

This decreasing marginal effect is not shown with respect to the most efficient batching

policy (i.e., savings batching).

Zoning-routing relationship The relations formulated in Hypotheses 4.3a and 4.3b are

supported by the ANOVA results. Furthermore, the marginal travelling and picker blocking

effects from efficient routing policies decrease when the order picking area is divided into

pick zones, as illustrated in Figures 4.8, 4.9, and E.3.

(A) Travelling. (B) Picker blocking.

FIGURE 4.8: Interaction plot of zoning-routing combinations.

The optimal routing policy results in the shortest travel time, irrespective of the picker

zoning policy (see Figure 4.9a). Only minor differences exist among the picker zoning
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(A) Travelling. (B) Picker blocking.

FIGURE 4.9: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies
by zoning policies.

policies in combination with optimal routes in terms of travel time (i.e., small marginal

effect). In combination with other routing policies, travel time increases. The interaction

plot (Figure 4.8a) reveals that the unidirectional traversal routes (i.e., traversal+) favour

more zones, either single-block or multi-block zones. More and thus smaller zones limit

the probability of visiting a pick aisle without picks forced by the imposed traffic direc-

tions of traversal+ routes. There is an even number of aisles in the experiment to ensure

that a route ends at the side of the depot. Moreover, midpoint routes are preferred in

combination with single-block zones as routes are created along the periphery of each

warehouse block. Figure 4.9a illustrates that the effect of zoning policies is substantial in

combination with the routing policies yielding the largest travel times (i.e., traversal+ and

midpoint), while the marginal travelling effect decreases in combination with efficient

routing policies.

While the optimal route length results in the shortest travel time, optimal routes are in

the lowest subsets with respect to picker blocking in combination with most picker zoning

policies (see Figure 4.9b). Traversal+ and midpoint routes benefit from safety constraints

since two pickers can work concurrently in a pick aisle. Only a single picker can enter an

aisle in traversal, return, or optimal routes, resulting in increased wait times, particularly

with inefficient picker zoning combinations as shown in Figure 4.8b. The marginal picker

blocking effect of from efficient routing policies decreases when the order picking area is

divided into pick zones, as illustrated by the smaller fluctuating lines of the interaction

plot (Figure 4.8b) in case of more pick zones.

Storage-batching relationship The ANOVA results demonstrates that the combined ef-

fect of storage location assignment and order batching significantly influences travelling

as well as picker blocking. Based on Figures 4.10, 4.11, and E.4, the expected direction of

the relation (see Hypotheses 4.4a and 4.4b) is not supported.

Although the savings batching policy outperforms seed and FIFO batching, in com-

bination with all storage location assignment policies with respect to travelling (see Fig-
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(A) Travelling. (B) Picker blocking.

FIGURE 4.10: Interaction plot of storage-batching combinations.

(A) Travelling. (B) Picker blocking.

FIGURE 4.11: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies
by storage policies.

ure 4.11a), the interaction plot in Figure 4.10a provides insights into the interaction. The

aisle-based seed batching algorithm and the random FIFO batching policy neglect the

vertical travelling when creating batches. As more fast moving SKUs are stored in high-

level locations in within-aisle or diagonal storage classes, the interaction plot shows a

large travelling gap compared to, for example, across-aisle storage classes. Since verti-

cal travelling is taken into account with the savings algorithm when creating batches, the

four turnover-based storage location assignment policies show only minor travelling dif-

ferences. So, the varying marginal effects of the within-aisle and diagonal storage classes

over the batching policies explains the relation. The hypothesised decreasing marginal

travelling benefits from efficient batching policies when turnover-based storage location

assignment policies assign fast moving SKUs to a small picking area is not clearly illus-
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trated in Figure 4.10a.

ANOVA results show a significant storage-batching effect on picker blocking as well.

The interaction plot in Figure 4.10b does not provide the expected decreasing marginal

picker blocking effect from efficient batching policies in combination with turnover-based

storage classes as explanation for the significant relation. Reducing the number of aisles to

be visited in a pick round (i.e., seed batching policy) in combination with storage policies

that diffuse fast moving SKUs across pick aisles (i.e., random, across-aisle, and perimeter

storage policies) minimises wait times due to picker blocking (see Figure 4.11b). Concen-

trating fast moving SKUs in a small number of aisles or batching orders randomly (i.e.,

FIFO) or based on a travelling metric significantly increases wait times, particularly when

FIFO batching and random storage are combined. This effect is illustrated for the seed

batching policy in Figure 4.10b when comparing picker blocking for within-aisle and di-

agonal storage with e.g., random storage.

Storage-routing relationship The relations formulated in Hypotheses 4.5a and 4.5b are

supported by the ANOVA results. Figures 4.12, 4.13, and E.5 illustrate that the marginal

picker blocking effect from efficient routing policies increases when turnover-based stor-

age location assignment policies assign fast moving SKUs to a small picking area, while

the expected direction of the travelling effect is not supported.

(A) Travelling. (B) Picker blocking.

FIGURE 4.12: Interaction plot of storage-routing combinations.
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(A) Travelling. (B) Picker blocking.

FIGURE 4.13: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies
by storage policies.

The interaction plot of Figure 4.12a reveals strong variations in mean travel time

among combinations of storage and routing policies as shown by the crossing lines on

the graph (i.e., results do not provide an increasing or decreasing marginal effect). The

optimal route performs best in combination with all storage policies (see Figure 4.13a).

However, optimal routes are rarely used in practice (Van Gils et al., 2018c). The compo-

sition of the other subsets differs considerably across the storage policies. When exclud-

ing optimal routes, return routes are favoured in combination with across-aisle storage

classes as fast moving SKUs are stored at the beginning of an aisle, thereby minimizing

travelling within aisles. Midpoint routes result in the shortest travel time in combination

with perimeter storage classes. Including information about the location of fast moving

SKUs while composing routes favours certain routing heuristics. Because pick trucks have

to travel vertically to reach high-level storage locations, dominant in within-aisle storage

classes, the generally well performing combination of within-aisle storage and traversal

routing policies yields long travel times in high-level order picking systems. Perimeter

and across-aisle storage classes outperform within-aisle storage location assignment in

combination with both traversal and the traversal+ routing policies.

In terms of wait time, the negative effects of safety constraints are minimal in traversal

and midpoint routes, as these routing policies allow two order pickers to work concur-

rently within pick aisles. The interaction effect can be explained by the converging and

diverging lines in the graph (Figure 4.12b) and the creation of varying subsets by the post

hoc test (Figure 4.13b). The storage location assignment policy is of less importance when

allowing multiple pickers to work concurrently within a pick aisle, whereas strong varia-

tions among the storage policies are found in case of traversal, return, or optimal routing

(i.e., the routing policies that turn out to be efficient in terms of travel time).

Batching-routing relationship The relations formulated in Hypotheses 4.6a and 4.6b

are supported by the ANOVA results. The decreased marginal travelling effect is fully sup-

ported by Figures 4.14, 4.15, and E.6, in contrast to the expected decreased marginal picker
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blocking effect from efficient routing policies when the covered area of a pick round is lim-

ited by efficient batching policies.

(A) Travelling. (B) Picker blocking.

FIGURE 4.14: Interaction plot of batching-routing combinations.

(A) Travelling. (B) Picker blocking.

FIGURE 4.15: Multiple Bonferroni t-test (familywise error rate = 0.01) for routing policies
by batching policies.

The interaction between batching and routing originates from the increased marginal

travelling effects of the traversal+ and midpoint routing policies over the batching policies

(see Figure 4.15a). The seed and savings batching policy can partly compensate the inef-

ficiency with respect to travelling of the traversal+ and midpoint routing policies caused

by the traffic rules. However, applying these routing policies in combination with FIFO

batching, substantially increases travelling in comparison to the more efficient routing

policies (see Figure 4.14a). As the savings algorithm integrates the routing policy while
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TABLE 4.8: Results summary (• hypothesised relation/direction is supported; ◦ hypothe-
sised relation/direction is not supported).

Travelling Picker blocking
Relation Direction Relation Direction

Zoning-storage • • • •
Zoning-batching • ◦ • ◦
Zoning-routing • • • •
Storage-batching • ◦ • ◦
Storage-routing • ◦ • •
Batching-routing • • • ◦

creating batches (i.e., savings between orders are calculated according to the routing pol-

icy), this batching algorithm results in the shortest travel time.

The mean time that order pickers are blocked while picking SKUs is significantly influ-

enced by the combined effect of batching and routing as well. Post hoc tests reveal strong

varying subset creations as illustrated in Figure 4.15b. Especially wait times of optimal

routes vary significantly across the batching policies. Figure 4.14b illustrates the diverg-

ing lines when combining batching policies with the optimal routing policy. However, as

the most efficient batching policy and least efficient batching policy (in terms of travel

time) result in similar picker blocking effects, the decreased marginal picker blocking ef-

fect is not shown in Figure 4.15b.

4.3.3 Results Summary

Table 4.8 summarises the results of the research hypotheses. The ANOVA results support

all relations formulated in the research hypotheses with respect to both travel time and

picker blocking. However, the expected direction of the relations could not be supported

for all research hypotheses.

4.4 Implications

This section outlines the implications of the existing relationships to academics (Sec-

tion 4.4.1) and practice (Section 4.4.2). It also shows the negative effects on performance

if existing real-life features are ignored and provides robust and efficient policy combina-

tions that can be used in practice.

4.4.1 Academic Implications

The graph in Figure 4.16 shows the effects of safety constraints for the example of rout-

ing policies, as traffic rules are integrated in the routing policies. It describes the mean

wait time for a pick aisle visit under all picker zoning, storage, and batching policies. Fig-

ure 4.16 reveals that the safety constraints result in considerably increased wait times, es-
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pecially in a high pick density area (e.g., pick aisles 1–4) in combination with traversal,

return, or optimal routing. Within-aisle, and to a minor extent diagonal, storage classes

cause high pick densities in the first pick aisles (see Figure 4.2). Depending on the picker

zoning policy, these pick densities vary across pick aisles 1–4 (e.g., pick aisles 1–2 mostly

contain fast moving SKUs in combination with all zoning policies, whereas pick aisles 3–4

do so only in a single zone or two pick zones). With respect to the routing policies, traver-

sal, return, and optimal routes limit the number of pickers working concurrently in a pick

aisle to a single order picker, resulting in high wait times. Midpoint routes allow two order

pickers to work concurrently in a pick aisle, with the constraint of one picker at each side

of the pick aisle, resulting in significantly reduced wait times. Finally, traversal+ routes

further reduce wait times as the capacity of pick aisles is two without constraints. Within-

aisle blocking and storage-rack blocking seem to be negligible in this case. However, the

single direction traffic significantly increases travelling (see for example Figure 4.15a).

Thus, safety constraints not only induce picker blocking but also increase travelling with

certain routing policies due to one-way traffic. Ignoring safety constraints in planning

models results in infeasible solutions if traffic rules exist or the predicted order pick time

by the model underestimates the real order pick time, resulting in the risk of choosing an

inefficient policy combination. By considering the most efficient combination of order

picking policies while accounting for safety constraints, the negative effects of the safety

rules are minimised, thereby optimizing order picking operations. Although the risk of

traffic accidents is minimised in pick aisles, routes can still cross in cross-aisles under the

current routing policies, at least in the middle cross-aisle. Although the cross-aisle width

is 6 m, which is wide enough for two-directional travelling, a substantial risk on accidents

remain when entering or leaving pick aisles. Wider cross-aisles and separate lanes to travel

in two directions can further reduce accident risks.

FIGURE 4.16: Mean wait time (in s) for a pick aisle visit (limited to pick aisles 1–16) per
routing policy in case of twelve pickers and batch capacity of twelve orders.

Safety constraints induce aisle-entrance blocking, but reduce the other two blocking

components (i.e., within-aisle blocking and storage-rack blocking). In traversal, return,
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midpoint, or optimal routes, the within-aisle and storage-rack blocking are reduced to

zero as order pickers cannot approach each other within pick aisles, reducing the prob-

ability of accidents compared to traversal+ routes. Moreover, dividing the order picking

area into zones can additionally reduce aisle-entrance blocking as fewer pickers work in

the same area (see for example Figure 4.8b). Limiting the working area of pickers by in-

cluding pick zones reduces the probability of crossing vehicles and the consequent risk of

traffic accidents in the warehouse. However, picker zoning may increase setup time (i.e.,

more batches are created and orders should be sorted), especially when batch capacity

is limited to a small number of orders (see Figure 4.17). Thus, picker blocking induces

inefficient wait times, which can be minimised at the expense of additional setup time.

Travel time or travel distance metrics alone are inadequate to evaluate the efficiency of

planning problems, especially in narrow-aisle order picking systems. Wait times due to

picker blocking should be included to optimise order picking operations.

FIGURE 4.17: Mean number of batches per zone picking policy and batch capacity level.

The effect of high-level storage locations is illustrated by the relatively slow lifting

speed of pick trucks. The additional vertical travelling increases travel time within pick

aisles for the large majority of storage locations as can be seen by the large number of

storage locations above the bold line in Figure 4.18, especially when SKUs at higher lev-

els are retrieved in an aisle. The effect of high-level storage locations on both travelling

and picker blocking is dominant when within-aisle storage location is applied as many

fast moving SKUs are assigned to high-level locations. As a result of more within-aisle

travelling, aisles are occupied longer, increasing aisle-entrance blocking. Neglecting the

effect of vertical travelling would result in significantly underestimated travelling and wait

times. Consequently, the effect of vertical travelling should be taken into account while

evaluating order picking policies.
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FIGURE 4.18: Shortest travel time (in s) to reach each location within a pick aisle (vertical
travel time is dominant for locations above the bold line).

4.4.2 Managerial Implications

The relationships among the order picking planning problems as well as the effect of real-

life features in narrow-aisle order picking systems have been thoroughly discussed. The

question remains which policy combination optimises the order picking system. Fig-

ure 4.19 provides the best performing policy combination for each batch capacity and

each picker density factor level. Additionally, the graph shows the distribution of the to-

tal order pick time across the different time components. As the proportion of each time

component in these experiments is equivalent to the typical distribution of order pickers’

time (Tompkins et al., 2010) and given the realistic and widespread boundaries of batch

capacity and picker density values, the conclusions of this study are easily generalizable to

other narrow-aisle order picking systems. Note that varying batch capacity values capture

the effect of varying order sizes as well (i.e., larger orders or larger batch capacities both

result in more order lines per pick round) and that the varying number of pickers similarly

approximate the effects of the size of the order picking area (i.e., more pickers or a smaller

pick area increases the picker density).

Figure 4.19 shows a varying distribution of time components across batch capacities

and picker densities. Increasing batch capacity appears to reduce total order pick time. A

closer look at the order picking policies reveals that the efficiency of the cumulative seed

batching algorithm and the division of order picking area into zones tends to increase as

batch capacity grows. Increasing batch capacity results in fewer pick rounds which re-

duces travelling from and to the depot, making pick zones more favourable. Customer

orders are split with multiple zones which leads to more pick rounds to retrieve items.

Consequently, travelling from and to the depot with a small batch capacity is more ex-

pensive compared to the distance reduction of travelling in a small pick zone. Although

the workload among the pick zones is assumed to be equal in the simulation experiment,

workload variations as well as other challenges (e.g., assigning SKUs and resources to pick
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FIGURE 4.19: Total order pick time distribution for the best performing policy combina-
tion per batch capacity and picker density factor level.

zones) should be faced with in practice when dividing the order picking area into zones.

Furthermore, increasing batch capacity causes a cumulative variant of batching policies

to be more efficient as information about the location of all orders in a batch is taken into

account while adding an additional order to a batch (e.g., the seed batching policy in these

experiments). This effect is larger with more picks in a pick round. Other external factors

impacting the number of picks per pick round (e.g., variations in order size) are expected

to provide similar results.

Figure 4.19 reveals a slightly increased total order pick time with a larger picker density.

This effect is mainly due to increased wait times if there are more pickers in a given layout.

Note that wait times in the best policy combinations are relatively short compared to the

total order pick time. However, choosing a less efficient order picking policy combination

increases wait times significantly (see for example Figure 4.8b). Other external factors

impacting the density of order pickers (e.g., varying layout) are expected to provide similar

results.

Figure 4.19 illustrates that the optimal routing policy is robust to batch capacity and

picker density. The travelling benefits of optimal routes far outweigh the rather long wait

times compared to other routing policies. However, complex algorithms to solve the rout-

ing problem are not widely used in practice as the optimal routing policy requires rela-

tively long CPU times, and optimal routes are subject to the effects of maverick picking

(Glock et al., 2017). By excluding the optimal routing policy from the analysis, the combi-

nation of a single pick zone, perimeter storage, seed batching, and traversal routing is the

most efficient with respect to total order pick time. Moreover, this combination results in

an increased total pick time of only 5.6% and performs best for all levels of batch capacity
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and picker density.

Figure 4.20 shows that results of studies that ignore existing real-life features fail to

be useful when order picking systems are subject to safety constraints, picker blocking,

and high-level storage locations. The graph shows the percentage increase in total or-

der pick time when comparing the best policy combination of narrow-aisle order pick-

ing systems (i.e., this section) and applying the best policy combination (i.e., four zones,

within-aisle storage, savings batching, and optimal routing) in wide-aisle picking systems

(i.e., proposed in Chapter 3); warehouse characteristics are similar, but real-life features

are ignored. Additionally, the gap is shown if complex policies are excluded (i.e., opti-

mal routing and savings batching) from the analysis as these policies are rarely used in

practice. In this case, the best combination when including real-life features is a single

pick zone, perimeter storage, seed batching, and traversal routing; the best combination

in wide-aisle order picking systems corresponds to four zones, within-aisle storage, seed

batching, and traversal routing. The results show that ignoring real-life features when de-

signing order picking systems results in substantial increases of up to 30% in order pick

times, especially when picker density is large.

FIGURE 4.20: Percentage increase in total order pick time when ignoring existing real-life
features (baseline is best policy combination).

In summary, the simulation results provide a robust policy combination (i.e., single

pick zone, perimeter storage, seed batching, and optimal/traversal routing) for organiz-

ing order picking operations efficiently (i.e., wait times are limited), even if the system is

subject to safety constraints, picker blocking, or high-level storage locations. When one

or more of these real-life features apply, which is the case in most order picking systems,

total order pick time increases substantially as inefficient policy combinations are chosen.
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4.5 Conclusions

In addition to the wide-aisle low-level order picking system of previous chapter, results

in the narrow-aisle high-level order picking system, subject to multiple real-life features,

demonstrate strong relations among the order picking planning problems. Furthermore,

most unexplored real-life features negatively impact order picking efficiency or result in

infeasible solutions if these practical factors are not incorporated. Empirical results show

that travel distance and travel time measures are insufficient to evaluate the efficiency of

order picking policies, at least in narrow-aisle order picking systems. Warehouse man-

agers may choose an inefficient order picking policy combination when only horizontal

travel is considered, as this performance metric ignores the impact of wait times and ver-

tical travel. Moreover, traffic rules as a result of safety constraints limit movements of

pickers and lead to additional waiting. Recent academic literature has failed to exam-

ine the effect of real-life features such as safety constraints, picker blocking, and vertical

travel in high-level storage systems on order picking planning problems. This empirical

study shows the relevance, benefits, and necessity of considering and incorporating these

real-life features when optimizing order picking operations.

Variations in batch capacity, order size, number of pickers, and size of the order pick-

ing area are captured making conclusions about the relations among planning problems

and the effects of real-life features easily generalizable to other order picking systems.

Based on the extensive range of evaluated policies for the four tactical and operational

planning problems, there could be no doubt that planning problems should be consid-

ered simultaneously in order to optimise order picking operations. In order to explore

the effects of real-life features, picker blocking, safety constraints, and high-level storage

(i.e., the main real-life features observed in the real-life case), are incorporated in the or-

der picking policies. Although other real-life features (e.g., varying workloads across pick

zones, precedence constraints and scattered storage) can be relevant and important to

incorporate as well, results show that the three considered real-life features are crucial

to take into account. Furthermore, due times could additionally impact the results, es-

pecially the efficiency of the batching policies as batches are expected to be smaller and

consequently less efficient in case of tight deadlines (see Chapter 7).

Given the general knowledge on the relations among planning problems and the first

insights into the effects of real-life features, the next part (Part III) explores the effect of

workload related real-life features, in particular resource constraints and workload peaks,

in order to make research more valuable to practice. Furthermore, Part IV incorporates

the workload related real-life features while integrating and optimizing three operational

order picking planning problems.
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WORKLOAD FORECASTING

W
arehouses are generally confronted with highly seasonal demand patterns. The

primary tool in coping with demand fluctuations is the labour force. Tempo-

rary workers are often hired in order to capture workload peaks. Forecasting

the daily workload is a key issue in controlling the amount of staff (De Koster et al., 2007;

Ruben and Jacobs, 1999). This chapter1 focusses on forecasting order pickers’ workload

in order to control the number of order pickers (i.e., defining the size of the resource con-

straint). Workload forecasting can be defined as predicting the future amount of work to

be performed in order to meet demand. The workload forecast can be translated into a

required number of order pickers depending on order pickers’ productivity. On the one

hand, an insufficient number of available order pickers reduces the service level. On the

other hand, planning too many order pickers causes unnecessarily high labour costs.

A large number of workforce related studies have been conducted in manufacturing

environments, but similar studies in warehouses are rather limited (Davarzani and Nor-

rman, 2015). The strongly fluctuating daily demand, which requires maximum flexibility,

differentiates warehouses from manufacturing environments. Warehouses deliver labour-

intensive services to customers. Personnel capacity drives the service quality to customers

and resulting warehouse performance. Forecasting and scheduling workers are the main

tools to guarantee order fulfilment operations in a timely way (Sanders and Ritzman, 2004;

Defraeye and Van Nieuwenhuyse, 2016). Therefore, this chapter provides decision support

tools to define the resource constraint in each zone of the order picking area. Several ex-

1This chapter is based on Van Gils, T., Ramaekers, K., Caris, A., Cools, M., 2017c. The use of time series
forecasting in zone order picking systems to predict order pickers’ workload. International Journal of Production
Research 55 (21), 6380–6393.
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isting forecasting methods are tested and analysed in an order picking context for the first

time aiming to support the workforce level and workforce allocation planning problems,

making research more relevant to practice.

New market developments require more efficient order picking operations. One way

of moving to a more efficient order picking process is dividing a warehouse into different

smaller areas, or pick zones. Each pick zone is dedicated to a few order pickers. As a

consequence, each order picker travels in a pre-specified part of the warehouse, and thus

travel time is reduced. Furthermore, order pickers become familiar with the item locations

in the zone. Besides the efficiency benefits resulting from the division of the warehouse

into several pick zones, two disadvantages are linked to zone picking: orders are split and

must be consolidated again before shipment, and labour resources should be allocated

across all pick zones. Either sequential zoning or parallel zone picking is used to deal

with the first disadvantage. In sequential zoning, orders are picked zone by zone. Parallel

zoning refers to the policy where all order pickers can work on the same order at the same

time, each picker in his own zone. After picking, all orders are consolidated through a

sorting system (De Koster et al., 2007; Boysen et al., 2018a).

This chapter focusses on opportunities to deal with the second disadvantage of zone

picking. By fulfilling customer orders in a quick and timely way, space, labour, and equip-

ment resources should be allocated across all pick zones (Gu et al., 2007). Moreover, a flex-

ible workforce planning is required to allocate the order pickers across warehouse zones.

For example, order pickers can be transferred to different pick zones, which results in the

necessity to cross-train workers. Thus, reliable and accurate forecasting is required to sup-

port warehouse supervisors in determining the daily required number of order pickers, as

well as in allocating the order pickers across zones. This chapter concentrates on the first

step of personnel capacity planning, in particular forecasting the workload based on em-

pirical data. Although highly relevant in warehouses, the three other steps introduced

by Defraeye and Van Nieuwenhuyse (2016) (i.e., determining staffing requirements, shift

scheduling, and shift assignment) are beyond the scope of this chapter. The resource ca-

pacity as well as the allocation of the resources across the order picking area, information

provided by the decision support tools in this chapter, is required to solve other opera-

tional planning problems, such as the job assignment problem (see Part IV).

To the best of our knowledge, our study (Van Gils et al., 2017c) is the first to forecast or-

der pickers’ workload in a warehouse. The daily number of order lines is used as surrogate

for pickers’ workload. Most order picking publications treat demand as known in advance

(De Koster et al., 2007, 2012; Hwang and Kim, 2005). As warehouses accept late orders, the

assumption of a constant given demand should be reconsidered. Based on real demand

data, Jane (2000) and Jane and Laih (2005) balance the workload by analysing different

zone sizes in a sequential zone picking warehouse and different assignments of products
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to pick zones in a parallel zone picking warehouse, respectively. These approaches are

expected to balance the workload among zones in the long term. Dynamic zone pick-

ing systems, such as bucket brigades, can be used to solve the balancing problems in the

short term. Bucket brigades are flexible order picking systems and self-balancing with re-

spect to the workload of order pickers. However, bucket brigades can result in efficiency

losses and assume that the picking area is divided into several serial zones (Koo, 2009).

Another approach to balance pickers’ workload among order pickers in the short term is

to forecast the workload. Reliable daily forecasts can be used to schedule order pickers.

For daily planning purposes, the total number of order lines, as well as the distribution of

these aggregated order lines across the different pick zones, are required to determine the

required number of order pickers as well as to allocate the order pickers across zones. The

forecasting approach is not restricted to serial zone picking systems, which can result in

buffers, as orders should be consolidated.

The gap between academic research and practice (Davarzani and Norrman, 2015;

De Koster et al., 2007; Gu et al., 2007), as well as the fact that almost all research in or-

der picking treats demand as given (De Koster et al., 2007) and ignores the determination

of the number of personnel (Rouwenhorst et al., 2000), are common conclusions in re-

cent literature reviews on warehouse planning. The main contribution of this study is

to show how existing forecasting models and approaches provide accurate and reliable

forecasts for the next-day workload of order pickers. A real-life case study demonstrates

the value of applying time series forecasting models to predict the daily number of order

lines. Moreover, two hierarchical forecasting approaches, including top-down forecast-

ing and bottom-up forecasting, are analysed and evaluated in order to provide accurate

aggregated forecasts (i.e., total daily number of order lines) as well as accurate forecasts

of the workload at zone level. Forecasts at different levels of aggregation are required to

help warehouse supervisors defining the total required number of pickers and scheduling

the order pickers across pick zones on a daily basis. Accurate forecasts for each pick zone

ensures a sufficient number of pickers in each pick zone to retrieve all customer orders

timely.

The remainder of this chapter is organised as follows: the next section (Section 5.1) in-

troduces the case study. Section 5.2 outlines the research methodology used in this study,

followed by the empirical results of the real-life case in Section 5.3. Section 5.4 is devoted

to the managerial and academic implications. Section 5.5 concludes this chapter.

5.1 Description Case Study

The case of this study is based on a large international warehouse located in Belgium. The

warehouse, which stores and delivers automotive spare parts to delivery points all over
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the world, is a fully manually operated warehouse. This conventional handling results in

fast, frequent, and reliable deliveries. The warehouse focusses on distributing products

in order to provide customers first-class service that contributes to a maximum operat-

ing time for their vehicles. For example, customers expect certain order types, especially

spare parts for vehicles off road, to have a throughput time of only two hours in order

to minimise the downtime. Determining the daily required number of human resources

in order to provide the high customer service level is perceived as a complicated task by

warehouse supervisors. As customers are allowed to order two hours before the shipping

deadline, forecasting is required to determine the daily required number of order pickers.

The daily number of order lines of the warehouse is used as surrogate for the work-

load of order pickers. The forecasts of order lines, along with order pickers’ productivity,

are used by the warehouse supervisors to determine the daily required number of order

pickers in order to provide a high customer service level. Supervisors are currently only

forecasting the total daily number of order lines. At zone level, no forecasts are currently

available, although supervisors recognise such disaggregated forecasts to be relevant and

necessary to make adequate decisions. These forecasts are based on experience and per-

sonal judgement, without using forecasting models. Each day another supervisor may

forecast the workload for the next day. The supervisors’ forecasts are used as benchmarks

for evaluating the proposed time series forecasting models in this paper. The objective of

the case study is to find time series that are able to produce more reliable forecasts com-

pared to current non-statistical forecasts, making the workforce planning less dependent

on the availability of experienced supervisors.

Order lines for the years 2013 and 2014 are considered. The demand of 2013 is used to

estimate model coefficients, and the order lines of 2014 are used as out-of-sample values.

This method of ex post forecasting is applied to validate the proposed forecasting models.

In Figure 5.1, the real daily number of order lines for the years 2013 and 2014 is plotted, in

particular the accumulated daily number of order lines of each pick zone. For both years,

order lines strongly fluctuate.

(A) Insample. (B) Holdout sample.

FIGURE 5.1: Real daily number of order lines.
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FIGURE 5.2: Autocorrelation of aggregated daily number of order lines.

FIGURE 5.3: Mean and 95% confidence intervals illustrating the weekly seasonal cycle.

An autocorrelation plot is provided in order to gain prior insight into the potential sea-

sonal cycles in the daily number of order lines (Cools et al., 2009). By looking at the results

of the autocorrelation plot presented in Figure 5.2, a weekly recurring cycle can be iden-

tified in the data as indicated by the peaks at lags 5, 10, 15, 20, and 25. This means that

the number of order lines is highly correlated with the number of order lines of the pre-

vious week (note that weekends are not considered). The weekly recurring cycle is shown

in Figure 5.3. On average, the number of order lines is high on Mondays and decreases all

other days of the week, except on Thursdays. The curve shows a significant rise on Thurs-

days, as illustrated by the narrow, non-overlapping 95% confidence intervals in Figure 5.3.

Additionally, a Bonferroni’s test is performed to compare the mean values. Note that Bon-

ferroni’s test controls the Type I error rate and has sufficient statistical power when the

number of comparisons is limited (Field, 2013). The test demonstrates a statistically sig-

nificant difference between the number of order lines for every pair of working days, using

0.01 as the critical significance level.

The studied warehouse is divided into seven different pick zones, named zone A to

zone G. Figure 5.4 depicts the real number of order lines in each pick zone for the year

2014. In terms of order line volume, three large pick zones (i.e., zones A, B, and E) can be

distinguished. Furthermore, the warehouse consists of two middle-sized zones (i.e., zones
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(A) Zone A. (B) Zone B.

(C) Zone C. (D) Zone D.

(E) Zone E. (F) Zone F.

(G) Zone G.

FIGURE 5.4: Real daily number of order lines in each pick zone (2014).
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C and D) and two rather small zones (i.e., zones F and G). Order line data for zones A, B, D,

and E show a similar weekly seasonal cycle as shown in Figure 5.3. This seasonal pattern

is less clear in the other pick zones.

Dividing the warehouse into pick zones implies that all order pickers should be dis-

tributed across the different pick zones. A parallel zone picking policy is employed in the

warehouse under consideration in order to retrieve a large number of orders in short time

windows. Because of the efficiency benefits resulting from parallel zone picking, this zone

picking policy is commonly employed in warehouses (Le-Duc and De Koster, 2005) and is

especially useful in serving e-commerce markets. Furthermore, the proposed forecasting

techniques can be generalised to sequential zoning in order to provide insights into the

workload, as balancing the workload over order pickers is an important issue in sequen-

tial zoning, as well (Jane, 2000; Jane and Laih, 2005).

Because disaggregated forecasts are currently lacking, allocating order pickers across

zones is perceived as a hard activity by supervisors in practice. Therefore, hierarchical

forecasting is introduced in the zoned order picking system. Hierarchical forecasting

refers to the problem of identifying a level of forecasting aggregation that provides ade-

quate information for decision making. Forecasting can be done on an aggregated as well

as a disaggregated level. A top-down forecasting process uses aggregate demand data to

forecast total demand, after which individual forecasts can be derived from the aggregated

forecast. In a bottom-up approach, demand is forecast for each individual demand seg-

ment. Subsequently, these forecasts are accumulated to produce an aggregated forecast

(Schwarzkopf et al., 1988; Song and Li, 2008; Zotteri et al., 2005).

In a warehouse context, demand forecasting on aggregate data is relevant for deter-

mining the daily total number of order pickers required to fulfil all customer orders, while

forecasting the number of order lines at a disaggregate level will additionally help supervi-

sors allocate the order pickers across all pick zones. The different disaggregated demand

segments in a warehouse are defined by the daily order lines of each pick zone.

Both aggregated and disaggregated forecasts are required for flexible workforce

scheduling. The flexible workforce scheduling problem in a zone picking warehouse in-

cludes the distribution of order pickers across different pick zones, when a cross-trained

worker should be transferred to another zone and to which new pick zone a worker should

be assigned.

5.2 Forecasting Models and Accuracy Measures

This section outlines the mathematical and theoretical framework of different time series

forecasting methods. Time series forecasting is considered as an important forecasting

area, where a variable is explained with regard to its own historical observations and a
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random error term. Time series are able to recognise historical trends and patterns and

extrapolate these trends into the future (Song and Li, 2008). De Gooijer and Hyndman

(2006) give an overview of past research in the area of time series forecasting. Methods

like exponential smoothing and different variants of seasonal autoregressive integrated

moving average (SARIMA) are extensively discussed by De Gooijer and Hyndman (2006).

Gardner Jr. (2006) specifically focusses on exponential smoothing forecasting models and

presents state of the art research on exponential smoothing. Time series forecasting has

been extensively used in areas other than warehousing, such as urban water consumption

(House-Peters and Chang, 2011), energy consumption (Suganthi and Samuel, 2012), and

tourism demand (Athanasopoulos et al., 2011; Song and Li, 2008).

This chapter analyses and applies twelve different forecasting models to the order line

data in the case study. The major difference among these methods is the way trends

and seasonal patterns are treated. Time series forecasting models are classified into dif-

ferent categories, in particular the Naïve method, moving average methods, exponen-

tial smoothing models, SARIMA forecasting models, and finally composite forecasting, in

which different previously defined models are combined. The mathematical representa-

tions of the forecasting methods are summarised in Table 5.1. All forecasting methods are

briefly outlined in this section. More elaborated time series forecasting discussions can

be found in Chase Jr (2013) and De Gooijer and Hyndman (2006).

The first method, Naïve I, is the most straightforward forecasting method. Potentially

existing trends and seasonal patterns in the data are neglected. The naïve method can be

extended by taking multiple historical periods into account. The simple moving average

model (MAT M A ) averages T M A previously observed values. By averaging multiple periods,

more historical information is considered in the forecasting value. By giving equal weight

to each historical value, the simple moving average model assumes neither trend nor sea-

sonality (Goh and Law, 2002; Song and Li, 2008). Seasonality can be incorporated into a

moving average model by allowing each component to have a different weight, ωi , in the

moving average equation. Large weights are an indication of highly influential observa-

tions in the forecasting value. This forecasting method is known as a weighted moving

average model (wMAT M A )(Jacobs et al., 2010).

Exponential smoothing models can be defined as special time series models in which

historical values are averaged. In contrast to the above described moving average mod-

els, the averaging of historical values is done in an exponential way. In other words, the

weights in the forecasting model drop exponentially for older values. Various exponen-

tial smoothing models can be distinguished based on the way trends and seasonal pat-

terns are considered. Three models are discussed in this chapter, in particular simple ex-

ponential smoothing (ESN-N), Holt’s exponential smoothing (additive trend, no seasonal-

ity, ESnA-N), and exponential smoothing considering a multiplicative seasonality (ESN-M)
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TABLE 5.1: Summary of time series forecasting models.

Forecasting model Formula

Naïve I ōt+1 = ot

MA
T M A ōt+1 = 1

T M A
∑T M A

i=1 ot−i+1

wMA
T M A ōt+1 =∑T M A

i=1 ωi ot−i+1 :
∑T M A

i=1 ωi = 1,0 ≤ωi ≤ 1
ESN-N ōt+1 =αot + (1−α)ōt : 0 ≤α≤ 1
ESA-N ōt+1 = ōL

t +ōT
t : ōL

t =αot +(1−α)(ōL
t−1+ōT

t−1), ōT
t =β(ōL

t −ōL
t−1)+(1−β)ōT

t−1 ,0 ≤
α≤ 1, 0 ≤β≤ 1

ESN-M ōt+1 = ōL
t ōS

t−T S+1
, ōL

t =α ot
ōS

t−T S

+ (1−α)ōL
t−1 , ōS

t = γ ot
ōL

t
+ (1−γ)ōS

t−T S ,0 ≤α≤

1,0 ≤ γ≤ 1

ART p ōt+1 = o0 +∑T p
i=1φi ot−i+1

ARMAT p ;T q ōt+1 = o0 +∑T p
i=1φi ot−i+1 +∑T q

i=1 θi oE
t−i+1

ARIMAT p ;1;T q ōt+1 = ot +∑T p
i=1φi (ot−i+1 −ot−i )+∑T q

i=1 θi oE
t−i+1

SARIMAT P ;1;T Q

T p ;0;T q {T S } ōt+1 = o
t−T S+1

+ ∑T p
i=1 υi (ot−i+1 − o

t−i−T S+1
) + ∑T P

i=1Υi (o
t−i T S+1

−
o

t−(i+1)T S+1
)+∑T q

i=1 θi oE
t−i+1 +∑T Q

i=1Θi oE
t−i T S+1

ARIMAXT p ;1;T q ōt+1 = ot +∑T J −1
T j =1

ρ j Y j +
∑T p

i=1 υi (ot−i+1 −ot−i )+∑T q
i=1 θi oE

t−i+1

CF(ESN-M& SARIMA & ARIMAX) ōt+1 = 1
3 (ō

ESN−M
t+1 + ōS ARI M A

t+1 + ō ARI M AX
t+1 )

t = time period
t s = seasonal period
o0 = regression constant
ot = real number of order lines in period t
ōt = forecast number of order lines in period t
oE

t = forecasting error in period t

ōL
t = smoothed level of the series in period t

ōT
t = smoothed additive trend in period t

ōS
t = smoothed seasonal index in period t

T M A = number of historical periods averaged
T S = number of periods in one seasonal cycle
T j = working day (T 1 = Monday; T 2 = Tuesday; T 3 = Wednesday; T 4 = Thursday)
T J = number of working day (T J = 5)
T p = number of nonseasonal autoregressive periods
T P = number of seasonal autoregressive periods
T q = number of nonseasonal moving average periods
T Q = number of seasonal moving average periods
Y j = binary working day variable
α = smoothing parameter for the level of the time series
β = smoothing parameter for the trend
γ = smoothing parameter for the seasonal indices
θ = nonseasonal moving average parameters
Θ = seasonal moving average parameters
ρ = working day regression parameters
υ = nonseasonal autoregression parameters
Υ = seasonal autoregression parameters
ω = weight
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(De Gooijer and Hyndman, 2006; Goh and Law, 2002). The reader is referred to Gardner Jr.

(2006) for an overview of other exponential smoothing methods.

Seasonal autoregressive integrated moving average models (SARIMA) exist in many dif-

ferent forms. The full formulation of a SARIMAT P ;1;T Q

T p ;0;T q {T S } model is given by:

υ(B)Υ(B T S
)∇T d ∇T D

T S ot+1 = o0 +θ(B)Θ(B T S
)oE

t ,(5.1)

with:

υ(B) = 1−υ1B − ...−υT p B T p
nonseasonal autoregressive operator

Υ(B T S
) = 1−Υ1B T S − ...−ΥT P B T P T S

seasonal autoregressive operator

θ(B) = 1−θ1B − ...−θT q B T q
nonseasonal moving average operator

Θ(B T S
) = 1−Θ1B T S − ...−θT Q B T Q T S

seasonal moving average operator

∇T d
nonseasonal T d th differencing term

∇T D

T S seasonal T D th differencing at T S lags

B i backshift operator on ot with B i (ot ) = ot−i

Those operators will only be present in Equation 5.1 in case the values T p , T P , T d , T D ,

T q , and T Q are different from zero (Cools et al., 2009). Four different SARIMA variants are

outlined below.

Starting with the most straightforward SARIMA model where only T p differs from zero,

the SARIMA model is a pure autoregressive model (AR) of order T p . The ART p forecasting

model assumes that the forecasting value is only related to the T p most recent historical

values (Chase Jr, 2013; Cools et al., 2009).

The simple AR(T p ) model can be extended by adding T q moving average compo-

nents. In the autoregressive moving average (ARMA) model, both T p and T q differ from

zero. The forecasting value not only depends on its own past values, but also on T q previ-

ous forecasting errors (Chase Jr, 2013; Cools et al., 2009).

The major disadvantage linked to both ART p and ARM AT p ;T q is the assumption of

stationarity. Stationarity requires that there is no trend in the data. The best way of elim-

inating a trend is by differencing the data, in particular taking the difference of observa-

tion t and observation t −1. This model is known as an autoregressive integrated moving

average (ARIMA) forecasting model. The forecasting value is calculated by the sum of

last observation and a forecast shift compared to last period (Athanasopoulos et al., 2011;

Chase Jr, 2013; Cools et al., 2009).
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While the ARIMA model is able to eliminate trends, the full SARIMA model, as repre-

sented by equation 5.1, is able to additionally take seasonal cycles into account. If sea-

sonality exists in the data, seasonal differencing may be required. A seasonal difference

is the difference between two corresponding observations from two consecutive seasonal

cycles. The seasonal difference can be mathematically represented by ot−i −ot−i−t s . By

seasonal differencing, both trend and seasonal patterns can be eliminated at once. There-

fore, the resulting time series may become stationary and require no further differencing

(Athanasopoulos et al., 2011; Chase Jr, 2013; Cools et al., 2009).

In contrast to the pure time series variants of SARIMA, an ARIMA model with inter-

vention Y -variables is applied to the order line data. Four dummy variables are created

to model the weekly seasonality. Those dummy variables represent the first four work-

ing days of the week (i.e., Monday, Tuesday, Wednesday, and Thursday). Friday is used as

reference day to prevent multicollinearity (Cools et al., 2009).

SARIMA models are complex models to develop, as well as to use as forecasting

method. However, SARIMA models generally predict demand accurately in the short,

medium, and long term due to the ability to account for both trends and seasonality

(Chase Jr, 2013).

Finally, composite forecasting (CF) describes methods of combining forecasting val-

ues of alternative forecasting models. By combining different forecasts, biases among

methods compensate for one another. The strengths of each method are merged, re-

sulting in better forecasting performances compared to individual forecasts. The most

simple method of composite forecasting is applied in this study: averaging the three best

performing forecasting methods. Other composite forecasting models are described in

Chase Jr (2013).

Improving forecast accuracy is of great importance in reducing uncertainty and meet-

ing demand requirements (Sanders and Ritzman, 2004). Many forecast accuracy mea-

sures have been used in past research. In order to evaluate the forecasting models, three

different accuracy measures are used, namely root mean square error (RMSE), mean abso-

lute percentage error (MAPE), and finally mean absolute scaled error (MASE). These three

accuracy measures are mathematically represented in Table 5.2. In Hyndman and Koehler

(2006), more previously used measures of accuracy are discussed and compared.

The first proposed accuracy measure, RMSE, is a scale-dependent measure in com-

paring forecasting methods. The main advantage of using RMSE as forecasting accuracy

measure is the straightforward interpretation, as RMSE is on the same scale as the data.

Because the forecasting objective is to minimise forecasting error, a low value for RMSE is

preferred (Hyndman and Koehler, 2006). The quadratic term in the RMSE formula, which

penalises large errors harder, is the main advantage of RMSE compared to other scale-

dependent measures (such as the mean absolute deviation). Small values of RMSE pro-
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TABLE 5.2: Summary of forecast accuracy measures.

Forecast accuracy measure Formula

RMSE
√

1
T

∑T
t=1 (ot − ōt )2

MAPE 1
T

∑T
t=1

|ot −ōt |
ot

MASE 1
T

∑T
t=1

ot −ōt
1

Ti −1
∑Ti

j=2
|oti

−oti−1
|

ōt = forecasting value in period t
t = time period
t I = in-sample time period
T = total number of forecast periods
Ti = number of in-sample periods
ot = observed value in period t

vide forecasting errors that are more equally distributed across the forecasts, compared

to other scale-dependent measures. In terms of workload forecasts, equally distributed

(small) errors are preferred as these can be captured by the human pickers by working

harder, while large errors would result in missing shipping deadlines or unnecessarily high

labour costs.

MAPE is an accuracy measure based on percentage errors. MAPE is scale-independent

and thus useful for comparing forecasting performance across different data sets. It has

the disadvantage of having an extremely skewed distribution when any value of ot is close

to zero (Hyndman and Koehler, 2006). MAPE has been identified as especially useful when

units of measurement are relatively large (Goh and Law, 2002). In the forecasting context

a low value for MAPE is preferred, because a low value can be interpreted as a low per-

centage error. Because the daily number of order lines in a warehouse is different from

zero and units of measurement are rather large, MAPE is a reliable forecasting accuracy

measure.

A final accuracy measure proposed by Hyndman and Koehler (2006) is a scaled error.

MASE is independent of the data scale. If MASE has a value smaller than one, the proposed

forecasting method gives, on average, smaller errors compared to the in-sample errors

from the naïve method. The naïve method is thus used as benchmark in evaluating the

forecasting accuracy by MASE (Hyndman and Koehler, 2006).

5.3 Empirical Results

This section analyses and discusses the results of the study. Hierarchical forecasting is

performed by applying both a bottom-up and a top-down approach to the order line data

in the case study. Using the top-down forecasting process, first total daily number of order

lines is forecast using time series forecasting models. Next, the zone-level forecast is de-

rived from the aggregated forecast using a factor that defines the percentage of total num-

ber of order lines that should be picked in the pick zone. For the bottom-up approach,
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TABLE 5.3: Top-down approach: forecasting accuracy aggregated forecast.

RMSE MAPE MASE
In-sample Holdout sample In-sample Holdout sample Holdout sample

Benchmark 1,820.40 1,485.75 5.79% 4.65% 0.33
Naïve I 4,018.37 3,767.99 14.14% 12.81% 0.89
MA5 2,714.83 2,538.54 8.94% 8.35% 0.58
wMA5 1,670.93 1,622.22 5.34% 5.32% 0.37
ESN-N (α= 0,106) 2,792.15 2,603.14 9.36% 8.73% 0.61
ESA-N (α= 0,106, β= 0,000) 2,791.86 2,606.10 9.38% 8.78% 0.61
ESN-M (α= 0,174, γ= 0,114) 1,405.92 1,371.19 4.46% 4.35% 0.30
AR4 1,653.81 1,602.76 5.32% 5.22% 0.36
ARMA4;1 1,644.78 1,598.48 5.31% 5.23% 0.36
ARIMA4;1;1 1,658.52 1,608.89 5.28% 5.29% 0.37

SARIMA0;1;1
3;0;1{5} 1,421.43 1,401.41 4.51% 4.46% 0.31

ARIMAX2;1;1 1,377.18 1,415.11 4.35% 4.53% 0.31
CF 1,363.26 1,350.64 4.33% 4.27% 0.29

the time series forecasting formulas are used to predict demand on zone level, after which

these zone level forecasts are accumulated to derive aggregated demand.

This section is organised as follows: Sections 5.3.1 and 5.3.2 present the results of the

top-down forecasting process and the forecasting errors resulting from the bottom-up

approach, respectively. Both forecasting approaches are statistically compared in Sec-

tion 5.3.3.

5.3.1 Top-down Forecasting Approach

All twelve forecasting methods presented above are applied to the warehouse demand

data. Results of the twelve forecasts, as well as the performance of non-statistical forecasts

made by supervisors (benchmark) are presented in Table 5.3. Coefficients of wMA5, all

exponential smoothing models and all variants of SARIMA are determined by minimizing

the in-sample sum of squared residuals (SSR), using the Excel Solver.

FIGURE 5.5: Benchmark forecasts, composite forecasts, and the real daily number of order
lines for February 2014.
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TABLE 5.4: Top-down approach: analysis absolute scaled error (ASE) for the out-of-
sample aggregated forecast.

MASE σ ASE Minimum ASE Maximum ASE

Benchmark 0.33 0.27 0.00 1.46
Naïve I 0.89 0.61 0.00 3.19
MA5 0.58 0.44 0.01 2.20
wMA5 0.37 0.29 0.00 1.32
ESN-N (α= 0,106) 0.61 0.43 0.00 2.24
ESA-N (α= 0,106,β= 0,000) 0.61 0.43 0.00 2.23
ESN-M (α= 0,174,γ= 0,114) 0.30 0.25 0.00 1.27
AR4 0.36 0.29 0.00 1.30
ARMA4;1 0.36 0.28 0.00 1.28
ARIMA4;1;1 0.37 0.28 0.00 1.33

SARIMA0;1;1
3;0;1{5} 0.31 0.26 0.01 1.21

ARIMAX2;1;1 0.31 0.27 0.00 1.41
CF 0.29 0.25 0.00 1.25

Results in Table 5.3 show that all three forecasting accuracy measures are consistent

in identifying the best performing forecasting method, both for in-sample forecasts and

for out-of-sample forecasts. Although the forecasts of the experienced supervisors are

already very accurate, the composite forecast of ESN-M, SARIMA, and ARIMAX improves

the benchmark by 25.3%
(
1− 4.33%

5.79%

)
and 8.2%

(
1− 4.27%

4.65%

)
in terms of the in-sample MAPE

and holdout-sample MAPE percentage reduction, respectively (note that the difference

is significant on a 0.01 significance level). All three forecasting accuracy measures, both

in-sample and out-of-sample, of ESN-M, SARIMA0;1;1
3;0;1{5}, as well as ARIMAX2;1;1 provide

similar conclusions as the CF method. Neither other SARIMA variant nor the more simple

forecasting models are able to accurately describe the seasonal cycles in the data; these

models are not able to outperform current predictions done by supervisors (i.e., bench-

mark). Figure 5.5 illustrates the forecasts, both benchmark and CF, as well as the real daily

number of order lines. The figure is limited to the month of February 2014 because of

visibility. However, other months show similar patterns.

Besides demonstrating the best performing forecasting model, Table 5.3 shows that

almost all forecasting errors produced by the holdout sample are lower compared to the

corresponding in-sample forecasting errors. Because supervisors were able to forecast

more accurately in the year 2014, compared to 2013, this observation seems to be caused

by the nature of the data. Order lines seem to deviate less from the general pattern in 2014

compared to 2013.

A final remark on Table 5.3 can be made concerning the results of ESN-N and ESA-N.

By including the trend component in the exponential smoothing model, only in-sample

RMSE is slightly decreasing. All other forecasting errors have risen due to the inclusion

of a trend component. This is in accordance with the observations on Figure 5.1 that the

trend is not significant.

Table 5.4 presents a more profound overview of the absolute scaled error (ASE). For
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TABLE 5.5: Top-down approach: forecasting accuracy aggregated and disaggregated fore-
cast.

RMSE MAPE MASE
In-sample Holdout sample In-sample Holdout sample Holdout sample

Aggregated
Total CF 1,363.26 1,350.64 4.33% 4.27% 0.29
Disaggregated
Zone A (23.4%) 476.39 529.20 7.06% 6.69% 0.51
Zone B (31.2%) 563.43 545.62 5.76% 5.92% 0.42
Zone C (4.4%) 264.52 265.93 20.32% 16.04% 1.03
Zone D (7.3%) 129.40 130.17 5.71% 6.02% 0.34
Zone E (31.7%) 663.94 587.62 6.65% 6.94% 0.33
Zone F (0.6%) 38.88 53.71 22.74% 18.73% 1.01
Zone G (1.4%) 42.62 52.86 10.08% 10.32% 0.86

each of the twelve forecasting models, the mean absolute scaled error, the standard de-

viation of the absolute scaled error, as well as the minimum and maximum value of the

absolute scaled error are given for the out-of-sample aggregated forecasts in order to anal-

yse the daily variation of the errors. Only minor differences in the minimum ASE between

the forecasting models can be observed, in contrast to the maximum ASE. All SARIMA

forecasting models, as well as ESN-M and the composite forecast result in lower maximum

scaled errors compared to the maximum ASE of supervisors’ forecasts. In general, the

composite forecast is the best performing forecasting technique in terms of mean, stan-

dard deviation, and maximum ASE. The standard deviation and maximum forecasting er-

ror of the composite forecast reduce by 5.0% and 14.6%, respectively, compared to bench-

mark forecasts.

The best performing forecasting model for aggregated data, CF, is used to create fore-

casts at zone level. The results are shown in Table 5.5. The percentages in the first column

represent the average daily workload (in number of order lines) of each zone as percent-

age of the total daily workload, based on the in-sample data. Note that forecasts may be

further improved by varying the fractions of each zone (e.g., by using a simple moving av-

erage forecast to predict the daily workload fraction of each zone). The scaled error MASE,

which is independent of the data scale, is used to compare the accuracy of forecasts at

zone level.

Forecasts for the three large zones (i.e., zones A, B, and E), as well as zone D, are accu-

rate using the top-down approach. Forecasting errors of those four pick zones are on av-

erage a factor of 0.33 to 0.51 smaller than the in-sample forecasting errors from the naïve

method. A slightly bigger forecasting error is produced in zone G. In the remaining two

zones, C and F, the top-down approach does not forecast the daily number of order lines

as successfully as the naïve method’s in-sample forecasting values.
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5.3.2 Bottom-up Forecasting Approach

In the bottom-up forecasting approach, the daily number of order lines is forecast for each

individual zone. All time series models presented in Table 5.1 are applied to each pick

zone. Forecasting accuracy measures of the best performing model are summarised in

Table 5.6. These disaggregated forecasts are accumulated to produce the aggregated de-

mand. Again, MASE is used to compare forecasts of all pick zones.

TABLE 5.6: Bottom-up approach: forecasting accuracy aggregated and disaggregated fore-
cast.

RMSE MAPE MASE
In-sample Holdout sample In-sample Holdout sample Holdout sample

Aggregated
Total 1,368.34 1,347.33 4.36% 4.24% 0.29
Disaggregated
Zone A CF 332.58 383.57 4.58% 4.80% 0.38
Zone B CF 489.90 459.42 4.99% 4.92% 0.38
Zone C ESN-M 166.64 166.00 12.11% 10.37% 0.66
Zone D CF 109.42 109.45 4.84% 4.85% 0.29
Zone E ESN-M 498.47 447.04 4.99% 4.75% 0.25
Zone F AR4 33.78 52.10 16.98% 17.51% 1.01
Zone G ESN-M 36.16 41.04 8.07% 7.87% 0.69

Comparison of disaggregated demand using the bottom-up forecasting process results

in similar conclusions as in the previous section. Order lines of the main four pick zones,

in particular zones A, B, D, and E, can be forecast highly accurately. Forecasting errors are

on average a factor of 0.25 to 0.38 smaller than the in-sample forecasting errors from the

naïve method. The AR4 model outperforms all other forecasting models only in zone F.

However, the forecasting errors resulting from the autoregressive model are rather large.

The ESN-M forecasting model results in the most accurate forecasts in zones C, E, and G.

Other pick zones are most accurately forecast using the composite forecasting technique.

5.3.3 Comparing Top-down and Bottom-up Forecasting

A paired-samples t-test is used to compare forecasting errors of the top-down and bottom-

up forecasting process. Differences of the scale independent forecasting accuracy mea-

sures, including MAPE and MASE, are tested for the out-of-sample forecasting values. In

the first t-test, the mean absolute forecasting error of the top-down forecasting process is

compared to MAPE of the bottom-up approach. Secondly, MASE of both forecasting ap-

proaches are compared. Differences of performances between the top-down and bottom-

up approaches, both relative difference and absolute difference, as well as results of the

two-sided paired-samples t-tests are summarised in Table 5.7. First, the disaggregated

test results are presented, followed by the aggregated performance differences among the

top-down and bottom-up forecasting approaches.
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TABLE 5.7: 2-tailed significance levels for the paired-samples t tests on mean difference
for the top-down and bottom-up forecasting approach.

MAPE MASE
relative
∆M APE

absolute
∆M APE

t df p relative
∆M ASE

absolute
∆M ASE

t df p

Aggregated
Total −0.55% −0.02 0.67 238 0.504 −0.39% 0.00 0.48 238 0.631
Disaggregated
Zone A −28.31% −1.89 5.92 238 0.000 −24.28% −0.12 5.12 238 0.000
Zone B −16.84% −1.00 4.17 238 0.000 −8.90% −0.04 2.14 238 0.033
Zone C −35.34% −5.67 6.74 238 0.000 −36.02% −0.37 6.21 238 0.000
Zone D −19.34% −1.16 4.62 238 0.000 −14.99% −0.05 3.49 238 0.001
Zone E −31.53% −2.19 7.12 238 0.000 −25.84% −0.09 5.79 238 0.000
Zone F −6.49% −1.21 1.49 238 0.139 −0.44% 0.00 0.11 238 0.914
Zone G −23.76% −2.45 5.19 238 0.000 −19.95% −0.17 4.36 238 0.000

∆M APE = difference between bottom-up and top-down MAPE
∆M ASE = difference between bottom-up and top-down MASE

Significance levels of both accuracy measures are consistent in determining the best

disaggregated forecasting approach. For all pick zones, except for zone F, the bottom-up

approach results in statistically significant lower forecasting errors, while for zone F the

null hypothesis of equal forecasting errors cannot be rejected. This result can be explained

by the fact that an equal daily distribution of total order lines across zones, as assumed in

the top-down approach, is rather unlikely to occur. In the bottom-up forecasting process,

daily number of order lines is forecast for each single pick zone, resulting in a variable

fraction of each zone’s demand in total demand. Zone F is one of the smaller pick zones

in the warehouse in which the seasonal pattern is less clear compared to other pick zones.

The strong fluctuating demand as well as the absence of a weekly recurring cycle results

in large forecasting errors in both forecasting approaches.

Forecasting errors of aggregated demand prediction using a top-down approach are

compared to the bottom-up approach in an equivalent way. Neither percentage errors

nor the scaled errors are statistically significantly different using the CF forecasting model

for aggregated demand or accumulating the disaggregated forecasts. As a large amount of

the order line variation of each single zone can be explained by the time series forecast-

ing methods in the main pick zones, the derived aggregated forecasting in the bottom-up

approach is a reliable forecast of the real total number of order lines. As the time series

forecasting models are able to reliably forecast the total number of order lines in the top-

down approach, as well, the null hypothesis of equal forecasting errors cannot be rejected.

From the results in Table 5.7, it can be concluded that the bottom-up approach outper-

forms the top-down approach in forecasting disaggregated demand, except for forecasting

order lines in zone F. Average forecasting errors for predicting neither the total number of

order lines nor the order lines in zone F are statistically significantly different.
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5.4 Managerial Implications

Multiple forecasting methods and approaches are shown to be applicable in an order pick-

ing context. Order picker’s workload in terms of number of order lines in the case study

can be forecast in a highly accurate way. Several presented forecasting models are able

to outperform the benchmark, i.e., the non-statistical forecasts done by supervisors. The

combined forecasting method results in most accurate predictions for daily total number

of order lines, followed by the exponential smoothing model with multiplicative weekly

seasonality, the full SARIMA model, and the ARIMAX forecasting model.

As warehouses are often divided into different pick zones to achieve a more efficient

order picking process, planning of order pickers is done at zone level. For those plan-

ning purposes, forecasting order lines should be disaggregated. More accurate forecasts

are produced by using a bottom-up forecasting approach, to the detriment of a top-down

forecasting approach. The CF and the ESN-M forecasting models have proven to be espe-

cially useful in predicting the number of order lines at zone level.

As a result of our study, the daily forecasts produced by the forecasting models are cur-

rently used by the warehouse supervisors to determine the daily required number of order

pickers and to allocate order pickers across zones. Based on the average absolute forecast-

ing deviation in number of order lines and the mean productivity of order pickers in the

warehouse (i.e., 146 order lines per FTE), the mean absolute forecasting error in number

of full-time equivalents (FTEs) could have been reduced from 10 to 7 in 2013 and from

8 to 7 in 2014 by using the composite forecasting method to predict the total number of

order lines. This means that, on average, the daily number of either overestimated or un-

derestimated number of order pickers could have been reduced by 1–3 FTEs in this case.

This performance measure provides an estimation of the benefits that could be attained

when using the forecasting method instead of the benchmark. Over- and underestimated

forecasts are equally likely to occur. In practice, supervisors tend to underestimate the re-

quired number of pickers with the aim of motivating pickers to increase their productivity

and enabling supervisors to present good results to managers if all orders are picked on

time with a small number of pickers. However, underestimation is in contrast to the aim of

the warehouse to ensure a high customer service level which would justify overestimation.

An overestimated forecast ensures that the number of pickers is large enough to retrieve

all customer orders timely.

Although the current practice of supervisors is to underestimate the number of or-

der lines when forecasting, this practice is highly discouraged when using the proposed

forecasting methods. As most time series forecasting methods include a forecasting error

component when making new forecasts, forecasts will be biased when intervening in the

forecasts. In order to stimulate and motivate pickers to increase their performance, su-
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pervisors can intervene when translating the forecast into a required number of pickers

(e.g., by raising the mean productivity level). However, this intervention should be limited

in order to prevent demotivating pickers because of a high workload.

5.5 Conclusions

Workload forecasting is an essential activity in the labour-intensive environment of ware-

houses. Accurate planning is required in order to provide a high service level, as well as

to avoid unnecessary high labour costs. Forecasting the daily workload, disaggregated

into pick zones enables warehouse managers and supervisors to determine the required

number of order pickers as well as to allocate the order pickers among pick zones. The

forecasting methods provide a statistical and objective forecast of the daily workload for

which overestimation and underestimation are small and equally likely to occur.

The well-performing time series forecasting models clearly illustrate the added value

of defining the resource capacity in practice. Moreover, the planning of order pickers will

be less depending on the availability of experienced supervisors, as the forecasting meth-

ods are able to accurately predict both aggregated and disaggregated demand without

manual intervention. The forecasting methods of our study can be easily implemented,

and the implementation immediately helps warehouse managers to schedule order pick-

ers. The provided information of the forecasting approach (i.e., the resource capacity

as well as the allocation of the resources across the order picking area), is required to

optimise other order picking planning problems, in particular planning problems that

should be solved multiple times per working day, such as the job assignment problem

(see Part IV).
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WORKLOAD BALANCING

W
hile the previous chapter focusses on forecasting the daily workload of order

pickers, this chapter1 further elaborates by balancing the forecast workload over

the planning horizon of a working day. Deriving the number of pickers on fore-

casts results in a constant number of pickers during the planning horizon. Without bal-

ancing the workload, the resource capacity is too small during peak periods, while too

many order pickers are available other time periods of a working day. Despite the impor-

tance of human operators in the order picking process, research on human factors and

workload balancing in warehouses is limited with respect to all literature on warehouse

planning (Grosse et al., 2015).

The problem studied in this chapter is motivated by a large international B2B ware-

house located in Belgium, responsible for the storage and distribution of automotive spare

parts. The problem is defined as the operational workload balancing problem (OWBP)

and determines which orders to pick during which period of the day. Workload balanc-

ing has been intensively studied in a production context (e.g., assembly line (Becker and

Scholl, 2006) and job shop (Kingsman, 2000) balancing). However, the labour-intensive

operations and the strongly fluctuating daily demand, differentiate warehouses from pro-

duction facilities (Van Gils et al., 2017c). Therefore, existing workload balancing methods

do not cover all challenges of order picking environments. This study goes beyond the

current state-of-the-art order picking literature by balancing the workload over a plan-

ning day (which is divided into time slots), instead of balancing on a strategic level (Jane,

1This chapter is based on Vanheusden, S., Van Gils, T., Braekers, K., Caris, A., Ramaekers, K., 2019. Opera-
tional workload balancing problem in manual order picking. Computers & Industrial Engineering, under review.
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2000; Jane and Laih, 2005).

Figure 6.1 visualises the operational workload balancing problem and a potential solu-

tion of the OWBP. Each block on the graph represents the workload of a set of orders, which

are scheduled in a certain time slot (horizontal axis). Figure 6.1a represents an undesir-

able situation in which workload peaks occur, caused by unevenly divided daily shipping

deadlines of shipping trucks on top of late customer order acceptance. Work pressure is

very high during the first and last time slot (e.g., one hour) of the example, but on the other

hand, rather low during others. Workload peaks can be defined as situations for which the

required order throughput exceeds the capacity of available resource, defined by the daily

forecasts (see Chapter 5), at certain points within the planning horizon. This results in

a higher risk of missed departure deadlines of shipping trucks and therefore may result

in a lower customer satisfaction due to delayed order deliveries. Work pressure in these

situations is very high for both warehouse supervisors and order pickers, resulting in ex-

tra stress and fatigue. Warehouse supervisors currently try to cope with these peaks in

daily workload by assigning workers of other departments in the warehouse to the order

pick zones in need of extra hands. Peaks are generally noticed very late and last minute

reassignment of workers, based on individual experiences and judgement of supervisors,

often results in inefficiencies in these corresponding activities. These activities often get

delayed or even shut down. Thus, in order to create a more stable order picking process

without above mentioned inefficiencies, workload needs to be balanced in every order

pick zone, for every working hour of the day. The objective of the OWBP is to balance

the daily workload by deciding on which sets of orders to pick during which periods of the

day. The right-hand side of Figure 6.1b represents the desired outcome of a balanced daily

workload.

The operational workload balancing problem is defined as the decision of which par-

ticular order lines to pick during which time slot of the day. The aim is to equally divide

these order lines over the different time slots of a working day (e.g., a single time slot for

every working hour). The challenge of balancing these order lines over time slots is coher-

ent with their corresponding time window (the available time to pick a customer order).

Order lines can only be scheduled for picking in time slots between the time customers

order their products and the departure of the corresponding shipping truck, which is as-

sumed to be fixed at the operational decision level. Equally dividing order lines during the

day accomplishes an equally distributed workload among order pickers for every zone.

This chapter has two main contributions. First, the new highly relevant operational

workload balancing problem, unexplored in the domain of order picking, is introduced

and mathematically described. Second, the effect of multiple warehouse factors (e.g.,

number of pick zones and number of shipping trucks) on the balancing possibilities is

analysed and evaluated, as well as the effect of the warehouse factors on the complexity

138



6.1. OPERATIONAL WORKLOAD BALANCING

(A) Example of workload imbalance. (B) Outcome of the OWBP.

FIGURE 6.1: Example of the OWBP (each block represents the workload of a set of orders).

of OWBP. The complexity of the problem and the performance of the optimisation model

are analysed using an extensive experimental study. The results of this study show that a

balanced workload results in a more stable order picking process and overall productivity

improvements for the total warehouse operations.

The remainder of this chapter is organised as follows. The new operational workload

balancing problem in the context of order picking is described in Section 6.1. Section 6.2

highlights the differentiating elements of the OWBP compared to existing models in liter-

ature. The problem formulation is provided in Section 6.3. Section 6.4 is devoted to the

experimental design and computational results, which shows the applicability of balanc-

ing the workload of order pickers during a working day. Section 6.5 provides managerial

implications of this study and shows the benefits of balancing in a real-life case study.

Section 6.6 concludes this chapter.

6.1 Operational Workload Balancing

The operational workload balancing problem investigated here is observed in the large

international B2B warehouse introduced in the previous chapter (see Section 5.1). The

case study warehouse is used to further clarify the OWBP. In Section 6.1.1, the problem

context of the OWBP is discussed and some problem specific terminology is introduced.

Section 6.1.2 explains the origin of daily workload peaks within order picking and how the

workload imbalance can be measured and solved.
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FIGURE 6.2: Simplified warehouse ground plan.

6.1.1 Case Study and Problem Context

The warehouse under consideration is responsible for the storage of automotive spare

parts and the distribution of these parts around the globe. The mission of the company is

to maximise the operating time of their sold vehicles by aiming at fast throughput times

and reliable deliveries of spare parts. The warehouse is fully manually operated and is

divided into multiple order pick zones. A simplified ground plan of the warehouse is illus-

trated in Figure 6.2, including only the four largest pick zones.

Products have been assigned to the different zones based on their product properties

such as weight and size. This division is required because different handling methods are

used for products with different dimensions. One of the zones is designed to maximise

throughput, storing only light weighted SKUs. For example, small buttons and screws

are stored in plastic boxes within a single zone. Heavy and large products that do not

fit standard Euro pallet measurements are grouped in another pick zone. The specific

characteristics of the pick zones result in different average productivity levels among the

zones (i.e., the mean number of retrieved SKUs per time unit): the average productivity is

low in the pick zone storing heavy SKUs, while the zone storing smaller items is designed

to maximise the productivity. To mimic a realistic scenario, it is important to take these

productivity differences into account when balancing the workload.

Spare parts warehouses are characterised by customer orders that can be grouped

based on their destination. In other words, customer orders for the same geographical
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location are assigned to the same shipping truck. In Figure 6.2 there are three trucks ship-

ping multiple customer orders for three different geographical locations. Customers can

order multiple spare parts in each customer order. This means that each customer order

consists of one or more order lines with each order line representing a single SKU. When

picking order lines of a customer order, multiple zones have to be visited in the ware-

house. A set of order lines that have to be picked in a single zone and have a common

geographical destination (i.e., order lines that need to be loaded into the same shipping

truck), are referred to as an order set. An example of an order set is visualised in Figure 6.2.

By combining order lines into order sets, the workload expressed as number of order lines

is grouped by pick area (i.e., pick zone) and shipping truck, keeping order lines with the

same pick deadline together. This increases the process control and prevents that these

order lines need to be consolidated after retrieval. Therefore, each order set can be as-

signed to only a single time slot. Splitting order sets is undesirable due to a loss of control.

After balancing the workload, all order sets that have been scheduled in a time slot are

used to create batches. In this way, wave picking (i.e., each time slot corresponds to a

wave) can be efficiently applied (Petersen, 2000).

Within the warehouse, a parallel zone picking policy is in place. In parallel zone pick-

ing systems, order sets have to wait for each other in the shipping area of the warehouse

before they can be loaded into their respective shipping truck. Each shipping truck can

consist of multiple order sets (i.e., a single order set for each pick zone). A shipping dock

is assigned to a shipping truck whenever the first order set of a shipping truck is picked.

This does not mean that the shipping truck actually arrives at that moment. The dock

is reserved for a particular shipping truck from the time slot that the first order set of a

shipping truck is scheduled (note that only a single truck can be assigned to a dock per

time slot). The shipping dock stays occupied until the shipping deadline of that truck (i.e.,

until all order sets are loaded into the respective truck). Whenever all shipping docks are

occupied, no order sets of new shipping trucks can be picked. In order to prevent ship-

ping docks from overcrowding, the shipping dock capacity should be accounted for in the

mathematical model.

All order sets of a shipping truck should be retrieved before the shipping deadline. The

challenge of balancing these order sets over time slots is in accordance with their corre-

sponding time window (i.e, the available time to pick a customer order). At different points

in time, customers send their orders. This is possible until the system release time slot of

the truck that is going to ship the orders. This release time slot is fixed in the short term as

a result of negotiations with customers. Based on negotiations with shipping companies,

the shipping deadline is fixed at an operational level. Order sets can only be scheduled for

picking between the system release time slot (i.e., release) and the deadline of their cor-

responding shipping truck. The assignment of the order sets to a shipping truck as well
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as the deadline of these shipping trucks are assumed to be fixed at an operational level.

The time schedule of shipping trucks is based on the delivery preferences of customers in

order to increase the service level.

6.1.2 Measuring Workload Imbalance

The number of order lines, grouped in order sets, that needs to be retrieved on each day

gives an indication of the daily workload. The total pick time (i.e., workload) is assumed

to be directly proportional to the number of order lines. The assignment of order sets to

shipping trucks, as well as the shipping schedule are set by the distribution planning de-

partment, based on transportation costs and service agreements with customers. There-

fore, these elements are assumed to be fixed at the operational level. The fixed shipping

schedule often leads to workload peaks during the day, as order patterns and the available

time to pick the orders vary across customers and geographical locations (e.g., order sets

contain varying numbers of order lines, shipping trucks have different deadlines). In or-

der to balance the workload, one must be able to measure and correct existing imbalances

in the system.

To measure and compare imbalances between solutions, the right equity function has

to be determined. Selecting the right equity function does not only depend on the de-

cision makers’ interpretation and understanding of the concept of fairness, but is also

subject to several underlying theoretical properties that differ among equity measures

(Karsu and Morton, 2015). In general, variance, standard deviation, mean absolute de-

viation (MAD), and range are considered as good metrics to measure balancing objectives

(Nguyen and Wright, 2014). In order to solve the OWBP, the range is chosen as suitable

objective function for several reasons. First, the range is a linear function in contrast to

variance or standard deviation which penalise deviations from the average at a quadratic

rate. Quadratic objective functions can be less intuitive measures for decision makers in

practice and these also have a higher computational complexity (Matl et al., 2017). Sec-

ond, range is able to minimise peaks and maximises the minimum value simultaneously

in contrast to for example MAD, maximum or minimum, although these functions are

linear as well. MAD is not always able to minimise peaks in workload as shown in the

examples in Figure 6.3. The MAD is equal in both examples, but the workload peak is

substantially higher in Figure 6.3a than Figure 6.3b because transfers of order sets on the

same side of the mean will not affect this measure. Minimising the maximum workload or

maximising the minimum workload are not considered to be suitable objective functions

for balancing the workload. For example, if the maximum is minimised, further balanc-

ing of the solution is not performed whenever peaks are at their minimal value. Although

any changes between the extremes (i.e., minimum and maximum) have no effect on the

range, it already provides more information than the simple min-max. Range is therefore
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(A) Imbalanced solution. (B) Balanced solution.

FIGURE 6.3: Example of different solutions with equal MAD.

the best linear metric for solving the OWBP. Furthermore, the range is easy to interpret

and implement and is therefore frequently used in various applications (Matl et al., 2017).

6.2 Related Planning Problems

Related planning problems, both in the context of workload balancing in general as well as

workload balancing in order picking, are discussed in this section to show the academic

contribution of OWBP. This section is organised as follows. Section 6.2.1 highlights the

importance of workload balancing and discusses relevant differences from workload bal-

ancing problems in other research domains. Section 6.2.2 on the other hand, discusses

related warehousing literature with a focus on zoning and workforce scheduling in con-

nection to workload balancing.

6.2.1 Workload Balancing

In general, workload balancing is defined as managing the variability of workloads over a

time horizon (Irastorza and Deane, 1974). This concept of balancing workload is studied

within various industries and research streams such as logistics, production and manu-

facturing environments and project scheduling, and is considered in various operational

research problems such as knapsack and resource allocation problems (Becker and Scholl,

2006; Bichescu et al., 2009; Eiselt and Marianov, 2008; Hillier and Brandeau, 2001; Huang

et al., 2006; Karsu and Morton, 2014; Kingsman, 2000; Kumar and Shanker, 2001; Matl

143



CHAPTER 6. WORKLOAD BALANCING

et al., 2017; Rieck et al., 2012). Although these problems are related to the OWBP, the oper-

ational order picking context of our problem consists of clearly distinguishable elements,

as explained below: flexible capacity, a fixed planning period, and fixed time windows

without precedence constraints. As a result, existing solution approaches cannot be di-

rectly applied to the OWBP.

Warehouses differ from production and manufacturing environments by delivering

labour-intensive services to customers instead of goods assembled or produced by ma-

chines. The capacity of these production and manufacturing facilities is usually fixed in

the short term (although overtime and subcontracting can be used in case of shortage)

(Becker and Scholl, 2006), while warehouses can hire additional order pickers in case of

shortage (Van Gils et al., 2017c; Wruck et al., 2017). Consequently, instead of including

capacity as constraint before balancing, the workload is balanced without capacity con-

straints in the OWBP. Afterwards, the required number of pickers is derived from the bal-

anced workload schedule.

In contrast to the project scheduling problem (Rieck et al., 2012) or balancing in the

context of vehicle routing (Matl et al., 2017), the duration of the planning period is as-

sumed to be fixed and the workload is balanced over this fixed planning period (i.e., usu-

ally a single working day). Instead of reducing the makespan to fulfil the tasks by increas-

ing the number of resources or vehicles (Rieck et al., 2012; Matl et al., 2017), the OWBP

assumes a fixed planning period and variable capacity to ensure that all order sets are

picked before the deadline.

Existing methods often presume strict precedence constraints among tasks, such as

assembly line balancing (Kingsman, 2000) and project scheduling (Rieck et al., 2012) prob-

lems, or completely independent tasks (e.g., workload balancing among facilities (Huang

et al., 2006)), while scheduling order sets in the OWBP is not subject to precedence con-

straints, nor is scheduling completely independent. In the OWBP, order sets are picked in-

dependently from each other in each pick zone, while scheduling order sets from different

pick zones is dependent as the shipping area is limited. Instead of precedence constraints,

order sets are subject to fixed time windows, bounded by a release and deadline time slot

in which they should be scheduled.

6.2.2 Workload Balancing in Order Picking

Zoning and workforce scheduling are well-known topics in warehousing literature. Both

zoning and workforce scheduling can cause substantial workload peaks. Dividing the or-

der picking area into different zones can cause workload imbalances between order pick

zones (Jane and Laih, 2005). Poor workforce scheduling induces workload imbalance over

time (Kim et al., 2018). Related literature, focussing on each of these planning problems,

is shortly discussed below.
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A well-known opportunity to increase order picking performance is the division of the

warehouse into different order pick zones (De Vries et al., 2016a). Each order picker is as-

signed to a dedicated zone, and only picks the items of an order that are located in this

pick zone (Yu and De Koster, 2009). Zone picking reduces travelling as pickers traverse

only a small area of the warehouse. Furthermore, picker congestion is reduced, which

results in substantial performance benefits compared to strict order picking (De Koster

et al., 2012; Ho and Lin, 2017). Either parallel zoning (i.e., all zone pickers work on the

same batch of orders) or sequential zoning (i.e., a batch of orders is sequentially passed

from one zone to the other), causes workload imbalances among pick zones, as pick den-

sities vary across these zones (Yu and De Koster, 2009). By varying the size of the pick zone

and varying the assignment of SKUs to pick zones, workload of the zones can be equalised

in the long run (Jane, 2000; Jane and Laih, 2005; Van der Gaast, 2016). However, the pro-

posed solution methods will be less suitable to balance the workload among pickers in

the short term. Short term balancing can be achieved by considering dynamic zone pick-

ing systems, such as bucket brigades. Bucket brigades assume sequential zone picking

with flexible zone borders, resulting in a self-balancing picking system with respect to the

workload of order pickers (Hong et al., 2016).

Another way to assure customer service against peaks in workload is efficient schedul-

ing and staffing of the order picking personnel. Efficient employability of human re-

sources is necessary because of the labour intensive nature of warehousing operations.

Warehouses are forced to deal with strong fluctuations in daily demand and should simul-

taneously be able to meet fixed deadlines in short time intervals. To face these challenges,

warehouses need to be highly flexible (Van Gils et al., 2017c). Adaptations in the labour

force can be used to cope with fluctuations in demand (Van den Bergh et al., 2013). Tem-

porary workers are often hired in order to capture workload peaks between different days

(Grosse et al., 2013). On the one hand, an insufficient number of workers cause a large

picker workload and may reduce the service level because of missed deadlines. On the

other hand, planning too many workers will cause unnecessarily high labour costs, and a

decrease in picking efficiency due to a small workload (Van Gils et al., 2017c). Personnel

capacity planning is therefore an important factor in covering the workload (Defraeye and

Van Nieuwenhuyse, 2016). Long term and short term demand forecasts allow warehouses

to maintain a pool of fixed and temporary order pickers to balance the workload among

days (Van Gils et al., 2017c).

While most papers that cover the issue of workload balancing start at a strategic or

tactical level (Jane, 2000; Jane and Laih, 2005; Hong et al., 2016), the emphasis of the OWBP

is on the operational level, to avoid peaks in the number of orders to be picked in certain

time slots during the day. Therefore, the operational workload balancing problem differs

from existing literature in zoning and workforce scheduling. Previous literature on zoning
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aims to balance the workload over the different zones, the OWBP balances daily workload

over time within each zone. Additionally, the OWBP goes beyond the current state-of-the-

art workforce scheduling literature by balancing the workload for every hour of the day

instead of balancing over shifts or days.

6.3 Mixed Integer Linear Programming Model

This section describes the operational workload balancing problem. A mixed integer lin-

ear programming (MILP) model is developed to formulate the operational workload bal-

ancing problem in an order picking context. The notation outlined below is used through-

out the chapter:

Sets:

η= {1,2, ..., H } set of pick zones with index h.

λ= {1,2, ...,L} set of shipping trucks with index l .

λt ⊂λ subset of λ containing all l : t r
l ≤ t ≤ t d

l .

τ= {1,2, ...,T } set of time slots with index t .

τl ⊂ τ subset of τ containing all t : t r
l ≤ t ≤ t d

l .

Parameters:

ohl number of order lines for shipping truck l in zone h.

ph mean productivity in minutes per order line in zone h.

ahl workload of shipping truck l in zone h with ahl = ohl ph ,∀l ∈λ,∀h ∈ η.

d number of shipping docks.

t r
l release time slot of shipping truck l .

t d
l deadline time slot of shipping truck l .

Decision variables:

Vhl t

0 order set (h; l ) is not scheduled in time slot t .

1 order set (h; l ) is scheduled in time slot t .

Yl t

0 truck l does not reserve a shipping dock in time slot t .

1 truck l reserves a shipping dock in time slot t .

Ul first time slot that a shipping truck l occupies a dock

146



6.3. MIXED INTEGER LINEAR PROGRAMMING MODEL

Amax
h maximum planned workload over all time slots in zone h.

Ami n
h minimum planned workload over all time slots in zone h.

In the formulation, each combination of h and l represents an order set with work-

load ahl , expressed as time to pick a number of order lines. To reduce computation time,

decision variables Vhtl are only created if t is between the release and deadline time slot

(t r
l ≤ t ≤ t d

l ). This variable reduction is included by creating subsetsλt and τl which repre-

sent the subset of trucks that could be scheduled at time slot t and the subset of time slots

at which shipping truck l can be scheduled, respectively, without violating the releases

and deadlines.

Objective function

min
∑
h∈η

(
Amax

h − Ami n
h

)
(6.1)

Subject to ∑
l∈λt

ahl Vhl t ≤ Amax
h(6.2)

∀t ∈ τ, ∀h ∈ η∑
l∈λt

ahl Vhl t ≥ Ami n
h(6.3)

∀t ∈ τ, ∀h ∈ η∑
t∈τl

Vhl t = 1(6.4)

∀l ∈λ, ∀h ∈ η∑
t∈τl

tVhl t ≥Ul(6.5)

∀l ∈λ, ∀h ∈ η
t −Ul +1 ≤ T Yl t(6.6)

∀t ∈ τl , ∀l ∈λ∑
l∈λ

Yl t ≤ d(6.7)

∀t ∈ τ
Vhl t ,Yl t ∈ {0,1}(6.8)

∀t ∈ τ, ∀l ∈λ, ∀h ∈ η

The objective function of the OWBP is defined by Equation 6.1. The objective function

minimises the range, which is the difference between the maximum and minimum work-

load over all time slots in each pick zone. Constraints 6.2 and 6.3 define the maximum
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and minimum workload over all time slots for each order pick zone. The total scheduled

workload of a time slot t in a pick zone h is imposed to be smaller (greater) than or equal

to the maximum (minimum) workload over all time slots of pick zone h. Constraints 6.4

assign each order set (h; l ) to a single time slot. The shipping dock capacity is included by

Constraints 6.5 to 6.7, assuming that a shipping dock is reserved, or at least the buffer area

in front of the shipping dock, from the first time slot that order sets of a shipping truck are

scheduled until the shipping deadline of the truck. Constraints 6.5 define the first time

slot that order sets of each shipping truck are planned among the pick zones by imposing

that the first scheduled time slot of shipping truck l (represented by Ul ) is smaller than or

equal to the time slot that shipping truck l is scheduled in a pick zone h. Constraints 6.6

define the time slots that a shipping truck reserves a shipping dock (i.e., from time slot

Ul until t d
l ): if the difference between time slot t and the first time slot a truck reserves a

dock (Ul ) is strictly smaller than zero, shipping truck l does not reserve a dock in time slot

t (otherwise the constraints force Yl t to be equal to 1). Constraints 6.7 limit the number

of reserved docks to the shipping dock capacity. Finally, Constraints 6.8 define the do-

main of the decision variables. Note that although the domain of decision variable Ul is

unrestricted, the formulation forces the Ul to be an integer value. Omitting this domain

restriction reduces computation times.

6.4 Computational Experiments

In this section, experiments are performed to assess the performance of the MILP formu-

lation. The MILP model is implemented in C++. To solve the MILP formulation, ILOG

Cplex 12.6 is used with a runtime limit of 4 h. Cplex has been running on an Intel Xeon

Processor E5-2680 at 2.8 gigahertz, using a single thread, provided by the Flemish Super-

computer Center. Section 6.4.1 provides a detailed description of the problem instances

that have been generated as well as the experimental design to show the potential of bal-

ancing the workload in an order picking context. Results of the experiments are discussed

and analysed using ANOVA, that shows the effect of the experimental factors both on so-

lution quality and complexity of OWBP (Section 6.4.2).

6.4.1 Problem Instances

The operational workload balancing problem aims at balancing the workload during the

day in manual order picking systems. The generated input data are based on data of a real-

life spare parts warehouse. First, this section describes the warehouse parameter values

which are summarised in Table 6.1. Second, the factors and associated factor levels of the

experiments (Table 6.2) are outlined.
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The OWBP balances the workload for every time slot of the day. Parameter T repre-

sents the number of time slots and corresponding wave length for batching orders. A sin-

gle time slot for every hour of the day is assumed, which results in a total of 24 time slots.

This wave length results in a sufficient number of order lines per time slot facilitating the

creation of efficient batches. Moreover, limiting the number of time slots to 24 allows to

easily plan and control the workload during the day as supervisors can check each hour

if all scheduled order sets have been retrieved. Increasing T would increase computation

effort and reduce the efficiency of batches as the maximum duration for picking a batch

is restricted by the length of a time slot (defined by 24/T h). Reducing T would decrease

computation time, but also reduces control as supervisors can only check T times per day

if all order sets have been retrieved.

Parameter al represents the number of order lines to ship in truck l . The number of or-

der lines in a shipping truck is normally distributed with an average of 175 order lines and

a standard deviation that varies by the experimental factor σa as discussed in Table 6.2.

Order lines of a shipping truck are picked in multiple pick zones. As the assignment of

SKUs to pick zones is based on product properties, we assume that the number of order

lines from a shipping truck (ahl ) is more or less proportionally divided over the zones (H).

However, a uniform distribution U (−0.05;0.05) induces a slight variation in the number of

order lines of each shipping truck among zones. For example, if a shipping truck contains

175 order lines, originating from two zones, the number of order lines in the first zone is

175×U (0.45;0.55) and the remaining order lines should be picked from the second zone.

Each shipping truck is characterised by a release time slot (t r
l ) and a deadline time slot

(t d
l ). The release time slot and deadline time slot of a shipping truck are assigned to all

order sets of this shipping truck. The release time slot of shipping truck l is uniformly dis-

tributed between 1 and T −1. This simulates a real-life situation for international ware-

houses as customers enter orders in the system from all over the world. The deadline

time slot t d
l is equal to time slot t r

l raised with the number of available time slots to re-

trieve order lines from shipping truck l (t p
l ). Whenever this time slot exceeds the last time

slot, t d
l is set to time slot T . Parameter t p

l , which provides the available number of time

slots to pick order lines from shipping truck l , is uniformly distributed within the range

[max{0;µt p −2};µt p +2], with experimental factor µt p (Table 6.2).

Productivity values are different for each pick zone due to the specific characteristics

of the products that are stored in each zone. Parameters ph (∀h ∈ η) represent the mean

productivity level in pick zone h. The productivity varies over the zones without influenc-

ing the total workload (i.e., the overall mean productivity is equal to 1 irrespective of H).

Values for ph are denoted in Table 6.1.

In order to increase the practical applicability, we consider breaks that employees are

allowed to take during the day. Because order pickers are unavailable during their break,

149



CHAPTER 6. WORKLOAD BALANCING

TABLE 6.1: Warehouse parameter values.

Warehouse parameter Parameter value

Number of time slots T 24 time slots
Number of order lines of shipping truck l al N (175;σa )

Number of order lines of order set (h; l ) ahl al

(
1
h +U (−0.05;0.05)

)
Release time slot of orders in shipping truck l t r

l
U

(
1;T −1

)
Deadline time slot of orders in shipping truck l t d

l
min

(
T ; t r

l
+ t

p
l

)
Available number of time slots to pick shipping truck l t

p
l

max(U (µt p −2;µt p +2);0)
Mean productivity in zone h ph H = 1 : p1 = 1

H = 2 : p1 = 0.5, p2 = 1.5
H = 3 : p1 = 0.5, p2 = 1, p3 = 1.5

the available time to pick orders is smaller in time slots containing a break compared to

regular time slots. Assuming that all pickers take a break in the same time slot, the avail-

able time to pick order lines is reduced in the time slots containing a break by including

artificial order sets in proportion to the unavailable time for which t r
l = t d

l . A small break

of 10 minutes is included in time slots 7, 11 and 22. A large break of 20 minutes is added

to time slots 4, 14 and 20.

The experimental factor setting is outlined in Table 6.2. Factors have been selected

based on preliminary tests. These tests showed that the number of shipping trucks L,

order pick zones H , and shipping docks d are the most influential warehouse parameters.

Additionally, two factors related to order characteristics are investigated: the variation in

number of order lines between trucks (σa) and the mean number of available time slots

to pick an order set (µt p ): the number of time slots between release and deadline time

slots of a shipping truck. Factor levels have been fixed by varying the observations of the

real-life case. By simulating a wide range of parameters, we aim to evaluate the behaviour

of the problem.

The first factor L contains three factor levels, that varies the number of shipping trucks.

The number of shipping trucks approximates the number of order sets in every zone. For

example, in case of the departure of 100 shipping trucks, 100 order sets need to be planned

in every zone of the warehouse, assuming that each shipping truck contains order lines in

every pick zone. Factor H defines the number of pick zones, which varies from one to three

zones. The third factor in the experiment is the shipping dock factor d , which is tested at

three levels. The size of d is of practical relevance as this factor determines the number of

shipping docks as percentage of L (i.e., buffer space before the docks) and thus limits the

number of order sets of different shipping trucks that can be picked simultaneously. The

fourth factor σa defines the variation in number of order lines for every shipping truck.

The parameter value can be 50, 75 or 100 order lines, assuming a normal distribution with

a mean of 175 order lines for every shipping truck. The fifth factor µt p summarises the

possibilities for the mean number of time slots between the release and deadline time

slots of a shipping truck.
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From Table 6.2, it can be observed that the factorial setting results in a 3×3×3×3×3

full factorial design. To reduce the stochastic effect of data generation, each factor level

combination is replicated 10 times, resulting in 2,430 problem instances. This large num-

ber of factors and wide range of factor levels allow us to evaluate and analyse the effects of

the considered warehouse parameters on the ability to balance the workload and provide

insights into the complexity of the operational workload balancing problem that can be

easily generalised to other warehouses.

TABLE 6.2: Experimental factor setting.

Factor Factor levels

Number of shipping trucks L (1) 100 trucks
(2) 150 trucks
(3) 200 trucks

Number of pick zones H (1) 1 pick zone
(2) 2 pick zones
(3) 3 pick zones

Number of shipping docks d (1) 0.10L docks
(2) 0.15L docks
(3) 0.20L docks

Variation in number of order lines for each l σa (1) 50 order lines
(2) 75 order lines
(3) 100 order lines

Mean number of time slots between t r and t d for each l µt p (1) 1 time slot
(2) 2 time slots
(3) 3 time slots

6.4.2 Results and Discussion

The operational workload balancing problem is solved using Cplex with a time limit of

four hours for each problem instance. Due to the complex nature of the operational work-

load balancing problem, Cplex is not able to solve all instances to optimality. In total,

72.6% of the instances have been solved to optimality within the runtime limit (i.e., 1,765

instances). Figure 6.4 shows the mean range of the instances solved to optimality per fac-

tor level, demonstrating to what extent workload balancing is possible under the different

warehouse factors. Figure 6.5 illustrates the distribution of the instances not solved to

optimality as well as the mean optimality gap (i.e., the percentage difference between the

best found integer solution and the lower bound). This graphs illustrates the complexity of

OWBP among the factors. Overall, the mean optimality gap of the 665 instances is rather

small (i.e., 5.2 %), although some outliers as shown in Figure 6.6. The graph illustrates the

relation between de optimality gap of instances and the corresponding objective func-

tion value of the best found feasible solution. Although a substantial number of instances

could not be solved to optimality, the large majority of these instances has a very small

range. This means that these solutions are balanced very well despite the optimality gap.

Therefore, we included all instances in the discussion below as the non-optimal instances

have only minor impact on the results.
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FIGURE 6.4: Mean range for solving the MIP model using Cplex.

FIGURE 6.5: % number of instances not solved to optimality within the 4 h runtime limit
and optimality gap (total of 810 instances per factor level).

FIGURE 6.6: Relation between optimality gap and objective function value.

To support the illustrations on the figures, a balanced 3×3×3×3×3 full factorial ANOVA

is performed on the mean range to get a first insight into the effects of the warehouse fac-

tors on the workload balancing problem. ANOVA is frequently used to evaluate the effect

of different warehouse parameters on the performance of order picking planning prob-

lems (Petersen, 2000; Quader and Castillo-Villar, 2018; Van Gils et al., 2018c). ANOVA re-
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TABLE 6.3: 3×3×3×3×3 full factorial ANOVA on range.

Sum of squares df Mean square F p-value

Main effects
L 1,823,014.05 2 911,507.03 12.24 0.000
H 322,899.56 2 161,449.78 2.17 0.115
d 625,725.67 2 312,862.83 4.20 0.015
σa 2,256,458.46 2 1,178,229.23 15.82 0.000
µtp 33,408,810.94 2 16,704,405.47 224.34 0.000
Two-way interaction effects
L×H 503,492.37 4 125,873.09 1.69 0.149
L×d 106,185.63 4 26,546.41 0.36 0.840
L×σa 347,932.08 4 86,983.02 1.17 0.323
L×µtp 1,108,663 4 277,166.00 3.72 0.005
H ×d 22,197.12 4 5,549.28 0.07 0.990
H ×σa 22,393.52 4 5,598.38 0.08 0.990
H ×µtp 528,035.38 4 132,008.84 1.77 0.132
d ×σa 161,618.90 4 40,404.72 0.54 0.704
d ×µtp 763,822.30 4 190,955.58 2.56 0.037
σa ×µtp 267,328.46 4 66,832.12 0.90 0.464
Residuals
Between subjects 177,137,672.47 2.379 74,458.88

Total 219,506,250.91 2.429

sults are shown in Table 6.3. The first three columns show the sum of squares, the degrees

of freedom and the resulting mean squares for each factor and each two-way interaction

among the factors, as well as for the residuals. The last two columns are devoted to the F

statistic and the p-value for testing the statistical significance of the five factors and ten

interaction effects. Table 6.3 indicates that the main effects of L, σa , and µt p statistically

significantly impact the range and resulting workload balance. Additionally, the two-way

interaction effect between the number of shipping trucks and the mean number of avail-

able time slots to schedule order sets is statistically significant at a significance level of 5%.

Table 6.3, Figure 6.4 and Figure 6.5 are used in the upcoming paragraphs to analyse and

explain the effects of the five experimental factors.

Number of Shipping Trucks Varying the number of shipping trucks does significantly

influence the mean range. Figure 6.4 shows a slightly increasing range in case of schedul-

ing more shipping trucks. More shipping trucks increases the probability of peaks that

cannot be balanced due to restricted release and deadline time slots. This explanation

additionally contributes to the explanation of the statistically significant interaction effect

between the number of shipping trucks and the available number of time slots to sched-

ule order sets: the effect of shipping trucks is larger when the release and deadline time

slots are tight.

Furthermore, the complexity of OWBP strongly increases when increasing the number

of shipping trucks as shown in Figure 6.5. Although more shipping trucks yields a smaller

mean optimality gap, the number of instances not solved to optimality strongly increases

when the number of shipping trucks is larger. More shipping trucks results in more order
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sets to assign to time slots, resulting in a strongly increasing solution space. This effect

is shown in Figure 6.5 as well: doubling the number of shipping trucks (i.e., moving from

100 to 200 shipping trucks) increases the number of non-optimal instances by a factor

four. Consequently, the number of shipping trucks is one of the main factors defining the

complexity of the OWBP.

Number of Pick Zones Varying the number of order pick zones may result in significant

performance benefits in terms of order picking efficiency (De Koster et al., 2012). ANOVA

results show that the effect of a varying number of zones does not statistically significantly

influence the mean range. Either balancing the aggregated workload in case of a single

pick zone, or balancing a disaggregated workload in each pick zone does not affect the

overall workload balance. Dividing the order picking area into zones does not induce ad-

ditional workload imbalance, at least under the assumption that the number of order lines

of a pick truck is equally divided across the pick zones. Only when some pick trucks create

a large workload in a single (or a few) pick zone(s), the possibility to balance the work-

load may be affected by the number of zones. However, a proper storage zone assignment

policy should prevent unevenly divided workloads.

The effect of factor H on the complexity of OWBP is limited. The number of order

sets to schedule increases with a factor H which results in a small increased number of

non-optimal instances. While zoning slightly increases the complexity of the OWBP, the

operational workload imbalance (i.e., mean range) is insensitive to applying zone pick-

ing. This means that from the perspective of workload balancing, a single pick zone is

favourable as this results in the smallest complexity. However, zone picking can result in

significant efficiency benefits in most practical situations (e.g., reduced travel time and

increased learning). These efficiency benefits may be dominant when deciding on the

picker zoning policy.

Number of shipping docks Dividing the order picking area into multiple order pick

zones means that order sets have to be consolidated in the staging area before the shipping

truck can be loaded. A shipping dock is assigned to a particular shipping truck whenever

the first order set of a shipping truck is scheduled until the shipping deadline. Whenever

all shipping docks are occupied, no order sets of new shipping trucks can be scheduled.

The effect of the number of shipping docks is not statistically significant. Even in case of a

small number of shipping docks, the workload can be balanced effectively.

Figure 6.5 illustrates a slightly increased number of non-optimal instances in case of a

smaller number of shipping docks, although the mean optimality gap strongly increases

with an increased number of shipping docks. Two contradictory effects can be observed in

Figure 6.5. On the one hand, solving the OWBP to optimality seems to be more difficult in
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case of a small number of shipping docks. Balancing over different zones is harder in this

situation, as the shipping dock factor limits the number of feasible time slots to schedule

order sets of the same shipping truck in different zones. On the other hand, enlarging the

number of shipping docks, substantially increases the solution space, resulting in large

optimality gaps of the non-optimal instances.

Variation in Number of Order Lines among Shipping Trucks The ANOVA test results

(Table 6.3) show a significant effect of the variation in number of order lines among ship-

ping trucks. Enlarging the variation in the number of order lines among trucks yields

larger workload imbalances (see Figure 6.4). A large value for σa means that shipping

trucks are very dissimilar regarding the workload, which results in a stronger imbalance

in comparison to planning more similar shipping trucks. A larger variation in the number

of order lines among shipping trucks results in the existence of large order sets, increasing

the probability of peaks that can not be balanced. Consequently, the workload imbalance

statistically significantly grows in case of strong varying shipping trucks. Therefore, in ad-

dition to other objectives (e.g., minimising transportation cost) the distribution planning

department should aim to balance the workload among shipping trucks when creating a

shipping schedule; a smaller variation in number of order lines among shipping trucks

yields a more balanced workload during the day.

While balancing becomes more difficult, the complexity of solving the OWBP to op-

timality is insensitive to the variation in number of order lines among shipping trucks.

Figure 6.5 shows that the number of non-optimal instances is similar for each factor level.

However, the mean optimality gap strongly decreases in case of diverse shipping trucks.

When the variation in number of order lines is small, symmetric solutions may exist as

order sets are equal. Switching between these solutions which are characterised by the

same range, seems to negatively impact the mean optimality gap. Reducing the symme-

try, reduces the complexity of the problem, although the number of non-solved instances

is similar.

Number of Time Slots to Schedule Order Sets The last warehouse factor turns out to

be the most influential factor, both in terms of objective function and complexity. The

larger the difference between deadline and release, the more planning possibilities exist

for scheduling an order set. Figure 6.4 shows a strong decreasing line when increasing

the mean number of time slots to schedule order sets. The earlier customers order their

products, the easier a warehouse is able to balance the workload during the working day.

Moreover, the balanced schedule provided by the OWBP can reveal for which customers

the available number of pick time slots is too small. The distribution planning department

could reconsider current shipping schedules for certain clients. Negotiations could be
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started on earlier order entry by the customer or delayed shipping truck departures.

Although balancing is easier with higher values of µt p , Figure 6.5 shows that both the

number of non-optimal instances and the mean optimality gaps strongly increase when

the number of available time slots is large. The number of instances that could not be

solved to optimality in case of µt p = 3, is seventeen times higher in comparison with the

lowest factor level of µt p . This result makes the mean number of available time slots to

schedule a shipping truck the most influential factor in the experiment, both in terms of

workload balance as in terms of complexity.

6.5 Managerial Implications

If peaks in workload are observed during the day, the required order throughput may ex-

ceed the capacity of the available order pickers at certain points within their shift. This

results in missed departure deadlines and lower customer satisfaction. The operational

workload balancing model developed in this chapter creates a more stable order picking

process, which ultimately results in more efficient warehouse operations. This section dis-

cusses the practical implications of this research for warehouse managers and supervisors

by showing the results of solving OWBP for a real-life case.

In the real-life warehouse, order pickers gradually pick orders that enter the system,

with a priority given to order sets with pressing deadlines (i.e., earliest-due-time). Every

day, a rough estimate is made of the total number of order lines that need to be picked the

next working day, and at the same time the total number of order lines for each pick zone

is guessed. The number of workers and the assignment of these workers to zones is based

on individual experience and personal judgement. The earliest-due-time policy to pick

orders fails to provide information about the progress of the picking process during the

working day. Workload peaks are noticed too late, causing last minute assignments of em-

ployees of other warehouse activities to the order picking process. Using other warehouse

employees for covering peaks in order picking workload, results in inefficiencies in the

corresponding activities. Sometimes these other activities are delayed or even shut down.

Workload peaks are often noticed in a late stadium and solved by increasing the number of

order pickers. The increased number of pickers increases the probability of picker block-

ing, reducing order picking efficiency. By balancing the workload, peaks can be predicted

by the model and the resulting schedule can be used by warehouse supervisors to control

the order picking process. The OWBP provides an hourly schedule of orders that should

be picked in a certain time slot. Supervisors can intervene when the workload in a time

slot can not be completely performed.

Figure 6.7 shows the initial unbalanced workload schedule (i.e., all order sets are

planned on the deadline time slot) on the left-hand side. The right-hand side of the fig-
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ure illustrates the balanced workload schedule of the OWBP model for the different pick

zones. Figures 6.7a, 6.7c, 6.7e, and 6.7g illustrate the most extreme case of imbalance by

planning all order sets at the deadline of their respective shipping truck. The initial work-

load schedule shows that shipping deadlines for order sets are not equally divided over all

time slots, resulting in workload peaks. In the current situation of the warehouse, these

peaks are more moderate due to the gradual picking of orders with pressing deadlines (i.e.,

earliest-due-time). However, during certain time slots, shipping truck departures pile up.

This means more deadlines need to be met and the order picking system is subject to

peaks in workload.

The operational workload balance model developed in this section provides a solution

for above mentioned problems. Figures 6.7b, 6.7d, 6.7f and 6.7h show the balanced pick

schedules created by the OWBP. Inputs for the OWBP are forecasts of the number of order

lines in each order set for the following working day. Time series forecasting have proven

to provide accurate forecasts in zoned warehouses. Although the previous section forecast

the number of order lines on zone level, we may assume that the workload of order sets

can be accurately forecast as well. This resulting balanced pick plan sets goals for picking

predefined order sets in certain time slots. All orders within each time slot (or wave) can

be used to create efficient batches. This way, warehouse supervisors are better prepared

and can check at every moment in time when they are on schedule and if the right order

sets have left the system to be loaded into the shipping truck. This solves the problem

of the initial situation, were unexpected peaks occurred during the day due to unevenly

divided departures of shipping trucks. Warehouse supervisors are now able to intervene

timely, without disturbing other warehouse employees and processes.

Figures 6.7b, 6.7d, 6.7f and 6.7h show that further balancing by the OWBP in the latest

time slots is not possible due to specific release and deadline time slots of certain shipping

trucks and due to the shipping dock constraint. Whenever there are many customers al-

lowed to enter their orders at late time slots, further balancing the workload in the evening

hours becomes impossible. Warehouses can hire additional order pickers for these time

slots or managers should negotiate on changes in cut-off times for customer order en-

try and shipping schedules to further reduce these workload imbalances. For example,

managers can negotiate with certain clients to put their orders some hours earlier in the

system, resulting in more available time to pick orders. If a consensus can be achieved

on changing the cut-off time for order entry, the warehouse can offer price reductions to

that respective customer in return. These discounts can compensate for loss in customer

service (i.e., earlier order entry). By changing the cut-off times, peaks can be further bal-

anced, resulting in a more stable process. This also results in a better utilisation rate of the

order pickers, as workload is equally distributed during the day.

In general, balancing the workload is rather easy when the number of pick trucks is
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(A) initial workload schedule (zone h = 1). (B) balanced workload schedule (zone h = 1).

(C) initial workload schedule (zone h = 2). (D) balanced workload schedule (zone h = 2).

(E) initial workload schedule (zone h = 3). (F) balanced workload schedule (zone h = 3).

(G) initial workload schedule (zone h = 4). (H) balanced workload schedule (zone h = 4).

FIGURE 6.7: Example of the created workload schedules.
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small to medium and in case of a very small mean time between release and deadline,

irrespective of the number of zones, the shipping dock capacity and the variation in num-

ber of order lines among trucks. In case of an increasing number of trucks or an increasing

number available time to schedule trucks, schedules are still very well balanced although

the solutions are not always optimal. To further increase the applicability of the OWBP,

run times to solve the problem should be further reduced. Although Cplex solves most

instances to optimality or to a near-optimal solution, CPU times are too high to be used

as daily workload scheduling tool. For long run negotiations about release and deadlines

of shipping trucks, the substantial run time is less crucial.

6.6 Conclusions

Late customer order acceptance limits time windows to fulfil customer orders, causing

peaks in workload during the day, resulting in extra work pressure for both warehouse

supervisors and order pickers. Until now, research on how to balance the daily workload

is lacking. Practitioners are searching for solutions to determine the resource capacity

and allocate the available order pickers as well as to balance the workload over a short

term planning horizon to increase the customer service level.

The operational workload balancing model supports and controls the order picking

process by defining the workload in each time slot and in this way preventing order pick-

ing inefficiencies by last minute assignments of other warehouse employees. In combina-

tion with forecasting approaches, these decision support models are effective to solve the

workforce level and allocation planning problems, making order picking operations less

depending on individual experience of supervisors.

The results of solving both order picking planning problems provide insights into the

required (and consequently available) resource capacity as well as the workload on each

moment of the day. Moreover, in addition to the substantial effect of safety constraints,

picker blocking and high-level storage locations, results of this part show that the consid-

ered workload related real-life features are essential features to cope with in practice in

order to manage order picking operations. These results can be used to further optimise

order picking operations, such as the order batching, picker routing and job assignment

problem, as illustrated in the next part (Part IV).
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INTEGRATING BATCHING–ROUTING–JOB ASSIGNMENT

W
arehouses can achieve significant efficiency benefits by considering the exist-

ing interdependencies among order picking planning problems (as shown in

Part II). Moreover, the relevance and importance of considering workload re-

lated real-life features are shown in Part III. This chapter1 provides an effective and ef-

ficient algorithm to integrate and solve three crucial operational order picking planning

problems (i.e., order batching, routing, and job assignment), while additionally taking es-

sential real-life features into account (i.e., resource constraint, due time constraints, and

high-level storage systems). As the time horizon of the resulting decisions is similar, inte-

grating these planning problems is an appropriate approach (Van Gils et al., 2018e). Or-

der picking operations’ efficiency is expected to increase by integrating and optimising

the planning problems. The order batching problem is concerned with deciding on rules

defining which orders to combine in a pick round. The routing decision defines the se-

quence of items in a pick round. The job assignment problem assigns batches to order

pickers to ensure that all orders are picked before due time (Van Gils et al., 2018e). Tradi-

tionally, decisions are made sequentially: first orders are batched based on a distance or

time related measure (De Koster et al., 1999; Henn and Wäscher, 2012; Pan et al., 2015), fol-

lowed by routing each batch (Roodbergen and De Koster, 2001b; Theys et al., 2010; Scholz

et al., 2016) and finally assigning batches to the first available order picker (Henn, 2015).

Although the efficiency of these planning problems has found to be strongly interdepen-

dent (Part II), Chapter 2 shows that only a limited number of researchers integrate multi-

1This chapter is based on Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., 2019a. Formulating and Solving
the Integrated Batching, Routing, and Picker Scheduling Problem in a Real-life Spare Parts Warehouse. European
Journal of Operational Research.
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ple planning problems, while accounting for real-life features.

The main contributions of this chapter are as follows. First, a mathematical formu-

lation for the new integrated batching, routing and job assignment problem is presented.

Second, an efficient heuristic algorithm to solve the integrated problem is provided. Third,

a real-life case demonstrates the benefits of optimizing the integrated batching, routing

and job assignment problem compared to the current sequential solution of the ware-

house. The case is based on an international warehouse located in Belgium that stores

automotive spare parts to serve the B2B e-commerce vehicle market.

The remainder of the chapter is organised as follows. Section 7.1 introduces the prob-

lem context. Section 7.2 provides the mathematical programming model of the integrated

problem. Next, a new, simple but effective iterated local search algorithm to solve the

integrated problem is presented (Section 7.3) and thoroughly tested (Section 7.4). Sec-

tions 7.5 and 7.6 provide the managerial implications and concluding remarks, respec-

tively.

7.1 Problem Introduction

By simulating existing solution policies for the picker zoning, storage location assignment,

order batching and picker routing, the studies in Part II show that decisions on which

policy to apply for each planning problem are highly interdependent. In addition to the

strong relation, the time horizon of the batching and routing decision is similar, making

the integration of both planning problems highly relevant in terms of order picking effi-

ciency. Instead of simulating existing solution methods, a new solution method is created

in this study that integrates batching and routing decisions, as well as the job assignment

problem. The integrated problem of batching and routing has already been studied sev-

eral times, as shown in Table 7.1. As both problems are NP-hard (Won and Olafson, 2005),

metaheuristic algorithms are typically used to solve either batching, routing, or the inte-

grated problem of batching and routing. These algorithms are able to find good solutions

for the integrated batching and routing problem in small computation time, mainly for

small warehouses of three to six picking aisles (Chen et al., 2015; Li et al., 2016; Ene and

Öztürk, 2012), low-level storage locations (Chen et al., 2015; Scholz et al., 2017) and a single

order picker (Li et al., 2016; Matusiak et al., 2014). To increase the practical relevance, so-

lution methods that account for more real-life features are needed (Van Gils et al., 2018e).

As accuracy in delivery times is an essential performance indicator for warehouses

(Wruck et al., 2017), respecting due times is a critical issue when batching orders and

routing pickers (Henn and Schmid, 2013; Chen et al., 2015). This initiates an additional

planning problem: the picking sequence and completion time of all batches should be

determined (Chen et al., 2015). Most studies assume that all orders have the same dead-
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TABLE 7.1: Studies integrating order picking planning problems (based on Van Gils et al.
(2018e)).

Batching Routing Job assignment
1 picker > 1 picker

Won and Olafson (2005) • •
Tsai et al. (2008) • •
Ene and Öztürk (2012) • •
Rubrico et al. (2011) • •
Kulak et al. (2012) • •
Henn and Schmid (2013) • •
Matthews and Visagie (2013) • •
Matusiak et al. (2014) • •
Chen et al. (2015) • • •
Cheng et al. (2015) • •
Henn (2015) • •
Li et al. (2016) • •
Lin et al. (2016) • •
Matusiak et al. (2017) • •
Menéndez et al. (2017) • •
Scholz et al. (2017) • • •
Valle et al. (2017) • •
Zhang et al. (2017) • •
Ardjmand et al. (2018) • • •
Chabot et al. (2018) • •
This chapter • • •

line making batch sequences irrelevant (Ardjmand et al., 2018) or aim at minimizing total

tardiness of all customer orders (i.e., the positive difference between the order due time

and the batch completion time to which the order is assigned) (Chen et al., 2015; Scholz

et al., 2017). Solution algorithms often provide a solution in which one or more customer

orders will be picked after the picking due time, resulting in orders that miss the ship-

ping deadline (i.e., a truck leaves at the shipping deadline) (Henn and Schmid, 2013). In

practice, such solutions may not be accepted by some warehouses, as this reduces the

customer service level. Rather than accepting tardiness, the number of pickers will be in-

creased (e.g., by shifting workers from other departments) to prevent orders from being

picked after due time. For example, in the context of spare parts warehouses, service lev-

els are considered as hard constraints (Kennedy et al., 2002): the objective is to increase

order picking efficiency, while maintaining a high service level to customers. Tardiness is

assumed to occur only as a result of unforeseen issues (e.g., technical defects and empty

storage locations), which are not considered in this study. Furthermore, customer orders

have varying deadlines during the planning period (in contrast to Ardjmand et al. (2018)).

Despite the importance of human resources in the labour-intensive environment of

warehouses, few articles integrate workforce related planning problems in batching and

routing problems. In a single order picker system, the batch sequencing decision simply

determines the sequence of picking batches (Henn and Schmid, 2013; Chen et al., 2015).

In case of multiple order pickers, the job assignment problem becomes more challenging.

Batches need to be additionally assigned to order pickers prior to defining the sequence
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of picking batches (Henn, 2015; Scholz et al., 2017; Zhang et al., 2017).

Most studies consider travelling in two dimensions (i.e., low-level storage system),

while many warehouses store products on high-level storage locations (i.e., each storage

rack section consists of multiple levels, requiring the pick truck to lift to reach a location).

High-level storage systems strongly increase the storage capacity for a given warehouse

surface (Pan et al., 2014), and these systems are especially useful when products are large

such as the vehicle spare parts of our real-life case. Solution algorithms are required that

account for pick truck lifting. As lifting is typically very slow compared to travelling in hor-

izontal direction, high-level storage locations and consequently lifting strongly influence

the picking efficiency (Van Gils et al., 2018e).

This study goes beyond the current academic literature by integrating batching, rout-

ing and job assignment in a multiple order picker system. To the best of our knowledge, we

are the first to optimise order picking efficiency by integrating order batching, routing, and

job assignment while ensuring a high customer service level. Existing assumptions, such

as a single order picker (Chen et al., 2015), low-level storage locations (Ardjmand et al.,

2018; Chen et al., 2015; Scholz et al., 2017), ignoring due times (Ardjmand et al., 2018) and

minimizing tardiness (Chen et al., 2015; Scholz et al., 2017) are revised to increase the ap-

plicability of this study in practice. A suitable solution algorithm is provided that is able

to cope with multiple pickers (i.e., resource constraint), high-level storage locations and

order due times as hard constraints. The benefits of integrating batching, routing and job

assignment in practice are shown by a real-life case.

7.2 Integrated Batching, Routing and Job Assignment Problem

The integrated problem of order batching, picker routing and assigning batches to order

pickers is introduced in this section. Section 7.2.1 describes the problem. The mathemat-

ical model is introduced in Section 7.2.2.

7.2.1 Problem Description

The integrated batching, routing and job assignment problem (IBRJAP) can be sum-

marised as combining a predefined set of orders into batches (i.e., batching), for each

batch defining the sequence of storage locations to visit in order to retrieve all orders as-

signed to the batch (i.e., routing), assigning the batches to the available order pickers and

sequencing the batches for each picker (i.e., job assignment). The aim of the integrated

problem is to minimise the total order pick time. While most studies aim to minimise the

total tardiness of all customer orders (Chen et al., 2015; Scholz et al., 2017), we include

order due times as hard constraints in the model in order to guarantee a high customer

service level. Each order is assigned to a shipping truck. Order due times are defined by
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the schedule of shipping trucks. The assignment of orders to shipping trucks as well as the

shipping schedule are assumed to be fixed at an operational decision level.

The objective is to increase order picking efficiency, while avoiding tardiness of orders.

From a managerial point of view, the main order picking costs are defined by the number

of pickers. At the decision level of IBRJAP, the number of pickers is assumed to be con-

stant. Batching, routing and job assignment decisions are usually made multiple times

per shift when a sufficient number of orders are available, while the number of pickers

has been defined based on forecasts before a shift starts (Van Gils et al., 2017c). Therefore,

total order pick time is used as surrogate for order picking efficiency: a smaller total or-

der pick time enables an earlier release of new orders resulting in more retrieved orders

in a shift. Under the assumption of little idle capacity, the workload tends to be addition-

ally balanced and the makespan tends to be small when minimizing total picking time

and including order due times as hard constraints. As workload forecasts and balancing

schedules (see Part III) are used to determine the required number of pickers in practice,

the alignment of number of pickers and workload (i.e., little idle capacity) is a reasonable

assumption.

The total order picking time consists of following three elements: travel time, search

and retrieve time, and batch setup time (Van Gils et al., 2018c). The travel time is assumed

to be proportional to the travel distance (either vertically or horizontally), the search and

retrieve time is assumed to be directly proportional to the number of order lines in a batch,

and the setup time is the fixed amount of time consumed for administrative and setup

tasks for a batch. Although travel velocity, search and pick time, and setup time may differ

among order pickers, for simplicity we assume the time components to be constant in

the model. However, human factors could be easily incorporated by assuming picker-

dependent time components (Matusiak et al., 2017).

Batches are created by merging a particular number of orders on a pick list. Each order

consists of a number of order lines representing an ordered stock keeping unit (SKU). Each

SKU has a unique pick location in the warehouse. In accordance with previous research,

the batch capacity is expressed in number of order lines (Valle et al., 2017), assuming that

sorting activities should be performed afterwards. An order can only be assigned to a

single batch (i.e., order integrity) (Van Gils et al., 2016a). Each batch is assigned to a batch

position of an order picker in order to define the sequence in which a picker should pick

the batches assigned to him/her. Each batch can only be scheduled at one batch position

and each batch position cannot consist of more than one batch of orders.

7.2.2 Mixed Integer Linear Programming Model

A mixed integer linear programming (MILP) model is developed to formulate the prob-

lem. The efficient formulation of Valle et al. (2017), describing the integrated batching and

167



CHAPTER 7. INTEGRATING AND OPTIMIZING PLANNING PROBLEMS

routing problem, is used as start point for the new integrated batching, routing and job as-

signment problem. The formulation is adapted by including the assignment of batches to

order pickers, evaluating the total order pick time of each batch and including order due

times as hard constraints.

Sets:

σ= {1,2, ...,Q} set of order pickers with index q .

π= {1,2, ...,P } set of batch positions of a picker with index p.

ψ= {0,1,2, ...,V } set of vertices with index v (depot is 0).

Ψ= {ψ1,ψ2, ...,ψS } set with all possible subsets of vertices ψs ⊂ψ\0 : |ψs | > 1.

α= {1,2, ..., A} set of arcs with index a connecting vertices (v ′; v ′′) : v ′, v ′′ ∈ψ.

αψs ⊂α subset of arcs with a = (v ′; v ′′) : v ′, v ′′ ∈ψs .

α+
v ⊂α subset of arcs ending in a vertex v .

α−
v ⊂α subset of arcs starting in a vertex v .

κ= {1,2, ...,K } set of customer orders with index k.

ψk ⊂ψ subset of vertices that should be visited in customer order k.

µ= {1,2, ..., M } set of pick aisles with index m.

ε= {1,2, ...,E } set of cross-aisles with index e.

ι= {1,2, ..., J } set of storage levels with index j .

Parameters:

ok number of order lines of order k.

c batch capacity (in number of order lines).

ta travel time when travelling across arc a (in seconds).

t s batch setup time (in seconds).

t r search and retrieve time for visiting a storage location (in seconds).

tk due time of customer order k with respect to the start of the planning horizon (t = 0).

Decision variables:

Xqpa

0 arc a is not visited by picker q at batch position p.

1 arc a is visited by picker q at batch position p.
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Zqpv

0 vertex v is not visited by picker q at batch position p.

1 vertex v is visited by picker q at batch position p.

Rqpk

0 order k is not completed by picker q at batch position p.

1 order k is completed by picker q at batch position p.

Wqpv number of arcs leaving vertex v (i.e., outdegree) by picker q at batch position p.

Tqp completion time of the batch completed by picker q at position p.

FIGURE 7.1: Directed graph of arcs and vertices representing the Steiner TSP.

The routing problem is formulated as a Steiner Travelling Salesman Problem (TSP)

(Cornuéjols et al., 1985; Theys et al., 2010), as illustrated in Figure 7.1. White vertices, lo-

cated at each intersection of a pick aisle and a cross-aisle, represent artificial vertices to

model the warehouse. Black vertices represent the pick locations. White vertices may be

visited in a pick round, while black vertices should be visited in at least one pick round

(Valle et al., 2017). Arcs are used to connect the vertices: each black vertex is connected to

the two neighbouring vertices within a pick aisle (either black or white), and arcs connect

the neighbouring artificial vertices within a cross-aisle. Furthermore, for each cross-aisle,

the closest artificial vertex with respect to the depot is connected to the depot. Compared

to classical TSP formulations, the Steiner TSP has shown substantial computational im-

provements (Scholz et al., 2016).

To model the batching and job assignment, a set of pickers and batch positions is

used. Batches are not explicitly modelled in the mathematical formulation. In this way,

the number of sets is limited to four, which simplifies the notation and makes the model

easier to read. As each order picker q is able to pick a single batch at each position p, each
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combination (q ; p) represents a batch in the mathematical formulation. The number of

created batches (B) in the solution is equal to the number of depot visits:

B = ∑
q∈σ

∑
p∈π

Zqp0(7.1)

In the discussion below, a batch refers to a combination of (q ; p). The linear MILP model

can be stated as follows:

min
∑

q∈σ
TqP(7.2)

Subject to ∑
a∈α+

v

Xqpa = ∑
a∈α−

v

Xqpa(7.3)

∀q ∈σ, ∀p ∈π, ∀v ∈ψ∑
a∈α−

v

Xqpa =Wqpv(7.4)

∀q ∈σ, ∀p ∈π, ∀v ∈ψ∑
v ′∈ψs

Wqpv ′ ≥ Zqpv +
∑

a∈αψs

Xqpa(7.5)

∀q ∈σ, ∀p ∈π, ∀v ∈ψs , ∀ψs ∈Ψ
Xqpa ≤ Zqpv(7.6)

∀q ∈σ, ∀p ∈π, ∀v ∈ψ, ∀a ∈α−
v∑

a∈α+
0

Xqpa = ∑
a∈α−

0

Xqpa = Zqp0(7.7)

∀q ∈σ, ∀p ∈π, ∀a ∈α
Xqpa ≤ Zqp0(7.8)

∀q ∈σ, ∀p ∈π, ∀a ∈α
Rqpk ≤ Zqp0(7.9)

∀q ∈σ, ∀p ∈π, ∀k ∈ κ∑
a∈α−

v

Xqpa ≥ Rqpk(7.10)

∀q ∈σ, ∀p ∈π, ∀k ∈ κ, ∀v ∈ψk∑
k∈κ

Rqpk ≥ Zqp0(7.11)

∀q ∈σ, ∀p ∈π∑
k∈K

ok Rqpk ≤ c(7.12)

∀q ∈σ, ∀p ∈π
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∑
q∈σ

∑
p∈π

Rqpk = 1(7.13)

∀k ∈ κ
t s Zqp0 + t r

∑
k∈κ

ok Rqpk +
∑
a∈α

ta Xqpa = Tqp(7.14)

∀q ∈σ, p = 1

Tq(p−1) + t s Zqp0 + t r
∑
k∈κ

ok Rqpk +
∑
a∈α

ta Xqpa = Tqp(7.15)

∀q ∈σ, ∀p ∈π\{1}

Tqp ≤ tk +M (1−Rqpk )(7.16)

∀q ∈σ, ∀p ∈π, ∀k ∈ κ
Tqp ≤M

∑
k∈κ

Rqpk(7.17)

∀q ∈σ, ∀p ∈π
Xqpa ,Rqpk ∈ {0,1}(7.18)

∀q ∈σ, ∀p ∈π, ∀k ∈ κ, ∀a ∈α
Zqpv ∈ [0;1](7.19)

∀q ∈σ, ∀p ∈π, ∀v ∈ψ
Tqp ≥ 0(7.20)

∀q ∈σ, ∀p ∈π

The objective function (7.2) minimises the total order pick time to retrieve all customer

orders. Constraints (7.3) ensure that the number of arcs visiting a vertex v is equal to the

number of arcs leaving the vertex in each batch. Constraints (7.4) define the outdegree of

each vertex (i.e., the number of arcs leaving vertex v) in each batch. Constraints (7.5) avoid

the creation of sub–tours in a batch: the total outdegree of a subset of vertices should be

greater than or equal to the number of vertices and arcs visited in the subset. These sub–

tour elimination constraints are derived from the Vehicle Routing Problem (Laporte, 1992)

and provide good results in an order picking context (Valle et al., 2017). Constraints (7.6)

allow vertices to be visited in a batch only when an arc starts in the vertex. The number

of depot visits (i.e., vertex 0) is defined by constraints (7.7): if the depot is visited, a batch

should contain an incoming and outgoing arc from the depot. Furthermore, if the depot

is included in a batch, at least one arc is used in a batch or at least one order is picked in

the batch, as stated by constraints (7.8) and (7.9), respectively. Constraints (7.10) ensure

that vertices of orders assigned to a batch are visited by enforcing at least one outgoing arc

to be used in the batch. Constraints (7.11) make sure that at least one order is assigned to

the batch if the depot is visited. Constraints (7.13) ensure that the number of order lines

in each batch does not exceed the batch capacity and constraints (7.12) ensure order in-
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tegrity (i.e., each order is assigned to a single batch). Constraints (7.14) and (7.15) incorpo-

rate the processing time of picking a batch for the first batch position and other batch po-

sitions, respectively. Additionally, constraints (7.15) prevent overlapping batches that are

assigned to the same order picker. Constraints (7.16) guarantee that all orders are picked

before due time, with M a sufficiently large positive number (M = max{tk ,∀k ∈ K }). Con-

straints (7.17) ensure the calculation of a completion time for all scheduled batches. The

domain constraints are provided by constraints (7.18)-(7.20). Note that the formulation

forces the Zqpv to be binary as well.

The number of sub–tour elimination constraints (i.e., Constraints 7.5) grows exponen-

tially with the number of vertices in the problem. Therefore, initially these constraints

are removed from the formulation and a branch-and-cut procedure is employed to check

each integral candidate solution on sub–tours. For each sub–tour in the candidate solu-

tion, Constraints (7.5) are included with ψ′ containing only vertices of the created sub–

tour. To reduce the number of created subtours, and consequent number of cuts, Valle

et al. (2017) introduce a series of optimality cuts and symmetry breaking constraints which

are shown to substantially reduce the computation time to find the optimal total order

pick time. Hence, we adapted these inequalities to our problem setting and include these

as well. The applied optimality cuts and symmetry breaking constraints are provided in

Appendix F. The reader is referred to Valle et al. (2017) for an comprehensive discussion

on the optimality cuts.

7.3 Iterated Local Search Algorithm for IBRJAP

Due to the complex nature of IBRJAP, solving instances of realistic size to optimality in

a reasonable amount of computation time does not seem feasible. A metaheuristic al-

gorithm, based on iterated local search, is proposed to approximate the global optimal

solution. Iterated local search algorithms have proven to be efficient in optimizing or-

der picking planning problems (Henn and Schmid, 2013; Öncan, 2015; Scholz et al., 2017;

Schubert et al., 2018). Although other algorithms may be suitable and efficient to solve

the IBRJAP as well (e.g., adaptive large neighbourhood search algorithms (Chabot et al.,

2017; Matusiak et al., 2017)), the ILS algorithm is easy to use and understand. The aim is

to provide a simple but effective ILS algorithm to solve IBRJAP.

The general principle of ILS is introduced by Lourenço et al. (2003). The main compo-

nents of ILS include a procedure to generate an initial solution, a local search procedure,

and a perturbation procedure. In addition to the general ILS principles, the diversifica-

tion is increased by maintaining a set of six solutions S (instead of a single solution), as

well as considering multiple operators during the local search procedure which is com-

monly applied in metaheuristic algorithms. While multi-start ILS algorithms start from a
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randomly constructed new solution each iteration, the solution set allows starting from

varying solutions in each iteration and each starting solution is a good solution (i.e., a lo-

cal optimum). Moreover, multiple local search operators increase the quality of the local

search, thereby improving the local optimum, compared to a single local search operator

(Sörensen and Glover, 2013).

The ILS algorithm is described in Algorithm 1. First, an initial solution s0 is created,

followed by a local search on s0 that results in a local optimum. All solutions in S are ini-

tialised by this local optimum. Next, four steps are performed iteratively: (1) selecting a

solution s∗ from S(s1; s2; sr 1; sr 2; sr 3; sr 4) with probability Φ(φ1;φ2; φ3
4 ; φ3

4 ; φ3
4 ; φ3

4 ), respec-

tively, and Φ a set of algorithm parameters; (2) perturbing s∗; (3) applying local search to

reach a new local optimum; (4) updating S. If this procedure results in a solution with

either a reduced tardiness or a reduced total order pick time without increasing tardiness,

compared to the best (s1) or second best (s2) solution, the solution is accepted as new

best or second best solution, respectively. Otherwise, the solution is saved as one of the

four random solutions (i.e., sr 1, sr 2, sr 3, and sr 4). These steps are repeated until there are

ξ consecutive iterations with an improvement in total order pick time of the best solution

s1
pi ckti me of≤ 0.005% and a tardiness of zero in the best solution (with a maximum of 5,000

iterations). The number of consecutive iterations without improvement also determines

the intensity of the perturbation (see Algorithm 5).

Algorithm 1 Iterated local search algorithm for IBRJAP

create initial solution s0 (Algorithm 2)
local search batching and job assignment on s0 (Algorithm 3);
local search routing on s0 (Algorithm 4);
initialise solution set S(s1 ; s2 ; sr 1 ; sr 2 ; sr 3 ; sr 4) = (s0 ; s0 ; s0 ; s0 ; s0 ; s0);
repeat

select solution s∗ from S with probability Φ
(
φ1 ;φ2 ;

φ3
4 ;

φ3
4 ;

φ3
4 ;

φ3
4

)
;

perturbation on s∗ (Algorithm 5);
local search batching and job assignment on s∗ (Algorithm 3);
local search routing on s∗ (Algorithm 4);

if
(
s∗pi ckti me ≤ s1

pi ckti me ands∗t ar di ness ≤ s1
t ar di ness

)
or s∗t ar di ness < s1

t ar di ness then

new best solution: s1 = s∗;
count the number of non-improving iterations: I∗ = 0;

else if
(
s∗pi ckti me ≤ s2

pi ckti me ands∗t ar di ness ≤ s2
t ar di ness

)
or s∗t ar di ness < s2

t ar di ness then

new second best solution: s2 = s∗;
count the number of non-improving iterations: I∗ = min{10; I∗+1};

else
new random solution: sr 4 = sr 3;
new random solution: sr 3 = sr 2;
new random solution: sr 2 = sr 1;
new random solution: sr 1 = s∗;
count the number of non-improving iterations: I∗ = min{10; I∗+1};

end if
until ξ iterations with improvement ≤ 0.005% and s1

t ar di ness = 0;

The generation of an initial solution is described in Algorithm 2. Initially, each order is

assigned to a separate batch. Orders are sorted with respect to the due time: the customer

order that should be shipped most early (co1) is assigned to the first batch position (p =
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Algorithm 2 Create initial solution
sort all customer orders with respect to due time;
initialise customer order (k = 1), position (p = 1) and picker (q = 1);
while k ≤ K do

assign customer order cok to position p of picker q ;
increase customer order: k = k +1;
increase picker: q = q +1;
if q >Q then

return to the first picker: q = 1;
increase position: p = p +1;

end if
end while
local search routing on s0 (Algorithm 4);

1) of the first order picker (q = 1). The next order on the sorted list of customer orders

is assigned to the first batch position of the second order picker. Once all picker’s first

positions are occupied, orders are assigned to the second batch positions (p = 2). These

steps are repeated until all orders are assigned to a batch. Next, locations that should be

visited to retrieve all items of a batch are sequenced by the routing algorithm, explained

in Algorithm 4, to create initial routes.

The local search phase of the heuristic consists of a batching and order job assignment

algorithm (Algorithm 3), and a routing algorithm (Algorithm 4). The batching and job as-

signment local search phase consists of four move types, adapted from Scholz et al. (2017),

applied in a fixed sequence: relocating a single customer order to another batch position

and/or picker (i.e., order shift), relocating a batch to the same batch position of another

picker (i.e., batch shift), exchanging two customer orders from different batches (i.e., order

swap), and exchanging all customer orders from two different batches (i.e., batch swap).

Batch swaps and batch shifts are performed for each batch position of each picker.

The neighbourhood of the batch moves consists of all positions and all pickers to which

a move results in a new solution with reduced or equal total tardiness compared to the

current solution. The total order picking time remains equal by shifting and swapping

entire batches. In case of tardiness in the current solution, these move types are able to

move quickly to a feasible solution (i.e., st ar di ness = 0). Therefore, a batch swap and batch

shift are only performed when the solution is still infeasible with respect to tardiness.

Order shift and order swap moves that result in either a reduced tardiness or a reduced

total order pick time (without increasing tardiness) are accepted as new solutions. Once

a solution is feasible, a reduced total order pick time is the only binding constraint for ac-

cepting new solutions. A first improving move strategy is used to select a new solution.

The order shift operator is efficient with respect to computational complexity and par-

ticularly effective to reduce the order pick time by reducing the number of batches very

fast. The order shift aims to shift all orders (one-by-one) of a single batch before orders

of another batch are considered. Initial experiments show that the order shift operator is

the most efficient and effective operator. Therefore, this operator is positioned first in the
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Algorithm 3 Batching and job assignment
repeat

repeat
for all batches (q ; p) do

for all customer orders cok ∈ (q ; p) do
for all batches (q ; p)∗ do

if Tqp∗ ≤ tk +χ or s∗t ar di ness > 0 then

create temporary solution: st = s∗;
shift customer order cok ∈ (q ; p) to batch (q ; p)∗ in st ;
insert each order line of cok on the cheapest position of the route in st ;
if (st

pi ckti me
≤ s∗pi ckti me and st

t ar di ness
≤ s∗t ar di ness ) or st

t ar di ness
< s∗t ar di ness then

accept solution: s∗ = st ;
break

end if
end if

end for
end for

end for
until no further improvement is possible;
if s∗t ar di ness > 0 then

for all batches (q ; p) do
for all batches (q ; p)∗ do

create temporary solution: st = s∗;
shift batch (q ; p) to another picker q∗ and/or another position p∗ in st ;
if st

t ar di ness
≤ s∗t ar di ness then

accept solution: s∗ = st ;
break

end if
end for

end for
end if
repeat

for all customer orders cok ∈ κ do
for all customer orders cok∗ ∈ κ do

if (Tqp∗ ≤ tk +χ and Tqp ≤ tk∗ +χ) or s∗t ar di ness > 0 then

create temporary solution: st = s∗;
swap customer order cok ∈ (q ; p) and an order cok∗ ∈ (q ; p)∗ in st ;
insert each order line of cok on the cheapest position of the route of (q ; p)∗;
insert each order line of cok∗ on the cheapest position of the route of (q ; p);
if (st

pi ckti me
≤ s∗pi ckti me and st

t ar di ness
≤ s∗t ar di ness ) or st

t ar di ness
< s∗t ar di ness then

accept solution: s∗ = st ;
break

end if
end if

end for
end for

until no further improvement is possible;
if s∗t ar di ness > 0 then

for all batches (q ; p) do
for all batches (q ; p)∗ do

create temporary solution: st = s∗;
swap batch (q ; p) and batch (q ; p)∗ in temporary solution st ;
if st

t ar di ness
≤ s∗t ar di ness then

accept solution: s∗ = st ;
break

end if
end for

end for
end if

until no further improvement is possible;
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local search algorithm. Whereas the effectiveness of the shift operator strongly decreases

in case of fully loaded batches, the order swap operator can further decrease order pick

times by switching two orders of different batches, at the cost of additional computational

complexity. To prevent order shifts or order swaps that will probably be rejected because

of tardiness, the completion time of a batch is compared to the order due times of the or-

der(s) considered in the move before the move is performed. Parameter χ is defined as the

maximum difference between the current batch completion time and the order due time

for a move to be considered (i.e., Tqp∗ ≤ tk +χ). The order shift and order swap moves

are repeated until no further improvement is possible. Note that there is no explicit repair

method in the move operators for solutions with tardiness: the move operators create

highly efficient batches with respect to travelling and batches are filled to capacity. In this

way travel time and setup time are small, reducing the probability of tardiness.

Algorithm 4 Routing
for all pickers q ∈σ do

for all positions p ∈π do
if number of locations to visit in batch (q ; p) ≤ 8 then

calculate exact route length of batch (q ; p);
else

LKH-routing of batch (q ; p);
end if

end for
end for

The routing algorithm minimises the order picker travel distance by sequencing items

in a batch. Only for a small number of locations to be visited, an optimal route can be

calculated in reasonable computing times. The Lin–Kernighan–Helsgaun (LKH) heuris-

tic (Helsgaun, 2000) for the TSP is used as alternative to approximate the optimal route

length (Theys et al., 2010). Pretests of our algorithm showed that calculating the opti-

mal route length by enumerating all feasible solutions is faster compared to executing the

LKH-routing heuristic if the number of storage locations to visit in a batch is smaller than

or equal to eight locations, including the depot. For all other batches, the routing problem

is solved by the LKH heuristic. The same settings for the LKH heuristic as in Theys et al.

(2010) are used.

Applying Algorithms 3 and 4 results in a local optimum. To escape from this local op-

timum, a large change (i.e., perturbation) is performed to a solution included in solution

set Φ. The perturbation of the ILS algorithm consists of splitting I batches: in each of the

I perturbation iterations a random number of orders from an existing batch are assigned

to a new batch, created at a random position of a random order picker. After the creation

of a new batch, the local search routing algorithm is performed to sequence the locations

in the initial batch as well as the new batch. A perturbation iteration is repeated (for at

most 50 times), starting from the current solution, if the tardiness of the perturbed solu-

tion is larger than the tardiness of the current solution. The perturbation intensity (i.e.,
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Algorithm 5 Perturbation
for i t = 1 to I do

Initialise count variable: a = 0;
repeat

st = s∗;
choose a random batch (q ; p) in st ;
choose a random number of orders k∗ ∈ [

1;
∑

k∈κRqpk
]

to shift;

shift k∗ orders from (q ; p) to a new batch (q ; p)∗ in st ;
local search routing of (q ; p) on st (Algorithm 4);
local search routing of (q ; p)∗ on st (Algorithm 4);
count perturbation attempts: a = a +1

until st
t ar di ness

≤ s∗t ar di ness or a > 50

if a ≤ 50 then
accept solution: s∗ = st ;

end if
increase iterator: i t = i t +1;

end for

the number of split batches) depends on the last found best solution and is defined as

I = dζ×B × I∗e, with ζ a parameter and I∗ calculated in Algorithm 1.

7.4 Computational Experiments

To assess the performance of the proposed ILS algorithm, a series of numerical experi-

ments is performed. All algorithms are implemented in C++. To solve the MILP formula-

tion, ILOG Cplex 12.7 is used with a runtime limit of 4 h. In accordance with Valle et al.

(2017), branching priority is given to Rqpk . Other parameter settings are left as default as

these parameters have minor impact. Cplex and ILS are run on an Intel Xeon Processor

E5-2680 at 2.8 gigahertz, using a single thread, provided by the Flemish Supercomputer

Center.

The properties of the problem instances are introduced in Section 7.4.1 and algorithm

parameters are tuned in Section 7.4.2. First, the ILS algorithm is tested on small prob-

lem instances. Results are compared with the optimal solutions of the MILP formulation

(Section 7.4.3). In a second experimental design (Section 7.4.4), the ILS algorithm is per-

formed on a set of large problem instances to demonstrate its applicability in practice and

analyse the effects of different warehouse parameters. Finally, a real-life case is used in

Section 7.4.5 to show the real-life benefits of optimizing IBRJAP.

7.4.1 Problem Instances

The problem parameters in this chapter are similar as the generalised experiments in

Chapter 3. Table 7.2 summarises the warehouse layout parameters and the time compo-

nents of the picking operation. Picking aisles are two-sided and wide enough for two-way

travel: the effect of picker blocking is assumed to be negligibly small. In addition to the

parameters in Chapter 3, time related parameters are included.
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TABLE 7.2: Warehouse parameter values.

Warehouse parameter Parameter value
Small instances Large instances

Depot location D single decentralised depot single decentralised depot
Number of blocks E −1 2 blocks 2 blocks
Number of cross-aisles E 3 cross-aisles 3 cross-aisles
Number of pick aisles M ∗ ∗
Number of storage rack sections L ∗ ∗
Number of levels J 1 level per storage rack 1 level per storage rack
Storage rack section length lleng th 1.3 m 1.3 m
Storage rack section width lwi d th 0.9 m 0.9 m
Pick aisle width mwi d th 3.0 m 3.0 m
Cross-aisle width ewi d th 6.0 m 6.0 m
Picker travel velocity v 1

3 m/s 1 m/s

Travel time for arc a ta
da
v s da

v s
Setup time t s 540 s 180 s
Search and retrieve time t r 30 s 10 s
Planning period t pp 4 h 4 h

∗ Experimental design parameter (see Table 7.3).

TABLE 7.3: Experimental factor setting.

Factor Factor levels
Small instances Large instances

Layout (1) 6×60 locations 6×60 locations
(2) 12×120 locations 12×120 locations
(3) 18×180 locations 18×180 locations

Storage policy (1) random (Ran) random (Ran)
(2) within-aisle (W A) within-aisle (W A)
(3) across-aisle (A A) across-aisle (A A)

Batch capacity (1) 4 order lines 15 order lines
(2) 8 order lines 30 order lines
(3) 12 order lines 45 order lines

Order structurea (1) 18 orders (β = 4
3 ) 300 orders (β = 8

3 )
(2) 12 orders (β = 2) 200 orders (β = 4)
(3) 6 orders (β = 4) 100 orders (β = 8)

Due time distributionb (1) uniform (Uni ) uniform (Uni )
(2) progressive (Pr og ) progressive (Pr og )
(3) degressive (Deg ) degressive (Deg )

a The number of order lines for each order is generated using following formula: min(c;bE xp(β)+0.5c), with E xp(β) an expo-
nential distribution with mean β.
b The uniform due time distribution corresponds to U(1.0; tpi cki ng ), progressive and degressive due time distributions are ap-
proximated by triangular distributions as follows: TRIA(1.0; 3.0; tpi cki ng ) and TRIA(1.0; 1.5; tpi cki ng ), respectively.

The heuristic algorithm is tested for a wide range of warehouse parameters. Three

layouts, three storage location assignment policies, three batch capacity levels, three dif-

ferent order structures, as well as a varying distribution of due times among orders are

included in the experimental design. The five factors and their associated factor levels are

summarised in Table 7.3.

The two-block warehouse layout differs in number of aisles, as well as number of stor-

age location per aisle. The layout varies between 360 (6 aisles × 60 locations per aisle × 1

level) and 3,240 (18 aisles × 180 locations per aisle × 1 level) storage locations. An example

of the smallest order picking layout is illustrated in Figure 7.1. Other layouts are equiva-

lent. Note that the MILP model and optimality cuts provided in Appendix F are only valid if
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following assumption is fulfilled: ta1 = ta2 +ta3 with a1 = (v1; v3), a2 = (v1; v2), a3 = (v2; v3).

This is only true in case of a linear distance approximation function (e.g., rectilinear dis-

tance metric), which is the case for low-level storage systems. In case of high-level storage

systems, the Chebychev distance metric includes vertical travel as follows: the travel time

between two vertices equals the maximum of the horizontal travel time and lifting time

(Clark and Meller, 2013). Consequently, the number of arcs increases tremendously com-

pared to the general Steiner TSP formulation as all vertices within a pick aisle need to be

connected by arcs, making the MILP model too hard to solve even for very small instances.

Therefore, the performance of the ILS algorithm is compared with the MILP model for a

low-level storage system (J = 1) in the experimental design. In the real-life case, high-level

storage locations are taken into account.

Besides randomly assigning SKUs to storage locations, a within-aisle as well as an

across-aisle storage location assignment policy are tested. SKUs are grouped into classes

in such a way that class A contains 1
6 of the SKUs stored in the warehouse. These SKUs

account for 60% of the picking activity. Class B and class C contain 1
3 and 1

2 of the stor-

age locations and account for 30% and 10% of the order frequency, respectively. From the

problem formulation, the complexity of the integrated batching, routing and job assign-

ment problem seems to be independent of the layout and storage policy. Therefore, small

and larger instances are tested on the same factor levels with regard to layout and storage

policy.

Batch capacity and order structure impact the number of created batches and conse-

quently the complexity of the planning problem, as shown in the formulation. Different

factor levels for small and large instances are considered during the analysis, as shown in

Table 7.3. Finally, the due time distribution factor describes the distribution of due times

of customer orders. The complexity of the planning problem seems to be independent

from this factor. Besides a uniform distribution over the planning period t pp , a progres-

sive and a degressive due time distribution are considered. For the progressive distribu-

tion most orders are picked at the end of the planning period. In a degressive situation,

most orders have a due time in the first time intervals.

This factorial setting results in a 3× 3× 3× 3× 3 full factorial design. Among the 243

possible factor combinations, thirty large instances (i.e., test instances) are randomly se-

lected to derive the relation between the required number of order pickers and the prop-

erties of the warehouse. The required number of order pickers may be predicted based

on demand forecasts (Van Gils et al., 2017c). Consequently, the number of order pickers is

included as a warehouse parameter and assumed to be fixed and known when orders are

being batched. As the productivity of order pickers strongly depends on the warehouse

parameters, such as layout and batch capacity, the number of order pickers will be de-

rived from the experimental factor levels for the large instances. The following procedure
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is used to define the required number of pickers for the test instances: each instance is

solved using the heuristic with Q = 10 order pickers, next the instance is resolved with

Q = 9 pickers, and so on. The procedure stops when the heuristic provides a solution with

tardiness and the required number of pickers for a test instance is defined as Q ′+1, with

Q ′ the last value of Q. Using a regression analysis on these results, layout, batch capac-

ity, order structure and due time distribution are proven to be statistically significantly

related with the required number of order pickers (R2
ad j usted = 0.987). The regression co-

efficients to define the number of order pickers for each factor level combination are as

follows Q∗ = ⌈
1.20

(
0.254M +0.006O −0.072c +1.383Deg

)⌉
with O the number of order

lines. Note that the number of pickers for each instance is increased with 20% to ensure

that the number of pickers is large enough to prevent tardiness in all large instances.

Without loss of generality, the number of pickers is fixed at 2 for the small benchmark

instances. Moreover, for running the MILP model, the parameter P , describing the num-

ber of batch positions, should be defined. For simplicity, P is set large enough by fixing it

at
⌈

K
Q

⌉
. A more complex upper bound for parameter P could slightly improve the com-

putational efficiency. However, as the MILP model is only used as benchmark, this upper

bound provides acceptable solutions to evaluate the solution quality of the ILS heuristic.

Note that with respect to the ILS algorithm, only parameter Q is relevant as batch positions

can easily be created and removed during computation.

7.4.2 Parameter Tuning

Tuning algorithm parameters may result in significant performance benefits of the tested

algorithm (Pellegrini and Birattari, 2011). With respect to the ILS algorithm, parameter

tuning is performed on the set of thirty randomly selected test instances. Table 7.4 in-

troduces the experimental design that is used to tune the three algorithm parameters: ξ

(i.e., parameter defining the algorithm stop criterion), (φ1;φ2;φ3) (i.e., parameters defin-

ing which solution is selected in each iteration), and ζ (i.e., parameter defining the in-

tensity of the perturbation). Pretests of the ILS algorithm were performed to select these

factors and fix the factor levels. Note that χ (i.e., parameter limiting the moves in the local

search) is not included in the experiments as χ is not related to other algorithm parame-

ters. Based on pretests, the parameter value is fixed at 1 h, meaning that only moves are

tested for which the difference between the batch completion time and the order due time

is smaller or equal than 1 h. This value is large enough in order not to exclude promising

moves and small enough to prevent a large number of non-promising moves, probably

resulting in tardiness.

Each factor level combination is tested on all thirty test instances. Five replications

per factor level combination are performed. Consequently, the 4×4×7 factorial design

results in 16,800 observations. Figure 7.2 shows the results of the parameter tuning pro-
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TABLE 7.4: Experimental factor setting to tune the ILS algorithm.

Factor Factor levels

ξ (Algorithm 1) (1) 100
(2) 200
(3) 300
(4) 400

(φ1 ;φ2 ;φ3) (Algorithm 1) (1)
(
1;0;0

)
(2)

( 1
2 ; 1

6 ; 1
3
)

(3)
( 1

3 ; 1
3 ; 1

3
)

(4)
( 1

3 ; 1
6 ; 1

2
)

ζ (Algorithm 5) (1) 0.000
(2) 0.005
(3) 0.010
(4) 0.015
(5) 0.020
(6) 0.025
(7) 0.030

FIGURE 7.2: Comparison of average total order pick time and CPU time per factor level
combination.

cedure. Both the average total order picking time and the average CPU time for each factor

level combination are illustrated on the graph. Due to the bad performance of ζ = 0 (i.e.,

no perturbation), this factor level is removed from the graph for visibility reasons.

Computation time increases about linearly with increasing values of ξ. Total order

pick time is strongly reduced as ξ is increased from 100 to 200. Further increasing ξ has

a much weaker effect on pick time. Therefore, 200 non-improving iterations as stop cri-

terion seems a good compromise between computation time and solution quality. CPU

time increases when intensifying the perturbation, while the total order pick time turns

out to be minimal with medium values of ζ. Therefore, ζ is set at 0.015. Finally, (φ1;φ2;φ3)

seem to have little effect on both solution quality and CPU time, except for the first factor

level that shows an increased order pick time, demonstrating the positive effect of main-

taining a solution pool. As the number of iterations in the algorithm is large, the impact

of the probability values for choosing a solution from the solution pool is negligible. The

181



CHAPTER 7. INTEGRATING AND OPTIMIZING PLANNING PROBLEMS

TABLE 7.5: Optimality gap after solving the MILP model.

Instances Optimality gap (in %)
# % Min. Mean Max.

Layout 6×60 289 35.7 0.2 13.7 38.9
12×120 325 40.1 0.9 17.5 50.7
18×180 373 46.0 0.6 17.2 48.7

Storage policy Ran 352 43.5 0.2 16.4 45.2
W A 335 41.4 0.6 16.8 50.7
A A 300 37.0 0.9 15.4 48.7

Batch capacity 4 487 60.1 0.2 19.8 50.7
8 328 40.5 0.6 14.9 40.2
12 172 21.2 0.8 9.5 25.8

Order struct. 18 685 84.6 0.9 18.6 50.7
12 302 37.3 0.2 11.5 38.4
6 0 0.0 - - -

Due time distr. Uni 328 40.5 0.6 16.5 50.7
Pr og 337 41.6 0.9 16.5 48.7
Deg 322 39.8 0.2 15.4 43.0

Total 987 40.6 0.2 16.2 50.7

values of (φ1;φ2;φ3) are fixed at the second factor level:
( 1

2 ; 1
6 ; 1

3

)
.

7.4.3 Comparison between Exact Algorithm and ILS Algorithm

To assess the performance of the proposed algorithm, its results are compared with the

optimal solutions obtained by solving the MILP model with Cplex. Due to the complex

nature of the integrated problem, Cplex is only able to solve small instances, i.e., a small

batch capacity and a limited number of customer orders, in reasonable computing times.

Ten order lists are generated for each factor level combination of the factorial design (see

Table 7.3) in order to reduce the stochastic effect of order generation. This setting results

in 2,430 small instances.

Table 7.5 shows the results of solving the MILP model using Cplex. For each factor

level, the number of observations that have not been solved to optimality by Cplex within

the run time limit of 4 h is given. In total, 40.6% instances (987 out of 2,430) have not been

solved to optimality. Among these, for 84 instances no feasible integer solution has been

formed. The right-hand side of the table presents the minimum, mean and maximum op-

timality gap of the non-optimal instances for which a feasible integer solution was found

(i.e., 903 instances). Layout, storage policy, and due time distribution have a limited effect

on the number of non-optimal solutions. Non-optimal solutions are strongly concen-

trated in the two smallest batch capacity levels and the largest order structure level. These

levels result in a large number of batches and increase the number of feasible solutions.

Overall, the mean optimality gap of the instances (i.e., 16.2%) is rather high, even for these

small problem sizes. This demonstrates the complexity of the problem.

To assess the ILS performance, the total order pick time of ILS is compared to the op-

timal solution. The instances for which no feasible integer solution could be obtained
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FIGURE 7.3: Percentage gap in order picking time between ILS and MILP for small prob-
lems.

by Cplex have been excluded from the analysis. From the 1,443 instances that could be

solved to optimality using Cplex, the ILS algorithm is able to provide this optimal solu-

tion for 86.9% of the instances in a single run per instance. The remaining 189 instances

yield a mean gap between the ILS solution and the optimal order pick time of only 1.74%.

Figure 7.3 provides an overview of the performance of the ILS algorithm with respect to

the total order picking time. The solid line on the graph illustrates the average gap be-

tween the optimal solution and the ILS objective function value for 1,443 instances solved

to optimality by Cplex, while the other two lines compare the ILS solution to the lower

bound and best MILP integer solution for all 2,346 instances for which Cplex finds a fea-

sible solution within the run time limit. The size of the optimality gaps is rather equally

distributed across the factor levels. With respect to the lower bound, gaps are substan-

tial, at least for the factor levels with a high number of non-optimal instances (i.e., small

batch capacity and a large number of orders). This can be explained by the large gaps be-

tween Cplex’ best integer solution and corresponding lower bound. In general, the ILS

algorithm is providing equal or even smaller order pick times compared to Cplex’ best

integer solution. To conclude, this analysis indicates that the ILS algorithm is able to ef-

fectively solve the integrated batching, routing and job assignment problem, at least for

small problem sizes.

In order to evaluate the efficiency of the ILS algorithm, the computation times of the

ILS algorithm are compared with the computation times for solving the MILP model with

Cplex (Figure 7.4). Computation times decrease substantially when the problem is solved

by the ILS algorithm. Furthermore, computation times of both approaches are rather in-

sensitive to the order picking layout, storage policy and due time distribution of orders.

With respect to the order structure, computation times strongly increase as the number of
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FIGURE 7.4: CPU time (in s) of MILP and ILS for small problems.

orders increases. Contradicting effects can be observed for the MILP model and the ILS

algorithm with respect to the batch capacity factor. Computation times of the heuristic al-

gorithm are mainly defined by the complexity of the routing problem. An increasing batch

capacity results in more complex TSPs and thus increasing CPU times, whereas computa-

tion times of solving the MILP model are mainly defined by the number of created batches.

Results show that the ILS algorithm is an efficient tool for solving the integrated batching,

routing and job assignment problem, at least for small instances.

7.4.4 Analysis of the ILS Algorithm for Large Problems

This section shows the performance of the ILS algorithm with respect to practically rel-

evant problem sizes. Thirty order lists are generated for each factor level combination

(see Table 7.3). A single ILS run is performed on each of the 7,290 resulting instances.

Additionally, a full factorial ANOVA is presented to analyse the effect of the experimental

factors on the order pick time and CPU time of the ILS algorithm. Tables 7.6 and 7.7 show

the statistical significance of the different factors on total order pick time as well as CPU

time, respectively. The graph of Figure 7.5 illustrates the average order pick time and mean

CPU time for each factor level.

With respect to the order picking layout, the order pick time increases linearly with

increasing number of aisles and storage locations as the travel distance of order pickers

rises. The computation time for running the ILS rises slightly when enlarging the order

picking area. As more storage locations (and more SKUs) are included, while the number

of order lines remains equal, the similarity of orders decreases (i.e., the probability of equal

locations in multiple orders decreases), resulting in increasing computation times.

Given the position of the depot and the location of the pick aisles, the within-aisle and

across-aisle storage policies yield the smallest average order pick time. When designing
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TABLE 7.6: 3×3×3×3×3 full factorial ANOVA on average order pick time.

Sum of squares df Mean square F p-value

Main effects
Layout 912,819,618,087 2 456,409,809,043 43,780.31 0.000
Storage 58,916,943,244 2 29,458,471,622 2,825.75 0.000
Batch capacity 475,507,803,914 2 237,753,901,957 22,806.13 0.000
Order struct. 6,243,561,363 2 3,117,280,681 299.02 0.000
Due time distr. 332,652,634 2 166,326,317 15,95 0.000
Two-way interaction
Layout × storage 15,022,966,698 4 3,755,741,674 360.26 0.000
Layout × batch capacity 21,362,500,968 4 5,340,625,242 512.29 0.000
Layout × order struct. 640,314,732 4 160,078,683 15.36 0.000
Layout × due time distr. 215,727,537 4 53,931,884 5.17 0.000
Storage × batch capacity 426,029,184 4 106,507,296 10.22 0.000
Storage × order struct. 253,013,230 4 63,253,308 6.07 0.000
Storage × due time distr. 21,315,277 4 5,328,819 0.51 0.728
Batch capacity × order struct. 25,553,283,352 4 6,388,320,838 612.79 0.000
Batch capacity × due time distr. 41,810,928 4 10,452,732 1.00 0.405
Order struct. × due time distr. 38,378,577 4 9,594,644 0.92 0.451
Residuals
Between subjects 75,466,590.370 7,239 10,425,002

Total 1,592,862,510,095 7,289

TABLE 7.7: 3×3×3×3×3 full factorial ANOVA on CPU time.

Sum of squares df Mean square F p-value

Main effects
Layout 103,129 2 51,565 13.01 0.000
Storage 928,521 2 464,261 117.12 0.000
Batch capacity 13,049,663 2 6,524,832 1,646.08 0.000
Order struct. 26,607,029 2 13,303,514 3,356.20 0.000
Due time distr. 1,059,850 2 529,925 133.69 0.000
Two-way interaction
Layout × storage 224,468 4 56,117 14.16 0.000
Layout × batch capacity 267,300 4 66,825 16.86 0.000
Layout × order struct. 236,227 4 59,057 14.90 0.000
Layout × due time distr. 55,270 4 13,818 3.49 0.008
Storage × batch capacity 275,010 4 68,753 17.34 0.000
Storage × order struct. 444,193 4 111,048 28.02 0.000
Storage × due time distr. 58,342 4 14,585 3.68 0.005
Batch capacity × order struct. 2,147,753 4 536,938 135.46 0.000
Batch capacity × due time distr. 84,043 4 21,011 5.30 0.000
Order struct. × due time distr. 446,724 4 111,681 28.17 0.000
Residuals
Between subjects 28,694,378 7,239 3,964

Total 74,701,900 7,289

order picking systems, the choice of the storage location assignment policy may yield sig-

nificant performance benefits. Even in case of optimal order batching, routing and job

assignment, order picking efficiency can be statistically significantly increased by choos-

ing the right storage policy. On average, a reduction of 14% (i.e., 1.7 hours in the four hour

planning period) can be achieved by within-aisle storage classes, compared to random

storage. The effect on CPU time is only minor, except for the slightly increased computa-

tion time in case of across-aisle storage location assignment.

A strong and statistically significant negative relation can be observed between batch
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FIGURE 7.5: Order pick time and CPU time (in s) of ILS algorithm for large problems.

capacity and order pick time. Batching more order lines in a single pick round significantly

reduces travelling and setup time, resulting in a substantially lower order pick time. On the

other hand, increasing batch capacity leads to a larger number of storage locations to be

visited in each pick round. This complicates the routing problems, increasing CPU time

of the ILS algorithm.

Figure 7.5 indicates a small statistically significant effect of the order structure level

on average total order pick time. As more orders should be picked, average pick time in-

creases slightly. However, the order structure does substantially influence the CPU time

of the algorithm. A larger number of small orders increases the complexity as the neigh-

bourhood size of the local search increases. Small orders facilitate shifting and swapping

of orders, because of a decreasing probability of violating the batch capacity. Within each

local search iteration, a larger number of order shifts and order swaps are tested, resulting

in a strongly increased CPU time.

Finally, both average order pick time and CPU time are slightly depending on the due

time distribution of orders. This small effect can be explained by the large number of

orders that is included in the experiments, which facilitates combining similar orders in

terms of SKUs. So, even with tight due times (i.e., degressive), the ILS algorithm is able

to organise order picking operations efficiently. This means that the ILS algorithm can

easily handle the arrival of new orders. As computation times are small enough, even if

due times are tight, the initial schedule can be revised in case of the arrival of a significant

amount of new orders during the planned period, which allows to use the ILS in a dynamic

setting as well.

In summary, the findings show that the proposed heuristic is able to find good solu-

tions in reasonable computation times for problems of realistic size. The mean CPU time

is less than four minutes (124 s). The proposed algorithm yields good performances for a
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TABLE 7.8: Warehouse parameter values of the real-life case.

Warehouse parameter Parameter value

Depot location D single decentralised depot
Number of blocks E +1 3 blocks
Number of cross-aisles E 2 cross-aisles
Number of pick aisles M 11 pick aisles per block
Number of storage rack sections

West warehouse block L1 16 rack sections per pick aisle
Center warehouse block L2 33 rack sections per pick aisle
East warehouse block L3 25 rack sections per pick aisle

Number of levels J 7 levels per storage rack
Storage rack section length ll eng th 0.9 m
Storage rack section width lwi d th 0.9 m
Storage rack section height lhei g ht 1.0 m
Pick aisle width mwi d th 1.5 m
Cross-aisle width ewi d th 6.0 m
Picker travel velocity v 1.0 m/s
Picker lifting velocity vl i f t 0.2 m/s

Travel time for arc a ta max

{
da
v ;

j lhei g ht
vl i f t

}
s

Setup time t s 187 s
Search and retrieve time t r 33 s
Planning period t pp 4 h
Number of pickers Q 6 to 8 order pickers
Batch capacity c 13 order lines
Order structure K 200 orders

β 4 order lines

wide range of realistic warehouse factors.

7.4.5 Analysis of the ILS Algorithm for a Real-life Case

In order to show the benefits of integrating batching, routing, and job assignment in a

real-life situation, the IBRJAP is solved for a real-life case. Real-life data of a warehouse

storing automotive spare parts are used to compare the performance of the ILS algorithm

to the current operation of the warehouse (i.e., earliest due time (EDT) batching, return

routing, batch assignment to the first available picker).

The experiments in this section focus on the order pick zone that stores the automo-

tive spare parts that are ordered on-line. Order picking operations are performed 24 hours

a day, divided into three 8 h shifts. As time windows for picking e-commerce orders are

tight, orders are released multiple times during the day by supervisors. To simulate this

order release mechanism, we assume a planning period of 4 h, meaning that during each

release, the set of orders whose due time is within the next four hours are released. We

simulate a high demand during each release, consisting of 200 orders. Due times of or-

ders are approximated by an empirical distribution based on historical data of two weeks.

Historical data are also used to set the other warehouse parameters, as summarised in

Table 7.8.

The layout of the order pick zone is shown in Figure 7.6. Arrows on the figure indi-

cate the direction that order pickers should follow due to safety reasons, which has shown
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FIGURE 7.6: Layout of the order picking area.

to result in important practical implications (see Chapter 4). The high-level storage sys-

tem consists of three warehouse blocks and two cross-aisles. Each storage rack consists of

seven levels. Consequently, travelling in vertical direction is taken into account when cre-

ating picker routes by using the Chebychev distance metric. SKUs are assigned to storage

locations based on the across-aisle storage policy.

Thirty order lists, each consisting of 200 orders, are generated and evaluated using the

ILS algorithm. The warehouse solves the problem sequentially: batches are created using

EDT and assigned to the first available order picker. Order pickers follow a return routing

policy. The currently applied policies in the warehouse are used as benchmark to evaluate

the performance of the ILS algorithm. To illustrate that efficiency improvements are not

possible by only optimizing routes, the LKH heuristic is applied to the batches created by

EDT and compared to the integrated solution.

Figure 7.7 illustrates the average order pick time as well as the average CPU time for

the real-life case. The EDT batching and return routing results in an average order pick

time of 20.5 h (73,669 s), thereby employing 8 order pickers to prevent infeasible solutions

due to tardiness. Optimizing order pick routes using the LKH heuristic results in a decline

of 4.1%, while the warehouse under consideration can reduce total order pick time with

16.9% on average by integrating batching, routing and picker scheduling. The ILS algo-

rithm provides an average order pick time of 17.5 h (62,995 s) with 8 pickers. This means

that the effect of optimizing routes is small compared to the efficiency benefits of solving

the IBRJAP. Notice that the CPU time of the current policy combination is negligibly small.

The ILS algorithm requires 79 s of computation time to find the integrated solution with

8 order pickers. This is acceptable in practice, given the strongly reduced order pick time.

At the short term, this reduced order picking time enables an earlier release of a new set of

orders. This not only results in more retrieved orders, but also reduces the risk of tardiness

due to unforeseen issues as the buffer between order retrieval and deadline is larger.
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FIGURE 7.7: Order pick time and CPU time (in s) of the real-life case.

The reduction of 10,674 s (73,669 s−62,995 s) in order pick time by solving the IBRJAP

using the ILS algorithm, could eventually reduce the number of pickers as the productiv-

ity of pickers increases. The workload forecast and mean productivity defines the daily re-

quired number of pickers. Therefore, productivity increase reduces the required number

of pickers to retrieve the forecast workload. This effect is tested by rerunning the experi-

ments with a reduced number of order pickers. Reducing the available number of pickers

from 8 to 7 provides some infeasible instances (i.e., 13.3%) with respect to the tardiness

constraint if the benchmark policies are applied. When only routes are optimised, tardi-

ness occurs in 10% of the instances. This means that 8 pickers are required to prevent

tardiness with respect to the benchmark. Due to the infeasible solutions, these results

are not shown in Figure 7.7. When applying the integrated problem to solve all instances,

even 6 order pickers are enough to pick all orders before the due time. In other words,

limiting the number of pickers to 6 does not result in infeasible solutions (i.e., solutions

with tardiness) when batching, routing and job assignment decisions are integrated. Fig-

ure 7.7 shows that the experiments with 6 pickers result in a slightly higher mean order

pick time and a substantial increase in computation time (i.e., from 79 s to 235 s) due to

the tight solution space: a large number of moves is tested and rejected during the local

search because of tardiness, although moves could reduce the total order picking time.

However, results of Figure 7 show that even with a tight solution space, similar picking ef-

ficiency benefits are possible compared to the scenario with 8 pickers. Given the strongly

increased productivity causing a substantially reduced number of pickers, the mean com-

putation time of 235 s is acceptable in practice.

In summary, the ILS algorithm shows significant performance benefits compared to

the current operation of the warehouse. For picking the same orders, the spare parts

warehouse can significantly reduce the order pick time, without reducing the service level.

Solving the IBRJAP using the ILS algorithm increases the productivity of order pickers, re-

quiring a smaller number of pickers. This reduces the required number of pickers by 25%
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(i.e., from 8 to 6 pickers) in this particular order picking zone of the spare parts warehouse.

The ILS algorithm is able to solve the integrated batching, routing and job assignment ef-

ficiently even in case of high-level storage locations, in addition to the low-level storage

systems that have been tested in previous sections. Consequently, the ILS algorithm can

be easily transferred to other pick zones as well, with either low-level or high-level storage

locations.

7.5 Managerial Implications

Results of the developed ILS algorithm show that integrating batching, routing and job as-

signment enables managers to increase the overall productivity of pickers. Consequently,

the required number of pickers to fulfil the same number of customer orders reduces sub-

stantially, without requiring pickers to work harder. The distribution of time components

changes by applying the ILS algorithm. Integrating batching, routing and job assignment

mainly reduces picker travelling, while other time components are similar. On a working

day, pickers spend more time preparing batches and retrieving products at storage loca-

tions at the expense of travelling. Note that retrieving more products could feel as working

harder as product retrievals are more physically intense than travelling with a picking ve-

hicle.

As due times are considered as hard constraints in this chapter (i.e., missing dead-

lines only occur because of unforeseen circumstances), the algorithm could provide an

infeasible solution. Picking a set of customer orders could be impossible within the given

resource constraint. Although most warehouses move a picker from another warehouse

department, supervisors could use the provided schedule with tardiness. The ILS algo-

rithm reduces tardiness in primary order by moving batches (i.e., batch shift/swap) or

increasing the efficiency of batches by moving orders (i.e., order shift/swap). This means

that in case the ILS algorithm is not able to provide a feasible solution, the best found in-

feasible solution has minimised tardiness by creating efficient batches. Consequently, the

solution with tardiness is an efficient solution with respect to total order pick time and

could be used as alternative if no extra picker is available.

7.6 Conclusions

Serving e-commerce markets forces warehouses to handle a larger number of orders in

shorter time windows. This chapter considers the integrated batching, routing and job as-

signment problem, ensuring a high customer service level. As Cplex is only able to solve

instances of up to 18 customer orders and 8 batches to optimality within reasonable com-

putation effort, a heuristic solution algorithm is developed. The proposed ILS algorithm
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accounts for order due times, a limited availability of order pickers as well as high-level

storage locations to increase the applicability of the algorithm in practice. Results show

that the proposed ILS algorithm is able to solve practically relevant problems in reason-

able computation times.

Since order batching, picker routing and job assignment are all operational order pick-

ing planning problems, the new heuristic algorithm is rather easy to implement. Further-

more, solving the integrated problem results in substantial performance benefits of 16.9%

on average for the real-life spare parts warehouse of our case study. Although other real-

life features, such as scattered storage or human different types of pickers (i.e., human

factors) are not considered in the current algorithm, scattered storage can be easily im-

plemented in the local search operators and picker dependent time components (e.g., dif-

ferent travel time per picker type) can include human factors simply. The ILS algorithm is

expected to provide similar efficiency benefits. Furthermore, including the effect of picker

blocking would be highly relevant, especially in narrow-aisle order picking systems. How-

ever, including this effect would require more severe algorithm revisions. Finally, the algo-

rithm shows promising results within planning period of 4 h. This planning horizon can

be easily adapted and the algorithm provides similar results as long as the number of or-

der lines to retrieve in the planning period is large enough. A smaller number of orders

reduces the possibility of creating efficient batches, especially when due times are tight.

To conclude, the promising results make the ILS algorithm a simple and effective decision

support tool for managers to organise daily order picking operations and face the new

market developments.
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CONCLUSIONS AND FUTURE RESEARCH

C
omplex market conditions and new developments make warehouse manager’s job

hard to fulfil. E-commerce and globalisation intensify competition among ware-

houses. The ever increasing expectation of customers to provide unique products

and quick deliveries force warehouses to increase storage capacity, and at the same time

reducing pick times. Additionally, expensive industrial land and high labour costs put

pressure on the warehouse costs. This PhD thesis presents effective and efficient deci-

sion support tools to cope with these market developments (though the conclusions are

not limited to these specific market developments), making warehouse manager’s life eas-

ier. Results provide relevant insights and general findings on how to design efficient order

picking systems in practice. The managerial and academic contributions and implica-

tions of this research are summarised in Section 8.1. Section 8.2 provides relevant and

interesting future research opportunities that may further facilitate the planning of order

picking operations.

8.1 Contributions and Implications

In comparison to research on optimising order picking operations, literature on combin-

ing order picking planning problems is scarce. Studies that combine planning problems

typically only validate a new solution technique for solving a single planning problem by

showing the applicability of the new technique under several policies of other order pick-

ing planning problems. Although this type of research is relevant, it does not provide in-

sights into how warehouse managers can optimise the overall order picking performance
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as still only a single planning problem is optimised. Furthermore, managers often do not

implement findings from academic research as the provided academic decision support

tools rarely account for real-life features. Following this research gap, this PhD research

contributes to academic knowledge and practice by providing decision support tools that

are able to combine planning problems and account for real-life features. Results of this

PhD research show that designing efficient order picking systems is only possible by com-

bining order picking planning problems and in the meanwhile accounting for real-life fea-

tures.

The literature review of this PhD shows essential gaps in current academic literature.

Although there is a trend towards combining two or sometimes three order picking plan-

ning problems and/or accounting for a small number of real-life features, generic expla-

nations with respect to the effect of each planning problem on the overall order picking

performance and the often negative effects of real-life features are missing. The literature

review illustrates that the time horizon of the resulting decisions substantially influences

the appropriate approach for solving combinations of order picking planning problems.

Interaction analyses by means of simulation and statistical tests are effective in combin-

ing planning problems of different time horizons, while problem integration by means

of mathematical programming models and heuristic algorithms are able to combine and

optimise planning problems with a similar time horizon of the resulting decisions. In ad-

dition to combining planning problems, real-life features, such as safety constraints, due

time constraints, high-level storage, can be easily taken into account by both of these ap-

proaches.

By means of an interaction analysis, the strong relation among the four main tacti-

cal and operational order picking planning problems is shown, thereby analysing and

explaining the relationship among the planning problems. Warehouse managers can

achieve significant performance benefits by considering picker zoning, storage location

assignment, order batching, and picker routing decisions simultaneously. Simulating

policies for each planning problem and statistically analysing the relation among the plan-

ning problems has shown to be an excellent decision support tool for managers to design

efficient order picking systems, taking the interactions among the planning problems into

account. This approach is especially useful when the time horizon of the resulting deci-

sions is different, such as the assignment of SKUs to storage locations and the creation

of batches. Additionally, real-life features can be easily included in the simulation model,

making the decision support tool particularly effective in practice.

Most unexplored real-life features negatively impact order picking efficiency or result

in infeasible solutions if these practical factors are not incorporated. Warehouse man-

agers may select an inefficient order picking policy combination when only horizontal

travel distance or travel time measures are considered, as these measures ignore the effect
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of safety constraints, picker blocking, and slow vertical lifting. Results show that safety

constraints induce wait times, and cause additional travelling, picker blocking turns out

to be minimised at the expense of additional setup time, and slow vertical travel results

in additional travel and wait times. Consequently, ignoring these real-life features causes

substantial performance inefficiencies. In order to design efficient order picking systems,

these effects should be taken into account when the order picking system is subject to one

or more of these real-life features. The interaction analysis shows that the real-life features

can be easily accounted for when building a simulation model.

Furthermore, two decision support tools are introduced to manage human resources

effectively. The practice of managing human resources in order picking operations is cur-

rently unknown. This study contributes by integrating and accounting for resource con-

straints and workload balancing which is especially relevant when picking operations are

performed manually: the resource capacity can be revised on a daily base (in contrast to

robotic picking systems) and workload should be balanced throughout the planning day

to ensure the well-being of pickers and reduce the risk of missed deadlines. To cope with

human resources, forecasting methods are able to accurately predict the required num-

ber of pickers as well as to allocate the workforce across the different pick zones. Based

on the daily forecasts, the operational workload balancing MILP model is able to addi-

tionally balance the workload throughout the planning day. Determining the resource

capacity, allocating the available pickers as well as balancing the workload over a short

term planning horizon guarantees a stable order picking process. The customer service

level increases as the risk of missing shipping deadlines because of workload peaks or an

insufficient resource capacity substantially reduces.

Based on the defined resource capacity and hourly workload, order picking operations

can be further optimised by integrating planning problems. Problem integration is an ap-

propriate approach to combine planning problems with an operational time horizon. The

study contributes by integrating order batching, picker routing, and job assignment, plan-

ning problems that should all be solved multiple times per hour. Integrating these oper-

ational planning problems significantly reduces pick times compared with sequentially

solving the three problems. Additionally, the heuristic algorithm developed in this PhD

provides solutions in accordance with practical needs: fast and efficient solutions taking

resource and due time constraints into account, as well as the effect of slow vertical travel-

ling due to high-level storage locations. In contrast to existing academic planning models,

the heuristic algorithm combines all main operational order picking planning problems,

thereby accounting for three critical real-life features.

To conclude, this research provides multiple research approaches and decision sup-

port tools to design efficient order picking systems. The study contributes to academics

and practice by providing tools that take advantage of existing relations among order pick-
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ing planning problems and in the meanwhile account for multiple real-life features. Un-

fortunately, it is impossible to provide a single most efficient combination of order picking

policies due to the large amount of real-life features that impact order picking operations

as well as strategic decisions that constrain the system. However, the provided approaches

and decision support tools are able to cope with existing relations among planning prob-

lems. Moreover, the practical applicability of the research is shown by the integration of

real-life features and the validation on real-life cases, thereby narrowing the gap between

academic research and practice.

8.2 Towards Closing the Research-Practice Gap

By combining planning problems and identifying and accounting for a wide range of

real-life features, this PhD research is able to substantially narrow the gap between ex-

isting academic research and practice. Though the provided decision support tools show

promising results in real-life applications, the research has limitations, such as focussing

on efficiency, considering equal human resources, and assuming manual order picking

systems. Based on these limitations, this final section provides practically relevant and

largely unexplored future research opportunities aimed at closing the research-practice

gap.

First, prior studies have strongly focused on reducing the total order pick time. Fu-

ture research could additionally focus on other performance measures (e.g., quality mea-

sures) and other approaches of order pick time (e.g., balancing workload among pickers).

Although the provided decision support tools are expected to indirectly increase pick ac-

curacy (i.e., the number of orders picked without errors) and service level (i.e., number

of orders picked on time) by for example reducing workload peaks and consequent time

pressure, these quality measures are rarely used as explicit performance measure, despite

the importance with respect to the customer service quality. Working under an increased

time pressure as a result of the tight deadlines may increase the chance of pick errors.

Real-life experiments such as in De Vries et al. (2016a) could analyse the effect of imple-

menting the results of this study on pick accuracy and service level.

Next, while this PhD research already incorporated a large number of real-life features

as illustrated in Table 8.11, there remain some unexplored real-life features that are ad-

ditionally relevant for practitioners. Despite the importance of human resources in the

labour-intensive environment of warehouses, few articles integrate human factors and/or

account for differences among the human order pickers. As warehouses deliver labour-

intensive services to customers, the availability and performance of the human resources

drive the service quality to customers and resulting order picking performance. Individ-

1Appendix G provides a full list of publications and research contributions.
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ual employee skills and capabilities may significantly impact the order pick time. This re-

search opportunity is highly relevant to practice as considering these human factors can

reduce the risk of tardiness due to unforeseen issues: assigning the most critical batches to

the best performing pickers reduces the risk of orders that are picked too late, and in this

way improves customer service. Consequently, integrating human factors when creating

new integrated solution approaches (e.g., incorporating picker-dependent time compo-

nents in the batching, routing and job assignment heuristic algorithm) is a challenging

opportunity for future research.

TABLE 8.1: Overview of studies included in this PhD thesis.
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Planning problem
Zone location • • • •
Zone assignment • • • •
Storage • • • • •
Workforce level • • • • •
Workforce allocation • • •
Job assignment • •
Batching • • • • •
Zone picking •
Routing • • • • • •
Order cons. & sorting •

Real-life feature
High-level storage • • •
Scattered storage
Varying SKU properties •
Human factors
Precedence constraints
Safety constraints • •
Resource constraints • • • •
Due time constraints • •
Workload peaks •
Product returns
Picker blocking • •

Furthermore, respecting precedence constraints while creating order picker routes

due to weight or fragility restrictions, varying SKU characteristics or considering multi-

ple locations of a single SKU (i.e., scattered storage) are highly relevant real-life features.

Existing order picking policies result in infeasible solutions if the order picking system is

subject to precedence constraints, varying SKU characteristics or scattered storage. Ex-

isting policies need to be revised to account for these real-life features (e.g., in simulation

experiments) and new integrated solution approaches should be able to integrate these

real-life features to further increase order picking efficiency and practical applicability.

Finally, there is a growing trend towards robotised order picking systems (e.g., robotic
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mobile fulfilment systems), especially for particular segments such as B2C e-commerce

orders. Although the solution approaches and explanations on the relations provided in

this study are suitable in robotised picking systems, the question remains to what extent

the relations among order picking planning problems have an effect on the order picking

performance of these systems, and which of the real-life features should be included when

planning operations. For example, workload peaks should be avoided as well as blocking

of robots (instead of pickers). However, the effects of high-level storage systems are not

directly applicable to all robotised systems. Consequently, insights and conclusions of

this study provide a valuable base for future research in robotised order picking systems.

Moreover, research combining robotised (or automated) and manual picking systems may

be highly relevant as robotised picking systems are currently only useful under particular

circumstances (e.g., similar SKUs). Research analysing and optimising the order flow of

these combined picking systems would provide highly relevant insights to practice.
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INTRODUCING THE SMART LOGISTICS LIMBURG PROJECT

I
n the context of the SALK Business case Logistics and Mobility, the Smart Logistics

Limburg project aimed at creating and stimulating innovation in the logistical sec-

tor. Four local actors joined forces in the project: UHasselt’s Research group Logis-

tics, UHasselt’s Research institute IMOB, PXL’s Logistics Intelligence Center (LOG-IC) and

Logistiek Platform Limburg. The main objectives of the research project is to share and

transfer knowledge from the participating knowledge centres to logistical companies in

Limburg, a region located in Belgium. Numerous company visits in the context of the

Smart Logistics Limburg project reveal the needs and challenges of warehouses and other

logistical companies located in Limburg. By stimulating these logistical companies to

submit new research and development projects in close cooperation with one or more

of the project partners and cooperating in the context of master theses and PhD research,

knowledge is created and shared, thereby making logistical companies in the region more

competitive.

In total, 437 logistical companies have been visited during the project, of which over

100 warehouses. All problems introduced in this PhD thesis have been initiated by one or

more of the companies visited in the context of the Smart Logistics Limburg project. By

revealing the needs and challenges of logistical companies in the region, the Smart Lo-

gistics Limburg project was a valuable resource for performing this PhD study. Moreover,

this PhD research is an example of how to bring the knowledge transfer from knowledge

centres to companies into practice.
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OVERVIEW OF ORDER PICKING PLANNING PROBLEMS

T
able B.1 summarises and defines the considered tactical and operational order

picking planning problems of this PhD thesis. Additionally, some predefined and

generally used solution methods (i.e., order picking policies) are defined. For an

extensive overview of order picking planning problems, the reader is referred to De Koster

et al. (2007).

TABLE B.1: Overview of tactical and operational order picking planning problems.

Definitions of order picking planning problems

Zone location A decision should be made how to split the order picking area into zones, in particular the number of

zones, the location of zones and the zone shape (Jane and Laih, 2005; Petersen, 2002).

Zone assignment Dividing the warehouse into smaller areas, being order picking zones, requires assigning all SKUs

to order picking zones. The allocation of SKUs can be based on product properties like size, weight, safety and/or

temperature requirements. Other allocation policies that may be considered are based on product demand properties,

such as customer type and order frequency (Petersen, 2002; Jane and Laih, 2005).

Storage location assignment (or simply storage) Storage location assignment policies describe rules to determine the

allocation of SKUs to either individual storage locations or storage classes. Storage classes are assigned to a dedicated

area within an order picking zone. The determination of storage classes can be turnover based as well as family based

in case storage classes are defined by either some measure of demand frequency or respectively product similarities

(e.g., complementary products). Note that classes are defined within an order picker zone. As a consequence order

pickers are allowed to retrieve items in all storage classes within his zone (Yu et al., 2015; Guo et al., 2016). Following

storage location assignment policies are considered:

·) Random Storage locations for each product are selected randomly from all eligible empty locations.

·) Within–aisle SKUs in a single pick aisle belong to the same storage class.

·) Across–aisle Each storage class is located across several pick aisles.

·) Diagonal Storage classes are located with respect to the distance to depot.

·) Perimeter Storage classes are located around the periphery.

Workforce level Determining the daily number of order pickers to fulfil all customer orders (Van Gils et al., 2017c).
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Definitions of order picking planning problems

Workforce allocation Allocating the available workforce across warehouse areas, including allocation across order pick-

ing zones and allocation across the picking and sorting area (Van Nieuwenhuyse and De Koster, 2009; Van Gils et al.,

2017c).

Job assignment Orders should be retrieved by order pickers within tight time windows. The job assignment planning

problem determines the sequence according to which orders or batches of orders should be retrieved, as well as the

assignment of these (batches of) orders to a limited number of order pickers (Henn, 2015; Van Gils et al., 2019a).

Order batching (or simply batching) Order batching policies define rules on which customer orders to combine in a

single pick round. These policies can be either static (i.e., all orders are known at the beginning of the planning period)

or dynamic (i.e., customer orders become available over time) (Van Nieuwenhuyse and De Koster, 2009; Van Gils et al.,

2018c). Following order batching policies are considered:

·) Strict order picking Each pick order is composed of order lines of a single customer order (static).

·) Priority rule based algorithm In a first step, priorities are assigned to customer orders, followed by the assign-

ment of customer orders to batches in accordance with the previously defined priorities, ensuring that the

capacity constraint is not violated such as first-come-first-served (FCFS or FIFO) and earliest-due-date-first

(EDD) (static).

·) Seed algorithm For each pick batch, one customer order is selected as seed, after which additional customer

orders are added to the seed in accordance with an order congruency rule. The order congruency rule defines

the order for adding customer orders to the seed (static).

·) Savings algorithm Savings algorithms compose pick orders based on the time saving that can be obtained by

combining two or more customer orders into one order picking route. Savings algorithms are based on the

algorithm of Clarke and Wright (1964) for the vehicle routing problem (static).

·) Data mining Data mining is used to determine similarities of customer orders by means of an association rule.

Subsequently, orders are clustered into batches based on the similarities using integer programming (static).

·) Metaheuristic A set of guidelines to develop heuristic optimization algorithms for batching orders (static).

·) Variable time window batching The order picker starts a picking tour whenever a particular number of cus-

tomer orders have arrived (dynamic).

·) Fixed time window batching All customer orders arriving during a particular time interval are assigned to

batches (dynamic).

Zone picking Zone picking policies define the flow of customers order through all order picking zones (De Koster et al.,

2007; Parikh and Meller, 2008). Following zone picking policies are considered:

·) Sequential zoning Each order picker starts picking an order. When all parts of an order belonging to his order

picking zone are picked, the order is passed to the next zone. Sequential zoning eliminates the requirement of

a downstream sorter, however, at the expense of a reduced picking efficiency.

·) Parallel zoning All order pickers can start picking the same order, each order picker in his own zone. After

picking, all orders should be consolidated through a sorting system.
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Definitions of order picking planning problems

Picker routing (or simply routing) Routing policies define the sequence of storage locations that should be visited in

each pick round to retrieve all items on a pick list (Petersen and Schmenner, 1999; Roodbergen and De Koster, 2001a).

Following routing policies are considered:

·) Aisle-by-aisle Each order picker visits every pick aisle containing at least one pick location through the entire

length.

·) Traversal Each order picker traverses every subaisle (i.e. the part of a pick aisle that is within one warehouse

block) containing at least one pick location through the entire length.

·) Return Each order pickers enters and leaves each pick aisle containing at least one pick location from the same

end.

·) Midpoint Each order picker enters an pick aisle only as far as the midpoint of an aisle and returns to leave the

pick aisle from the same end.

·) Largest gap Each order picker enters a pick aisle only as far as the start of the largest gap within an aisle and

returns to leave the pick aisle from the same end. The largest gap is defined as the maximum distance between

any two adjacent pick locations within a single aisle, or the maximum distance between an aisle end and a pick

location.

·) Combined Each order picker either traverses each pick aisle containing at least one pick location entirely or

returns to leave the pick aisle from the same end.

·) Metaheuristic A set of guidelines to develop heuristic optimization algorithms for routing order pickers.

Order consolidation & sorting Order consolidation and sorting policies define the organization of the sorting activities

in case of either batching or zoning (Van Nieuwenhuyse and De Koster, 2009). Following order consolidation and

sorting policies are considered:

·) Sort-while-pick Picked items are sorted on the pick cart per order during the picking process.

·) Pick-and-sort Sorting activities follow immediately after picking.
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CLASSIFICATION BY PLANNING PROBLEM COMBINATION

T
able C.1 summarises all articles analysing at least two order picking planning prob-

lems simultaneously. The table is adopted from Van Gils et al. (2018e) and ex-

tended with the most recent research articles that meet the scope outlined in Sec-

tion 2.1.1. For an overview of articles discussed in this PhD thesis, Table 8.1 classifies these

studies according to the considered planning problem combination and the incorporated

real-life features.

TABLE C.1: Classification by Planning Problem Combination.
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Caron et al. (1998) • •

De Koster et al. (1999) • • •

Petersen and Schmenner (1999) • •

Ruben and Jacobs (1999) • • •

Petersen (2000) • •

Bartholdi et al. (2001) • •

Dekker et al. (2004) • •

Hwang et al. (2004) • •

Jewkes et al. (2004) • •

Petersen and Aase (2004) • • •

Petersen et al. (2004) • •

Won and Olafson (2005) • •

Ho and Tseng (2006) • • •
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Hsieh and Tsai (2006) • • •

Manzini et al. (2007) • •

Gong and De Koster (2008) • •

Ho et al. (2008) • • •

Parikh and Meller (2008) • •

Tsai et al. (2008) • •

Yu and De Koster (2008) • • •

Koo (2009) • •

Van Nieuwenhuyse and De Koster (2009) • • • •

Yu and De Koster (2009) • •

Chen et al. (2010) • • •

Theys et al. (2010) • •

Chan and Chan (2011) • •

Hsieh and Huang (2011) • • •

Rubrico et al. (2011) • •

De Koster et al. (2012) • • •

Ene and Öztürk (2012) • •

Henn (2012) • • •

Henn and Wäscher (2012) • • •

Hong et al. (2012a) • • • •

Hong et al. (2012b) • • •

Kulak et al. (2012) • •

Pan and Wu (2012) • • •

Chackelson et al. (2013) • • •

Heath et al. (2013) • • •

Henn and Schmid (2013) • • •

Matthews and Visagie (2013) • •

Matusiak et al. (2014) • •

Pan et al. (2014) • •

Shqair et al. (2014) • •

Chen et al. (2015) • • •

Cheng et al. (2015) • •

Henn (2015) • • • •

Hong et al. (2015) • •

Öncan (2015) • •

Roodbergen et al. (2015) • •

Chen et al. (2016) • •

Hong et al. (2016) • •

Li et al. (2016) • •

Lin et al. (2016) • •

Chen et al. (2017) • •

Dijkstra and Roodbergen (2017) • •

Franzke et al. (2017) • • •

Giannikas et al. (2017) • •

Hong and Kim (2017) • • •

Matusiak et al. (2017) • •

Menéndez et al. (2017) • •

Scholz and Wäscher (2017) • • •

Scholz et al. (2017) • • • •

Schrotenboer et al. (2017) • •
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Valle et al. (2017) • •

Zhang et al. (2017) • •

Ardjmand et al. (2018) • • •

Chabot et al. (2018) • •

Hong (2018) • • •

Quader and Castillo-Villar (2018) • • • •

Žulj et al. (2018a) • •

Žulj et al. (2018b) • • •

Total 3 1 35 12 3 17 45 7 50 4
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ANOVA RESULTS OF THE GENERALISED CASE

T
able D.1 provides the results of the 5×3×5×5×3×3×3 full factorial mixed model

ANOVA on average travel distance for the generalised experiments of Section 3.

ANOVA results of other performance measures are provided in Tables D.2 and D.3.

TABLE D.1: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average travel dis-

tance.

Sum of squares df Mean square F p-value

Main effects

Zoning 19,861,136,109,911 1.14 17,471,263,744,616 17,310.27 0.000

Storage 2,581,068,182,161 1.15 2,252,145,769,126 20,840.87 0.000

Batching 33,580,344,072,124 1.09 30,777,152,758,560 72,464.62 0.000

Routing 5,238,742,190,582 1.16 4,523,368,614,508 7,933.50 0.000

Layout 74,889,003,015,144 2.00 37,444,501,507,572 1,369.28 0.000

Order size 39,478,612,491,554 2.00 19,738,306,245,777 721.83 0.000

Capacity 82,120,906,136,649 2.00 41,060,453,068,325 1,501.50 0.000

Two-way interaction

Zoning × storage 1,127,150,536,133 2.85 395,129,511,299 21,247.75 0.000

Zoning × batching 2,387,900,915,031 1.66 1,438,432,735,742 18,445.89 0.000

Zoning × routing 601,576,392,051 1.70 354,441,334,759 3,827.88 0.000

Zoning × layout 5,536,682,301,049 2.27 2,435,229,188,715 2,412.79 0.000

Zoning × order size 1,195,409,824,188 2.27 525,783,626,015 520.94 0.000

Zoning × capacity 1,220,803,943,468 2.27 536,952,860,067 532.00 0.000

Storage × batching 90,300,439,821 2.72 33,163,221,224 7,782.71 0.000

Storage × routing 870,166,236,240 1.18 736,466,291,737 5,826.79 0.000

Storage × layout 310,780,615,930 2.29 135,587,903,902 1,254.70 0.000

Storage × order size 229,692,149,974 2.29 100,210,487,918 927.33 0.000

Storage × capacity 442,422,460,243 2.29 193,020,835,112 1,786.17 0.000

Batching × routing 899,200,878,940 1.82 493,131,569,186 7,926.60 0.000

Batching × layout 175,621,334,192 2.18 80,480,483,143 189.49 0.000
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Sum of squares df Mean square F p-value

Batching × order size 1,608,240,071,395 2.18 736,994,389,388 1,735.25 0.000

Batching × capacity 4,287,191,394,336 2.18 1,964,654,444,357 4,625.77 0.000

Routing × layout 960,958,655,058 2.32 414,867,735,612 727.63 0.000

Routing × order size 495,592,132,807 2.32 213,958,410,014 375.26 0.000

Routing × capacity 849,590,082,014 2.32 366,787,386,397 643.31 0.000

Three-way interaction

Zoning × storage × layout 148,682,239,997 5.71 26,060,734,101 1,401.39 0.000

Zoning × storage × order size 72,210,421,440 5.71 12,656,902,347 680.61 0.000

Zoning × storage × capacity 136,145,313,898 5.71 23,863,286,057 1,283.23 0.000

Zoning × batching × layout 319,921,189,170 3.32 96,357,664,689 1,235.65 0.000

Zoning × batching × order size 85,706,172,600 3.32 25,814,003,325 331.03 0.000

Zoning × batching × capacity 150,824,386,979 3.32 45,427,080,792 582.54 0.000

Zoning × routing × layout 175,812,536,365 3.39 51,793,280,853 559.35 0.000

Zoning × routing × order size 72,975,231,492 3.39 21,498,049,787 232.17 0.000

Zoning × routing × capacity 101,062,411,459 3.39 29,772,358,494 321.53 0.000

Storage × batching × layout 30,094,322,817 5.45 5,526,134,131 1,296.87 0.000

Storage × batching × order size 7,327,980,133 5.45 1,345,615,961 315.79 0.000

Storage × batching × capacity 8,078,527,577 5.45 1,483,436,834 348.13 0.000

Storage × routing × layout 217,727,481,050 2.36 92,136,964,122 728.97 0.000

Storage × routing × order size 99,862,577,377 2.36 42,259,409,169 334.35 0.000

Storage × routing × capacity 128,873,750,445 2.36 54,536,230,630 431.48 0.000

Batching × routing × layout 106,622,591,114 3.65 29,236,495,925 469.95 0.000

Batching × routing × order size 97,750,542,763 3.65 26,803,731,886 430.84 0.000

Batching × routing × capacity 283,493,086,062 3.65 77,735,350,163 1,249.52 0.000

Residuals

Between subjects 21,959,012,878,673 803.00 27,346,217,782

Within zoning 921,331,257,435 912.84 1,009,300,509

Within storage 99,448,725,278 920.28 108,063,914

Within batching 372,112,852,007 876.14 424,719,717

Within routing 530,246,091,529 929.99 570160182

Within zoning × storage 42,597,531,064 2,290.65 18,596,295

Within zoning × batching 103,951,845,341 1,333.04 77,981,200

Within zoning × routing 126,196,678,465 1,362.89 92,594,663

Within storage × batching 9,316,966,516 2,186.50 4,261,140

Within storage × routing 119,919,087,590 948.78 126,393,115

Within batching × routing 91,093,082,051 1,464.23 62,212,254

Total 307,657,490,319,680 14,149.62

TABLE D.2: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average number of

pick rounds.

Sum of squares df Mean square F p-value

Main effects

Storage 150.3 3.63 41.43 487.16 0.000

Batching 6,210.55 1.00 6,210.55 2,728.06 0.000

Zoning 67,629,631.93 1.01 67,142,707.71 4,228.23 0.000

Routing 746.94 1.33 560.85 520.18 0.000

Layout 17,551,278.69 2.00 8,775,639.34 1,145.66 0.000

Order size 2,369.04 2.00 1,184.52 0.15 0.857

Capacity 1,120,342,143.36 2.00 560,171,071.70 73,130.43 0.000
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Sum of squares df Mean square F p-value

Two-way interaction

Zoning × storage 12.31 14.49 0.85 11.75 0.000

Zoning × batching 188.81 3.43 55.07 73.56 0.000

Zoning × routing 140.40 9.60 14.62 130.69 0.000

Zoning × layout 36,910,024.70 2.01 18,322,138.75 1,153.81 0.000

Zoning × order size 4,090.18 2.01 2,030.37 0.13 0.881

Zoning × capacity 22,406,700.93 2.01 11,122,687.85 700.44 0.000

Storage × batching 300.59 3.63 82.86 487.16 0.000

Storage × routing 433.40 7.06 61.39 426.50 0.000

Storage × layout 92.21 7.26 12.71 149.44 0.000

Storage × order size 3.72 7.26 0.51 6.03 0.000

Storage × capacity 81.94 7.26 11.29 132.79 0.000

Batching × routing 1,493.88 1.33 1,121.71 520.18 0.000

Batching × layout 4,146.89 2.00 2,073.45 910.79 0.000

Batching × order size 0.69 2.00 0.35 0.15 0.859

Batching × capacity 3,965.90 2.00 1,982.95 871.03 0.000

Routing × layout 764.01 2.66 286.83 266.03 0.000

Routing × order size 279.37 2.66 104.89 97.28 0.000

Routing × capacity 534.64 2.66 200.72 186.16 0.000

Three-way interaction

Zoning × storage × layout 17.26 28.99 0.60 8.23 0.000

Zoning × storage × order size 6.81 28.99 0.23 3.25 0.000

Zoning × storage × capacity 15.83 28.99 0.55 7.55 0.000

Zoning × batching × layout 162.89 6.86 23.75 31.73 0.000

Zoning × batching × order size 11.40 6.86 1.66 2.22 0.031

Zoning × batching × capacity 286.02 6.86 41.71 55.71 0.000

Zoning × routing × layout 60.88 19.21 3.17 28.33 0.000

Zoning × routing × order size 47.77 19.21 2.49 22.23 0.000

Zoning × routing × capacity 130.41 19.21 6.79 60.70 0.000

Storage × batching × layout 184.42 7.26 25.42 149.44 0.000

Storage × batching × order size 7.44 7.26 1.03 6.03 0.000

Storage × batching × capacity 163.87 7.26 22.59 132.79 0.000

Storage × routing × layout 431.97 14.12 30.59 212.55 0.000

Storage × routing × order size 16.37 14.12 1.16 8.05 0.000

Storage × routing × capacity 210.05 14.12 14.88 103.35 0.000

Batching × routing × layout 1,528.02 2.66 573.67 266.03 0.000

Batching × routing × order size 558.75 2.66 209.77 97.28 0.000

Batching × routing × capacity 1,069.27 2.66 401.44 186.16 0.000

Residuals

Between subjects 6,150,892.20 803.00 7,659.89

Within zoning 12,843,816.58 808.82 15,879.63

Within storage 247.74 2,913.18 0.09

Within batching 1,828.07 803.00 2.28

Within routing 1,153.05 1,069.43 1.08

Within zoning × storage 841.39 11,639.17 0.07

Within zoning × batching 2,061.14 2,753.16 0.75

Within zoning × routing 862.69 7,711.03 0.11

Within storage × batching 495.47 2,913.18 0.17

Within storage × routing 815.99 5,669.34 0.14

Within batching × routing 2,306.10 1,069.43 2.16

Total 1,283,876,015.20 38,484,33
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TABLE D.3: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average number of

visited locations.

Sum of squares df Mean square F p-value

Main effects

Zoning 13,301,802,850 1.09 12,240,001,150 10,408.60 0.000

Storage 583,256,129 2.17 268,469,533 23,436.92 0.000

Batching 38,366,624,020 1.43 26,776,029,650 122,256.41 0.000

Routing 87,602,723 2.19 40,090,608 14,842.89 0.000

Layout 1,356,917,368,476 2.00 678,458,684,200 1,145.66 0.000

Order size 27,903,628,050 2.00 13,951,814,030 396.90 0.000

Capacity 29,710,345,870 2.00 14,855,172,940 422.60 0.000

Two-way interaction

Zoning × storage 125,139,890 13.17 9,498,546 2,798.71 0.000

Zoning × batching 847,489,156 2.32 365,496,385 5,450.48 0.000

Zoning × routing 8,395,813 5.37 1,563,276 1,476.54 0.000

Zoning × layout 8,808,436,813 2.17 4,052,656,544 3,446.28 0.000

Zoning × order size 446,264,356 2.17 205,320,899 174.60 0.000

Zoning × capacity 1,278,070,760 2.17 588,025,088 500.04 0.000

Storage × batching 379,340,557 4.52 83,890,741 13,865.63 0.000

Storage × routing 4,211,097 12.66 332,756 1,043.79 0.000

Storage × layout 9,184,924 4.35 2,113,884 184.54 0.000

Storage × order size 874,018 4.35 201,153 17,56 0.000

Storage × capacity 20,661,118 4.35 4,755,098 415.11 0.000

Batching × routing 175,205,446 2.19 80,181,216 14,842.89 0.000

Batching × layout 1,856,955,772 2.87 647,983,815 2,958.62 0.000

Batching × order size 775,399,337 2.87 270,575,222 1,235.42 0.000

Batching × capacity 549,133,249 2.87 191,619,781 874.91 0.000

Routing × layout 25,184,737 4.37 5,762,786 2,133.58 0.000

Routing × order size 1,228,155 4.37 281,027 104.05 0.000

Routing × capacity 4,745,661 4.37 1,085,905 402.04 0.000

Three-way interaction

Zoning × storage × layout 9,340,857 26.35 354,502 104.45 0.000

Zoning × storage × order size 4,051,851 26.35 153,775 45.31 0.000

Zoning × storage × capacity 3,874,850 26.35 147,057 43.33 0.000

Zoning × batching × layout 498,429,683 4.64 107,478,807 1,602.78 0.000

Zoning × batching × order size 114,260,744 4.64 24,638,598 367.42 0.000

Zoning × batching × capacity 101,586,353 4.64 21,905,557 326.67 0.000

Zoning × routing × layout 6,203,159 10.74 577,505 545.46 0.000

Zoning × routing × order size 1,811,831 10.74 168,679 159.32 0.000

Zoning × routing × capacity 316,780 10.74 29,492 27.86 0.000

Storage × batching × layout 13,497,586 9.04 1,492,488 246.68 0.000

Storage × batching × order size 6,385,266 9.04 706,047 116.70 0.000

Storage × batching × capacity 12,946,125 9.04 1,431,511 236.60 0.000

Storage × routing × layout 50,369,473 4.37 11,525,571 2,133.58 0.000

Storage × routing × order size 2,456,310 4.37 562,054 104.05 0.000

Storage × routing × capacity 9,491,323 4.37 2,171,810 402.04 0.000

Batching × routing × layout 50,369,473 4.37 11,525,571 2,133.58 0.000

Batching × routing × order size 2,456,310 4.37 562,054 104.05 0.000

Batching × routing × capacity 9,491,323 4.37 2,171,810 402.04 0.000

Residuals

Between subjects 28,226,772,140 803.00 35,151,646

Within zoning 1,026,203,688 872.66 1,175,950

Within storage 19,983,628 1,744.54 11,455

Within batching 251,998,234 1,150.60 219,015

Within routing 4,739,306 1,754.65 2,701
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Sum of squares df Mean square F p-value

Within zoning × storage 35,904,857 10,579.23 3,394

Within zoning × batching 124,857,632 1,861.94 67,058

Within zoning × routing 4,565,966 4,312.63 1,059

Within storage × batching 21,968,749 3,631.04 6,050

Within storage × routing 3,239,644 10,162.15 319

Within batching × routing 9,478,611 1,754.65 5,402

Total 1,512,756,826,184 38,962.81
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MULTIPLE BONFERRONI T-TESTS OF THE NARROW-AISLE SYSTEM

I
n addition to the post hoc tests presented in Section 4.3.2, Figures E.1 to E.6 provide

the post hoc tests in the other direction: for each combination of two planning prob-

lems, all policies of the planning problem with the longest time horizon are evaluated

for each policy of the planning problem with the shortest time horizon.

(A) Travelling. (B) Picker blocking.

FIGURE E.1: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by
storage policies (in s).
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(A) Travelling. (B) Picker blocking.

FIGURE E.2: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by
batching policies.

(A) Travelling. (B) Picker blocking.

FIGURE E.3: Multiple Bonferroni t-test (familywise error rate = 0.01) for zoning policies by
routing policies.

(A) Travelling. (B) Picker blocking.

FIGURE E.4: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies
by batching policies.



(A) Travelling. (B) Picker blocking.

FIGURE E.5: Multiple Bonferroni t-test (familywise error rate = 0.01) for storage policies
by routing policies.

(A) Travelling. (B) Picker blocking.

FIGURE E.6: Multiple Bonferroni t-test (familywise error rate = 0.01) for batching policies
by routing policies.
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OPTIMALITY CUTS AND SYMMETRY BREAKING CONSTRAINTS OF IBRJAP

T
his appendix outlines the optimality cuts used to strengthen the formulation. For

a detailed discussion on the optimality cuts, the reader is referred to Valle et al.

(2017). To describe the optimality cuts, each arc a is defined by its starting and

ending vertex (v ′; v ′′). Let I m
e be the number of vertices between the subaisle defined by

cross-aisle e and cross-aisle e +1 in pick aisle m: a subaisle is defined as the part of a pick

aisle between two cross-aisles. Each vertex v can be additionally expressed with respect

to the location of intersection between the pick aisle, the cross-aisle neighbouring to the

subaisle and most closely located to the depot (i.e., the cross-aisle to the left of the pick

location in Figure 7.1) and the other vertices in the subaisle: let vm
e {i } be the i th vertex

located in pick aisle m, with e the cross-aisle on the left-hand side of the pick location

and i the position of an ordered set of vertices within subaisle between cross-aisle e and

e +1 in pick aisle m. For artificial vertices, i = 0 (i.e., the intersection of a pick aisle and

cross-aisle) and i is dropped in the notation. Let v0
0{0} be the vertex located at the depot,

or simply v0.

Order picking performance is assumed to be independent of the individual order

picker. Therefore, formulation (7.3)-(7.20) may be subject to symmetry issues (i.e., swap-

ping all orders assigned to two pickers yields an equivalent solution). This symmetry may

increase computation times (Valle et al., 2017). Symmetry breaking constraints (F.1) are

added to the formulation to overcome this issue by forcing the first order to be assigned to

the first order picker, the second order to the first or second picker, and so on.
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Rqpk = 0(F.1)

∀k ∈ κ, ∀q ∈σ, q > k, ∀p ∈π

As distance is a symmetric function, incoming and outgoing arcs from the depot may

be subject to symmetry issues (i.e., travelling is equal when performing a pick round clock-

wise or counter clockwise). Therefore, constraints (F.2) break symmetry by enforcing that

the arc from the depot to a cross-aisle should be closer to the depot compared to the arc

from a cross-aisle to the depot.

∑
e ′∈ε
e ′≥e

Xqp(v1
e′ ;v0) ≥

∑
e ′∈ε
e ′≥e

Xqp(v0;v1
e′ )

(F.2)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{1}

In addition to symmetry breaking constraints, the feasible region can be reduced by

including cuts that should be fulfilled in case of optimality. Let κe ⊂ κ be a subset of orders

for which other subaisles than the first pick aisle between cross-aisle e and e+1 should be

visited to retrieve all order lines. This implies that the route should visit other pick aisles

before returning to the depot as stated by constraints (F.3)-(F.5). For each vertex connected

to the depot (i.e., for each cross-aisle), the constraint should be included.

Xqp(v1
1 {I 1

1 };v1
2 ) +Xqp(v1

1 ;v2
1 ) ≥ Xqp(v0;v1

1 ) − (1−Rqpk )(F.3)

∀q ∈σ, ∀p ∈π, ∀k ∈ κ1

Xqp(v1
e {I 1

e };v1
e+1) +Xqp(v1

e ;v2
e ) +Xqp(v1

e−1{1};v1
e−1); ≥ Xqp(v0;v1

e ) − (1−Rqpk )(F.4)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{1;E }, ∀k ∈ κe

Xqp(v1
E ;v2

E ) +Xqp(v1
E−1{1};v1

E−1) ≥ Xqp(v0;v1
E ) − (1−Rqpk )(F.5)

∀q ∈σ, ∀p ∈π, ∀k ∈ κE

Furthermore, cross-aisle and pick aisle cuts can be included. Each pick aisle (cross-

aisle) cut separates the warehouse in two horizontal (vertical) parts, of which one part

contains the depot (i.e., depot part). If a pick location of an order is not located in the

depot part, at least one arc crossing the separation line from the depot part to the other

warehouse part should be used. In addition, at least one arc crossing the separation line

in the other direction should be used. Optimality cuts (F.6)-(F.9) provide the cross-aisle

cuts, equations (F.10)-(F.11) illustrate pick aisle cuts. Let κ′ ⊂ κ be the subset of orders

containing at least one pick location not located in the depot part.
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∑
m∈µ

Xqp(vm
e ;vm

e {1}) ≥ Rqpk(F.6)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{E }, ∀k ∈ κ′∑
m∈µ

Xqp(vm
e ;vm

e {1}) =
∑

m∈µ
Xqp(vm

e {1};vm
e )(F.7)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{E }, ∀k ∈ κ′∑
m∈µ

Xqp(vm
e−1{I m

e−1};vm
e ) ≥ Rqpk(F.8)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{1}, ∀k ∈ κ′∑
m∈µ

Xqp(vm
e−1{I m

e−1};vm
e ) =

∑
m∈µ

Xqp(vm
e ;vm

e−1{I m
e−1})(F.9)

∀q ∈σ, ∀p ∈π, ∀e ∈ ε\{1}, ∀k ∈ κ′∑
e∈ε

Xqp(vm−1
e ;vm

e ) ≥ Rqpk(F.10)

∀q ∈σ, ∀p ∈π, ∀m ∈µ\{1}, ∀k ∈ κ′∑
e∈ε

Xqp(vm−1
e ;vm

e ) =
∑
e∈ε

Xqp(vm
e ;vm−1

e )(F.11)

∀q ∈σ, ∀p ∈π, ∀m ∈µ\{1}, ∀k ∈ κ′

In addition to pick aisle and cross-aisle cuts, computation time is improved by includ-

ing subaisle cuts (Constraints (F.12)-(F.18)). Let X 1
qpv be the minimum Xqpa value over

all arcs a in the unique path from the left cross-aisle artificial vertex to a vertex v in the

subaisle associated with the cross-aisle artificial vertex. X 2
qpv is similarly defined from the

right cross-aisle artificial vertex to the left. Furthermore, let κv ⊂ κ be the subset of orders

containing at least one pick location at vertex v .

X 1
qpvm

e {1} = Xqp(vm
e ;vm

e {1})(F.12)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }

X 1
qpvm

e {i } ≤ Xqp(vm
e {i−1};vm

e {i })(F.13)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }, ∀i ∈ [1; I m
e ]}

X 1
qpvm

e {i } ≤ X 1
qpvm

e {i−1}(F.14)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }, ∀i ∈ [1; I m
e ]}

X 2
qpvm

e {I m
e } = Xqp(vm

e+1;vm
e {I m

e })(F.15)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }

X 2
qpvm

e {i−1} ≤ Xqp(vm
e {i };vm

e {i−1})(F.16)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }, ∀i ∈ [1; I m
e ]}

223



APPENDIX F. OPTIMALITY CUTS AND SYMMETRY BREAKING CONSTRAINTS

X 2
qpvm

e {i−1} ≤ X 2
qpvm

e {i }(F.17)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }, ∀i ∈ [1; I m
e ]}

X 1
qpvm

e {i } +X 2
qpvm

e {i } ≥ Rqpk(F.18)

∀q ∈σ, ∀p ∈π, ∀vm
e {i } ∈ψ, i > 0, ∀k ∈ κvm

e {i }

Computation time is further reduced by including optimality cuts that prevent routes

to return in an artificial vertex. Constraints (F.19) prevent reversals between two artificial

vertices, while Constraints (F.20)-(F.23) deal with reversals between a pick location vertex

and artificial vertex.

∑
(v ′′;v∗)∈α−

v ′′
v∗ 6=v ′

Xqp(v ′′;v∗) ≥ Xqp(v ′;v ′′)(F.19)

∀q ∈σ, ∀p ∈π, ∀v ′, v ′′ ∈ ⋃
m∈µ

⋃
e∈ε

{vm
e } : (v ′; v ′′) ∈α+

v′′∑
(vm

e ;v−)∈α−
vm

e
v− 6=vm

e {1}

Xqp(vm
e ;v−) ≥ Xqp(vm

e {1};vm
e )(F.20)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }∑
(v−;vm

e )∈α+
vm

e
v− 6=vm

e {1}

Xqp(v−;vm
e ) ≥ Xqp(vm

e ;vm
e {1})(F.21)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{E }∑
(vm

e ;v−)∈α−
vm

e
v− 6=vm

e−1{I m
e−1}

Xqp(vm
e ;v−) ≥ Xqp(vm

e−1{I m
e−1};vm

e )(F.22)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{1}∑
(v−;vm

e )∈α+
vm

e
v− 6=vm

e−1{I m
e−1}

Xqp(v−;vm
e ) ≥ Xqp(vm

e ;vm
e−1{I m

e−1})(F.23)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε\{1}

Finally, pass through optimality cuts prevent reversals at pick location vertices where

no picking occurs. Let κvm
e {i } ⊂ κ be the set of orders that have a pick location at vertex

vm
e {i }. Then, constraints (F.24)-(F.27) ensure that the route passes through the vertices

where no picking occurs, instead of returning.
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∑
k∈κvm

e {i }

−Rqpk ≤ Xqp(vm
e {i−1};vm

e {i }) −Xqp(vm
e {i };vm

e {i+1}) ≤
∑

k∈κvm
e {i }

Rqpk(F.24)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε, ∀i ∈ [1; I m
e −1]}∑

k∈κvm
e {I m

e }

−Rqpk ≤ Xqp(vm
e {I m

e −1};vm
e {I m

e }) −Xqp(vm
e {I m

e };vm
e+1) ≤

∑
k∈κvm

e {I m
e }

Rqpk(F.25)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε∑
k∈κvm

e {i }

−Rqpk ≤ Xqp(vm
e {i+1};vm

e {i }) −Xqp(vm
e {i };vm

e {i−1}) ≤
∑

k∈κvm
e {i }

Rqpk(F.26)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε, ∀i ∈ [1; I m
e ]}∑

k∈κvm
e {I m

e }

−Rqpk ≤ Xqp(vm
e+1;vm

e {I m
e }) −Xqp(vm

e {I m
e };vm

e {I m
e −1}) ≤

∑
k∈κvm

e {I m
e }

Rqpk(F.27)

∀q ∈σ, ∀p ∈π, ∀m ∈µ, ∀e ∈ ε

225





A
P

P
E

N
D

I
X

G
PUBLICATIONS AND CONFERENCE CONTRIBUTIONS

T
his appendix provides an overview of research publications and conference con-

tributions.

G.1 Journal Publications

Van Gils, T., Ramaekers, K., Caris, A., Cools, M., 2017c. The use of time series forecasting

in zone order picking systems to predict order pickers’ workload. International Journal of

Production Research 55 (21), 6380–6393

Ramaekers, K., Caris, A., Moons, S., Van Gils, T., 2018. Using an integrated order picking-

vehicle routing problem to study the impact of delivery time windows in e-commerce.

European Transport Research Review 10 (56), 1–11

Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., Caris, A., 2018c. Increasing Order

Picking Efficiency by Integrating Storage, Batching, Zone Picking, and Routing Policy De-

cisions. International Journal of Production Economics 197 (Part C), 243–261

Van Gils, T., Ramaekers, K., Caris, A., De Koster, R. B. M., 2018e. Designing Efficient Or-

der Picking Systems by Combining Planning Problems: State-of-the-art Classification and

Review. European Journal of Operational Research 267 (1), 1–15

Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., 2019a. Formulating and Solving the Inte-

grated Batching, Routing, and Picker Scheduling Problem in a Real-life Spare Parts Ware-

house. European Journal of Operational Research

Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., De Koster, R. B. M., 2019b. Designing

efficient order picking systems: the effect of safety constraints, picker blocking, and high-
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level storage on the relation among planning problems. Transportation Research Part E:

Logistics and Transportation Review 125, 47–73

Vanheusden, S., Van Gils, T., Braekers, K., Caris, A., Ramaekers, K., 2019. Operational work-

load balancing problem in manual order picking. Computers & Industrial Engineering,

under review

G.2 Conference Proceedings

Van Gils, T., Braekers, K., Depaire, B., Caris, A., Ramaekers, K., 2015a. Improving Order

Picking Efficiency by Analyzing Combinations of Routing and Zone Picking Policies in a

2-block Warehouse. In: Bijdragen Vervoerslogistieke Werkdagen. University Press Zelzate,

pp. 45–58

Van Gils, T., Braekers, K., Ramaekers, K., Depaire, B., Caris, A., 2016a. Improving Order

Picking Efficiency by Analyzing Combinations of Storage, Batching, Zoning, and Routing

Policies. In: Paias, A., Ruthmair, M., Voß, S. (Eds.), Lecture Notes in Computational Logis-

tics. No. 9855 in Lecture Notes in Computer Science. Springer International Publishing,

pp. 427–442

Van Gils, T., Caris, A., Ramaekers, K., 2017b. The Effect of Storage and Routing Policies

on Picker Blockingi n a Real-life Narrow-aisle Warehouse. In: Bottani, E., Bruzzone, A.,

Longo, F., Merkuryev, Y., Piera, M. A. (Eds.), Proceedings of the International Conference

on Harbour, Maritime & Multimodal Logistics Modelling and Simulation. No. 11. pp. 53–

61

Vanheusden, S., Van Gils, T., Ramaekers, K., Caris, A., 2017. Reducing workload imbalance

in parallel zone order picking systems. In: Bottani, E., Bruzzone, A., Longo, F., Merkuryev,

Y., Piera, M. A. (Eds.), Proceedings of the International Conference on Harbour, Maritime

& Multimodal Logistics Modelling and Simulation. No. 13. pp. 68–75

Van Gils, T., Caris, A., Ramaekers, K., 2018a. Reducing picker blocking in a high-level

narrow-aisle order picking system: insights from a real-life spare parts warehouse. In: 2018

Winter Simulation Conference (WSC). IEEE, Gothenborg, pp. 2953–2965

Vanheusden, S., Van Gils, T., Braekers, K., Ramaekers, K., Caris, A., 2018a. An Efficient It-

erated Local Search Algorithm to Solve the Operational Workload Imbalance Problem. In:

19th free workshop on metaheuristics for industry. pp. 23–26

Caris, A., Molenbruch, Y., Van Gils, T., Verdonck, L. (Eds.), 2019. ORBEL33 - Progam & ab-

stracts. Hasselt
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G.3 Other Conference Contributions

Van Gils, T., Ramaekers, K., Braekers, K., Caris, A., 2015b. Improving Operational Work-

force Scheduling in a Warehouse Using Time Series Forecasting. In: Abstract from Euro-

pean conference for Operational Research 2015. Abstract from European conference for

Operational Research 2015. Glasgow

Van Gils, T., Ramaekers, K., Braekers, K., Caris, A., 2015c. An integrated approach for order

picking and flexible workforce planning: a state of the art. In: 29th Annual Conference of

the Belgian Operations Research Society. Antwerp

Van Gils, T., Braekers, K., Ramaekers, K., Depaire, B., Caris, A., 2016b. Improving Order

Picking Efficiency by Analyzing the Combination of Storage, Batching, Zoning and Routing

Policies in a 2-Block Warehouse. In: 30th Annual Conference of the Belgian Operations

Research Society. Louvain-la-Neuve

Van Gils, T., Braekers, K., Ramaekers, K., Caris, A., 2017a. Joint Order Batching, Routing,

and Picker Scheduling in Manual Order Picking Systems. In: 31st Annual Conference of

the Belgian Operations Research Society. Brussels

Van Gils, T., Ramaekers, K., Caris, A., 2018d. Reducing picker blocking in a real-life narrow-

aisle spare parts warehouse. In: 32nd Annual Conference of the Belgian Operations Re-

search Society. Liege

Van Gils, T., Vanheusden, S., Braekers, K., Ramaekers, K., Caris, A., 2018f. Daily workload

balancing in zoned order picking systems. In: OR2018, International Conference of the

German Operations Research Society (GOR). Brussels

Vanheusden, S., Van Gils, T., Ramaekers, K., Caris, A., Braekers, K., 2018b. Iterated local

search algorithm for solving operational workload imbalances in order picking. In: 32nd

Annual Conference of the Belgian Operations Research Society. Liege
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