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PART I

Introduction and Background





Chapter 1

General Introduction

The vast majority of settings for which frequentist statistical properties are derived assume

a fixed, a priori, known sample size. Familiar properties then follow, such as, for example,

the consistency, asymptotic normality, and efficiency of the sample average for the mean

parameter, under a wide range of conditions.

Nevertheless, there is a variety of settings where sample size is random: sequential

trials, where the trial may be stopped early at a number of time points during accrual,

because of the strength, or lack, of a treatment effect; incomplete data with its induced

lack of balance; purely random sample sizes; time-to-event data; joint modeling of time-

to-event data and longitudinal sequences; and random cluster sizes. Molenberghs et al.

(2014) provide an overview of such situations. In all of these settings, the sample size,

the length of the longitudinal sequence, or the censoring time for survival data, is itself a

random variable that may depend on the data being collected. Further, the rule governing

this may be deterministic or probabilistic. It is well known that specific issues can arise

when evaluating the properties of statistical procedures under such sampling schemes,

and much has been written about specific areas.

1.1 Random Cluster Sizes

Clustering is taken in its broadest sense, encompassing longitudinal data, family-based

studies, toxicology (Aerts et al., 2002), agricultural experiments, multi-level designs in the

social and behavioral sciences, and so on. It can occur for any outcome type, including

continuous, binary, categorical, count, and event time.

In longitudinal trials, it is not uncommon to plan for the same number of measurements

to be taken per study subject, often at a common set of time points. If all data were

3
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collected according to protocol, the cluster size would be fixed. However, even in such

studies, cluster sizes are often de facto random because of missingness in the data. In many

random cluster size settings there may be associations between outcomes and cluster size.

In part of the literature, this is termed ‘informative cluster size’ and a variety of methods

has been proposed to accommodate this situation, many based on inverse probability

weighting (Williamson, Datta, and Satten, 2003; Benhin, Rao, and Scott, 2005; Hofman,

Sen, and Weinberg, 2001; Cong, Yin, and Shen, 2007; Chiang and Lee, 2008; Wang,

Kong, and Datta, 2011; Aerts et al., 2011).

Unequal cluster sizes may or may not be governed by a stochastic mechanism. For

example, they can be unequal by design choice, without being stochastic; e.g., when

a sample is selected in each town proportional to the population size. Litter sizes in

pregnant rodents will truly be stochastic. When stochastic, the mechanism is random

when it depends on neither observed nor unobserved data; it is random when it depends

on observed but, given these, not on unobserved data; other mechanisms are termed non-

random. In the literature, mechanisms other than random are often termed informative.

1.2 Why Inference for Unequal Cluster Sizes?

Even when the cluster size contains no information about the scientific parameters, there

are issues resulting from this that need further investigation. So this thesis does not focus

on informative cluster sizes. In particular, the joint modelling of outcomes and cluster

size is not considered. Attention is confined to the case where cluster size is unequal, but

independent of both observed and unobserved outcomes. In doing so this research work

distinguishes issues that stem purely from the non-constant nature of the cluster size,

from those that result from the association between cluster size and outcome. This thesis

focuses on the differences between the case of a fixed cluster size that is common to all

clusters, and that of a fluctuating cluster size, whether for design reasons or randomly.

1.3 Aims and Scopes: Thesis Overview

In Part I of the thesis, Chapters 2 and 3 consist of all necessary background material. In

Chapter 2, notation, definitions and fundamental concepts and theory are given. A brief

description of some hierarchical data sets used to demonstrate the proposed methodology

in this thesis are outlined in Chapter 3.

Our own contributions can be read in Part II. The issues when doing likelihood inference

and evaluating the properties of the estimator(s) under such sampling schemes, are the

lack of completeness of the sufficient statistics and maximum-likelihood estimation may
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be computationally prohibitive.

Completeness implies that any function of a sufficient statistic that has zero expec-

tation for every value of the parameter indexing the parametric models class is the zero

function almost everywhere. Although the definition of a complete sufficient statistic

(Casella and Berger, 2001, pp. 285–286) is clear, its constructive verification in a given

situation often involves tedious algebra. This is especially true in for example sequential

trials, except for the simplest situation of two possible sample sizes only; such calculations

are, quite literally, convoluted. Likewise, when completeness does not hold, the construc-

tion of counterexamples may or may not be straightforward. Nevertheless, a clear, simple,

and easily verifiable criterion for completeness, of a constructive rather than an existential

nature, would be welcome. For example, in a normal univariate sample with fixed sample

size, a minimal sufficient statistic for the population mean is the sample sum, in contrast

to the random sample case for which it is the sample sum and the realized (random)

sample size. The parameter remains one-dimensional, but the minimal sufficient statistic

is two-dimensional and incomplete. A general criterion is formulated in Chapter 4 that

starts from, but moves beyond, the length of a vector.

The relevance of complete sufficient statistics has been established through two the-

orems, Lehman-Scheffé (Casella and Berger, 2001) and Basu’s (Basu, 1955) theorem.

Completeness, combined with regularity conditions, provides a basis for estimators with

desirable properties, such as unbiasedness and optimality. However, these properties are

lost when dealing with incomplete sufficient statistics. What is more, incompleteness holds

when the cluster size is non-constant for whatever reason. But as shown in Molenberghs

et al. (2014) and Milanzi et al. (2016, 2015), this does not need to be a serious problem

in practice and does not preclude the existence of estimators with very good properties.

For example, it is very well-known that, when data are missing, likelihood and Bayesian

inferences can be based on the observed-data likelihood, without any correction for the

variable cluster size, i.e., without any correction for the missing-data mechanism. Impor-

tantly, though, such methods cannot, in general, by default be claimed to be optimal,

given that the Lehman-Scheffé theorem (Casella and Berger, 2001) does not apply.

For medium to large sample sizes, full maximum likelihood or Bayesian inferences are

statistically optimal and computationally feasible. However, with really big data, where the

number of independent clusters runs in the millions or beyond, and/or in settings where the

number of measurements per cluster becomes very large (e.g., in meta-analysis), maximum

likelihood eventually becomes prohibitive in terms of computation time. At the other end

of the spectrum, in very small samples (e.g., in small-area epidemiology applications, or

when studies are conducted in so-called orphan diseases), maximum likelihood estimates

may become unstable, to the point where it is difficult to obtain convergence. This may
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be due, for example, to relatively flat likelihood functions. Small samples refers here to a

small number of clusters; the clusters themselves may consist of smaller or larger numbers

of within-cluster replication.

Van der Elst et al. (2015) considered multiple imputation to bring clusters to the same

size before applying maximum likelihood. If done with care, convergence problems are

drastically reduced. Williamson, Datta, and Satten (2003) and Follmann, Proschan, and

Leifer (2003) proposed so-called multiple outputation, to repeatedly create independent

samples by randomly selecting one member per cluster. To ensure that correlation is

taken into account, combination rules reminiscent of multiple imputation are then applied

to combine inferences from the samples drawn. However, both of these methods are

based on repeated sampling and will come at computational cost for high-dimensional

data (Sikorska et al., 2013). Therefore, in this thesis, the focus is on entirely non-

iterative methods, bringing together the advantages of balanced data and simple averaging

methodology.

Molenberghs, Verbeke, and Iddi (2011) studied this case in the context of so-called

split-sample methodology: they proposed a particular form of pseudo-likelihood where a

sample is subdivided into M subsamples, which are separately analyzed as if they were

unrelated, after which the results are averaged using appropriate weights, leading to proper

point and precision estimates. They considered splits in both dependent and independent

sub-samples. Dependent samples occur when very long sequences of repeated measures

are collected, which are then sub-divided for convenience. This approach is not of use

here. Independent samples arise when there are many independent replicates, i.e., a large

number of clusters.

Pseudo-likelihood has received considerable attention (Varin, Reid, and Firth, 2011;

Molenberghs and Verbeke, 2005, Ch. 9, 12, 21, 24, 25; Aerts et al., 2002, Ch. 6, 7). In

this thesis, sample-splitting is used to propose a (near) optimal weighted estimator for

these kind of data settings. It is a way to replace iterative optimization of a likelihood

that does not admit an analytical solution, with closed-form calculations. As a simple,

yet non-trivial, clustering paradigm, the compound-symmetry model, CS, and first-order

autoregressive, AR(1), are considered. In Chapter 5 a general split-sample approach for

the CS model is provided. Chapter 6 explores this further for the AR(1) model.

This idea could be extended to other grouped data settings. Specifically, the Mantel-

Haenszel (MH) (Mantel and Haenszel, 1959) methodology for analysing the associations

between binary variables involving stratification. Here group-specific odds ratios are com-

bined using weights. In Chapter 7 the MH estimator is contrasted with the optimal

estimator, whose existence is demonstrated in spite of the absence of completeness. The

MH estimator does not follow from optimality considerations. By comparing both esti-
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mators, insight in specific nature the estimator and unique and interesting properties of

the data settings for which it was developed, can be retrieved.

Next, the focus is on modeling hierarchical binary outcome data when the vector of

planned measurements contains missing values. The process behind the missingness, as

well as its impact on inference, need to be addressed.

The choice of inferential framework for analyzing incomplete data will depend largely

upon the nature of missingness. Conventionally, the process driving the latter is classified

according to the terminology of Little and Rubin (2002, Chap. 6). When missingness

is independent of both the observed and unobserved outcomes, it is called missing com-

pletely at random (MCAR), while when the missingness is independent of the unobserved

measurements, conditional on the observed ones, the process is said to be missing at

random (MAR). When neither MCAR nor MAR holds, missingness is termed missing not

at random (MNAR).

Often, direct likelihood is used as the basis for analyzing correlated outcomes under

MAR. The unified modeling framework provided by the linear mixed model, yielding both

random-effects as well as marginally interpretable regression parameters, is the dominant

choice for Gaussian outcomes, while generalized linear mixed models remain popular for

non-Gaussian outcomes, though marginalization is not always straightforward. Other

likelihood-based options for marginal inference exist, such as the Bahadur (1961) model

and the multivariate Dale or global odds ratio model (Molenberghs & Lesaffre, 1994, 1999)

for binary data, but these involve complex likelihoods, can be computationally prohibitive

in moderate to large studies, and are vulnerable to misspecification.

These issues have motivated the development of alternatives to likelihood, perhaps

the most popular of which being generalized estimating equations or GEE (Liang and

Zeger, 1986; Diggle et al., 2002; Molenberghs and Verbeke, 2005), along with variations

or extensions such as GEE2 (Liang, Zeger, and Qaqish, 1992) and alternating logistic

regressions (Carey, Zeger, & Diggle, 1993), when association parameters are also of sci-

entific interest. Standard GEE is valid only under MCAR, but a weighted version (WGEE;

Robins, Rotnitzky, and Zhao, 1995) has been developed, using Horvitz-Thompson ideas

(Cochran, 1977), to allow valid use of GEE under MAR. The WGEE approach, however,

tends to be biased when the model for the weights is misspecified (Beunckens, Sotto &

Molenberghs, 2008; Molenberghs and Kenward, 2007). To this end, doubly robust ap-

proaches (Scharfstein, Rotnitzky, and Robins, 1999; Van der Laan & Robins, 2003; Bang

& Robins, 2005; Rotnitzky, 2009; Birhanu et al., 2011), which further supplement the

use of weights with a predictive model for the unobserved responses, given the observed

ones, have been constructed. This not only removes or at least alleviates bias, but also

increases efficiency.
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Pseudo-likelihood (PL) methods (le Cessie & van Houwelingen, 1991; Geys, Molen-

berghs, and Lipsitz, 1998; Geys, Molenberghs, & Ryan, 1999; Aerts et al., 2002) comprise

yet another alternative to full likelihood. This is in contrast to GEE methods, where the

score equations are replaced with alternative, simpler functions.

Pseudo-likelihood is different to full likelihood and is therefore not guaranteed to be

valid under MAR. Rubin (1976) provided conditions for ignorability that are sufficient but

not always necessary. Yi, Zeng, and Cook (2011) provide an example, using a pairwise

(pseudo-)likelihood method for incomplete longitudinal binary data, that is ignorable under

MAR, even though it is not a full likelihood approach. Molenberghs et al. (2011), on the

other hand, propose a suite of corrections to pseudo-likelihood in its standard form, also

to ensure its validity under MAR. These corrections hold for pseudo-likelihood in general

and follow both single and double robustness ideas. They showed that, in contrast to the

GEE case and in particular for both robust versions, PL-based estimating equations admit

very convenient simplifications.

Molenberghs et al. (2011) applied the methodology to multivariate Gaussian responses

and to a conditional model for clustered binary data. They provided a general outline

with predominantly illustrative examples using normal and binary data. However, the

marginal modeling of longitudinal binary data is very common in practice. Molenberghs

et al. (2011) only sketched the methodology using a marginal Bahadur model for the

binary responses; they did not pursue it in detail. The further development of doubly

robust pseudo-likelihood for incomplete hierarchical binary data under MAR is investigated

more in detail. The theoretical part, estimating equations and precision estimators, are

calculated and reported for the first time. All can be found in Chapter 8 of this thesis.

Finally, in Part III and so in the last Chapter 9, conclusions, ramifications and rec-

ommendations for further research are presented.

Extensive derivations and accompanying software code are excluded from the main

text of this thesis, but provided in the Appendix. See further references in the chapters.



Chapter 2

Background Information

In this thesis important issues related to, and model strategies for, hierarchical data

settings with unequal sizes are introduced. That material is presented in part II of the

dissertation. This chapter discusses the important background theory and methodology

that will be used to build on.

2.1 Hierarchical Data: Notation

Suppose that there is a sample of N independent clusters, the random variable Yij denotes

the response for the ith study subject at the jth occasion (i = 1, . . . , N , j = 1, . . . , ni).

Independence across subjects is assumed.

First, among the N independent clusters K different cluster sizes nk (k = 1, . . . ,K)

can be distinguished. Let the multiplicity of cluster size nk be equal to ck. Evidently,

N =
∑K
k=1 ck. Within a subsample of clusters of size nk, the ith (i = 1, . . . , ck) replicate

is Y (k)
i .

Second, in case of missing data, Y i (i = 1, . . . , N) is divided into its observed (Y o
i )

and missing (Y m
i ) components. We further define a vector of missingness indicators

Ri = (Ri1, Ri2, . . . , Rini
)′, with Rij = 1 if Yij is observed and 0 otherwise. In the

specific case of dropout in longitudinal studies, the vector Ri can be replaced by the

dropout indicator Di = 1 +
∑ni

j=1 Rij , denoting the time at which subject i drops out.

9
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2.2 Concepts and Models

2.2.1 Complete Sufficient Statistics

Definition 2.1 (Completeness). A statistic k(Y ) of a random variable Y , with Y be-

longing to a family Pθ, is complete if, for every measurable function g(·), independent of

θ, E[g{k(Y )}] = 0 for all θ, implies that Pθ[g{k(Y )} = 0] = 1 for all θ. (Casella and

Berger, 2001, pp. 285–286)

The relevance of completeness rests principally on two theorems. First, the Lehman-

Scheffé theorem (Casella and Berger, 2001) states that, if a statistic is unbiased, complete,

and sufficient for a parameter θ, then it leads to the best mean-unbiased estimator for

θ. Second, the connection with ancillarity follows from Basu’s theorem (Basu, 1955): a

statistic that is both boundedly complete and sufficient is independent of any ancillary

statistic. See also Casella and Berger (2001, p. 287). Note, the theorems are implications

rather than equivalences.

2.2.2 Bahadur Model

The Bahadur model (Bahadur, 1961) is a marginal model for correlated binary data,

accounting for the associations via marginal correlations. Following Aerts et al. (2002)

the marginal distribution of Yij is a Bernoulli distribution with νij = P (Yij = 1), with

the pairwise probability as νijk = P (Yij = 1, Yik = 1), and the conditional probability as

νik|j = P (Yik = 1|yij = ℓ)(ℓ = 0, 1). With ρijk the marginal correlation coefficient, the

pairwise Bahadur probabilities take the form

νijk = νijνik

[
1 + ρijk

1− νij√
νij(1 − νij)

1− νik√
νik(1− νik)

]
. (2.1)

The Bahadur model gives a closed form expression for the full joint distribution f(y).

The multivariate Bahadur probabilities are f(yi) = f1(yi)c(yi), with:

f1(yi) =

ni∏

j=1

ν
yij

ij (1− νij)1−yij , (2.2)

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 +

· · ·+ ρij1j2...jni
eij1eij2 · · · eijni

, (2.3)

where eij =
yij − νij√
νij (1− νij)

. This function is the product of the independence model

f1(yi) and the correction factor c(yi). Fitting a Bahadur model however, is not always

straightforward. The parameter space of the marginal parameters is known to be of a
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very special shape. Fitting high order Bahadur models implies an increasing amount of

complex restrictions on the parameters space.

2.3 Pseudo-likelihood

2.3.1 General Theory and Concept

A pseudo-likelihood function replaces a numerically challenging joint density by a simpler

function assembled from suitable factors. The method achieves computational advan-

tages, it does not affect model interpretation. Consider a sample of size N with repeated

measures sequences of length n. Define S as the set of all 2n − 1 vectors of length n,

consisting solely of zeros and ones, with each vector having at least one non-zero entry.

Denote by Y (s)
i the sub-vector of Y i corresponding to the components of s that are non-

zero. The associated joint density is fs(y
(s)
i ;θi). To define a pseudo-likelihood function,

one chooses a set δ = {δs|s ∈ S} of real numbers, with at least one non-zero component.

The log of the pseudo-likelihood is then defined as

pℓ =

N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i ;θi). (2.4)

The classical log-likelihood function is found by setting δs = 1 if s is the vector consisting

solely of ones, and 0 otherwise.

Maximization of Eq. (2.4) can be done, subject to adequate regularity conditions, by

solving the pseudo-likelihood (score) equations, which can be obtained by differentiating

the logarithmic pseudo-likelihood and equating the resulting derivative to zero. Suppose

that θ is the true parameter. Under suitable regularity conditions (Arnold and Strauss,

1991; Geys, Molenberghs, & Ryan, 1999; Aerts et al., 2002), it can be shown that max-

imizing Eq. (2.4) produces a consistent and asymptotically normal estimator θ̃ so that√
N(θ̃N − θ) converges in distribution to

Np
[

0 , I0(θ)−1I1(θ)I0(θ)−1
]
. (2.5)

Details on various forms of pseudo-likelihood can be found in Molenberghs and Verbeke

(2005, Ch. 9, 12, 21, 22, 24, and 25).

2.3.2 Pseudo-likelihood and General Split Sample Theory

Fieuws and Verbeke (2006) and Fieuws et al. (2006) used pseudo-likelihood to fit mixed

models to high-dimensional multivariate longitudinal data. They supplemented the stan-

dard method with an additional device by first replacing a set of M longitudinal sequences
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by the M(M − 1)/2 longitudinal pairs. This in itself is a standard application of pseudo-

likelihood. They then assumed that each pair has its own parameter vector. Symbolically,

this can be written as:

pℓ(θ) ≡ pℓ(y1i,y2i, . . . ,yMi|θ) =
∑

r<s

ℓ(yri,ysi|θrs), (2.6)

where Y ri is the rth sequence for subject i. In (2.6), θ results from stacking all M(M −
1)/2 pair-specific parameter vectors θrs. The actual parameter vector of interest is θ∗,

the set of non-redundant parameters is θ.

To obtain θ∗, Fieuws and Verbeke (2006) take averages of all available estimates for

that specific parameter, implying that θ̂∗ = Aθ̂ for an appropriate linear combination ma-

trix A. Further, combining this step with general pseudo-likelihood inference, a sandwich

estimator is used:
√
N(θ̂∗ − θ∗) =

√
N(Aθ̂ −Aθ)

approx.∼ N(0, AI−1
0 I1I

−1
0 A′), (2.7)

where

I0(θ) = E

[
∂2pℓ(θ)

∂θ′∂θ

]
, I1(θ) = E

[(
∂pℓ(θ)

∂θ

)′

.
∂pℓ(θ)

∂θ

]
. (2.8)

Molenberghs, Verbeke, and Iddi (2011) took a very similar route to partition a poten-

tially large sample into (independent) sub-samples.

Here, Molenberghs, Verbeke, and Iddi (2011) chose

A =
1

K
(I, . . . , I) (2.9)

to pass from θ to θ∗. This is a sensible choice in the i.i.d. setting (e.g., when all clusters

in a CS model have the same size) and with the same number of subjects per sub-sample.

The estimator and precision estimator then become:

θ̂
∗

=
1

K

K∑

k=1

θ̂k, (2.10)

var(θ̂
∗
) =

1

K
H−1

θ̂
, (2.11)

withH−1

θ̂
= −I0(θk). In this special case, the expected information matrices are identical.

Alternatively, one can use the observed information matrices, and then use instead:

1

K2

K∑

k=1

H−1

θ̂,k
. (2.12)

where H
θ̂,k

is the observed information for sub-sample k.

In this particular case, pseudo-likelihood produces the same estimator as full likelihood.

This also stems from the fact that all subjects follow the same distribution.
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2.3.3 Pairwise Pseudo-likelihood for Data Missing at Random

For pseudo-likelihood to be valid under MAR, proper modifications need to be done.

Precise statements are provided in Molenberghs et al. (2011). The proposed corrections

to the standard form of pseudo-likelihood follow single and double robustness ideas. With

single robustness, inverse probability weighting is incorporated, i.e. the inverse probability

of being observed, whereas with double robustness a predictive model for the unobserved

responses is added.

Molenberghs et al. (2011) presented general expressions for the estimating equations

and established their validity. This result also provides an easy way to consistently estimate

the asymptotic covariance. The matrix I0 arises from evaluating the second derivative

of pℓ in Eq. (2.4) at the PL estimate. The expectation in I1 can be replaced by the

cross-products of the observed scores. As discussed by Arnold and Strauss (1991), the

Cramèr-Rao inequality implies that I−1
0 I1I

−1
0 is greater than the inverse of I (the Fisher

information matrix for the maximum likelihood case), in the sense that I−1
0 I1I

−1
0 − I−1

is positive semi-definite. Strict inequality holds if the PL estimator fails to be a function

of a minimal sufficient statistic. Geys, Molenberghs, & Ryan (1999) have shown that, in

realistic clustered-data settings in toxicology experiments, efficiency loss is often negligible

and is certainly justified in view of computational convenience and speed.

As stated earlier, marginal models for non-Gaussian data can become computationally

prohibitive when subjected to full maximum likelihood inference, especially with large

within-unit replication. le Cessie & van Houwelingen (1991) and Geys, Molenberghs, and

Lipsitz (1998) replace the true contribution of a vector of correlated binary data to the

full likelihood, written as f(yi1, . . . , yini
), by the product of all pairwise contributions

f(yij , yik), 1 ≤ j < k ≤ ni, to obtain a pseudo-likelihood function. Also the term

composite likelihood is encountered in this context, but in this thesis ‘pseudo-likelihood’

is used throughout. Renard, Molenberghs, and Geys (2004) refer to this particular instance

of pseudo-likelihood as pairwise likelihood. The contribution of the ith subject or cluster

to the log pseudo-likelihood then specializes to

pℓi =
∑

j<k

ln f(yij , yik), (2.13)

if it contains more than one observation. Otherwise, pℓi = f(yi1). Extension to three-

way and higher-order pseudo-likelihood is straightforward, all of which are special cases

of Eq. (2.4).
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Table 2.1: Contingency table for stratum i (i = 1, . . . , N)

Exposure + Exposure - Total

Case + ai bi n1i

Control - ci di n2i

Total m1i m2i ni

2.4 Mantel-Haenszel Estimator

The Mantel-Haenszel estimator (Mantel and Haenszel, 1959, MH) can be used in various

contexts. It serves as estimator for the odds ratio in a series of 2×2 tables or in matched

designs (Agresti, 2002, pp. 231). The simplest form of matching is 1:1, i.e., one control

per case. This is effective when both are sufficiently prevalent in the population. Often,

cases are more scarce than controls, e.g., with rare diseases. It then makes sense to

select more controls per case. When a case is individually matched to a set of controls,

having similar values for some confounding variables, the most extreme form of stratified

design is created. Each case and corresponding control(s) can be seen as one stratum. In

general, a setting with stratified 2 × 2 tables already exists when subpopulations within

the overall population vary. In the case of several, N say, 2 × 2 tables or strata, the ith

(i = 1, . . . , N) stratum takes the form as presented in Table 2.1. The overall sample size

is defined as n =
∑N

i=1 ni.

The MH is a useful and convenient estimator for obtaining a common odds ratio, when

there are one or more confounders. The MH is not fully parametric and typically strata are

of varying sizes, naturally necessitating the use of weights. Mantel and Haenszel (1959)

proposed several weighting schemes to estimate a common odds ratio. It is important

to realize that these weighting schemes, while very effective, do not follow from formal

optimality criteria. The most widely accepted estimator of the common odds ratio is:

ψ̃MH =

∑N
i=1

aidi

ni∑N
i=1

bici

ni

=

∑N
i=1 wi

aidi

bici∑N
i=1 wi

, (2.14)

with wi = bici

ni
.

The strata do not need to be of the same size and even if some cell counts are small or

even zero, the estimator remains well-defined, an important asset. Also, when bici equals

zero a stratum is omitted in the calculation of the common odds ratio as the weight

becomes zero as well. This estimator is very practical to use.

Interestingly, no expression for the variance was available. With time, others inves-

tigated the estimator and many extensions have been developed. Kuritz et al. (1988)
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reviewed the MH and its variance formulas. At first, Hauck (1979) proposed an estimator

for the variance using a product binomial model, appropriate for large stratum samples.

Woolf (1955) used a logarithmic transformation of the odds ratio estimator, which makes

the sampling variance simple and easy to use as weights. From another point of view,

Flanders (1985) proposed a variance estimator based on a series of Monte Carlo experi-

ments, leading to more accurate confidence intervals. Robins et al. (1986a,b) proposed a

new robust variance estimator based on the unconditional distribution of the data. These

last two are very similar and even identical for matched designs. Either is applicable in

both sparse data and large-strata limiting models and are easily computed. None of these

estimators had been formally shown to be “best", but the latter are preferred. Nowadays

the variance formula of Robins et al. (1986b) is commonly used, particularly in statistical

software. It will be used later in this thesis and takes the following form:

vR = var(log ψ̂MH)

=

∑N
i=1

(ai+di)aidi

n2
i

2
(∑N

i=1
aidi

ni

)2 +

∑N
i=1

(ai+di)bici+(bi+ci)aidi

n2
i

2
(∑N

i=1
aidi

ni

)(∑N
i=1

bici

ni

)

+

∑N
i=1

(bi+ci)bici

n2
i

2
(∑N

i=1
bici

ni

)2 . (2.15)





Chapter 3

Case Studies

This chapter introduces the four data sets used to illustrate the methodology developed

in Part II. All of these data sets have an unbalanced hierarchical structure with continuous

or binary responses.

3.1 Developmental Toxicity Study Sets

These data sets were set up by the Research Triangle Institute under contract to the Na-

tional Toxicology Program of the U.S.A. (NTP data). These developmental toxicity stud-

ies investigate the effects in mice of three chemicals: di(2-ethylhexyl)phthalate (DEHP)

(Tyl et al., 1988), ethylene glycol (EG) (Price et al., 1985), and diethylene glycol dimethyl

ether (DYME) (Price et al., 1987). The studies were conducted in timed-pregnant mice

during the period of major organogenesis. The dams were sacrificed, just prior to normal

delivery, and the status of uterine implantation sites recorded. The outcome of interest

here is fetal weight. Summary data from the DEHP trial are presented in Table 3.1. The

design for EG and DYME is similar. It is clear from the table that average litter size is

depleted with increasing dose, as is the average weight.

3.2 Clinical Trials in Schizophrenia

These data were collected from five double-blind randomized clinical trials to compare the

effects of different treatments for chronic schizophrenia: risperidone and conventional an-

tipsychotic agents. Subjects who received doses of risperidone (4–6 mg/day) or an active

control (haloperidol, perphenazine, zuclopenthixol) have been included in the analysis.

Patients were clustered within country, and longitudinal measurements were made on

17
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Table 3.1: Developmental Toxicity Study (DEHP). Summary data by dose group.

# dams with # live average
dose implants viable implants fetuses litter size weight

0 mg/kg/day 30 30 330 13.2 0.9483
44 mg/kg/day 26 26 288 11.1 0.9592
91 mg/kg/day 26 26 277 10.7 0.8977

191 mg/kg/day 24 17 137 8.1 0.8509
292 mg/kg/day 25 9 50 5.6 0.6906

each subject over time. The number of patients ranges from 9 to 128 per country with a

total of 2039. The positive and negative syndrome scale (PANSS) was used to asses the

global condition of a patient. This scale is constructed from 30 items, each taking values

between 1 and 7, giving an overall range of 30 to 210. PANSS provides an operationalized,

drug-sensitive instrument, which is useful for both typological and dimensional assessment

of schizophrenia. Depending on the trial, treatment was administered for a duration of 48

weeks with at most 12 monthly measurements. For analysis we included patients with at

least one follow-up measurement. Table 3.2 shows the number of patients participating

in each trial for all different time patterns in receiving the treatments. Because not all

subjects received treatment at the same time points and, not the same amount, there are

26 different time patterns, therefore, the final dataset is unbalanced.

3.3 Intego: Large General Practice Dataset

Intego is a Belgian general practice-based morbidity registration network at the Depart-

ment of General Practice of the University of Leuven, Belgium. They built a large database

as a result of continual recording of data in general practices since 1994. It holds over

4 million diagnoses, 44 million laboratory results and 17 million medication prescriptions

and 700,000 vaccination data.

Intego procedures were approved by the ethical review board of the Medical School

of the University of Leuven (ML 1723) and by the Belgian Privacy Commission (SC-

SZG/13/079). Many general practices applied for inclusion in the registry. Before ap-

proval, the registration performance was checked using algorithms between all participants.

Only those with an optimal performance were included. All participating general practices

need to routinely record all new diagnoses, drug prescriptions, laboratory results and pa-

tient information. They use universal codes; diagnoses are classified using ICPC 2 codes

(International Classification of Primary Care) and the WHO’s Anatomical Therapeutic

Chemical (ATC) classification system for drugs. See also Truyers et al. (2014) and the

Intego website (http://www.intego.be).
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Table 3.2: PANSS data. Number of clusters in each trial for each cluster pattern. The

pattern consists of the numbers representing the months after starting point for which a

PANSS score is available.

Trial

n Pattern FIN-1 FRA-3 INT-2 INT-3 INT-7 Total

(0, 1) 17 8 71 43 3 142

2 (0, 2) 0 0 2 0 1 3

(0, 4) 0 0 1 0 0 1

(0, 1, 2) 8 4 83 41 7 143

3 (0, 2, 4) 0 0 2 0 0 2

(0, 1, 4) 1 0 3 1 0 5

(0, 1, 2, 4) 11 0 85 66 5 167

(0, 2, 4, 6) 0 0 1 0 1 2

4 (0, 2, 4, 8) 0 0 1 0 0 1

(0, 1, 2, 6) 0 0 3 0 0 3

(0, 1, 2, 3) 0 4 1 0 0 5

(0, 1, 3, 6) 0 1 0 0 0 1

(0, 2, 6, 8) 0 0 0 0 1 1

(0, 1, 2, 4, 6) 58 0 85 35 6 184

(0, 1, 2, 4, 8) 0 0 8 0 1 9

(0, 1, 4, 6, 8) 0 0 6 0 0 6

5 (0, 1, 2, 6, 8) 0 0 8 0 0 8

(0, 2, 4, 6, 8) 0 0 3 0 2 5

(0, 2, 4, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 3, 4) 0 44 0 0 0 44

(0, 1, 3, 4, 5) 0 1 0 0 0 1

(0, 1, 2, 4, 6, 8) 0 0 986 240 74 1300

(0, 1, 4, 6, 8, 10) 0 0 1 0 0 1

6 (0, 1, 2, 6, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 4, 6, 10) 0 0 1 0 0 1

(0, 1, 2, 4, 5, 6) 0 0 2 0 0 2
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Table 3.3: The Analgesic Trial. Absolute and relative frequencies of the five GSA cate-

gories for each of the four follow-up times.

GSA Month 3 Month 6 Month 9 Month 12

1 55 14.3% 38 12.6% 40 17.6% 30 13.5%
2 112 29.1% 84 27.8% 67 29.5% 66 29.6%
3 151 39.2% 115 38.1% 76 33.5% 97 43.5%
4 52 13.5% 51 16.9% 33 14.5% 27 12.1%
5 15 3.9% 14 4.6% 11 4.9% 3 1.4%

Total 385 302 227 223

3.4 The Analgesic Trial

The analgesic trial was a single-arm clinical trial involving 395 patients who were given

analgesic treatment for pain caused by chronic non-malignant disease. Treatment was to

be administered for 12 months and assessed by means of a five-point ‘Global Satisfaction

Assessment’ (GSA) scale: (1) very good; (2) good; (3) indifferent; (4) bad; (5) very

bad. As it is frequently of interest to physicians to classify a patient’s status as either

improving or worsening, some analyses have considered a dichotomized version, GSABIN,

which is 1 if GSA ≤ 3 and 0 otherwise; this outcome will be adopted for the analysis as

well. Apart from the outcome of interest, a number of covariates are available, such as

age, sex, weight, duration of pain in years prior to the start of the study, type of pain,

physical functioning, psychiatric condition, respiratory problems, etc.

GSA was rated by each person four times during the trial: at months 3, 6, 9, and

12. An overview of the frequencies per follow-up time is given in Table 3.3. Inspection

of Table 3.3 reveals varying totals per column, due to missingness. At three months, 10

subjects lack a measure, with these numbers being 93, 168, and 172 at subsequent times.

An overview of the extent of missingness (Table 3.4) indicates that only around 40%

of the subjects have a complete data sequence. Both dropout and intermittent patterns

of missingness occur – the former amounting to roughly 40%, with less than 20% for the

latter.
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Table 3.4: The Analgesic Trial. Overview of missingness patterns and the frequencies

with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement Occasion
N %

Month 3 Month 6 Month 9 Month 12

Completers O O O O 163 41.2

Dropouts

O O O M 51 12.91

O O M M 51 12.91

O M M M 63 15.95

O O M O 30 7.59

O M O O 7 1.77

Non-Monotone

O M O M 2 0.51

Missingness

O M M O 18 4.56

M O O O 2 0.51

M O O M 1 0.25

M O M O 1 0.25

M O M M 3 0.76





PART II

Contributions





Chapter 4

A Characterization of

Incompleteness

4.1 Introduction

One consequence of unequal sample sizes is that complete sufficient statistics may no

longer exist. Completeness implies that any function of a sufficient statistic that has

zero expectation for every value of the parameter indexing the parametric model class,

is the zero function almost everywhere, definition see Section 2.2.1. The relevance of

complete sufficient statistics has been established through two theorems, Lehman-Scheffé

(Casella and Berger, 2001) and Basu’s (Basu, 1955) theorem. Completeness, combined

with regularity conditions, provides a basis for estimators with desirable properties, such

as unbiasedness and optimality.

In sequential designs (Wald, 1945) one incorporates a data-driven rule to potentially

stop the trial before reaching the maximal sample size. Such methods are well established

in clinical trials (Armitage, 1975). While the statistical aspects of sequential methods

have been carefully studied (Lehman and Stein, 1950), the lack of completeness has led

to disagreement and confusion, regarding appropriate (point and interval) estimation fol-

lowing such trials, leading to many ad hoc proposals. Liu and Hall (1999) and Liu et al.

(2006), building upon Emerson and Fleming (1990), explored this aspect. Molenberghs et

al. (2014) and Milanzi et al. (2016, 2015) studied the issue in a wider framework, encom-

passing stochastic stopping rules and completely random sample sizes. They demonstrated

that, somewhat contrary to intuition and in spite of incompleteness, the ordinary sample

average remains a viable estimator (because of consistency, asymptotic normality, and

25
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high efficiency), even though it no longer has all properties that it enjoys in the conven-

tional, fixed sample size setting. We elaborate on this in Section 4.2. Another setting

without complete sufficient statistics is that of clusters of unequal size. Such designs

include longitudinal, multilevel, spatial, and multi-stage survey designs. A counterexam-

ple is a longitudinal study where each one of the subjects is measured exactly the same

number of times, at an a priori fixed set of measurement occasions. Then, N , the number

of subjects, and n, the number of measurements, are design constants. However, such

“clean” designs are the exception rather than the norm. A variety of ad hoc methods

has been proposed for the random cluster size setting. Other settings without complete

sufficient statistics are missing data, censored time-to-event data, random visit times, and

joint modeling of longitudinal and time-to-event data.

To ensure completeness of the minimal sufficient statistics, Lehmann (1981, pp. 142–

143), Brown (1986, pp. 42–44) and Boos and Stefanski (2013, pp. 103–104) formulated

theorems, based on appropriate restrictions placed on the canonical form of the exponential

family. Brown (1986) proves incompleteness using complex analytic properties and refers

to the unique determination of a standard family by its Laplace transform. Here, however,

the latter is more explicitly used and a result, both general and easy to use, follows. Boos

and Stefanski (2013) and Lehmann (1981) base their theorems on the fact that the

family is minimal and the parameter space contains a rectangle, thereby requiring that

the family is of full rank. The characterization of incompleteness given here is also related

to a property of curved exponential models (Van Garderen, 1997; Keener, 2010). These

have the property that the dimension of the minimal sufficient statistic is larger than

the number of parameters in the model. Van Garderen (1997) establishes a theorem

that allows a straightforward comparison between the dimension of the minimal sufficient

statistic and the number of parameters to determine when a model is a curved exponential

model. Keener (2010) points out that curved exponential models arise naturally with data

from sequential experiments and in applications to contingency table analysis.

In this chapter a general criterion for completeness is formulated that starts from,

but moves beyond, the length of a vector. In Section 4.2, two commonly encountered

settings are presented, where minimal sufficient statistics are incomplete. Known results

leading up to the characterization of complete sufficient statistics are briefly reviewed in

Section 4.3. The key result is presented in Section 4.4. To highlight the ease of use of

the criterion, it is applied and shown to work for two more complex data settings, i.e.,

clusters of random size and missing data. Section 4.5 illustrates and further clarifies the

findings for clustered data. Section 4.6 considers partially unobserved contingency tables,

extends these results to other missing-data settings and shows why seemingly unrelated

settings, all have led to incomplete sufficient statistics.
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4.2 Motivating Settings

4.2.1 Sequential Trials

Group sequential trials are in common use and have been well studied (e.g., Wald, 1945;

Armitage, 1975; Whitehead, 1997; Jennison and Turnbull, 2000). The corresponding

design and hypothesis testing machinery is well developed. Nevertheless, issues still sur-

round estimation following a sequential trial (Siegmund, 1978; Hughes and Pocock, 1988;

Todd, Whitehead, and Facey, 1996; Whitehead, 1999). Several authors have reported that

standard estimators such as the sample average are biased. In response to this, various

proposals have been made to remove or alleviate this bias and its consequences (Tsiatis,

Rosner, and Mehta, 1984; Rosner and Tsiatis, 1988; Emerson and Fleming, 1990). An

early suggestion was to use an estimator (Blackwell, 1947) that conditions on the stopping

event.

The origin of the problem was understood at an early stage of the development.

Lehman and Stein (1950) showed that it originates from incompleteness of the sufficient

statistics, generally implying the non-existence of a minimum variance unbiased linear

estimator. Liu and Hall (1999) and Liu et al. (2006) explored this incompleteness in

group sequential trials, and Molenberghs et al. (2014) and Milanzi et al. (2016, 2015)

embedded the problem in the broader class of random sample size, which also includes,

missing data, completely random sample sizes, censored time-to-event data, and random

cluster sizes. Their main findings were: (1) the sample average, although asymptotically

unbiased has finite sample bias; (2) apart from the exponential distribution setting, there is

no finite-sample optimal linear estimator, although the sample average is asymptotically

optimal (i.e., uniform minimum variance unbiased); (3) the validity (i.e., consistency

and asymptotic normality) of the sample average also follows from standard ignorable

likelihood theory (Little and Rubin, 2002); we will return to ignorability in Section 4.6;

(4) there exists a maximum likelihood estimator that conditions on the realized sample

size, which is finite sample unbiased, but has slightly larger variance and mean square

error.

4.2.2 Clusters of Unequal Size

Even when the cluster size contains no information about the scientific parameters, there

are issues resulting from lack of a complete sufficient statistic. One family of approaches is

based on restricted moment estimators obtained through the use of generalized estimating

equations (Liang and Zeger, 1986; Liang, Zeger, and Qaqish, 1992). Pseudo-likelihood,

or composite likelihood, estimators have also been proposed (Lindsay, 1988; Arnold and
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Strauss, 1991; le Cessie and van Houwelingen, 1994; Geys, Molenberghs, and Lipsitz,

1998; Aerts et al., 2002). In these, the full likelihood is simplified and replaced by a

more manageable function (Geys, Molenberghs, and Lipsitz, 1998). Various authors have

studied weighted and unweighted approaches, in contrast to (non-) informative cluster

sizes (Williamson, Datta, and Satten, 2003; Benhin, Rao, and Scott, 2005; Hofman, Sen,

and Weinberg, 2001; Cong, Yin, and Shen, 2007; Chiang and Lee, 2008; Wang, Kong,

and Datta, 2011).

4.3 (In)complete Sufficient Statistics and Some Known Results

The property of central interest is that of completeness (Casella and Berger, 2001,

pp. 285–286). The relevance of completeness rests on two follow-up theorems. First, the

Lehman-Scheffé theorem (Casella and Berger, 2001) states that, if a statistic is unbiased,

complete, and sufficient for a parameter θ, then it corresponds to the best mean-unbiased

estimator for θ. Second, the connection with ancillarity follows from Basu’s theorem

(Basu, 1955): a statistic that is both bounded complete and sufficient is independent

of any ancillary statistic (Casella and Berger, 2001, p. 287). The theorems are implica-

tions rather than equivalences. For example, in the sequential trial context there exist

estimators with very good properties, despite lack of completeness (Molenberghs et al.,

2014).

Liu and Hall (1999) established incompleteness of the sufficient statistic for a clinical

trial with a stopping rule, for the case of normally distributed outcomes. Liu et al. (2006)

generalized this result to the exponential family. Molenberghs et al. (2014) and Milanzi et

al. (2016) broadened it further to a stochastic stopping rule, encompassing the important

case of a completely random sample size. In the latter case, even though sample size and

data are unrelated, completeness no longer holds.

Tables 4.1 and 4.2 contain a number of illustrative examples where the sufficient

statistics are found to be (in)complete. In Table 4.1, continuous and categorical outcomes

are considered. Positive outcomes (continuous times and counts) are the subject of

Table 4.2. Some of these models are based upon Chakraborty (2015). Precise formulations

and details can be found in Appendix A.1. Examples 1 and 2, a univariate sample with

either known or unknown variance, have complete sufficient statistics. Example 3, a

univariate normal sample with coupled mean and variance, does not; here, unlike in the

previous examples, the sufficient statistic is of higher dimension than the parameter. When

the mean-variance coupling parameter τ2 is unknown (Example 3a), the sufficient statistic

and the parameter are again of the same dimension and completeness holds, unlike when

τ2 is known (Example 3b). If the statistic is restricted to either the sample sum or the
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sum of squared sample units, then it is no longer sufficient. This last situation occurs also

in Example 4, a sequential trial, where the sufficient statistic consist not only of the data

collected, but also of the sample size realized, i.e., a one-dimensional parameter needs a

two-dimensional sufficient statistic. These developments emphasize that the establishment

of either completeness or its converse requires tedious, situation-specific calculations when

using the definition. It is therefore convenient to derive a simple criterion based on the

dimensions of the parameter vector and the sufficient statistic, to be established next.

4.4 A Characterization of Incompleteness

We turn to a general characterization of incompleteness, in the exponential family with

a vector-valued parameter and minimal sufficient statistic. Group the outcomes Yi into a

vector Y , with vector-valued parameter θ and write the exponential family in the form

f(y|θ) = h̃(y) exp {η(θ)′k(y)−A(θ)} , (4.1)

where the sufficient statistic K ≡K(Y ). Consider first the situation where the function

η is everywhere of full rank. Examples 1 and 2 fall into this category. Because θ and η

are in 1-to-1 relationship, we can use θ, without loss of generality. The score equation

corresponding to (4.1) is S(θ) = ∂η/∂θ ·K − ∂A/∂θ = 0. If the transformation, η(θ),

is of full rank, then it follows that

K =

(
∂η

∂θ

)−1
∂A

∂θ
. (4.2)

Taking expectations, the right hand side of Equation (4.2) equals E(K). In the above

situation, the sufficient statistic is complete. To see this, assume that there is a function

g(k) with expectation zero for all values of θ. It then satisfies

∫
g(k)h(k) exp

{
θ′k −A(θ)

}
dk = 0, (4.3)

with obvious notation, similar to Equation (4.1) but h̃ expressed as function of k rather

than y. Applying Fubini’s theorem (Rudin, 1974), we can write Equation (4.3) as

0 =

∫
dkph(kp)e

θpkp

∫
dkp−1h(kp−1|kp)eθp−1kp−1 . . .

∫
dk1g(k1, . . . , kp)h(k1|k2, . . . , kp)e

θ1k1 .
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Table 4.1: Examples with complete and incomplete sufficient statistics (continuous and

categorical outcomes)

Ex. Setting Parameter(s) Sufficient statistic(s)

Settings with complete sufficient statistics

1 Yi ∼ N(µ, σ2), i = 1, . . . , n with µ unknown

and σ2 known

µ K1

2 Yi ∼ N(µ, σ2), i = 1, . . . , n with µ and σ2

unknown

(µ, σ2) (K1, K2)

3a Yi ∼ N(µ, τ 2µ2), i = 1, . . . , n with µ and τ 2

unknown

(µ, τ 2) (K1, K2)

6 Yi ∼ N(µ, µ), i = 1, . . . , n µ K2

7a Yi ∼ N(µ, µ2λ), i = 1, . . . , n and λ = 0 or

1/2

µ K1 or K2

8 M1 × M2 contingency table with ϕ(k1 | k2)

and π(k2)

ϕ(k1|k2), π(k2)

15 Fully observed 2 × 1 contingency table p Z21

Settings with incomplete sufficient statistics

3b Yi ∼ N(µ, τ 2µ2), i = 1, . . . , n with µ un-

known and τ 2 known

µ (K1, K2)

4 Sequential trial with stochastic stopping rule µ (K3, N)

5 Bivariate parameter, one of which known (cf.

Ex. 2)

µ (K1, K2)

7b Yi ∼ N(µ, µ2λ), i = 1, . . . , n and λ 6= 0 and

6= 1/2

µ K1, K2

9 Yi ∼ N(µ, 1), sample size N , 1 ≤ N ≤ n

with πN

µ (K3, N)

10 Y ∼ N(µ1N , σ2IN + τ 2JN ) (µ, σ2, τ 2) (K3, K4, K5, N)

11 Vector-valued data and parameter, with

completely random sample size

π(N |k) (K3, N)

12 N clusters of completely random size [K = K {(Y i)} ;

N = N {(Ni)}]

13 Y i ∼ N(µ1Ni , σ2INi+τ 2JNi ), i = 1, . . . , N (µ, σ2, τ 2) (S1ℓ, S2, S3ℓ, S4ℓ)

14 General clustered-data setting with random

cluster sizes

θ

16 Partially missing 2 × 1 contingency table p (Z21, Z1)

17 Partially missing 2 × 1 contingency table pjk (Z2jk, Z1j)

K1 =
∑n

i=1
Yi; K2 =

∑n

i=1
Y 2

i ; K3 =
∑N

i=1
Yi; K4 = Y ′Y ; K5 = Y ′JNY .

S1ℓ =
∑cℓ

i=1

∑nℓ

j−1
Y

(ℓ)
ij ; S2 =

∑L

ℓ=1

∑cℓ

i=1

∑nℓ

j−1

(
Y

(ℓ)
ij

)2

;

S3ℓ =
∑cℓ

i=1

(∑nℓ

j−1
Y

(ℓ)
ij

)2

; S4ℓ = cℓ.
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Table 4.2: Examples with complete and incomplete sufficient statistics (outcomes on

[0,+∞[)

Ex. Setting Parameter(s) Sufficient statistic(s)

Settings with complete sufficient statistics

18 Yi ∼ Poisson(λ) λ K1

19 Yi ∼ Exponential(λ) λ K1

20 Yi ∼ Integrated Exponential(λ) λ K1

Settings with incomplete sufficient statistics

21 Yi ∼ Integrated Weibull(λ, ρ) (λ, ρ) Y1, . . . , Yn

K1 =
∑n

i=1
Yi.

This leads to a telescopic series of Laplace transforms:

Fθ1(k2, . . . , kp) = Lθ1 {g(k1, . . . , kp)h(k1|k2, . . . , kp)} , (4.4)

Fθ2(k3, . . . , kp) = Lθ2 {Fθ1 (k2, . . . , kp)h(k2|k3, . . . , kp)} , (4.5)
...

Fθp
= Lθp

{
Fθp−1 (kp)h(kp)

}
= 0, (4.6)

with obvious notation. Moving step-by-step from Equations (4.6) to (4.4), the sequence

of Fθj
is zero a.e. for j running down from p−1 to 1 and then eventually g(k1, . . . , kp) = 0

a.e., establishing completeness. Looking to the bivariate Examples 2 and 5, the same is

seen for Example 2, but a different result occurs for Example 5 where one of the two

parameters is known. Then, the sufficient statistic is incomplete.

Proposition 4.1. (Characterization of a complete sufficient statistic.) Provided the pa-

rameter space is rectangular, a sufficient statistic k is complete for a parameter θ in a

exponential family model if and only if θ cannot be transformed to a parameterization η

with a proper subset η1 such that η = (η′
1,η2(η1)′)′.

Proof. The proof is based upon a more general version of Example 5.

Let η(θ) be a function to match the minimal sufficient statistic K that is not of

full rank. This can be decomposed, using the implicit function theorem, assuming the

functions involved are continuously differentiable, and then mapped as follows:

η(θ) =

(
η1

η2(η1)

)
←→ K =

(
K1

K2

)
. (4.7)

Incompleteness of the sufficient statistic would follow if a function g(k1,k2) could be
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found satisfying:

0 =

∫
dk2h2(k2)eη2

(η
1

)′k2

∫
dk1h1(k1|k2)g(k1,k2)eη1

k1 , (4.8)

0 =

∫
dk2h2(k2)eη2(η1)′k2Lη

1
{h1(k1|k2)g(k1,k2)} , (4.9)

0 =

∫
h2(k2)F (k2,η1)eη2(η1)′k2dk2. (4.10)

Now, (4.10) is not a Laplace transform. Therefore, we can choose a function F (k2,η1)

that satisfies the equation and then use the inverse Laplace transform to derive g(k1,k2).

To see that such a function can easily be found, choose:

F (k2,η1) = e−η2(η1)′k2 F̃ (k2).

With this choice, condition (4.10) simplifies to:

0 =

∫
h2(k2)F̃ (k2)dk2.

In other words, we need a function F̃ (k2) ⊥ h2(k2).

Notice the similarity between the characterization and earlier work of Lehmann (1981),

Brown (1986) and Boos and Stefanski (2013). However, our characterization leads to a

more general result and an easy to use criterion. Also Van Garderen (1997) and Keener

(2010) have already pointed out this relationship between the dimension of the sufficient

statistic and the number of parameters for curved exponential models. Evidently, their

focus is different from ours. With this characterization all examples of Tables 1 and 2

can be verified solely by counting the dimensions of the parameter vectors and sufficient

statistic. The proposition explains why Examples 1 and 2 have complete sufficient statis-

tics. This is trivial in Example 1 because the parameter and sufficient statistic are scalar.

In Example 2, the parameter θ = (µ, σ2)′ consists of two functionally independent com-

ponents. Example 3 has a bivariate sufficient statistic, like Example 2, and a bivariate

parameter θ = (µ, τ2µ2)′. Write η1 = µ and η2(η1) = τ2η2
1 , which explains why this is

an incomplete case when τ2 is known. For Example 4, consider two sample sizes n and

2n. The minimal sufficient statistic is (K3, N), and both are governed by a distribution

with sole parameter µ, trivially establishing incompleteness. This result relates to Shao

(1999, p. 110). In their Proposition 2.1, they consider the exponential family case, of full

rank, for a sufficient statistic that is complete and sufficient. Their proof is in terms of the

positive and negative parts of the normalizing function, rather than Laplace transforms.

Corollary 4.1. (Non-linearity of the function η2(η1).) For complete minimal sufficient

statistics, the function η2(η1) cannot be linear.
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Proof. To see this, assume there is such a linear function. The correspondence becomes:

η(θ) =

(
η1

Lη1

)
←→ K =

(
K1

K2

)
.

The inner product of these vectors is η′
1 {K1 + L′K2}, implying that K1 + L′K2 is a

minimal sufficient statistic of a smaller dimension, which is impossible. This establishes

that η2(η1) must be non-linear.

This corollary explains why in Example 3 the parameter is θ = (µ, τ2µ2)′ and not, for

example (µ, µ)′. The latter case is studied in Example 6, a univariate normal sample with

mean equal to the variance. The convenience of Proposition 4.1 is seen by generalizing

Examples 3 and 6 to Examples 7 and 8, respectively. The first one is a univariate normal

with coupled mean and variance, for which it is very difficult to find a function g(k) that

establishes incompleteness, with the use of the criterion is straightforward. Example 8

is a 2 × 2 contingency table with unconstrained parameterisation, leading to a complete

sufficient statistic. Similar logic will be used in the next section, to illustrate a simple yet

generic clustered-data setting. Details can be found in Appendix A.

4.5 Illustration: Clusters Following a Compound-symmetry Model

First, consider univariate outcomes with random sample size. Example 9 is a univariate

normal with unknown mean, unit variance, and random sample size. The sufficient statistic

is then incomplete. In Example 10 this is extended to normal compound-symmetry vectors,

where incompleteness evidently also applies. In Example 11 the same is seen to be true

for the entire exponential family. In Example 12 the clusters are further allowed to be of

variable size. The sufficient statistic is then still incomplete. In Example 13, this general

result is applied to normal compound-symmetry data with clusters of unequal size, not

allowing for a complete sufficient statistic. In Example 14, we allow for both random

cluster sizes and a general exponential model formulation.

The use of Proposition 4.1 is trivial in this context. There are three model parameters,

θ = (µ, σ2, τ2)′, but the sufficient statistic is necessarily of higher dimension, as soon

as there are at least two different cluster sizes. This route is easier than the explicit

construction of a function (B.1). Even though this was still practicable, the computations

for Example 4 are much more complex. This is because in Example 4 the stopping rule

depends on the data, in contrast to in our most recent Examples 9–13, where the cluster

sizes are completely random.

In summary, because η(θ) will generally be such that the dimension of η is higher

than that of θ, Proposition 4.1 applies. The qualification ‘generally’ is needed, because
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there are obvious (trivial) counterexamples. In Example 13 the sufficient statistic for σ2

is one-dimensional, as an exception to the rule. When this would hold for all parameters,

then completeness would hold. Such an example may be difficult to construct though.

Another situation is when the cluster members are independent. Then the cluster sizes

become irrelevant. If, in this special case, further
∑

iNi, the overall sample size, would be

constant, then such a clustered-data example reduces to a conventional univariate sample

with fixed sample size, and completeness follows, establishing a counterexample. Apart

from such pathological cases, virtually all practically relevant clustered data applications

have incomplete minimal sufficient statistics.

4.6 Missing Data in Contingency Tables and Beyond

First consider the simple yet generic setting of missing data in contingency tables. We then

turn to general missing data settings and end this section by bringing out commonality

between seemingly disparate settings, considered earlier in this chapter, that all lead to

incomplete sufficient statistics.

In Example 15 a fully observed 2× 1 contingency table is considered, which allows for

a complete sufficient statistic. When data are partially missing (Example 16), this is no

longer true. Example 16 and function (A.30) are reminiscent of Example 3, where function

(A.7) exists because τ2 is known. In spite of the similarity, there is an important difference

as well: q is an unknown constant that nevertheless does not need to be estimated, because

of ignorability. Admittedly, Examples 15–16 are very simple and therefore it is hard to see

the generality of the result. Thus consider a 2 × 2 contingency table with supplemental

margins as well (Example 17), then no complete sufficient statistic exists.

In the above examples, there is nothing particular about the use of contingency tables,

nor about the parameterization used for the counts, leading to the following proposition.

Proposition 4.2. (Incomplete sufficient statistics with ignorable likelihood.) Let an ex-

ponential family model f(Y |θ) admit a complete sufficient statistic when data are fully

observed, then the same model does not admit a complete sufficient statistic under ig-

norable likelihood when data are partially missing.

It is interesting to reflect upon the nature of this result. When data are partially

missing, the data are effectively stratified, with one stratum grouping the fully observed

trials and the other stratum the remaining trials. Still, the parameters of p-type (Ex-

ample 16–17) describe both strata simultaneously. Because of ignorability, it is sensible

to formulate a model where the parameter vector is of the same length as it would be

when data were complete, but the stratification nevertheless implies that the length of

the vector of sufficient statistics increases. This leads to the conclusion that this same
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phenomenon also occurs in other settings, including many non-missing-data settings. In

Example 13, the strata are defined by the different cluster sizes occurring in the data. In

that example, completeness could be restored by assuming that for every one of the clus-

ter sizes nℓ occurring, there is a separate parameter vector (µl, σ
2
ℓ , τ

2
ℓ ), together with a

multinomial vector (π1, . . . , πL) describing the probabilities with which the various cluster

sizes occur.

Other examples can now be reconsidered. In Example 9, completeness would be

established by estimating a separate parameter for each of the cluster sizes that can

occur. The parameter would then be (µ1, . . . , µn;π1, . . . , πn). Obviously, in this particular

example, this consideration is of theoretical interest only, for two reasons. First, the

parameters µN may not be of direct scientific value. Second, from a given experiment,

we can estimate only one of them, and which one it will be is random in itself. This

is different in Example 13, where typically more than one cluster size is observed in

a given experiment. The fact that the parameter depends on the cluster size is then

not a theoretical consideration, but a well studied problem often indicated by the term

informative cluster size (Chiang and Lee, 2008; Aerts et al., 2011). It is different, too, in

the missing-data examples: allowing for a different parameter in different strata (also called

patterns of missingness), brings us to the so-called pattern-mixture model (Molenberghs

and Kenward, 2007).

While an informal statement only, it is useful to see that many estimands do not allow

complete sufficient statistics because the corresponding parameters are estimated from

data where this same parameter describes two or more natural strata simultaneously. By

‘natural strata,’ we mean strata that lead to separate sufficient statistics for the same

parameter, without the opportunity to combine these into a single one. Looking at this

from a different angle, it provides a basis for the following, existing, procedure. First,

estimate separate copies of the parameter for every one of the strata. Second, combine

these using appropriate weights. This procedure was studied by Hermans et al. (2018),

based upon work by Molenberghs, Verbeke, and Iddi (2011).

4.7 Concluding Remarks

In this chapter, building upon the work reported in Liu and Hall (1999), Liu et al. (2006),

Molenberghs et al. (2014), and Milanzi et al. (2016, 2015), we have provided an easy-to-

use criterion for incompleteness of minimal sufficient statistics in univariate and multivari-

ate exponential family models. Earlier work has typically studied incompleteness directly

by means of the definition. This either implies that the existence of a non-trivial zero-

expectation function needs to be falsified, or that such a function needs to be constructed.
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Our result essentially requires checking the dimension of a minimal sufficient statistic rel-

ative to the length of the parameter vector. This turns the assessment of incompleteness

into a feasible task, whereas the definition can be daunting to use and requires ad hoc

construction of distributions of minimal sufficient statistics.

We have shown that clustered data designs with non-constant cluster sizes (random

or otherwise) do not admit complete sufficient statistics. The term ‘clustered data’ has

to be understood in the broadest sense; it encompasses longitudinal studies, multilevel

designs, etc. On the one hand, longitudinal studies can have variable cluster sizes by

design, while on the other, their cluster sizes can vary because of missing data.

The incompleteness of minimal sufficient statistics leads to the loss of some desirable

properties, such as unbiasedness and optimality. But as shown in Molenberghs et al.

(2014) and Milanzi et al. (2016, 2015), this does not need to be a serious problem in

practice. For example, it is very well-known that, when data are missing, likelihood and

Bayesian inferences can be based on the observed-data likelihood, without any correction

for the variable cluster size, i.e., without any correction for the missing-data mechanism.

Importantly, though, such methods cannot, in general, by default be claimed to be optimal,

given that the Lehman-Scheffé theorem (Casella and Berger, 2001) does not apply. The

consequences for the case of random cluster sizes, in particular informative cluster sizes,

are not widely understood. When cluster sizes follow a random mechanism (in the sense of

missing at random), it is thus possible to simply use the observed-data likelihood without

ad hoc corrections. However, one cannot claim that such an approach is ‘uniformly better’

than any of the dedicated corrections. Arguably, it is prudent to investigate candidate

methods’ operational characteristics in settings relevant for the application at hand.

In the absence of complete sufficient statistics, some interesting philosophical issues

appear. As discussed in Milanzi et al. (2015), some estimators will depend on the fact that

more data could have been collected or that some data are available that, with certain

probability, might not have been collected. They illustrated this using so-called generalized

sample averages in sequential studies. When excluding such esoteric estimators, often only

intuitively appealing estimators, such as the ordinary sample average, remain, even though

there is no complete sufficient statistic, and in spite of some small-sample bias. Note,

this shows great similarity with earlier work of Liu and Hall (1999) and Liu et al. (2006).

Our focus has been on characterizing incompleteness and, in particular, its conse-

quences for point estimators. There obviously are important implications for hypothesis

testing and interval estimation as well. An early reference is Anscombe (1949) and the

topic, especially in the context of sequential designs, has received thorough treatment in

Govindarajulu (1981), Barndorff-Nielsen and Cox (1984), and Barndorff-Nielsen and Cox

(1994). More recently, members of the author team have studied the impact of incom-
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plete sufficient statistics on estimation and hypothesis testing (Milanzi et al., 2015), and

the implications thereof for sequential designs (Milanzi et al., 2016).





Chapter 5

Optimal Weighted Estimation for

Hierarchical Models With Unequal

Cluster Sizes: Compound-Symmetry

Covariance

5.1 Introduction

In this chapter we consider the normal compound-symmetry structure to model hierarchi-

cal (or clustered) data with unequal cluster sizes. Molenberghs, Verbeke, and Iddi (2011)

introduced the so-called split-sample methodology. The focus is on entirely non-iterative

methods, bringing together the advantages of balanced data and simple averaging method-

ology. A consequence of this approach is the need for applying weights when combining

results from the K strata. This chapter establishes how results on incomplete sufficient

statistics in the context of weighted averages (Molenberghs et al., 2014; Hermans et

al., 2018) imply that there may be no optimal set of weights. Given this, pragmatically

attractive weights are proposed, in terms of efficiency, bias, and computational ease.

The remainder of the chapter is organized as follows. The compound-symmetry model

is introduced in Section 5.2 and incompleteness results are reviewed, together with im-

plications for likelihood-based estimation. Background from the pseudo-likelihood-based

split-sample method was presented earlier in Section 2.3.2. A general split-sample ap-

proach to the CS model is provided in Section 5.3 and a number of specific but practically

39
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relevant cases are considered. Details about the specifics for the CS case are presented in

Section 5.4. Section 5.5 is dedicated to a simulation study, examining situations for which

there are no closed forms on the one hand, and studying numerical performance (speed

and convergence) on the other. The data, described before in Section 3.2 are analyzed in

Section 5.6. Ramifications and recommendations for practice are offered in Section 5.7.

5.2 The Compound-symmetry Model

The general notation is outlined in Section 2.1. Let Y follow the compound-symmetry

normal law Y ∼ N(µ1n, σ
2In + dJn). This is a three-parameter multivariate normal

model with a common mean µ, a common variance σ2 + d, and common covariance d.

First incompleteness of the sufficient statistic is shown, and then continued with likelihood

estimation. For both, we start from the log-likelihood function.

5.2.1 Incompleteness

The data-dependent terms in the log-likelihood can be written as:

K∑

k=1

ck∑

i=1

−1

2

(
Y

(k)
i − µ1nk

)′ (
σ2Ink

+ dJnk

)−1
(
Y

(k)
i − µ1nk

)

=

K∑

k=1

ck∑

i=1

−1

2

(
Y

(k)
i − µ1nk

)′
(
Ink
− d

σ2 + nkd
Jnk

)(
Y

(k)
i − µ1nk

)

=

K∑

k=1

ck∑

i=1

µ

σ2 + nkd




nk∑

j=1

Y
(k)
ij


− 1

2σ2




K∑

k=1

ck∑

i=1

nk∑

j=1

Y
(k)2
ij




+

K∑

k=1

ck∑

i=1

d

2σ2(σ2 + nkd)




nk∑

j=1

Y
(k)
ij




2

. (5.1)

The three terms in (5.1) are qualitatively different. Indeed, the middle one corresponds

to a single sufficient statistic, the sum of all squares across clusters, while the first and

last split into as many sufficient statistics as there are unique cluster sizes. The sufficient
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statistics are:

W1k =

ck∑

i=1

nk∑

j=1

Y
(k)
ij , (5.2)

W2 =

L∑

k=1

ck∑

i=1

nk∑

j=1

(
Y

(k)
ij

)2

, (5.3)

W3k =

ck∑

i=1




nk∑

j=1

Y
(k)
ij




2

, (5.4)

W4k = ck. (5.5)

Using the characterisation of Chapter 4, essentially stating that when the dimension

of the sufficient statistic is larger than the dimension of the parameter vector, the suf-

ficient statistic is no longer complete. The proof using the definition can be found in

Appendix B.1.

5.2.2 Likelihood-based Estimation of the CS Model

Similar in spirit to (5.1), but now using all terms, the log-likelihood can be written as

ℓ(µ, σ2, d) =

K∑

k=1

ℓk(µ, σ
2, d), (5.6)

with the cluster size specific log-likelihood term:

ℓk(µ, σ
2, d) = −1

2

ck∑

i=1

{
ln
[
σ2nk + nkσ

2(nk−1)d
]

+ (Y
(k)
i − µ1nk

)′ 1

σ2

(
Ink
− d

σ2 + nkd
Jnk

)
(Y

(k)
i − µ1nk

)

}
. (5.7)

Using derivations similar to those in Molenberghs, Verbeke, and Iddi (2011), the cluster

size specific log-likelihood can be maximized analytically assuming that there is a separate

parameter per cluster size. This means, replacing ℓk(µ, σ2, d) by ℓk(µk, σ2
k, dk), we can

consider the kernel of the log-likelihood, in general for K cluster sizes, and allowing for

the parameter vector to change with cluster size:

ℓ
(
{µk}k ,

{
σ2
k

}
k
, {dk}k

)
∝ −1

2

K∑

k=1

ck∑

i=1

{ln |Σnk
|

+
(
y

(k)
i − µnk

)′

Σ−1
nk

(
y

(k)
i − µnk

)}
, (5.8)
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where µk = µk1N and Σnk
= σ2

kInk
+ dkJnk

. The score functions are presented in

Appendix B.2. Solving these score functions (B.2)–(B.4) leads to:

µ̂k =
1

cknk

ck∑

i=1

nk∑

j=1

Y
(k)
ij , (5.9)

σ̂2
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1

cknk(nk − 1)

(
nk

ck∑
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Z
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i Z
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ck∑
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Z
(k)′

i Jnk
Z

(k)
i

)
, (5.10)

d̂k =
1

cknk(nk − 1)

(
ck∑

i=1

Z
(k)′

i Jnk
Z

(k)
i −

ck∑

i=1

Z
(k)′

i Z
(k)
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)
, (5.11)

where Z(k)
i =

(
Y

(k)
i − µk1nk

)
.

When the cluster size is constant, the compound-symmetry model has closed form

ML estimators, given by (5.9)–(5.11). Closed-form estimators for the variance-covariance

matrix of the estimator exist as well (Molenberghs, Verbeke, and Iddi, 2011). For the

mean, the variance is:

var(µ̂k) =
σ2
k + nkdk
cknk

. (5.12)

The expressions for the variance-covariance structure of (σ̂2
k, d̂k) is:

var

(
σ̂2
k

d̂k

)
=

2σ4
k

cknk(nk − 1)

(
nk −1

−1
σ4

k+2(nk−1)dkσ
2
k+nk(nk−1)d2

k

σ4
k

)
. (5.13)

The mean parameter is independent of the variance components.

The above results can be used when a separate parameter vector is estimated for

each of the cluster sizes and, as a special case, when there is only one cluster size. Four

features that will be of use in what follows are: (a) there are closed forms; (b) the

sufficient statistic is complete; (c) the estimator is unique minimum variance unbiased;

(d) the mean parameter estimator and the variance parameter estimator are independent.

All of these results are lost when K ≥ 2. We briefly sketch the lack of closed-form

solutions in this case in Appendix B.2.2.

The lack of a closed form is well known, but we highlight a few relevant features here.

More detail is given in Appendix B.3, where the following identity is derived:

µ̂ =

∑K
k=1

nkck

σ2+nkd
µ̂k

∑K
k=1

nkck

σ2+nkd

. (5.14)

Examining (5.14) suggests weighted averages:

µ̃ =

K∑

k=1

akµ̂k, σ̃2 =

K∑

k=1

bkσ̂2
k, d̃ =

K∑

k=1

gkd̂k. (5.15)
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This idea is very similar to that in Molenberghs, Verbeke, and Iddi (2011), who split a

sample in sub-samples, analyzed each of these separately, and then combined the result

in an overall estimator. They studied the CS case, but only for a single cluster size.

The total number of clusters was then split into M parts comprising an equal number of

clusters. We will modify these ideas to the case of unequal cluster sizes, with a variable

number of clusters per split.

5.3 Split-sample Methods for Clusters of Variable Size

The derivations are based on general pseudo-likelihood principles, reviewed in Sec-

tion 2.3.1.

To fix ideas, consider log-likelihood (5.8). When used as an instrument to estimate a

single vector (µ, σ2, d), this function can be viewed as a pseudo-likelihood. This setting

can be generalized by assuming that a dataset, consisting of repeated measures per sub-

ject, is divided into K subgroups, each containing ck independent replicates. Consider

the pseudo-likelihood:

pℓ(θ) =

K∑

k=1

ℓ(θk|y(k)
1 , . . . ,y(k)

ck
). (5.16)

While the underlying principle is similar to (2.6), it is not identical. The similarities are:

(1) all θk are assumed to be different, allowing for separate, even parallel, estimation; (2)

θ stacks all vectors θk; (3) the parameter of interest θ∗, is found from an appropriate

combination of the θk. Parallel estimation was also followed by Scott et al. (2013) and

Neiswanger, Wang, and Xing (2013).

There are important differences, however. Here, and in the remainder of the chapter,

we assume that ℓ(θk|y(k)
1 , . . . ,y

(k)
ck ) is the likelihood that we would have, should group

k be the only one in the data. That is, the individual likelihood contributions are not

altered, rather the data are partitioned. This is similar to the independent partitioning

done by Molenberghs, Verbeke, and Iddi (2011). In line with their derivations, (2.7) can

also be used here. Given that ℓk(θk) is a genuine likelihood, its contributions to I0(θ)

and I1(θ) are identical, up to the sign. As a result, I0(θ)−1I1(θ)I0(θ)−1 = −I0(θ)−1, a

block-diagonal matrix with blocks of the form I0(θk).

We now go further with pseudo-likelihood for split samples as discussed in Sec-

tion 2.3.2. In general this produces the same estimator as full likelihood when all subjects

follow the same distribution. This is in contrast with the CS settings outlined here.

Note that subjects in different sub-samples are allowed to have the same distribution,

but that subjects in the same sub-sample must have the same distribution. This covers
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the running example of CS clusters, partitioned according to cluster size. However, it

is possible to further sub-divide such a sub-sample in various sub-samples, all with the

same cluster size. This is sensible, for example, in very large databases. An extreme

example follows when sub-samples consist of a single independent replicate, useful, for

example, in a meta-analysis with large individual studies. This limiting situation can also

be considered with CS data, because all clusters (except these of size 1) contribute to all

three parameters.

Consider pseudo-likelihood in this general case [see also Eq. (5.16)]. Assume that θ∗

is a vector of length p, and that each θk is a separate copy of θ∗. Then it can be shown

that the generic combination rules are:

θ̃
∗

=
K∑

k=1

Akθ̂k, (5.17)

var(θ̃
∗
) =

K∑

k=1

AkVkA
′
k, (5.18)

with Vk = I0(θk)−1. We use the symbol θ̃
∗

to emphasize that this is not necessarily the

maximum likelihood estimator even though, in our formalism, θ̂k is the maximum likeli-

hood estimator when restricting attention to sub-sample k. Equation (5.18) is appropriate

only when the weights Ak are free of the parameters to be estimated. We return to this

at the end of the section.

Weighting Schemes Not every choice of the Ak leads to an unbiased estimator. To

enforce unbiasedness, consider the requirement

θ = E
(
θ̂

∗
)

=

K∑

k=1

AkE
(
θ̂k

)
=

(
K∑

k=1

Ak

)
θ,

whence Ip =
∑K
k=1 Ak. Note that this requirement is satisfied for (2.9). This suggests

two obvious choices:

Constant weights. Set Ak = (1/K)Ip.

Proportional weights. Set Ak = (ck/N)Ip.

Constant weights are the obvious choice when all subjects are i.i.d. and partitioning is in

sub-samples of equal size. Proportional weights are obvious in the i.i.d. case, but with

sub-samples of varying size.

The informal ‘obvious’ can be formalized by considering optimal weights. For this,

define the objective function:

Q =

K∑

k=1

AkVkA
′
k − Λ

(
K∑

k=1

Ak − Ip
)
,
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where Λ is a matrix of Lagrange multipliers. Taking the first derivative of Q w.r.t. Ak

leads to Ak = ΛV −1
k /2. Because the Ak sum to the identity, Λ = 2

(∑K
m=1 V

−1
m

)−1

and finally:

Optimal weights. These take the form:

Aopt
k =

(
K∑

m=1

V −1
m

)−1

V −1
k . (5.19)

With this choice, (5.17)–(5.18) become:

θ̃
∗

= θ̂
∗

=

(
K∑

k=1

V −1
k

)−1 K∑

k=1

V −1
k θ̂k, (5.20)

var(θ̃
∗
) = V =

(
K∑

k=1

V −1
k

)−1

. (5.21)

The optimal weights lead to the maximum likelihood estimator. To apply the optimal

weights in practice is typically not straightforward, however. First, a closed form expression

for the Vk will not always exist. Second, even if closed forms exist, as in the CS case,

these may depend on the unknown parameters. The optimal weights may nevertheless

suggest sensible choices and we describe a couple of these. They will be illustrated in the

next section for the CS case.

Scalar weights. In some cases, while the optimal weights may be unwieldy, one could

consider scalar weights by requiring the Ak to be diagonal. This would imply that

each component of θ∗, θ∗
r , say, is a linear combination

θ̃∗
r =

K∑

k=1

ak,r θ̂k,r,

where then formally Ak = diag(ak,1, . . . , ak,p). The optimization route, followed for

unrestricted Ak, can then be followed component-wise as well. Because the class of

Ak over which to optimize is restricted, the resulting optimum will not necessarily

correspond to the maximum likelihood solution. The rationale for choosing this

route is computational convenience, and its advantages will vary from problem to

problem.

Iterated optimal weights. The following iterative scheme can be followed:

1. Estimate θ̂k.

2. Compute an initial estimator for θ∗, θ∗(0), say, using a simple weighting

method, e.g., using constant or proportional weights.
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3. Using the current parameter estimate, θ∗(t) say, calculate V (t+1)
k .

4. Determine:

θ∗(t+1) =

(
K∑

k=1

[
V

(t+1)
k

]−1
)−1 K∑

k=1

[
V

(t+1)
k

]−1

θ̂k.

5. Repeat steps 3–4 until convergence.

This scheme can always be followed and it has the advantage that the data need

only be analyzed once, to yield θ̂k. From this point on, calculations involve algebraic

expressions for the parameters only.

Approximate optimal weighting. Related to the previous method, a non-iterative ap-

proximation consists of replacing Vk by Vk(θ̃k) in (5.20). Here, θ̃k could be, for

example: (a) the sub-sample specific estimator θ̂k; (b) θ̃∗ obtained using a simple

scheme, such as constant or proportional weighting. This method avoids all further

iteration, once the θk have been determined.

Approximate optimal weighting is a method that could be considered when the use of

(5.18) might lead to underestimation of the variability, because the Ak now depend on

the parameters estimated from stratum k. To properly account for this extra source of

uncertainty, first note that

∂

∂θk
(Akθk) = Ak +

(
∂Ak
∂θk1

θk, · · · ,
∂Ak
∂θkp

θk

)
, (5.22)

where θkj , j = 1, . . . , p ranges over the components of θk. Writing Wk = V −1
k for ease

of notation,

∂Ak
∂θkj

= W−1 ∂Wk

∂θkj
(Ip −W−1Wk), (5.23)

with Ip the p-dimensional identity matrix. Plugging (5.23) into (5.22), the proper delta-

method approximation to the variance is:

var(θ̃
∗
) ≃

K∑

k=1

(Ak +Bk)Vk(Ak +Bk)′, (5.24)

with

Bk = (1′
p ⊗ Ip)(Ip ⊗W−1)diag

(
∂Wk

∂θk1
, . . . ,

∂Wk

∂θkp

)[
Ip ⊗ (Ip −W−1Wk)θ

]
,

and ⊗ signifying Kronecker product.



5.4. Partitioned-sample Analysis for the Compound-symmetry Model 47

5.4 Partitioned-sample Analysis for the Compound-symmetry

Model

For the normal compound-symmetry model, introduced in Section 5.2, a variety of options

exists. We will sketch these here, and then consider some in greater detail.

Consider first the i.i.d. case, where all clusters are of the same size. Full maximum

likelihood then leads to a closed-form solution. Molenberghs, Verbeke, and Iddi (2011)

studied splitting the sample in dependent sub-samples for this case, and showed that

splitting leads to efficiency loss for the variance components but not for the mean. They

split the sequences of repeated measures in portions of equal size. Unequally sized splits

could also be considered, although the rationale for this may not be compelling. They

did not consider splits in independent sub-samples. We will do so here, in Section 5.4.2,

both for sub-samples of equal as well as for unequal size.

Turning to the case of variable cluster size, we know from Section 5.2.2 that full

maximum likelihood does not lead to a closed-form solution. We will study in more detail

the natural splitting into sub-samples of constant cluster size.

A special case, for both the i.i.d. and unequal cluster-size settings, is the cluster-by-

cluster analysis. We will apply our methodology, outlined in Section 5.3 to this case, and

contrast it with an ad hoc moment-based set of estimators.

5.4.1 Variable Cluster Size

5.4.1.1 Optimal Weights

As we will see in Section 5.4.1.3, scalar and optimal (hence, vectorized) weights do not

make a difference for the mean parameter, because of the independence between the mean

and the covariance parameters.

We can therefore consider the mean parameter separately from the covariance pa-

rameters. Let vk be the variance of the mean in stratum k, and Vk the corresponding

variance-covariance matrix for the variance components. Applying optimal weight (6.19)

to the mean produces:

µ̃ =

(
K∑

k=1

cknk

σ̂2
k + nkd̂k

)−1 K∑

k=1

cknkµ̂k

σ̂2
k + nkd̂k

. (5.25)

The corresponding estimators for the variance components, specific to a cluster size,

are given by (5.10) and (5.11). Using these, and expression (5.13) for the variance, it
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follows that the optimal weighted estimator satisfies:

(
σ̃2

d̃

)
=

(
K∑

k=1

V −1
k

)−1 K∑

k=1




Qk

2σ̂2
k

− dk(2σ̂2
k

+nkd̂k)

2σ̂4
k

(σ̂2
k

+nk d̂k)2
Rk

Rk

2(σ2
k

+nkdk)2


 , (5.26)

with Qk and Rk as in (B.5) and (B.6), respectively.

5.4.1.2 Iterated and Approximate Optimal Weights

Evidently, the principles of iterated and approximate optimal weights can be applied here.

Replacing the variance components in (5.25) by their expectation leads to:

µ̃ =

(
K∑

k=1

cknk
σ2 + nkd

)−1 K∑

k=1

cknkµ̂k
σ2 + nkd

. (5.27)

If we do the same for the mean, on both sides of the equality, we obtain:

µ =

(
K∑

k=1

cknk
σ2 + nkd

)−1 K∑

k=1

cknkµ

σ2 + nkd
. (5.28)

Although (5.25) cannot directly be used, because of circularity, (5.27) and (5.28) are

available to us.

Replacing the variance components on the right hand side of (5.26) by their expecta-

tions leads to:
(
σ̃2

d̃

)
=

(
K∑

k=1

V −1
k

)−1 K∑

k=1

(
Qk

2σ2 − d(2σ2+nkd)
2σ4(σ2+nkd)2Rk

Rk

2(σ2+nkd)2

)
. (5.29)

Using the explicit expressions for these, and using the fact that the expectation must be

(σ2, d)′, (5.26) leads to the following identity:
(
σ2

d

)
= V

K∑

k=1

cknk
2(σ2 + nkd)

(
σ2+(nk−1)d

σ2

1

)
. (5.30)

Expressions (5.25) and (5.26) can be used for approximate weighting, by plugging in,

as is done, on the right hand side, the cluster-size specific mean and variance components.

Expressions (5.27) and (5.29) can be used for iterated weighting, as discussed in

the previous section. Note that the estimator for the mean depends on the variance

components, but not vice versa. This dependence is insightful: there is independence

between mean and variance components for every cluster-size specific stratum separately.

As a consequence, µ̃ on the one hand and σ̃2 and d̃ on the other can be determined

separately, provided the latter are done first.
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Expressions (5.28) and (5.30) move beyond the previous schemes and exist by virtue

of their explicit expressions. In (5.30) an initial consistent estimator for the variance

components can be used on the right hand side. Once the left hand side has been

determined, the result can be plugged in again on the right, until convergence. Once

done, the final variance component estimates can be used in (5.28) and the process

repeated for µ, until convergence.

5.4.1.3 Scalar Weights

In this case, Ak equals diag(ak, bk, gk), with the scalars as in (5.15). Obviously, the

conditions for unbiased estimators are
∑K

k=1 ak =
∑K

k=1 bk =
∑K
k=1 gk = 1.

The stratum-specific estimators are given by (5.9)–(5.11) and their variance-covariance

structure by (5.12)–(5.13). The objective function to find the optimum is

Q =

K∑

k=1

a2
kvar(µ̂k)− λ

(
K∑

k=1

ak

)
.

Logic, similar to the vector case, and using the explicit expressions for the variances, leads

to:

ak =

cknk

σ2+nkd∑K
m=1

cmnm

σ2+nmd

=

cknk

(1−ρ)+nkρ∑K
m=1

cmnm

(1−ρ)+nmρ

, (5.31)

bk =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

, (5.32)

gk =

cknk

σ4

nk−1 +2σ2d+nkd2

∑K
m=1

cmnm

σ4

nm−1 +2σ2d+nmd2

=

cknk(nk−1)
(1−ρ)2+[2ρ(1−ρ)+nkρ2](nk−1)∑K

m=1
cmnm(nm−1)

(1−ρ)2+[2ρ(1−ρ)+nmρ2](nm−1)

, (5.33)

where ρ = d/(σ2 + d). Several observations are worth making. First, the coefficients

depend on the parameters in different ways. While bk is independent of the parameters,

ak has denominators linear in σ2 and d (equivalently, in ρ), and gk has quadratic functions

instead.

These weights, like the optimal ones, depend on the parameters. Evidently, they can be

made part of an iterative scheme, exactly like for the vector-valued weights. The added

advantages are: (1) matrix computations simplify to scalar computations; for models

with relatively few parameters, like the one here, this is a small advantage; (2) more

importantly, approximations can be considered for each parameter separately.

Direct calculations show that the variance for the weighted estimator of the mean,

using weights (5.31), is equal to that of maximum likelihood. For this parameter, the

weighted split-sample estimator is the maximum likelihood estimator, in spite of the use
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of the scalar weight. This is to be expected, because Vk is block-diagonal and because

of independence of the mean estimator from the variance components estimators within

a given cluster size. This implies that the optimally weighted estimator and the scalar

estimator coincide for the mean. However, they are different for the variance components.

5.4.1.4 Approximate Optimal Scalar Weights

To illustrate the logic of this method, consider (5.31)–(5.33) for the case where cluster

sizes, for a good majority of the clusters, are sufficiently large. Taking limits for nk → +∞
produces:

aapp
k = gapp

k = ck/N. (5.34)

When this approximation is sensible, the very simple proportional weights follow. These

approximations are exact, for ak and gk, when ρ = 1. They deteriorate when ρ becomes

smaller. For example, in case ρ = 0:

ak(ρ = 0) =
cknk∑K

m=1 cmnm
,

gk(ρ = 0) =
cknk(cknk − 1)

∑K
m=1 cmnm(cmnm − 1)

≈ c2
kn

2
k∑K

m=1 c
2
mn

2
m

.

A reasonable approximation for bk is

bapp
k =

cknk∑K
m=1 cmnm

, (5.35)

which sets it equal to ak(ρ = 0). In other words, the information for σ2 is determined more

in terms of the number of measurements, rather than the number of clusters. Dropping

the nk from the above formula is sensible only when cluster sizes are not too different

from one another.

Figure 5.1 depicts optimal scalar weights (5.31)–(5.33), alongside the apparently sim-

plistic proportional weights, for two of the five NTP datasets, chosen such as to represent

two relatively different empirical cluster size distributions. In both cases, there is a con-

siderable range of cluster sizes, approximately 1 to 20. At the same time, the frequencies

of the cluster sizes vary considerably. The values for ak and gk are almost identical to the

proportional weights. While a small discrepancy for bk is noticeable, and understandable

in view of (5.35), the proportional weights seem to offer a sensible choice. This issue will

be examined further in the data-analytic Section 5.6.
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Figure 5.1: NTP Data. Scalar weights: proportional and optimal scalar versions for EG

and TGDM datasets. The optimal scalar weights are computed for ρ = d/(σ2 +d) = 0.5.

5.4.2 The Special Case of Common Cluster Size, Splits of

(Un)equal Size

When nk ≡ n is constant, (5.31)–(5.33) reduce to:

ak = bk = gk = ck/N, (5.36)

Hence, while ak = bk reduce to proportional weights, this is not true for gk: there is an

impact of the partitioning structure. When further ck is constant, we obtain ak = bk =

gk = c/N = 1/K, and thus, evidently, equal weights follow. Both the similarities and

subtle differences with the results from Section 5.4.1.4 are worth pointing out. Expressions

(5.34) and (5.36) are identical except for the parameter σ2.
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5.4.3 Cluster-by-cluster Analysis

The expressions presented earlier in this section, using optimal weights and variations on

this theme, can be applied when the partitioning is as extreme as possible: a single cluster

per stratum. This sets all ck ≡ 1. Evidently, the nk will then no longer be unique, but

that is immaterial; while we make use of the fact that the cluster size is constant within

a stratum, it does not need to be different between strata. We examine this case in more

detail in Appendix Section B.4.1. In particular, we derive under what asymptotics such

an estimator is consistent.

5.5 Simulation Study

A first, limited, simulation study was carried out to examine the behavior of the partition-

ing method. Details are given in Appendix Section B.5. Three settings were considered:

(1) ck · nk is kept constant with the factors taking different values; (2) ck is kept con-

stant; (3) nk is kept constant. For all of these, k goes from 1 to 4, so that there are

four sub-samples. Apart from full likelihood, a series of weights was considered: equal,

proportional (i.e., proportional to ck), size proportional (i.e., proportional to ck · nk),

approximate optimal, and iterated optimal.

From the results it is clear that equal weights are not a good choice. For µ and

d, proportional weights are excellent, while for σ2 so are the size proportional weights.

Iterated optimal weights perform considerably better than approximate optimal weights,

in the sense that the latter, like equal weights, arguably should not be considered for

practice. When comparing iterated and approximate optimal weights, the former are

more computationally intensive.

However, iterated optimal weights give results very close to proportional weights (for

µ and d) and to size proportional weights (for σ2). Most importantly, all of these results

are extremely close to the ones obtained from maximum likelihood.

As a consequence, we have a simple, non-iterative set of weights at our disposal, free

of unknown parameters, with excellent performance.

A second simulation study compares the proposed methods to two alternatives: full

maximum likelihood and multiple imputation. Details are reported in Appendix Sec-

tion B.6. The most striking conclusion is that closed-form solutions are very much faster

than their alternatives, while at the same time yielding the most precise results. The time

gain of our fastest method relative to standard maximum likelihood using PROC MIXED

ranges from 5 times to 30,000 times faster.
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5.6 Application: NTP Data

The data, introduced in Section 3.1, are here analyzed in three ways. In Section 5.6.1

maximum likelihood estimators are presented, with split sampling, where splitting is by

cluster size and using various weighting schemes. In Section 5.6.2, a dose effect is added

to these. Finally, the cluster-by-cluster methodology of Section 5.4.3 is illustrated in

Section 5.6.3.

5.6.1 Splitting by Cluster Size, No Dose Effect

Tables 5.1–5.3 present (restricted) maximum likelihood estimates (standard errors), to-

gether with those from various weighted estimators. The standard CS model is fitted to

the fetal weight outcome, ignoring the dose effect. Because there is an effect of dose on

litter size, the mean is associated with cluster size. It is therefore interesting to assess the

impact of this on the split-sample estimators, when compared to the MLEs.

The ML and REML are very similar, with equal point estimates for µ, nearly equal

estimates for σ2, and similar estimates for d. The equality for the mean estimator is known

for the CS case. The difference in the estimates of σ2 arises because the denominator

used in its calculation is, for ML, the total number of fetuses and, for REML, the same

figure less one. For d, the difference is in terms of the cluster sizes (division by ni or

ni−1), which is more noticeable. All weighted estimators, except with equal weights, lead

to very similar point estimates; this is in line with the simulation results. Even for equal

weights, the difference is not worrisome. Proportional, equal, and approximate scalar

weights are parameter-free and depend at most on the cluster size and/or the number of

clusters per size. This explains why these estimators yield standard errors similar to the

likelihood-based ones. Not surprisingly, because of their deviation from optimality, equal

weights lead to increased uncertainty.

For the scalar and optimal estimators two issues need to be borne in mind. First,

in principle they require knowledge of the true parameters. In the absence of these,

plug-in estimates were used. Because of the independence between mean and variance

parameters, both methods produce the same results for µ. Also, the estimates for µ

are similar to the likelihood-based ones. For σ2, this scalar-weight method works better

than the optimal, matrix-based one. Because of their matrix nature, optimal weights

are less stable when approximated. The standard errors are underestimated because

uncertainty, stemming from plugging in the weights, is ignored, when using the ‘simplified’

precision estimates. When rectified (‘proper’ weights), there is no difference for the mean

parameter, because the weights are parameter-free, but there is a strong difference for

the variance components. Once the proper standard errors are calculated, it is clear that
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Table 5.1: NTP Data (DEHP). Cluster-by-cluster analysis. Maximum likelihood and

weighted split-sample estimates (standard errors): (a) ML: maximum likelihood; (b)

REML: restricted maximum likelihood; (c) Prop.: proportional weights; (d) Equal: equal

weights; (e) Approx. sc.: like proportional weights, except that for bk (5.35) is used; (f)

Scalar: scalar weights, with the sub-sample specific weights plugged in for the parameters

figuring in the weights; (g) Opt.: optimal weights, with the sub-sample specific weights

plugged in for the parameters figuring in the weights. Proper: proper variances for optimal

weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(B.25)(B.26)(B.27)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92080 0.92080

σ2 0.01877 0.01877 0.02122 0.02244 0.01895 0.01871 0.01246

d 0.01181 0.01195 0.00951 0.01016 0.00951 0.00085 0.00087

s.e.(µ̂) 0.01149 0.01155 0.01076 0.01360 0.01076 0.00766 0.00766 0.00766

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094 0.00092 0.00061 0.00138

s.e.(d̂) 0.00196 0.00199 0.00210 0.00293 0.00210 0.00048 0.00045 0.00340

Two-stage [(B.25)(B.30)(B.31)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92119 0.92119

σ2 0.01877 0.01877 0.01868 0.01931 0.01696 0.01679 0.01155

d 0.01181 0.01195 0.01204 0.01329 0.01204 0.00362 0.00376

s.e.(µ̂) 0.01149 0.01155 0.01169 0.01496 0.01169 0.00901 0.00901 0.00901

s.e.(σ̂2) 0.00084 0.00084 0.00092 0.00127 0.00074 0.00072 0.00057 0.02404

s.e.(d̂) 0.00196 0.00199 0.03045 0.02915 0.03045 0.02537 0.00087 0.27337

Unbiased two-stage [(B.25)(B.34)(B.35)]

µ 0.90718 0.90716 0.90602 0.89558 0.90602 0.92195 0.92195

σ2 0.01877 0.01877 0.02122 0.02244 0.01895 0.01871 0.01244

d 0.01181 0.01195 0.01390 0.01609 0.01390 0.00448 0.00467

s.e.(µ̂) 0.01149 0.01155 0.01257 0.01679 0.01257 0.00958 0.00958 0.00958

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094 0.00092 0.00061 0.00172

s.e.(d̂) 0.00196 0.00199 0.00291 0.00447 0.00291 0.00101 0.00102 0.00634

there is information loss because of using plug-in estimates in the weights, rather than

the true ones.
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Table 5.2: NTP Data (EG). Cluster-by-cluster analysis. Maximum likelihood and weighted

split-sample estimates (standard errors): (a) ML: maximum likelihood; (b) REML: re-

stricted maximum likelihood; (c) Prop.: proportional weights; (d) Equal: equal weights;

(e) Approx. sc.: like proportional weights, except that for bk (5.35) is used; (f) Scalar:

scalar weights, with the sub-sample specific weights plugged in for the parameters figuring

in the weights; (g) Opt.: optimal weights, with the sub-sample specific weights plugged in

for the parameters figuring in the weights. Proper: proper variances for optimal weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(B.25)(B.26)(B.27)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.84133 0.84133

σ2 0.00886 0.00886 0.00885 0.00899 0.00879 0.00878 0.00608

d 0.01704 0.01724 0.01606 0.01536 0.01606 0.01381 0.01408

s.e.(µ̂) 0.01402 0.01410 0.01393 0.01485 0.01393 0.01346 0.01346 0.01346

s.e.(σ̂2) 0.00041 0.00041 0.00046 0.00051 0.00044 0.00044 0.00031 0.00328

s.e.(d̂) 0.00265 0.00269 0.00264 0.00272 0.00264 0.00230 0.00230 0.00476

Two-stage [(B.25)(B.30)(B.31)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.84100 0.84100

σ2 0.00886 0.00886 0.00803 0.00814 0.00802 0.00802 0.00559

d 0.01704 0.01724 0.01688 0.01621 0.01688 0.01476 0.01499

s.e.(µ̂) 0.01402 0.01410 0.01423 0.01522 0.01423 0.01379 0.01379 0.01379

s.e.(σ̂2) 0.00041 0.00041 0.00037 0.00041 0.00037 0.00037 0.00029 0.03410

s.e.(d̂) 0.00265 0.00269 0.02814 0.02555 0.02814 0.02632 0.00243 0.05214

Unbiased two-stage [(B.25)(B.34)(B.35)]

µ 0.82952 0.82952 0.83342 0.84653 0.83342 0.83911 0.83911

σ2 0.00886 0.00886 0.00885 0.00899 0.00879 0.00878 0.00608

d 0.01704 0.01724 0.01857 0.01833 0.01857 0.01657 0.01684

s.e.(µ̂) 0.01402 0.01410 0.01493 0.01665 0.01493 0.01452 0.01452 0.01452

s.e.(σ̂2) 0.00041 0.00041 0.00046 0.00051 0.00044 0.00044 0.00031 0.00363

s.e.(d̂) 0.00265 0.00269 0.00302 0.00333 0.00302 0.00271 0.00271 0.00533

5.6.2 Splitting by Cluster Size, With Dose Effect

While the above results illustrate the explicit derivations in this thesis (i.e., with a constant

mean), the data analysis in Section 5.6.1 does not do full justice to the actual design

of the experiment, because the question of real scientific interest is the dose-response
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Table 5.3: NTP Data (DYME). Cluster-by-cluster analysis. Maximum likelihood and

weighted split-sample estimates (standard errors): (a) ML: maximum likelihood; (b)

REML: restricted maximum likelihood; (c) Prop.: proportional weights; (d) Equal: equal

weights; (e) Approx. sc.: like proportional weights, except that for bk (5.35) is used; (f)

Scalar: scalar weights, with the sub-sample specific weights plugged in for the parameters

figuring in the weights; (g) Opt.: optimal weights, with the sub-sample specific weights

plugged in for the parameters figuring in the weights. Proper: proper variances for optimal

weights

Optimal

Par. ML REML Prop. Equal Approx. sc. Scalar Simpl. Proper

Weighted [(B.25)(B.26)(B.27)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.90166 0.90166

σ2 0.01031 0.01031 0.01072 0.01071 0.01034 0.01031 0.00700

d 0.03657 0.03695 0.03102 0.03445 0.03102 0.00745 0.00755

s.e.(µ̂) 0.01926 0.01936 0.01780 0.02502 0.01780 0.01257 0.01257 0.01257

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047 0.00046 0.00033 0.00308

s.e.(d̂) 0.00529 0.00537 0.00570 0.01043 0.00570 0.00159 0.00159 0.00329

Two-stage [(B.25)(B.30)(B.31)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.90009 0.90009

σ2 0.01031 0.01031 0.00975 0.00964 0.00945 0.00942 0.00650

d 0.03657 0.03695 0.03199 0.03552 0.03199 0.00836 0.00845

s.e.(µ̂) 0.01926 0.01936 0.01804 0.02535 0.01804 0.01297 0.01297 0.01297

s.e.(σ̂2) 0.00044 0.00044 0.00042 0.00059 0.00039 0.00039 0.00030 0.02568

s.e.(d̂) 0.00529 0.00537 0.03433 0.03113 0.03433 0.02215 0.00173 0.04036

Unbiased two-stage [(B.25)(B.34)(B.35)]

µ 0.84142 0.84141 0.84108 0.84861 0.84108 0.89672 0.89672

σ2 0.01031 0.01031 0.01072 0.01071 0.01034 0.01031 0.00700

d 0.03657 0.03695 0.03690 0.04514 0.03690 0.01027 0.01037

s.e.(µ̂) 0.01926 0.01936 0.01937 0.02989 0.01937 0.01390 0.01390 0.01390

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047 0.00046 0.00033 0.00353

s.e.(d̂) 0.00529 0.00537 0.00718 0.01542 0.00718 0.00205 0.00205 0.00382

relationship. Let xi be the dose administered to cluster i, taking one out of 4 to 5

values. Recall that the dose levels for the DEHP study are given in Table 3.1. The model

then becomes Y i ∼ N
(
{β0 + β1xi} 1n, σ

2In + dJn
)
. Because the mean and covariance

parameters are functionally and statistically independent within a sub-sample of constant
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cluster size, the considerations presented for the constant-mean case will remain valid. The

results of fitting this extended model to the DEHP, EG, and DYME compounds, under ML

(and REML) on the one hand, and using split-sample methodology (with proportional,

equal, and approximate scalar weights) on the other, are presented in Table 5.4. The

results are comforting, showing that proportional and approximate scalar weights are a

sensible choice. This consistent with theoretical considerations, the simulations results,

and the analysis in Section 5.6.1.

5.6.3 Cluster-by-cluster Methods

Next, we illustrate the cluster-by-cluster methods. Results are presented in Tables 5.1–

5.3, for DEHP, EG, and DYME, respectively. For brevity, attention here is confined to

the case of no dose effect.

We consider three alternatives. In all three cases, (B.25) is used for the mean. For

the variance components, the pairs (B.26)–(B.27), (B.30)–(B.31), and (B.34)–(B.35) are

used, respectively. Because these expressions are derived for a given cluster size, we need

to supplement them with a weighting method. For comparison, the same choices are

made as reported in Tables 5.1–5.3.

Even though the same estimator per cluster size is used for the mean in all three

cases, the overall result is different for scalar and optimal weights because these depend

on the estimated variance components. A relatively clear message is that proportional

and approximate scalar weights show very good performance. This is pleasing, because

these weights are parameter-free and hence easy to apply. Which of the three versions is

better is less clear: it differs somewhat from compound to compound and from parameter

to parameter. All in all, all three show acceptable behaviour. It is interesting to see that

in some cases the cluster-by-cluster analysis is closer to ML than the analyses based on

splitting per cluster size. Computationally, this approach allows for additional parallel

processing, with all clusters analysed in parallel and the results then combined.

5.7 Concluding Remarks

To study simple, computationally effective, and statistically sound methods of estimation,

we considered the simple but insightful case of clustered data with a normal compound-

symmetry structure and clusters of varying size. Because of this non-constant cluster size,

there is no closed-form maximum likelihood estimator and maximization must proceed

iteratively. This is not a problem in small and medium numbers of clusters and cluster

sizes. However, when the number of clusters and/or the number of repetitions per cluster

grow large to very large, computations may become challenging. Our simulations show
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Table 5.4: NTP Data (with dose effect). Splitting by cluster size. Maximum likelihood

and weighted split-sample estimates (standard errors): (a) ML: maximum likelihood; (b)

REML: restricted maximum likelihood; (c) Prop.: proportional weights; (d) Equal: equal

weights; (e) Approx. sc.: like proportional weights, except that for bk (5.35) is used.

Par. ML REML Prop. Equal Approx. sc.

DEHP

Interc. β0 0.96986 0.96987 0.95982 0.95269 0.95982

Dose eff. β1 -0.00077 -0.00077 -0.00042 -0.00029 -0.00042

σ2 0.01876 0.01876 0.02122 0.02244 0.01895

d 0.00772 0.00792 0.00538 0.00508 0.00538

s.e.(β̂0) 0.01343 0.01357 0.01343 0.01609 0.01343

s.e.(β̂1) 0.00012 0.00012 0.00014 0.00018 0.00014

s.e.(σ̂2) 0.00084 0.00084 0.00128 0.00199 0.00094

s.e.(d̂) 0.00136 0.00141 0.00137 0.00204 0.00137

EG

Interc. β0 0.94228 0.94229 0.94654 0.95320 0.94654

Dose eff. β1 -0.00009 -0.00009 -0.00010 -0.00010 -0.00010

σ2 0.00879 0.00879 0.00847 0.00847 0.00833

d 0.00745 0.00765 0.00625 0.00593 0.00625

s.e.(β̂0) 0.01453 0.01470 0.01389 0.01406 0.01389

s.e.(β̂1) 0.00001 0.00001 0.00001 0.00001 0.00001

s.e.(σ̂2) 0.00041 0.00041 0.00044 0.00049 0.00042

s.e.(d̂) 0.00126 0.00130 0.00108 0.00107 0.00108

DYME

Interc. β0 1.01875 1.01876 1.02364 1.03680 1.02364

Dose eff. β1 -0.00102 -0.00102 -0.00099 -0.00100 -0.00099

σ2 0.01032 0.01032 0.01072 0.01071 0.01034

d 0.00795 0.00813 0.00581 0.00631 0.00581

s.e.(β̂0) 0.01356 0.01370 0.01335 0.02000 0.01335

s.e.(β̂1) 0.00006 0.00006 0.00006 0.00007 0.00006

s.e.(σ̂2) 0.00044 0.00044 0.00052 0.00079 0.00047

s.e.(d̂) 0.00126 0.00130 0.00110 0.00205 0.00110

that, in certain settings, computations can be made up to 30,000 times faster than with

standard maximum likelihood.

Fundamentally, we observe that the sufficient statistic for this setting is incomplete,
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implying that there is no uniform optimal unbiased estimator. The MLE is only locally

optimal. This offers an interesting perspective. First note that, when the cluster size

is constant, then there is a closed-form solution. Then considering the collection of

estimators obtained from analyzing the data for each cluster size separately, the MLE for

the entire dataset is a vector linear combination of these, but the weights depend on the

parameters. This suggests the consideration of approximations to these weights, as well

as alternative weights. Based on theoretical results and simulations, as well as on real-

data analysis, we found that equal weights and so-called approximate optimal weights do

not perform well. Iterated optimal and proportional weights show excellent performance.

While the former of these two are somewhat more computationally intensive, the latter

are simple and parameter-free. One refinement is that for the mean parameter and for

the covariance term d weights should be chosen proportional to the number of clusters of

a particular size, ck, while for the measurement error variance σ2 proportionality is to the

product of the number of clusters of a given size and the cluster size, ck · nk.

While most of our development has been based on the simple, three-parameter

compound-symmetry model, in the data analysis we considered a slightly expanded set-

ting, where the mean takes the form of a regression function rather than a constant.

This is encouraging towards the use of our results in more elaborate settings, as long

as some form of exchangeability prevails. One such setting is the meta-analytic evalu-

ation of surrogate endpoints (Burzykowski, Molenberghs, and Buyse, 2005), where two

correlated endpoints rather than a single one are considered for each cluster (trial in

this case). Admittedly, there may come a point where distinguishing between parameters

where proportional weights or rather size proportional weights are to be preferred becomes

difficult or impossible. Based on our simulation results, it may then be sensible to con-

sider proportional weights for all parameters. In the case where clusters take the form

of trials, the number of trials may be relatively small, and likely trial sizes are (almost)

unique. Our split-sample method would then imply that each trial is first analyzed sepa-

rately, with overall estimates taking the form of linear combinations of trial-specific ones.

To provide a formal basis for this, we have considered the important special case of a

cluster-by-cluster analysis. Encouragingly, such a method is consistent when the number

of replicates per cluster (e.g., the number of patients per trial) increases more rapidly than

the number of trials. Such an assumption is not realistic in the developmental toxicology

setting considered in this chapter, but may be very sensible in a meta-analysis of clinical

trials.

When clusters become very large, it may become attractive to further sub-divide them

in sub-clusters. Such a splitting method was also considered by Molenberghs, Verbeke,

and Iddi (2011). Its use in our context would require further investigation.
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In the NTP data, the observed cluster size is related to the dose applied. This suggests

that it is useful to consider, at the same time, the impact of dose on the outcomes (e.g.,

fetal weight) as well as on cluster size. This brings us back to the informative cluster

sizes mentioned in Chapter 1. While work has been done in this area, it is of interest to

combine the ideas developed in this chapter with a model for cluster size.



Chapter 6

Optimal Weighted Estimation for

Hierarchical Models With Unequal

Cluster Sizes: AR(1) Covariance

6.1 Introduction

In the previous chapter the normal CS-model was considered to model hierarchical (or

clustered) data with unequal cluster sizes. Although the CS covariance structure is a

natural model for settings that exhibit within-cluster symmetry, other settings, such as

longitudinal designs, need to be handled. For these we might consider the first-order

autoregressive, AR(1), structure, where it is assumed that the correlation between two

measurements changes exponentially over time, that is, σij = σ2ρ|i−j|. This implies that

the variance of the measurements is a constant σ2 and the covariance decreases with

increasing time lag. In this chapter, we apply the split-sample method to the normal

AR(1)-model, which has three parameters, a common mean µ, a common variance σ2,

and correlation parameter ρ. An important question will be the appropriate choice of

weights in such a setting.

The chapter is organised as follows. In Section 6.2 the model formulation is given.

In Section 6.3 the estimators for a single constant cluster size are presented. The

(in)completeness property is outlined in Section 6.4, and in Section 6.5 various weighting

schemes for clusters of unequal size are explored. In Section 6.6, a simulation study is

described for the investigation of the performance of the suggested weights and the data

are analysed in Section 6.7. The closing discussion is presented in Section 6.8.

61
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6.2 Model Formulation

The general notation is outlined in Section 2.1. All models considered in this chapter will

be versions of the following general linear mixed model:

Y
(k)
i |b

(k)
i ∼ N(X

(k)
i β + Z

(k)
i b

(k)
i ,Σ

(k)
i ), (6.1)

b
(k)
i ∼ N(0, D), (6.2)

where β is a vector of fixed effects, and X
(k)
i and Z

(k)
i are design matrices. In what

follows, we consider an AR(1) covariance structure, in which case the term Z
(k)
i b

(k)
i drops

from (6.1), while Σ
(k)
i = σ2Cnk

, with entry (r, s) equal to ρ|r−s|. For ease of exposition,

the mean structure will often be taken to be µ1nk
, with 1nk

an nk column vector of ones.

Note that this is very different from the a so-called balanced conditionally independent

model. The contrast between this setting and the AR(1) model holds some useful insight.

The interested reader can find details about this in the separate Appendix C.1.

6.3 Estimators

We begin by assuming that there is only one cluster size occurring, that is, nk ≡ n

and the index k will be dropped from notation throughout this section. The resulting

expressions are required for our eventual goal, clusters with variable size, which we reach

in Section 6.5.

Again, for the present, we confine attention to clusters of constant size n. (For the

purpose of identifiability we assume that there are clusters of size at least two.) Conse-

quently, all dimension-indication subscripts nk on matrices and vectors can be dropped

until we reach Section 6.5. The AR(1) model of Section 6.2 can then be written as:

Y i ∼ N
(
Xiβ,Σ = σ2C

)
.

Because C ≡ C(ρ), the parameter vector is θ = (β′, ρ, σ2). When the mean is constant

µi = Xiβ = µ1. It is often stated that the MLE for the AR(1) model, with a constant

or more elaborate mean structure, requires numerical iteration. This is certainly the

case when not all clusters are of the same size. However, in the constant cluster size

case considered here, there is a closed-form solution. Our development follows, in part,

Kenward (1981).

For c clusters of length n, the kernel of the log-likelihood takes the form:

ℓ ∝ − c
2

ln |Σ| − 1

2

c∑

i=1

(yi − µi)′Σ−1(yi − µi). (6.3)
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The score equation for the mean produces, as usual:

β̂ =
1

c

c∑

i=1

(X ′
iΣ

−1Xi)
−1(X ′

iΣ
−1Y i). (6.4)

Consider (6.4) for the case of a constant mean. If Σ corresponds to independence or

compound-symmetry, the MLE for µ is the ordinary sample average, it does not depend

on covariance parameters. For a general design β is estimated by the OLS estimator.

However, in our AR(1) case, solving the score equations leads to:

µ̂ =
1

c[(n− 2)(1− ρ) + 2]

c∑

i=1




n∑

j=1

Yij − ρ
n−1∑

j=2

Yij


 . (6.5)

Not only does (6.5) depend on ρ (hence the MLE for ρ needs to be plugged in), it differs

from the OLS:

µ̃ =
1

cn

c∑

i=1

n∑

j=1

Yij . (6.6)

It follows easily that, when ρ = 0 both estimators are the same, as it should. Interestingly,

when ρ = ±1:

µ̂(ρ = +1) =
1

c

c∑

i=1

Yi1 + Yin
2

,

µ̂(ρ = −1) =
1

c(n− 1)

c∑

i=1




n∑

j=1

Yij −
Yi1 + Yin

2


 .

Turning to the score equations for the variance components, ∂ℓ/∂σ2 leads to

σ2 =
1

cn

c∑

i=1

(yi − µi)′C−1(yi − µi). (6.7)

Through C, the right-hand side depends on ρ. For ρ, we find:

σ2 2ρ

1− ρ2
=

1

c(n− 1)

c∑

i=1

(yi − µi)′F (yi − µi), (6.8)

with

F =
∂C−1

∂ρ

=
1

(1 − ρ2)2
tridiag

{
[2ρ, 4ρ, . . . , 4ρ, 2ρ]′ ;

[
−(1 + ρ2), . . . ,−(1 + ρ2)

]′}
,(6.9)
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and with tridiag(v1,v2) a tri-diagonal matrix with v1 along the main diagonal and v2 on

the adjacent diagonals. Both (6.7) and (6.8) contain a summation that can be rewritten

as tr(S ·Q), with

S =

c∑

i=1

(yi − µi)(yi − µi)′

and Q either C−1 or F , as in (6.9), respectively. Using this formulation, and some

straightforward but tedious algebra, produces:

f(ρ) = (n− 1)S2ρ
3 − (n− 2)Rρ2 − (nS2 + S1)ρ+ nR = 0, (6.10)

the solution of which is the MLE ρ̂. Here,

S1 =

n∑

j=1

sjj , S2 =

n−1∑

j=2

sjj , R =

n−1∑

j=1

sj,j+1. (6.11)

These can be plugged into (6.5) to obtain µ̂ and into:

σ̂2 =
1

c
· 1

1− ρ̂2

(
S1 + ρ̂2S2 − 2ρ̂R

)
, (6.12)

to obtain the MLE for σ2.

It is easy to see that f(ρ) has a single root in [−1, 1]. Indeed, f(−∞) = −∞,

f(+∞) = +∞, f(−1) > 0, and f(1) < 0. The other two real roots are therefore in

] −∞,−1] and [1,+∞[. The general solution of a third-degree polynomial follows from

Cardano’s method. The polynomial under study was examined by Kenward (1981) who,

using results of Koopmans (1942), derived an expression for the solution inside [−1, 1].

Alternatively, the method of Shelbey (1975) can be used. It takes the following form.

Write the polynomial symbolically as f(ρ) = aρ3 + bρ2 + cρ+ d, define

p =
3ac− b2

3a2
, q =

2b3 − 9abc+ 27a2d

27a3
,

and further

C(p, q) = 2

√
−p

3
cos

[
1

3
arccos

(
3q

2p

√
−3

p

)]
.

For three real roots t0 ≤ t1 ≤ t2, it follows that t0 = C(p, q), t2 = −C(p,−q), and

t1 = −t0 − t2. Finally, ρ̂ = t1 − b/(3a). While not as simple as the other explicit

expressions for estimators, the key point is that it has a closed-form which, in turn, can

be used to obtain a closed form solution for the mean and the variance, using (6.5) and

(6.12), respectively. Given that it is unambiguously clear which of the three cubic solutions

is the right one, no comparisons are needed, which enhances computational efficiency.
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We now turn to the second derivatives in view of precision estimation. Denote by I
the information matrix. In the usual fashion: Iββ =

∑c
i=1 X

′
iΣ

−1Xi. For a simple com-

mon mean µ, this becomes: Iµµ = c [n− (n− 2)ρ] /[σ2(1 + ρ)]. Algebraic derivations,

sketched in separate Appendix C.2, lead to:

Iσ2ρ,σ2ρ = c

(
n

2(σ2)2 −n−1
σ2 · ρ

1−ρ2

−n−1
σ2 · ρ

1−ρ2

(n−1)(1+ρ2)
(1−ρ2)2

)
. (6.13)

It is convenient to slightly change (6.13) to

Ĩσ2ρ,σ2ρ = c

(
n−1

2(σ2)2 −n−1
σ2 · ρ

1−ρ2

−n−1
σ2 · ρ

1−ρ2

(n−1)(1+ρ2)
(1−ρ2)2

)
, (6.14)

yielding a very simple inverse:

Ĩ−1
σ2ρ,σ2ρ =

1

c(n− 1)

(
2(σ2)2(1+ρ2)

1−ρ2 2σ2ρ

2σ2ρ 1− ρ2

)
. (6.15)

6.4 Complete and Incomplete Sufficient Statistics

In what follows, we will establish completeness for the balanced conditional independence

model, with the reverse holding for AR(1) model. The criteria set out in Chapter 4 will be

used. So, in contrast to the balanced growth curve model and the compound-symmetry

model with constant cluster size, an AR(1) model with constant cluster size does not

allow complete sufficient statistics. This leads to some surprising results in the AR(1)

case, as well as in a number of related settings of a temporal and/or spatial nature. Some

of these have been alluded to in the literature of the interbellum and the early post-war

period.

6.4.1 Balanced Conditionally Independent Model.

This model of which the estimators are spelt out in Section C.1, obviously admits a

complete minimal sufficient statistic because the numbers of sufficient statistics (C.1)–

(C.4) and estimators match (C.5)–(C.8).

6.4.2 AR(1) Model

The mean estimator (6.5) consists of two sufficient statistics:

K1 =
c∑

i=1

n∑

j=1

Yij , K2 =
c∑

i=1

n−1∑

j=2

Yij , (6.16)
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with the sufficient statistics for σ2 and ρ spelt out in (6.11). In other words, the three-

component vector θ = (µ, σ2, ρ)′ has a minimal sufficient statistic (K1,K2, S1, S2, R) of

dimension 5, establishing incompleteness.

Even though the AR(1) model has not been studied before from the perspective of

incomplete sufficient statistics, its ramifications have been mentioned in the literature.

For example, as described by Martin (2006), Papadakis proposed, as early as 1937, a

correction to the least-squares estimator for correlated observations arising in such settings

as adjoining plots designs (Papadakis, 1937; Bartlett, 1938, 1976, 1978). The topic

was also touched upon by Cochran and Bliss (1948), in the context of discriminant

analysis combined with analysis of covariance. Clearly, the opportunity for such an ad hoc

correction arises from the incompleteness. Martin (2006) and earlier authors discussing

Papadakis’ method refer to the somewhat unusual dependence of the mean estimator

on the variance components. This parallels the property of the MLE for the mean in

the AR(1) case, as in (6.5). Indeed, because ρ is estimated from solving a third-degree

polynomial with coefficients that are functions of the sums of squares and cross-products

matrix, it too is a function of such deviations. Of course, the ρ in our case is more complex

than Papadakis’ correction, which was more of an ad hoc nature, while our estimator is

the solution to the likelihood equations. In essence, Papadakis’ method builds a covariate

from deviations observed from adjacent plots. Especially when the plots are arranged

as a linear array, the connection with AR(1) is strong. Both non-iterative and iterative

versions were proposed by Papadakis. In the iterative case, the covariate is re-built after

every iteration, using the current value of the parameters. In more general settings, the

data have a spatial layout.

In all of these cases, dependency on adjacent observations gives rise to tri-diagonal

matrices, like C−1 in the AR(1) setting.

Cochran and Bliss (1948, p. 172) noted that the relative efficiency of the estimators

with or without the use of covariance is not uniformly larger or smaller than one, but that

for sufficiently large sample sizes the difference between them is small. This is entirely

consistent with our findings for the AR(1) case. For Papadakis’ method, the impact

on bias and efficiency is described by Martin (2006). We refer to our simulations in

Section 6.6.

Because there is no complete minimal sufficient statistic, the MLE is not a priori

guaranteed to be optimal. Any claims of optimality need to be demonstrated directly.

Proposition 6.1. In the AR(1) model with constant mean µ and variance-covariance

parameters σ2 and ρ, and with constant cluster size, the MLE for µ is optimal (in the

sense of asymptotically most efficient) and linear in the observations, with weights that

depend on the parameters only through ρ.
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Note that this is not the ordinary uniform optimality. In case we demand an estimator

that does not depend on the parameters at all, it cannot be uniformly more efficient

than the MLE, implying that there is no such uniform estimator. The proof is given in

separate Appendix C.2.4. This results offers the opportunity to consider estimators, based

on weighting that, while not statistically fully efficient, have computational advantages

such as stability (e.g., by being entirely non-iterative) and speed.

Proposition 6.2. The result of Proposition 6.1 easily generalizes to a mean of the form

µ = Xβ, when the design is constant among clusters.

6.5 Clusters Of Variable Size

Various weighting schemes were studied in Section 5.4 for clusters of unequal size in the

compound-symmetry case. The work was rooted in the pseudo-likelihood and split-sample

methods of Fieuws and Verbeke (2006) and Molenberghs, Verbeke, and Iddi (2011). We

will not reproduce their entire argument here, it suffices to focus on the following two-stage

procedure:

1. Consider the MLE estimator for each of the K strata, defined by cluster sizes nk
and with ck replicates. Denote these estimators generically by θ̂k, with variance Vk.

2. Combine the θ̂k in an overall estimator

θ̃
∗

=

K∑

k=1

Akθ̂k, (6.17)

var(θ̃
∗
) =

K∑

k=1

AkVkA
′
k. (6.18)

We showed that the sum of the weight matrices should be the identity matrix, an obvious

result, and considered, among others, the optimal expression:

Aopt
k =

(
K∑

m=1

V −1
m

)−1

V −1
k . (6.19)

In the AR(1) case the mean and the variance components are asymptotically independent,

hence we can consider them separately. Of course, the variance components are still

dependent among them.

For a general mean structure µ(k)
i = X

(k)
i β, Vk =

∑ck

i=1 X
(k)
i Σ−1

k X
(k)′

i , and the

above can be applied. Note that Σk = σ2Ck with Ck the AR(1) correlation matrix of

dimension nk.
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Using optimal weights the β coefficients can then be estimated by:

β̃ =

(
K∑

k=1

ck∑

i=1

X
(k)′

i C−1
k X

(k)
i

)−1( K∑

k=1

ck∑

i=1

X
(k)′

i C−1
k Y

(k)
i

)
. (6.20)

In the special case that the mean is constant, all X(k)
i are vectors of ones and then

var(µ̂k) = vk =
σ2(1 + ρ)

ck
· 1

[nk − (nk − 2)ρ]
. (6.21)

The optimal weight is then

ak =
ck [nk − (nk − 2)ρ]

∑K
m=1 cm [nm − (nm − 2)ρ]

. (6.22)

It is insightful to consider (6.22) in a few special cases:

ak(ρ = 0) =
cknk∑K

m=1 cmnm
,

ak(ρ = 1) =
ck∑K

m=1 cm
,

ak(ρ = −1) =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

.

Note that, even though the matrix C is singular for ρ = ±1, by taking limits, expressions

can be found also for these cases. For every ρ 6= 1, it follows that if the nk are sufficiently

large: ak ≈ ak(ρ = 0). This implies that in a broad range of cases, except when ρ = 1

(or very close to it), the weights are proportional to the number of observations in a

stratum, i.e., cknk. We term these size-proportional weights. When ρ = 1 (a case where

AR(1) and compound-symmetry coincide), the weights are instead proportional , that is,

proportional to ck.

How well the approximation works is seen in a few special cases. When ρ = 0.5,

ak ∝ ck(nk + 2); for ρ = 0.9 this becomes ak ∝ ck(nk + 18); finally for ρ = 0.99, we find

ak ∝ ck(nk + 198). Thus, for larger correlations, the size-proportionally matches clusters

of sizes much larger than actually observed. But again, in practice, it is convenient and

reasonable to operate under size-proportionality.

When estimating the variance of

µ̃ =

K∑

k=1

akµk, (6.23)

using (6.22), the fact that the weights depend on ρk needs to be taken into account.

Applying the delta method to (6.23), and using the variance expressions in both (6.21)
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and (6.15), we find:

var(µ̃) =

∑K
k=1 a

′
kσ

2
k(1 + ρk)

(∑K
k=1 a

′
k

)2

+

∑K
k=1

[
ck(nk − 2)

∑K
m=1 a

′
m(µk − µm)

]2
1−ρ2

k

ck(nk−1)
(∑K

k=1 a
′
k

)4 . (6.24)

We can plug in the stratum-specific ρ̂k and σ̂2
k, or instead use the overall ρ̂ and σ̂2. In

the latter case, (6.24) becomes:

var(µ̃) = σ2(1 + ρ)

{
1

∑K
k=1 a

′
k

}

+ (1 − ρ2)





∑K
k=1

ck(nk−2)2

(nk−1)

[∑K
m=1 a

′
m(µk − µm)

]2

(∑K
k=1 a

′
k

)4




. (6.25)

Turning to the variance components, we start from (6.14), and use V −1
k ck(nk − 1)P

with

P =

(
1

2(σ2)2 − 1
σ2 · ρ

1−ρ2

− 1
σ2 · ρ

1−ρ2
1+ρ2

(1−ρ2)2

)
.

Now, clearly, the form of P does not matter because it does not depend on ck and nk,

that is, it is free of stratum-specific quantities. This leads to:

Ak =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

P−1P =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

I2,

with I2 the identity matrix of dimension 2. There are several implications. First, the

two variance components have a diagonal weight matrix, implying that mean, variance,

and correlation can be treated separately. Second, the variance and correlation have

the same sets of weights. Third, they are identical to the weights for the mean when

ρ = −1. Fourth, because these in themselves are similar to size-proportional weights, we

can simplify calculations considerably, especially in large data sets, as follows:

1. Compute µ̂k, σ̂2
k, and ρ̂, using the available closed-form expressions for the MLE.

2. Construct a weighted average of these using size-proportional weights.

Given that the MLE for unequal cluster sizes does not exist in closed form and hence

requires iteration, this two-stage approach is nearly optimal, non-iterative, and hence

fast.

Algebraic details on formulas can be found in separate Appendix C.2.5 and C.2.6.
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6.6 Computational Considerations and Simulation Study

In the compound-symmetry covariance structure case it has been seen that the propor-

tional weights perform very well. Due to a constant correlation d, additional observations

within a cluster contribute increasingly less information relative to that already observed.

By contrast, with an AR(1) covariance structure, the roles of ck and nk are quite different.

A first simulation study was carried out to compare the use of proportional and size-

proportional weights with respect to changes in ρ. The number of clusters ck is considered

large, but the sizes nk small. These have been chosen such that equal weights would

become identical to the size-proportional weights. In this way we may see how proportional

weights can work even worse in some cases. In addition, optimal weights and full likelihood

were considered in the comparison. The results are presented together with those obtained

for the compound-symmetry case as in Chapter 5.

For the simulation we took: c1 = 500, c2 = 250, c3 = 250, c4 = 500, and

n1 = 5, n2 = 10, n3 = 10, n4 = 5. Parameters are set as µ = 0, σ = 2 and

ρ ∈ {0.01, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99}. The data are generated 100 times and the model

is fitted using PROC MIXED in SAS (for a single overall intercept).

The results show that, in contrast to the CS case, with an AR(1) covariance structure

the size-proportional weights give acceptable results, implying an important role for the

clusters sizes, the nk’s. Proportional weights perform more poorly than equal weights.

The iterative optimal weights will converge in just one iteration (for both CS and

AR(1)), which means that iterative optimal weights are nothing but approximated optimal

weights. Instead of using θ̂k one could also use θ̃, obtained by using some proper weighting.

In the CS case the iterative optimal weights mainly converge to proportional weights,

but with AR(1), they converge to neither proportional nor size-proportional weights. They

rather converge to approximated optimal weights which are obtained by substituting the

unknown parameter by its estimate using size-proportional weights.

It is observed that, for µ̂ and σ̂2, using θ̃ in optimal weights does not increase the

variance to a noticeable degree, but the effect for ρ̂ is dramatic. Though it seems that

for a larger ρ this effect is diminished. Finding the proper variances when using θ̃ to

approximate optimal weights could be advantageous.

A second simulation study was conducted to compare computation time for closed

form solutions to numerical solutions. Using closed form solutions reduces computation

time significantly. Details can be found in the separate Appendix C.3.
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6.7 Application: Clinical Trials in Schizophrenia

The data, introduced in Section 3.2, are analysed here. The active treatments are: risperi-

done, haloperidol, perphenazine, and zuclopernthixol. We included for analysis patients

with at least one follow-up measurement. Table 6.1 shows the number of patients par-

ticipating in each trial for all different time patterns in receiving the treatments. As one

may see, there are 26 different time patterns, therefore, the final dataset is unbalanced.

This makes it suitable for examining the performance of sample splitting according to the

cluster size.

For the sake of simplicity, we just take the most frequent cluster pattern for each cluster

size. The model used to study the effect of the treatments on the response variable is as

follows:

Yij = µ+αi+βtij +(αβ)ij + ǫij , i = 1, . . . , 4, j = 1, . . . , n, ǫij ∼ Nn(0, R), (6.26)

with Rℓm = σ2ρ|ℓ−m| as elements of R, β as the time effect, αi as the treatment effect,

(αβ)ij as the time and treatment interaction, and µ as the overall mean. For dummy

coding, perphenazine has been taken as the reference treatment level.

Table 6.2 shows the treatment levels which appear in the different splits. Not all the

treatments are present in each split. In other words, not all the splits are contributing to

the estimation of every parameter. This fact should be taken into account for construct-

ing the weights. For example, for estimating levomepromazine effect, just the first two

splits are contributing, therefore, we have (c1 = 142, n1 = 2) and (c2 = 143, n2 = 3),

which give proportional weights as (0.498, 0.502), and the size-proportional weights as

(0.398, 0.602).

Table 6.3 shows the parameter estimates using sample splitting with proportional and

size-proportional weights, compared to the full sample data. Note that, while the point

estimates, for example for Zuclopenthixol, differ even in signs, this has to be seen against

the background of the precision estimates; their confidence intervals largely overlap.

As mentioned previously, these data are assembled from 5 trials. It might be useful

to include the trial and its interaction with the variables already in the model (6.26) to

control for the trial effect:

Yijk = µ+ τi + αj + βtij + (τα)ij + (τβ)ik + (αβ)jk + (ταβ)ijk + ǫijk,

i = 1, . . . , 5, j = 1, . . . , 4, k = 1, . . . , n, ǫijk ∼ Nn(0, R), (6.27)

with Rℓm = σ2ρ|ℓ−m| as elements of R, β as the time effect, αj as the treatment effect,

τi as the trial effect, (τα)ij as the trial and treatment interaction, (τβ)jk as the trial and

time interaction, (αβ)jk as the treatment and time interaction, (ταβ)ijk as the three-way

trial, treatment and time interaction, and µ as the overall mean.
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Table 6.1: PANSS data. Number of clusters in each trial for each cluster pattern. The

pattern consists of the numbers representing the months after starting point for which a

PANSS score is available.

Trial

n Pattern FIN-1 FRA-3 INT-2 INT-3 INT-7 Total

(0, 1) 17 8 71 43 3 142

2 (0, 2) 0 0 2 0 1 3

(0, 4) 0 0 1 0 0 1

(0, 1, 2) 8 4 83 41 7 143

3 (0, 2, 4) 0 0 2 0 0 2

(0, 1, 4) 1 0 3 1 0 5

(0, 1, 2, 4) 11 0 85 66 5 167

(0, 2, 4, 6) 0 0 1 0 1 2

4 (0, 2, 4, 8) 0 0 1 0 0 1

(0, 1, 2, 6) 0 0 3 0 0 3

(0, 1, 2, 3) 0 4 1 0 0 5

(0, 1, 3, 6) 0 1 0 0 0 1

(0, 2, 6, 8) 0 0 0 0 1 1

(0, 1, 2, 4, 6) 58 0 85 35 6 184

(0, 1, 2, 4, 8) 0 0 8 0 1 9

(0, 1, 4, 6, 8) 0 0 6 0 0 6

5 (0, 1, 2, 6, 8) 0 0 8 0 0 8

(0, 2, 4, 6, 8) 0 0 3 0 2 5

(0, 2, 4, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 3, 4) 0 44 0 0 0 44

(0, 1, 3, 4, 5) 0 1 0 0 0 1

(0, 1, 2, 4, 6, 8) 0 0 986 240 74 1300

(0, 1, 4, 6, 8, 10) 0 0 1 0 0 1

6 (0, 1, 2, 6, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 4, 6, 10) 0 0 1 0 0 1

(0, 1, 2, 4, 5, 6) 0 0 2 0 0 2

Table 6.4 shows the estimates for the parameters of interest in this model.

Justification of the chosen model and further details as confidence limits of the tabu-

lated estimates can be found in separate Appendix C.4.
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Table 6.2: PANSS data. Contributing splits in estimating each parameter. A checkmark

signifies that a split contributes, a hyphen the reverse.

Parameter Split 1 Split 2 Split 3 Split 4 Split 5

Intercept X X X X X

time X X X X X

haloperidol X X X X X

levomepromazine X X - - -

risperidone X X X X X

zuclopenthixol X X X X -

t*haloperidol X X X X X

t*levomepromazine X X - - -

t*risperidone X X X X X

t*zuclopenthixol X X X X -

correlation ρ X X X X X

variance σ2
X X X X X

6.8 Concluding Remarks

As an extension to the normal-compound symmetry model, discussed in Hermans et al.

(2018) i.e. Chapter 5, the normal AR(1) model was studied in the light of computationally

effective estimation for clustered data with unequal cluster sizes.

For constant cluster size, there are closed-form solutions but no complete minimal

sufficient statistics. However the MLE is shown to be optimal, with weights depending

on ρ for the mean. Returning to unequal cluster sizes, there are, in general, no closed

form solutions. But again estimators have been obtained using a two-stage procedure.

Estimators are calculated separately within each stratum (typically defined by cluster

size) and combined in an overall estimator. Both theoretical and simulation results show

excellent performance of the size-proportional weights, that is through weighting according

to the number of measurements in a cluster (ck · nk), rather than the number of clusters

ck in a subsample, that is, proportional weights. By contrast, the latter are a good choice

for the compound-symmetry structure. Under AR(1) they are worse than equal weights.

Approximate optimal weights can also be used, but this leads to an estimate of ρ with a

large sample variance. In practice, it is convenient and appropriate to use size-proportional

weights; these are parameter free and simple to use. Simulations show, that in certain

large settings, computation time can be 1000 times faster than with standard maximum

likelihood.
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Table 6.3: PANSS data. Estimating fixed effects and variance components and the

standard deviations of these estimates using sample splitting (combined with proportional

(Prop.) and size-proportional (Size.Prop.) weights) and full likelihood. The model used

in here is without trial effect (6.26).

Effect Par. Prop. Size Prop. Full

Intercept µ 89.218 (3.036) 88.167 (2.956) 88.532 (2.965)

Haloperidol α1 -1.916 (3.254) -1.868 (3.191) -0.140 (3.181)

Levomepromazine α2 11.823 (14.155) 8.402 (14.366) 32.018 (9.729)

Risperidone α3 -1.474 (3.079) -0.812 (3.000) -0.481 (3.009)

Zuclopenthixol α4 -1.926 (7.245) 0.146 (7.216) 2.647 (4.187)

time β -3.047 (1.057) -2.890 (0.613) -2.928 (0.447)

time×haloperidol (αβ)1 2.146 (1.108) 1.568 (0.652) 1.068 (0.482)

time×levomepromazine (αβ)2 6.466 (9.006) 6.924 (8.668) 3.350 (4.501)

time×risperidone (αβ)3 1.831 (1.070) 1.243 (0.621) 0.842 (0.454)

time×zuclopenthixol (αβ)4 1.551 (3.609) 1.103 (2.655) 0.533 (0.743)

Correlation ρ 0.805 (0.006) 0.818 (0.005) 0.825 (0.005)

Variance σ2 419.782 (10.202) 412.850 (10.018) 429.611 (10.363)

There are missing observations in the PANSS data set. One might therefore consider

possible dependencies between cluster size and the outcomes themselves. To handle such

informative cluster sizes it might be of interest to extend the current methodology of this

chapter to a joint model including cluster size. This is a topic for further research.

For non-normal data, no corresponding closed-form formulations are possible. While

gains will be less, there might still be computational advantages, in terms of time and

stability, in analyzing the data in cluster-size dependent strata, followed by weighting the

so-obtained estimates.
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Table 6.4: PANSS data. Estimating fixed effects and variance components and the

standard deviations of these estimates using sample splitting (combined with proportional

(Prop.) and size-proportional (Size.Prop.) weights) and full likelihood. The model used

in here is with trial effect (6.27).

Effect Par. Prop. Size Prop. Full

Intercept µ 89.217 (3.016) 88.165 (2.949) 88.529 (2.950)

Haloperidol α1 2.249 (5.239) 1.491 (5.053) 5.878 (4.779)

Levomepromazine α2 -9.213 (22.578) -12.044 (21.761) 6.673 (15.611)

Risperidone α3 2.353 (4.542) 2.956 (4.216) 3.132 (4.107)

Zuclopenthixol α4 -2.135 (11.617) -0.877 (11.509) 3.144 (5.845)

time β -3.047 (1.049) -2.890 (0.610) -2.929 (0.446)

time×haloperidol (αβ)1 2.170 (1.835) 1.294 (1.056) 0.623 (0.738)

time×levomepromazine (αβ)2 16.104 (15.080) 17.287 (13.763) 13.812 (6.923)

time×risperidone (αβ)3 1.766 (1.716) 0.794 (0.947) 0.176 (0.613)

time×zuclopenthixol (αβ)4 5.218 (5.746) 2.041 (4.188) 0.326 (1.027)

Correlation ρ 0.804 (0.006) 0.818 (0.005) 0.824 (0.005)

Variance σ2 416.190 (10.139) 410.819 (10.006) 425.741 (10.257)





Chapter 7

Optimal Weighted Estimation

Versus Cochran-Mantel-Haenszel

7.1 Introduction

Categorical variables take on an a priori fixed and finite number of possible values, in

particular, two values for binary data. Investigators often want to examine associations

between categorical variables, for example, in a case-control study. In the past, the need

grew to analyse the relation between binary variables incorporating the classification due

to other relevant confounders. Mantel and Haenszel (1959) published their view on the

analysis of case-control studies more than half a century ago. Their methodology has

become ubiquitous in epidemiology and beyond. The general methodology and notation

were outlined in Section 2.4. All statistical procedures mentioned in this chapter are

appropriate for data settings with binary responses, involving stratification, grouping, or

matching based on confounding variables.

Our goal is to place the MH against the background of estimators that do follow from

optimality considerations. The split-sample based approach, constructed in Chapters 5

and 6, is now extended to the described grouped data settings. The basic ideas, combin-

ing subsample-specific results using appropriate weights, are similar, but there are com-

putational differences. By contrasting both methods the nature of the Mantel-Haenszel

estimator becomes more clear, as well as its unique properties.

This chapter is organised as follows. In Section 7.2, pseudo-likelihood methodology

is applied and weighting schemes are explored. In Section 7.3, a simulation study is

described to compare the performance of the MH estimator with one following from

77
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optimal weighting considerations. An example is discussed in Section 7.4. The discussion

and recommendations for practice are offered in Section 7.5.

7.2 Optimal Weighted Estimation

Breslow and Day (1980) examined likelihood estimation to obtain an estimator for the

common odds ratios. However, they showed that there is no closed-form solution, ex-

cept for the case where there are only two strata. Numerical estimation techniques are

necessary in pursuing an estimate. In comparison with this, the MH is much simpler to

use. In this thesis we use weighted estimation for data settings with unequal cluster sizes.

Based on the pseudo-likelihood split-sample approach of Molenberghs, Verbeke, and Iddi

(2011), the sample is divided into subsamples, containing clusters of equal size. For each

subsample, maximum likelihood estimators are calculated and subsample-specific results

then combined using weights. The entire argument will not be reproduced, but these

same ideas can be used for the data settings discussed in this chapter. The subsam-

ples considered here are naturally the various strata in the sample. The subsample or

stratum-specific estimator is the odds ratio, ψ, calculated as:

ψi =
ai · di
bi · ci

. (7.1)

These can be combined into a common odds ratio using weights αi:

ψ̃ =

N∑

i=1

αiψi, (7.2)

with
∑N
i=1 αi = 1. It is natural and well known that optimal weights are inversely

proportional to a measure of variance (see the Appendix for a brief sketch of the argument).

We will now investigate this further, against the background of the lack of complete

sufficient statistics.

7.2.1 (In)Complete Sufficient Statistics

Consider the weighted odds ratio estimator as in (7.2), and assume E[ψi] = ψ, then

E[ψ̃] =

N∑

i=1

αiE[ψi] = ψ

N∑

i=1

αi = ψ.

Suppose that there is a non-zero function g((ψi)i) =
∑
i βiψi, such that E[g((ψi)i)] =∑

i βiψ = ψ
∑

i βi = 0. This is satisfied for all βi’s where
∑
i βi = 0. By this coun-

terexample, incompleteness holds. As a consequence, it is a priori not guaranteed that

there is a uniformly optimal estimator. However, it should be noted that the existence of

a uniform optimum, while not guaranteed by the theorem, is not necessarily excluded.
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7.2.2 Optimal Weights

To obtain (potentially local) optimal weights, we seek to minimize the variance, var(ψ̃) =∑N
i=1 α

2
i var(ψi), under the constraint that

∑N
i=1 αi = 1 using the method of Lagrange

multipliers. The calculations, which are standard and applicable in a wide variety of

settings, are briefly reviewed in Appendix D.1. The weights are:

αi =
v−1
i∑
j v

−1
j

. (7.3)

In the next step, the variance of a stratum-specific odds ratio will be expressed explic-

itly. When taking the natural logarithm of the odds ratio, the variance here equals

var(log(ψi)) = 1
ai

+ 1
bi

+ 1
ci

+ 1
di

. By using the delta method we find var(log(ψi)) ∼=
1
ψ2

i

· var(ψi) and now

var(ψi) = ψ2
i var(log(ψi))

= ψ2
i

(
1

ai
+

1

bi
+

1

ci
+

1

di

)

pop. value∼= ψ2q

ni
, (7.4)

with q = 1
p11

+ 1
p10

+ 1
p01

+ 1
p00

, and p11, p10, p01 and p00 the 2× 2 cell probabilities.

Note that a transition from population to estimated variances is made. By doing this,

the stratum-specific variance and its inverse equal:

var(ψi) ∼=
ψ2q

ni
= vi ⇒ v−1

i =
ni
ψ2q

, (7.5)

resulting in the following formula for the weights:

αi =

ni

ψ2q∑
j
nj

ψ2q

=
ni
n
, (7.6)

with n =
∑N
i=1 ni. If all (ni)i would be fixed by design, this is a uniform minimal

solution, in spite of incompleteness. Using the above expressions, it follows that the

uniformly optimal weighted estimator satisfies:

ψ̃ =

N∑

i=1

ni
n
ψi. (7.7)

Equation (D.4) yields an expression for the overall variance of this common odds ratio:

var(ψ̃) =

N∑

i=1

∑N
i=1 v

−2
i vi

(
∑N

j=1 v
−1
j )2

=
1

∑N
i=1 v

−1
i

. (7.8)
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This scheme is more principled and enjoys minimum variance properties, in comparison to

MH. However, a disadvantage is that the weighted estimator does not yield a well-defined

estimate as soon as there is a zero cell in one contingency table. It suggests that MH

may well be superior in small samples. Also, because MH does not take the form of a

conventional weighted estimator, with weights differing from the optimal ones, also the

behavior in large to very large samples should be investigated.

We can also use the observed rather than expected variances. Then, an alternative

form emerges:

˜̃ψ =
N∑

i=1

αiψi =

∑M
i=1 v

−1
i ψi∑M

i=1 v
−1
i

. (7.9)

Now,

vi = ψ2
i

(
1

ai
+

1

bi
+

1

ci
+

1

di

)
(7.10)

v−1
i = ψ−2

i hi,

with

hi =

(
1

ai
+

1

bi
+

1

ci
+

1

di

)−1

=
aibicidi
ei

, (7.11)

with ei = aibici + aibidi + aicidi + bicidi. This leads to:

˜̃ψ =

∑
i

(cibi)2

ei∑
i

1
ψi

(cibi)2

ei

. (7.12)

Yet another estimator would be:

˜̃ψ′ =

∑
i aidi

(cibi)2

ei∑
i cibi

(cibi)2

ei

. (7.13)

7.3 Simulation Study

In the following simulation study, carried out in R, the performance of the derived estima-

tors is compared with the conventional MH.

To start, a sample with five strata and stratum sizes 900, 500, 200, 600, and 300

is considered. For each stratum, random numbers following a uniform distribution are

generated, as many as the stratum size requires. These numbers are compared to the

cumulative probabilities (0, 0.2, 0.3, 0.7, 1) from the original contingency table (Table 7.1)

to determine the frequencies for a new stratum-specific 2 × 2 table. For example, the

sampled number 0.4 will contribute to the count in cell (2,1) as it lies between 0.3 and
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Table 7.1: Simulation study. The original 2× 2 table used in the simulation study.

0.2 0.1

0.4 0.3

0.7. This results in five new 2× 2 tables. To these tables, the MH and estimators (7.7),

(7.12), and (7.13) are applied. In this scenario there were 5 strata with mean stratum size

500. In further samples, both the number of strata and mean stratum size are multiplied

by a factor of ten. All values for numbers of strata (5; 50; 500; 5,000; and 50,000) and

mean stratum sizes (500; 5,000; 50,000; 500,000; and 5,000,000) are combined into 25

scenarios. Each scenario was sampled 500 times, leading to 500 estimates of the common

odds ratio for each estimator. By doing this we can explore the estimators’ performance

under varying designs. As an aside, when the mean stratum size and number of strata get

large, the simulation is time-consuming. As the performance of the estimators is already

proven in the middle of the table, some of the bottom cells in the upcoming tables are

left blank.

7.3.1 Relative Efficiency

As an important evaluation criterion, we compare the relative efficiency of the proposed

estimators with the MH. First, we calculate the empirical variances of our estimators over

the sample of 500 odds ratios. Second, the model-based variances are used. For the

Mantel-Haenszel estimator the variance formula (2.15) is used, and (7.8) is used as our

estimator.

The results based on the empirical variances are presented in Tables 7.2–7.4. The

results based on the model-based variances are reproduced in Table 7.5. The relative

efficiencies are presented as percentages.

Considering Tables 7.2–7.4, the MH is slightly more efficient for large samples but not

for huge samples. For extremely large overall sample sizes, the alternative estimators (7.7)

and (7.12) are performing equally well as the MH. The opposite is found in Table 7.5,

where variance estimator (7.8) turns out to be smaller, and so more precise, than the

asymptotic variance of Robins et al. (1986b); at the same time it is easier to compute.

Pattanayak et al. (2012) also showed in their simulation study that the variance estimator

of Robins et al. (1986b) is conservative, producing unnecessarily wide confidence intervals.

This simulation study confirms this. However, when the mean stratum sizes become very

large, this issue goes away.
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Table 7.2: Simulation study. Relative efficiency of estimator (7.7) w.r.t. Mantel-Haenzel

estimator. (Empirical)

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 90.51 98.62 100.12 100.02 100.00

50 90.42 98.71 99.52 100.03 99.96

500 89.61 99.12 99.51 99.96 100.02

5 000 90.93 99.19 100.17 99.92

50 000 92.41 99.38 99.79

Table 7.3: Simulation study. Relative efficiency of estimator (7.12) w.r.t. Mantel-Haenszel

estimator. (Empirical)

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 97.65 101.44 99.57 99.92 99.99

50 94.08 100.35 100.86 99.86 100.07

500 90.30 99.17 100.77 100.06 100.01

5 000 90.14 98.97 99.25 100.20

50 000 90.95 98.44 99.94

Table 7.4: Simulation study. Relative efficiency of estimator (7.13) w.r.t. Mantel-Haenszel

estimator. (Empirical)

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 69.65 75.31 65.65 72.73 73.28

50 66.07 71.80 64.36 68.85 72.04

500 67.04 73.18 72.28 64.97 69.57

5 000 70.98 66.53 70.02 66.33

50 000 71.02 68.67 67.58



7.4. Application: Intego Data 83

Table 7.5: Simulation study. Relative efficiency w.r.t. Mantel-Haenszel estimator. (Model

based)

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 106.58 100.65 100.06 100.01 100.00

50 108.50 100.80 100.08 100.01 100.00

500 108.63 100.83 100.08 100.01 100.00

5 000 107.66 100.83 100.08 100.01

50 000 107.66 100.83 100.08

7.3.2 Coverage Probabilities, Bias, and Mean Squared Error

Next, the coverage probabilities, bias, and mean squared error (MSE) of the estimators

are examined. Table 7.6 shows the coverage probabilities for estimator (7.7), where the

95% confidence interval is calculated using the proposed variance estimator (7.8) and

normal quantiles. For comparison, Tables 7.8 and 7.9 give the coverage probabilities for

the MH. Where Table 7.9 is constructed in line with Table 7.6, in Table 7.8 the confi-

dence intervals are calculated starting from the log odds ratio and using an exponential

transformation. These tables suggest that the proposed estimator is performing badly in

the left bottom corner of the tables, as the coverage probabilities become small and even

zero. The same phenomena can be observed in Tables 7.7 and 7.10 where the confidence

intervals are calculated with the sample variance. The latter is done to make sure that

there is no over-coverage, which does not seem to be the case. Tables 7.11–7.14 show,

respectively, the bias and MSE of the alternative estimator and the MH. Here, the bias

and MSE are larger in the same part of the tables.

The reason for this occurrence cannot be assigned to the proposed weights of the

alternative estimator. These are of the same magnitude in each row, and working perfectly

well in a part of the settings. It appears that, when the number of strata becomes equal

to or larger than the mean stratum size, the bias and the uncertainty become too large

to obtain a proper estimate.

7.4 Application: Intego Data

The Intego data (see Section 3.3) set analysed here contains information about 338,581

patients, listing their gender, year of birth, the general practices, and diagnosis recorded

with the correct ICPC Code. We chose to make several 2 × 2 tables with the binary
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Table 7.6: Simulation study. Coverage Probabilities for estimator (7.7).

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.940 0.950 0.950 0.930 0.950

50 0.816 0.932 0.946 0.936 0.942

500 0.186 0.846 0.940 0.964 0.932

5 000 0.000 0.204 0.868 0.948

50 000 0.000 0.000 0.204

Table 7.7: Simulation study. Coverage Probabilities for estimator (7.7) with sample

variance.

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.938 0.940 0.946 0.938 0.956

50 0.862 0.946 0.944 0.940 0.954

500 0.198 0.848 0.944 0.956 0.930

5 000 0.000 0.212 0.832 0.948

50 000 0.000 0.000 0.200

Table 7.8: Simulation study. Coverage Probabilities for Mantel-Haenszel estimator (log

oddsratio).

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.962 0.950 0.950 0.930 0.950

50 0.948 0.942 0.946 0.936 0.942

500 0.960 0.958 0.944 0.960 0.932

5 000 0.954 0.954 0.966 0.942

50 000 0.954 0.940 0.958



7.4. Application: Intego Data 85

Table 7.9: Simulation study. Coverage Probabilities for Mantel-Haenszel estimator.

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.952 0.952 0.952 0.930 0.950

50 0.958 0.940 0.946 0.938 0.942

500 0.960 0.958 0.944 0.960 0.932

5 000 0.954 0.954 0.966 0.942

50 000 0.954 0.940 0.958

Table 7.10: Simulation study. Coverage Probabilities for Mantel-Haenszel estimator with

sample variance.

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.954 0.948 0.950 0.938 0.956

50 0.956 0.954 0.946 0.942 0.958

500 0.956 0.956 0.948 0.956 0.932

5 000 0.948 0.954 0.952 0.942

50 000 0.956 0.940 0.954

Table 7.11: Simulation study. Bias for estimator (7.7).

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.045 487 0.006 383 -0.000 194 -0.000 174 0.000 067

50 0.039 827 0.004 114 0.000 356 -0.000 001 0.000 018

500 0.040 240 0.003 951 0.000 404 0.000 019 9.580e-07

5 000 0.039 646 0.003 817 0.000 400 0.000 025

50 000 0.039 552 0.003 840 0.000 386
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Table 7.12: Simulation study. MSE for estimator (7.7).

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.022 471 0.001 935 0.000 190 0.000 020 0.000 002

50 0.003 755 0.000 225 0.000 019 0.000 002 2.016e-07

500 0.001 819 0.000 034 0.000 002 1.762-e07 1.851e-08

5 000 0.001 591 0.000 016 3.248e-07 1.939e-08

50 000 0.001 566 0.000 015 1.674e-07

Table 7.13: Simulation study. Bias for Mantel-Haenszel estimator.

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.013 178 0.003 413 -0.000 491 -0.000 204 0.000 064

50 0.001 020 0.000 444 -0.000 012 -0.000 038 0.000 015

500 0.000 849 0.000 181 0.000 028 -0.000 018 -0.000 003

5 000 0.000 180 0.000 053 0.000 025 -0.000 013

50 000 0.000 104 0.000 072 0.000 010

Table 7.14: Simulation study. MSE for Mantel-Haenszel estimator.

Number Mean stratum size

of strata 500 5 000 50 000 500 000 5 000 000

5 0.018 639 0.001 880 0.000 191 0.000 020 0.000 002

50 0.001 962 0.000 205 0.000 018 0.000 002 2.014e-07

500 0.000 180 0.000 019 0.000 002 1.762e-07 1.852-e08

5 000 0.000 017 0.000 002 1.657e-07 1.894-e08

50 000 0.000 002 1.929e-07 1.864e-08

Table 7.15: Intego Data. General 2× 2 table.

Diabetes + Diabetes - Total

Female ai bi n1i

Male ci di n2i

Total m1i m2i ni
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Table 7.16: Intego Data. Common odds ratio and variance estimates: (a) ψMH : Mantel-

Haenszel odds ratio estimate; (b) ψ̃: odds ratio estimate with (7.7); (c) ˜̃ψ: odds ratio

estimate with (7.12); (d) ˜̃ψ′: odds ratio estimate with (7.13); (e) vR: variance estimate

according to Robins et al. (1986b) (2.15); (f) v: variance estimate with (7.8).

Strat. # strata ψMH ψ̃ ˜̃ψ ˜̃ψ′ vR v

GP 75 0.967 0.937 0.904 0.944 2.330×10−4 2.524×10−4

YB1 2 0.921 0.954 0.916 0.951 2.303×10−4 2.286 ×10−4

YB2 4 0.930 1.108 0.907 0.895 2.294×10−4 2.367×10−4

YB3 8 0.928 - - - 2.305×10−4 -
1 split by 1950
2 split by 1920, 1950, 1980
3 split by 1900, 1920, 1935, 1950, 1965, 1980, 2000

variables diabetes and gender (Table 7.15). General practices and the year of birth can

serve as stratification variables. There are 75 different general practices. The years of

birth vary from 1898 to 2015. Table 7.16 presents the estimates for the common odds

ratio and variance according to different stratification variables. In the first row general

practices (GP) divided the sample in different strata. For the second row, year of birth

(YB) was split into two groups, those who where born before 1950 and those born in

1950 and later. In further rows more splits were made.

As the simulation study already suggested, all estimates are very close to each other.

All estimators are equally easily computed, no matter the number of strata. In the last

line of the table, the stratum with people born before 1900 has one zero in its 2×2 table.

As we stated earlier and now can see here: the MH is well-defined and gives an estimate,

however due to a zero weight this specific stratum is omitted in the calculation. On the

other hand, the formally optimal estimator does not yield a well-defined estimate.

7.5 Concluding Remarks

To study associations between binary variables, incorporating classification, the common

odds ratio is often used. The odds ratio estimator of Mantel and Haenszel (1959) is

well established in epidemiology. It is a weighted estimator, combining information of

the different strata, that do not need to be of the same size. It follows neither from

the likelihood principle, nor from optimally weighted considerations. We therefore used

pseudo-likelihood split-sample methodology (Molenberghs, Verbeke, and Iddi, 2011), to
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study it against the background of an optimal weighted estimator and two variations of

this. We noted that, while there is no complete sufficient statistic, there nevertheless is a

uniformly optimal weighted estimator. Unlike a full likelihood estimator, both the MH as

well as the optimal estimator, and the variance thereof, are easy to calculate.

The MH, in spite of its somewhat ad hoc nature is very efficient for large datasets,

and in more cases well-defined when cell counts are small or even zero. It is fair to say

the optimal estimator has a somewhat easier and more intuitive variance expression but,

as we have already seen, both are easy to compute.

In some cases when datasets are huge, the optimal estimator is somewhat more ef-

ficient. However, we should bring forward two reservations. First, this is not the case

when the number of strata becomes equal to or larger than the mean stratum size; here,

the estimator fails. Second, with really huge samples, a slight amount of efficiency loss is

usually not an issue.

Categorical variables may take on more than 2 levels and also here associations can

be of scientific interest. This suggests that one might also consider a possible extension

to I × J ×K tables as is done for the MH (Agresti, 2002, pp. 295).

We conclude that the MH retains its practical and theoretical attraction, even when

compared with formally optimal estimators.



Chapter 8

Doubly Robust Pseudo-likelihood for

Incomplete Hierarchical Binary Data

8.1 Introduction

Incomplete data has become an important concern for applied statisticians, especially

in longitudinal and otherwise hierarchical outcome data. When there is missingness in

the data, the process behind these, as well as its impact on inference, needs to be ad-

dressed. Very commonly, direct likelihood is used for analyzing correlated data under

MAR. Linear mixed models and generalized linear mixed models are popular choices,

though marginalization is not always straightforward. Other likelihood-based options, e.g.

the Bahadur (1961) and the multivariate Dale or global odds ratio model (Molenberghs

& Lesaffre, 1994, 1999), can involve complex likelihoods, can be computationally pro-

hibitive in moderate to large studies, and are vulnerable to misspecification. The most

popular alternative is generalized estimating equations or GEE (Liang and Zeger, 1986;

Diggle et al., 2002; Molenberghs and Verbeke, 2005). Standard GEE is valid only under

MCAR, but a weighted version (WGEE; Robins, Rotnitzky, and Zhao, 1995) has been

developed, using Horvitz-Thompson ideas (Cochran, 1977), to allow valid use of GEE

under MAR. Doubly robust approaches (Scharfstein, Rotnitzky, and Robins, 1999; Van

der Laan & Robins, 2003; Bang & Robins, 2005; Rotnitzky, 2009; Birhanu et al., 2011),

which further supplement the use of weights with a predictive model for the unobserved

responses, given the observed ones, have been constructed. This not only removes or at

least alleviates bias, but also increases efficiency.

Pseudo-likelihood (PL) methods (le Cessie & van Houwelingen, 1991; Geys, Molen-

89



90
Chapter 8. Doubly Robust Pseudo-likelihood for Incomplete Hierarchical

Binary Data

berghs, and Lipsitz, 1998; Geys, Molenberghs, & Ryan, 1999; Aerts et al., 2002) comprise

yet another alternative to full likelihood. Molenberghs et al. (2011) proposed corrections,

following single and double robustness ideas, to the standard form of pseudo-likelihood,

to ensure the validity under MAR. This is reviewed in Section 2.3.3. Molenberghs et al.

(2011) applied the methodology to multivariate Gaussian responses and to a conditional

model for clustered binary data. They provided a general outline with predominantly

illustrative examples using normal and binary data. However, the marginal modeling of

longitudinal binary data is very common in practice. Molenberghs et al. (2011) only

sketched the methodology using a marginal Bahadur model for the binary responses; they

did not pursue it in detail. The further development of doubly robust pseudo-likelihood

for incomplete hierarchical binary data under MAR is the central theme of this chapter.

The theoretical part, estimating equations and precision estimators, are calculated and

reported for the first time. Application is shown through a case study and easy-to-use

SAS code is provided.

It should be clear that we are not fitting the full Bahadur model. In fact, we use its first

and second moments only, because this allows us to describe the marginal mean function,

whilst providing the vehicle to take correlations and incompleteness into account. Note

that there is a similar connection between standard and weighted GEE for binary data on

the one hand and the Bahadur model on the other. The latter connection was studied in

detail by Molenberghs and Kenward (2010). Note that apart from very simple settings,

the Bahadur model is prohibitive to fit (Aerts et al., 2002).

For further background, Section 2.3.3 reviews Pseudo-likelihood for data MAR and

2.2.2 describes the full Bahadur model. In this chapters, the contribution, i.e., pseudo-

likelihood based on the Bahadur model, is the subject of Section 8.2. Analysis of the case

study can be found in Section 8.3

8.2 Pseudo-likelihood for Incomplete Binary Data

8.2.1 General Formulation

Molenberghs et al. (2011) considered three classes of estimating equations for pairwise

likelihood, respectively naive, singly robust (‘sr’), and doubly robust (‘dr’). For each

of these three, the original authors further considered: complete cases (CC; using only

subjects will all planned measurements observed), complete pairs (CP; where all com-

plete pairs from incomplete sequences are also added), and available cases (AC; where

additionally single observations from incomplete pairs are used), leading to nine sets of

estimating equations. The word ‘naive’ refers to the fact that these estimating equations

would generally lead to biased estimators under MAR. Here only the response is modelled
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with a Bahadur model. For the single robust setting a weight model is introduced, using

a logistic structure. For the double robust version the model was further extended with

a predictive model for the unobserved outcomes using again a Bahadur model. All these

estimating equations are presented in Table 8.1.

In this table, R̃i = 1 if subject i is fully observed and 0 otherwise. In the robust

cases, the probability for subject i to be completely observed and to be observed up to

and including occasion j are respectively denoted as

πi =

ni∏

ℓ=2

(1− piℓ) and πij =

j∏

ℓ=2

(1− piℓ),

where piℓ = P (Di = ℓ|Di ≥ ℓ,yiℓ,xiℓ) are the component probabilities of dropping out

at occasion ℓ, given the subject is still in the study, the covariate history xiℓ and the

outcome history yiℓ. piℓ can be modeled using a logistic regression. Further, Rijk and

πijk are the indicator and probability, respectively, for observing both Yij and Yik. Note

that for the case of dropout, whenever j < k,

Rijk ≡ Rik and πijk ≡ πik =
k∏

ℓ=2

(1− piℓ),

in which case, e.g. the single robust version of the CP estimating equation can be re-

expressed as:

UCP,sr =

N∑

i=1

∑

j<k<di

Rik
πik

U i(yij , yik).

An important result is that all three doubly robust versions coincide (Molenberghs et

al., 2011), i.e.,

UCC,dr = UCP,dr = UAC,dr =

=

N∑

i=1




∑

j<k<di

U i(yij , yik) +

di−1∑

j=1

(ni − di + 1)U i(yij)

+
∑

j<di≤k

E [U i(yik|yij)] +
∑

di≤j<k

E [U i(yij , yik)]



 . (8.1)

It is thus not necessary to explicitly model the missing-data mechanism. Further, under

exchangeability, Molenberghs et al. (2011) showed that the expectations in UAC,dr vanish,

making Eq. (8.1) essentially equivalent to UAC,naive, which is very convenient for imple-

mentation, as this reduces to an observed data analysis. More information on this can be

found in Appendix E.1.
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Table 8.1: Estimating equations for pairwise pseudo-likelihood. Abbreviations used: CC: complete cases; CP: complete pairs; AC: available

pairs; sr: singly robust; dr: doubly robust.

type U∗,naive U∗,sr U∗,dr

UCC,∗

N∑

i=1

R̃i
∑

j<k

U i(yij , yik)

N∑

i=1

R̃i
πi

∑

j<k

U i(yij , yik)

N∑

i=1

∑

j<k

[
R̃i
πi
U i(yij , yik) +

(
1− R̃i

πi

)
EY m

|yoU i(yij , yik)

]

UCP,∗

∑N
i=1

∑
j<k<di

U i(yij , yik)

N∑

i=1

∑

j<k<di

Rijk
πijk

U i(yij , yik)

N∑

i=1

∑

j<k<ni

[
Rijk
πijk

U i(yij , yik)

+

(
1− Rijk

πijk

)
EY m

|yoU i(yij , yik)

]

UAC,∗

N∑

i=1


 ∑

j<k<di

U i(yij , yik)

N∑

i=1



di−1∑

j=1

Rij
πij
U i(yij)

N∑

i=1


∑

j<k

Rik
πik

U i(yik|yij) +

di−1∑

j=1

Rij
πij
U i(yij)

+

di−1∑

j=1

(ni − di + 1)U i(yij)


 +

∑

j<k

Rik
πik

U i(yik|yij)


 +

∑

j<k

(
1− Rik

πik

)
EY m

|yoU i(yik|yij)

+

di−1∑

j=1

(
1− Rij

πij

)
EY m

|yoU i(yij)



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8.2.2 Pairwise Bahadur Model for the Outcome

Based on the definitions made in Section 2.2.2 the log-likelihood terms from a pairwise

Bahadur model take the following form:

pℓijk = yijyik ln νijk + yij(1− yik) ln(νij − νijk) + (1− yij)yik ln(νik − νijk)

+ (1− yij)(1 − yik) ln(1− νij − νik + νijk). (8.2)

Starting from pseudo-likelihood contribution (8.2), pairwise and conditional contributions

to the score equation take the form as follows

U ijk =
yijyik
νijk

∂

∂θ
νijk +

yij(1 − yik)

νij − νijk
∂

∂θ
(νij − νijk) +

(1− yij)yik
νik − νijk

∂

∂θ
(νik − νijk)

+
(1− yij)(1 − yik)

1− νij − νik + νijk

∂

∂θ
(1− νij − νik + νijk), (8.3)

U ik|j =
yijyikνij
νijk

∂

∂θ

(
νijk
νij

)
+
yij(1− yik)νij
νij − νijk

∂

∂θ

(
νij − νijk

νij

)

+
(1− yij)yik(1− νij)

νik − νijk
∂

∂θ

(
νik − νijk

1− νij

)

+
(1− yij)(1− yik)(1 − νij)

1− νij − νik + νijk

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
, (8.4)

where θ = (β′,α′)′, and νij = νij(β) and the association parameters are functions of α.

Hence, νijk = νijk(β,α).

The expectations of these over the conditional distribution of the unobserved outcomes

given the observed ones are further required. Evidently, because Eqs. (8.3)–(8.4) are linear

in the triplet yij , yik and yijyik, it suffices to calculate the expectations over these. Their

corresponding probabilities are

νij|d =
νidj
νid

and νijk|d =
νidjk
νid

, (8.5)

where d refers to the set of indices (1, 2, . . . , d−1), corresponding to the observed portion

of y.
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Combining Eqs. (8.3) and (8.4) with Eq. (8.5) leads to

E(U ijk) =
νidjk
νidνijk

∂

∂θ
νijk +

νidj − νidjk
νid(νij − νijk)

∂

∂θ
(νij − νijk)

+
νidk − νidjk
νid(νik − νijk)

∂

∂θ
(νik − νijk)

+
νid − νidj − νidk + νidjk
νid(1− νij − νik + νijk)

∂

∂θ
(1− νij − νik + νijk) (8.6)

and

E(U ik|j) =
yijνidkνij

νidνijk

∂

∂θ

(
νijk
νij

)
+

yij(νid − νidk)νij

νid(νij − νijk)

∂

∂θ

(
νij − νijk

νij

)

+
(1− yij)νidk(1− νij)

νid(νik − νijk)

∂

∂θ

(
νik − νijk

1− νij

)

+
(1− yij)(νid − νidk)(1 − νij)
νid(1− νij − νik + νijk)

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
. (8.7)

8.2.3 Predictive Bahadur model in the Doubly Robust Estimating

Equations

Many of the probabilities in the predictive model, i.e., the ones involving d, in (8.6)–

(8.7) are of dimension 3 or higher. The calculation of the probabilities in the multivariate

Bahadur model is cumbersome because of the very constrained parameter space. Pairwise

PL is used exactly to circumvent this problem. In the spirit of, among others, Bang &

Robins (2005), we follow a more pragmatic route and propose a convenient and sufficiently

rich predictive model. An attractive option is the pairwise Bahadur model, pertaining to

response at occasions j and k, but where the history, corresponding to d, is included as

a set of predictor variables. This amounts to using

E(U ijk) ≡ E [U i(yij , yik)]

=

1∑

yij=0

1∑

yik=0

U i(yij , yik)q(yij , yik), (8.8)

E(U ik|j) ≡ E [U i(yik|yij)] =

1∑

yik=0

U i(yik|yij)q(yik|yij), (8.9)

where q(yij , yik) = P (Yij = yij , Yik = yik|Yid = yid) and U i(yij , yik) and U i(yik|yij)
are as defined in Eqs. (8.3) and (8.4). Evidently, modeling the q(·) terms, will imply the

need for an additional parameter vector, φ, say.
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8.2.4 Precision Estimation

In the naive case, uncertainty stems from the θ parameter only. The asymptotic variance-

covariance matrix in Eq. (2.5) can then be consistently estimated by Î −1
0 Î1Î

−1
0 , with

I0 =
1

N

N∑

i=1

∂V i

∂θ
and I1 =

1

N

N∑

i=1

Si(θ̂)S′
i(θ̂), (8.10)

where U =
∑N
i=1 V i(θ) and Si(θ̂) = V i is the corresponding estimating function, i.e.,

shorthand notation for the formulas in Table 8.1.

In the singly robust case, we must also take into account uncertainty coming from

estimating the ψ parameters in the weight model. The entire score for subject i is

Si = (V ′
i,W

′
i)

′, with W =
∑N
i=1W i(ψ) the estimating equations coming from the

weight model, and the asymptotic variance-covariance is based on the following matrices:

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂ψ

0
∂W i

∂ψ


 and I1 =

1

N

N∑

i=1

Si(θ̂, ψ̂)S′
i(θ̂, ψ̂). (8.11)

In the doubly robust case, for the general expression, the weight model is comple-

mented with a predictive model. The score function for this conditional Bahadur model

is T (φ), with an extra set of parameters φ. The precision of the parameters can be

estimated using the matrices as follows:

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂ψ

∂V i

∂φ

0
∂W i

∂ψ
0

0 0
∂T i
∂φ




and I1 =
1

N

N∑

i=1

Si(θ̂, ψ̂, φ̂)S′
i(θ̂, ψ̂, φ̂),

(8.12)

From Eq. (8.1), (8.12) can be simplified to the following expressions

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂φ

0
∂T i
∂φ


 and I1 =

1

N

N∑

i=1

Si(θ̂, φ̂)S′
i(θ̂, φ̂). (8.13)

More detailed calculations and complete formulas can be found in Appendix E.2. See

also Bang & Robins (2005) and Rotnitzky (2009).
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8.3 Application: The Analgesic Trial

In this section, we apply the proposed methodology to data from a clinical trial designed

to investigate an analgesic drug, see Section 3.4. All analyses have been performed with

SAS (version 9.4). First, the Bahadur model, using three different estimating equations

for CC, CP and AC, was fitted with an NLMIXED procedure. To make use of NLMIXED’s

functionality, an objective function is formulated of which the first derivative coincides

with the estimating function under consideration. For optimization, the default Quasi-

Newton technique was applied. Further, to estimate the precision, a sandwich-type robust

variance estimator was used and, to perform the calculations, the IML procedure was

implemented. The Bahadur model, based on the full likelihood, was again fitted in an

NLMIXED procedure with similar settings. For more details, see Appendix E.3.

8.3.1 Results

For all ensuing analyses of the analgesic trial data, we consider only completers and

dropouts, i.e., a subset of 328 patients from the original data set, and the dichotomized

outcome (GSABIN). We first build a logistic regression for the dropout indicator, in terms

of the previous outcome (yi,j−1) and pain control assessment at baseline (xi), i.e.,

logit P (Di = j|Di ≥ j, xi, yi,j−1) = ψ0 + ψxxi + ψprevyi,j−1.

The highly significant p-value (p < .0001) for the parameter ψprev corresponding to the

previous outcome provides evidence against MCAR in favor of MAR. Weights are then

calculated based on predicted probabilities from this logistic model.

Preliminary analyses have indicated that, among a set of potential covariates, the

linear and quadratic effects of time tij , as well as the effect of baseline pain control

assessment (PCA0, denoted xi) are of importance. The marginal regression model for the

dichotomized GSA score, GSABIN, denoted as Y , is thus specified as

logit P (Yij = 1|tij , xi) = β0 + β1tij + β2t
2
ij + β3xi. (8.14)

For the correlation across the within-subject outcomes, we posit a Toeplitz type correlation

structure:



1 ρ(1) ρ(2) ρ(3)

ρ(1) 1 ρ(1) ρ(2)

ρ(2) ρ(1) 1 ρ(2)

ρ(3) ρ(2) ρ(1) 1



, (8.15)

where ρ(k), k = 1, 2, 3 denotes the correlation between outcomes that are k time points

apart. Hence, the Bahadur density is f(yi) = f1(yi)c(yi), with f1(yi) as in Eq. (2.2)
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with ni = 4 and Eq. (2.3) taking the specific form:

c(yi) = 1 +
∑

j1<j2;j2−j1=k

ρ
(k)
ij1j2

eij1eij2 ,

= 1 + ρ(1) (ei1ei2 + ei2ei3 + ei3ei4) + ρ(2) (ei1ei3 + ei2ei4) + ρ(3)ei1ei4.

The resulting parameter estimates, along with corresponding standard errors, for model

specification Eq. (8.14), with a Toeplitz correlation structure (Eq. 8.15), using full likeli-

hood and estimating equations from Table 8.1 are presented in Table 8.2. The variability

of the estimated weights, or additionally the variability of the estimated parameters of

the predictive model, is incorporated in the computation of the standard errors. The high

degree of similarity with the results of full likelihood indicate that the extra variability

induced by the weights, or additionally by the parameters of the predictive model, does

not seem to have a large impact on either the estimates or their standard errors.

Similar results are observed throughout the whole table, but in particular for the pa-

rameter estimates under full likelihood, naive AC and the doubly robust cases. Moreover,

substantial efficiency over full likelihood seems to be gained under the naive AC and

doubly robust approaches. Whereas these observations are not surprising for the doubly

robust case, precisely because of their property, the relatively good performance of the

naive AC case seems counterintuitive. However, under exchangeability, as shown before,

the naive AC can be seen as a doubly robust estimator, given that then the expectation in

these estimation equations can be removed because observed and unobserved components

from a subject’s history are interchangeable. To this effect, we assessed the plausibility

of the Toeplitz correlation structure of the analgesic trial data, using full likelihood (ap-

proximate F-test in NLMIXED), and determined that the three correlation parameters

ρ(k), k = 1, 2, 3, were not significantly different (p = 0.9078), which implies that the un-

derlying correlation structure might very well be exchangeable. This explains the excellent

behaviour of the naive AC estimator.

Next, we consider the CP versions, both single and doubly robust. The estimates

for the parameters seem reasonably close to those under full likelihood. In addition, the

standard errors under the singly robust case seem comparable, but those of the doubly

robust case are generally larger than those from full likelihood, a result that could be

attributed to the fact of single robustness. The estimates for the β parameters from the

CC cases are somewhat higher, whereas those from the AC cases are lower than those for

full likelihood. The CP results seem to fall in between the CC and AC results, suggesting

a comprise between the latter two. This can be inferred from the incremental nature of

the contributions in expressions in Table 8.1. However, as AC case uses more information

than the CP case, this one is generally to be preferred.
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Table 8.2: The Analgesic Trial. Parameter estimates (empirically-corrected standard

errors) for naive, singly and doubly robust pairwise likelihood and for full likelihood.

Effect Par. UCC,naive UCP,naive UAC,naive U full.lik.

Inter. β0 3.131 (0.678) 2.962 (0.563) 2.590 (0.493) 2.626 (0.509)

Time β1 -0.913 (0.492) -0.908 (0.401) -0.675 (0.354) -0.602 (0.362)

Time2 β2 0.170 (0.096) 0.177 (0.081) 0.151 (0.074) 0.120 (0.076)

PCA0 β3 -0.130 (0.132) -0.125 (0.113) -0.186 (0.099) -0.209 (0.106)

corr1 ρ(1) 0.217 (0.069) 0.244 (0.055) 0.259 (0.057) 0.297 (0.063)

corr2 ρ(2) 0.199 (0.075) 0.234 (0.068) 0.250 (0.069) 0.293 (0.074)

corr3 ρ(3) 0.224 (0.102) 0.232 (0.104) 0.240 (0.104) 0.337 (0.117)

Effect Par. UCC,sr UCP,sr UAC,sr

Inter. β0 3.090 (0.637) 2.712 (0.552) 1.718 (0.560)

Time β1 -0.997 (0.468) -0.775 (0.389) -0.280 (0.347)

Time2 β2 0.193 (0.090) 0.151 (0.078) 0.092 (0.070)

PCA0 β3 -0.195 (0.133) -0.167 (0.113) -0.196 (0.115)

corr1 ρ(1) 0.263 (0.079) 0.295 (0.062) 0.333 (0.064)

corr2 ρ(2) 0.257 (0.086) 0.273 (0.076) 0.303 (0.076)

corr3 ρ(3) 0.295 (0.115) 0.298 (0.112) 0.299 (0.108)

Effect Par. UCC,dr UCP,dr UAC,dr

Inter. β0 3.577 (1.136) 2.736 (0.874) 1.533 (0.692)

Time β1 -1.333 (0.851) -0.785 (0.647) -0.104 (0.480)

Time2 β2 0.241 (0.164) 0.149 (0.132) 0.052 (0.108)

PCA0 β3 -0.196 (0.220) -0.153 (0.193) -0.197 (0.147)

corr1 ρ(1) 0.255 (0.118) 0.305 (0.088) 0.366 (0.108)

corr2 ρ(2) 0.247 (0.165) 0.281 (0.139) 0.338 (0.158)

corr3 ρ(3) 0.305 (0.276) 0.329 (0.275) 0.350 (0.243)
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8.4 Concluding Remarks

Pseudo-likelihood approaches have become a practical alternative to full likelihood meth-

ods, particularly for applications involving complex likelihood forms. In view of the various

issues arising from marginally modelling incomplete non-Gaussian longitudinal data, we

move away from conditional pseudo-likelihood, and focus on marginal pseudo-likelihood,

considering the specific case of incomplete longitudinal binary data, as proposed in Molen-

berghs et al. (2011). While the numerical and computational issues accompanying the

likelihood expressions of the marginal model for the binary longitudinal responses are cir-

cumvented by means of substituting pairwise pseudo-likelihood expressions for their full

likelihood counterparts, the incompleteness in the data is addressed using concepts of

inverse probability weighting and predictive terms in the form of expectations, thereby

yielding singly and doubly robust estimators. This expands the set of tools available for

fitting marginal models to incomplete non-Gaussian longitudinal data.

In this chapter, we assessed the performance of pseudo-likelihood approaches proposed

in Molenberghs et al. (2011), in order to provide practical insight into alternative strategies

for marginal models for non-Gaussian incomplete longitudinal data. The analysis of the

case study demonstrates the feasibility and adequacy of the proposed methodology. Singly

robust estimators with correctly specified dropout model and our doubly robust estimators

were found to be at least as efficient as direct likelihood methods. Moreover, under full or

near exchangeability, the naive available case version is as efficient as the doubly robust

estimators, allowing one to invoke double robustness without having to use weights or

expectations.

While the situation examined in this chapter focuses on dropout, in principle, the

general methodology applies for non-monotone missingness as well; one then has to pay

particular attention to the construction of both weights and predictions, and some non-

trivial algebraic challenges will emerge. Other possibilities include imputing all missing

cases or imputing only non-monotone missing cases to render the missingness monotone

and subsequently using pseudo-likelihood on the imputed data sets. Also, while multiple

imputation approaches generally prescribe Gaussian type data, variations for non-Gaussian

data can be utilized and seem reasonably stable even with model misspecification; see,

for instance, Beunckens, Sotto & Molenberghs (2008).





PART III

Conclusion





Chapter 9

General Discussion and Conclusion

9.1 Conclusion

An easy-to-use criterion for incompleteness of minimal sufficient statistics in univariate

and multivariate exponential family models was presented. Typically, incompleteness is

studied directly by means of the definition, which means that the existence of a non-

trivial zero-expectation function needs to be falsified, or that such a function needs to be

constructed. The ’Characterization of incompleteness’ requires checking the dimension of

a minimal sufficient statistic relative to the length of the parameter vector. Whereas the

definition can be daunting to use, this criterion turns the assessment of incompleteness

into a feasible task.

Clustered data designs with non-constant cluster sizes (random or otherwise) do not

admit complete sufficient statistics. Next to this, maximum likelihood estimation must

proceed iteratively, as there are no closed-form solutions. This is not a problem in medium

sized clusters and cluster sizes. However, when the number of clusters and/or the cluster

sizes are small or very large, computations may become challenging.

Pseudo-likelihood and split-sampling (Molenberghs, Verbeke, and Iddi, 2011) were

proposed as model strategy and its statistical properties were investigated. In a first

attempt, the normal compound-symmetry model was considered. When the cluster size

is constant, there is a closed-form solution. Considering the collection of estimators

obtained from analyzing the data for each cluster size separately, the MLE for the entire

dataset is a vector linear combination of these, but the weights depend on the parameters.

This suggests the consideration of approximations to these weights, as well as alternative

weights. Based on theoretical results and simulations, as well as on real-data analysis,

equal weights and so-called approximate optimal weights were found to not perform well.
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Iterated optimal and proportional weights show excellent performance. While the former

of these two are somewhat more computationally intensive, the latter are simple and

parameter-free. One refinement is that for the mean parameter µ and for the covariance

term d, weights should be chosen proportional to the number of clusters of a particular

size, ck, while for the measurement error variance σ2 proportionality is to the product of

the number of clusters of a given size and the cluster size, ck · nk.

In the data analysis a slightly expanded setting was considered, where the mean takes

the form of a regression function rather than a constant. This is encouraging towards

the use of our results in more elaborate settings, as long as some form of exchangeability

prevails.

In the case where clusters take the form of trials, the number of trials may be relatively

small, and likely trial sizes are (almost) unique. Our split-sample method would then imply

that each trial is first analyzed separately, with overall estimates taking the form of linear

combinations of trial-specific ones. To provide a formal basis for this, the important

special case of a cluster-by-cluster analysis was considered. Encouragingly, such a method

is consistent when the number of replicates per cluster (e.g., the number of patients per

trial) increases more rapidly than the number of trials. Such an assumption is not realistic

in the developmental toxicology setting considered in this thesis, but may be very sensible

in a meta-analysis or clinical trials.

Second, an AR(1) model is considered. In the case of AR(1) model with constant

cluster size, there are closed-form solutions but no complete minimal sufficient statis-

tics. Returning to unequal cluster sizes, there are, in general, no closed form solutions.

Our results show excellent performance of the size-proportional weights, that is through

weighting according to the number of measurements in a cluster (ck ·nk), rather than the

number of clusters ck in a subsample, that is, proportional weights. By contrast, the latter

are a good choice for the compound-symmetry structure. Under AR(1) they are worse

than equal weights. Approximate optimal weights can also be used, but this leads to an

estimate of ρ with a large sample variance. In practice, it is convenient and appropriate

to use size-proportional weights; these are parameter free and simple to use. Simulations

show that this split-sample methodology, in certain (large) settings, computation time

can be 1000 to 30,000 times faster than with standard maximum likelihood.

Further, to study associations between binary variables, incorporating classification,

the common odds ratio is often used. The odds ratio estimator of Mantel and Haenszel

(1959) is well established in epidemiology. It is a weighted estimator, combining informa-

tion of the different strata, that do not need to be of the same size. It follows neither from

the likelihood principle, nor from optimally weighted considerations. Therefore, also the

pseudo-likelihood split-sample methodology (Molenberghs, Verbeke, and Iddi, 2011) was
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used to compare it against an optimal weighted estimator. While there is no complete

sufficient statistic, there nevertheless is a uniformly optimal weighted estimator. Unlike a

full likelihood estimator, both the MH as well as the optimal estimator, and the variance

thereof, are easy to calculate.

The MH estimator is very efficient for large datasets, and in more cases well-defined

when cell counts are small or even zero. When datasets are huge, the optimal estimator

is somewhat more efficient. However, two reservations should be mentioned. First, this

is not the case when the number of strata becomes equal to or larger than the mean

stratum size; here, the estimator fails. Second, with really huge samples, a slight amount

of efficiency loss is usually not an issue. The MH retains its practical and theoretical

attraction, even when compared with formally optimal estimators.

Last, alternative strategies for marginal models for non-Gaussian incomplete longitudi-

nal data were the focus. Next to GEE, the performance of pseudo-likelihood approaches,

proposed in Molenberghs et al. (2011), were assessed. This is a very feasible and ade-

quate methodology. Singly robust estimators with correctly specified dropout model and

our doubly robust estimators were found to be at least as efficient as direct likelihood

methods. Especially, under full or near exchangeability, the naive available case version

is as efficient as the doubly robust estimators, allowing one to invoke double robustness

without having to use weights or expectations.

9.2 Further Research

In addition to the research presented in this thesis, a lot of extra interesting paths which

can be followed, were identified.

When clusters become very large, it may become attractive to further sub-divide them

in sub-clusters. Such a splitting method was also considered by Molenberghs, Verbeke, and

Iddi (2011), i.e. splitting in dependent subsamples. Here, only independent subsamples

were considered, so this would require further investigation.

In the analysis of the NTP data and PANSS data, the observed cluster size seemed

related to the outcome of interest or another variable under investigation. This suggests

that it is useful to consider, at the same time, the impact on the cluster size. This brings

us back to the informative cluster sizes mentioned in the introduction, Chapter 1. While

work has been done in this area, it is of interest to extend the ideas developed in this

thesis to a joint model including cluster size.

As the focus in this work was on normal distributed outcomes, for non-normal data,

no corresponding closed-form formulations are possible. While gains will be less, there

might still be computational advantages, in terms of time and stability, in analyzing the
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data in cluster-size dependent strata, followed by weighting the so-obtained estimates.

An extension to the methodology could be investigated.

Finally, the MH also knows extensions to I × J ×K tables (Agresti, 2002, pp. 295).

As categorical variables may take on more than 2 levels and also here associations can

be of scientific interest, one might also consider here an extension of the investigation for

optimal weights.
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Appendix for Chapter 4

A.1 Examples

Example 1 (Univariate normal sample with known variance). Let Yi ∼ N(µ, σ2), i =

1, . . . , n, with µ unknown and σ2 known. Then K1 =
∑n

i=1 Yi is a complete sufficient

statistic for µ.

Clearly, K1 ∼ N(nµ, nσ2). Suppose that there is a function g(k1) such that

E{g(k1)} = 0 for all values of µ. Then

∫
g(k1)

1√
nσ2
√

2π
exp

{
−1

2

(k1 − nµ)2

nσ2

}
dk1 = 0,

implying that ∫
g(k1) exp

{
−1

2

k2
1σ

2

nσ4
+
k1

σ2
µ

}
d

(
k1

σ2

)
= 0.

With a simple change of variables, this can be written as
∫
g(tσ2)e− 1

2
t2σ2

n etµdt = L
{
g(tσ2)e− 1

2
t2σ2

n

}
= 0,

where L(·) denotes the two-sided Laplace transform. This, in turn, implies that the

argument must be equal to zero almost everywhere (a.e.). Because of the exponential

factor, this forces g(tσ2) = 0 a.e. Hence, g(k1) = 0 a.e.

Example 2 (Univariate normal sample with unknown variance). Let Yi ∼ N(µ, σ2),

i = 1, . . . , n, with µ and σ2 unknown. Then (K1,K2) with K1 as in Example 1 and

K2 =
∑n
i=1 Y

2
i is a complete sufficient statistic for (µ, σ2).
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The kernel of the log-likelihood, i.e., the terms of the log-likelihood that are functions

of the parameters (Mccullagh and Nelder, 1989), is

ℓ = −n
2

ln σ2 − 1

2σ2

n∑

i=1

(yi − µ)2

= −n
2

ln σ2 − 1

2σ2

n∑

i=1

y2
i +

µ

σ2

n∑

i=1

yi −
nµ2

2σ2
. (A.1)

The sufficient statistic (K1,K2) immediately follows. K1 is normally distributed as in

Example 1 andK2 has a non-central chi-squared distribution. K1 andK2 are independent.

Assume a function g(k1, k2) with zero expectation for all values of the pair (µ, σ2).

Even though we have a bivariate statistic, we can start from the derivations in Exam-

ple 1. Write the kernel of the density of Km (m = 1, 2) as hm(km) exp(θmkm), then the

condition on g(k1, k2) is:

0 =

∫ ∫
g(k1, k2)h1(k1)h2(k2) exp(θ1k1 + θ2k2)dk1dk2 (A.2)

=

∫
dk2h2(k2) exp(θ2k2)

∫
dk1g(k1, k2)h1(k1) exp(θ1k1) (A.3)

=

∫
dk2h2(k2) exp(θ2k2)Lθ1 {g(k1, k2)h1(k1)} (A.4)

= Lθ2 [h2(k2)Lθ1 {g(k1, k2)h1(k1)}] , (A.5)

where Lθ1 is a two-sided and Lθ2 a one-sided Laplace transform. This implies that

h2(k2)Lθ1 {g(k1, k2)h1(k1)} = 0 a.e. and thus, because h2(k2) > 0 over the support,

that Lθ1 {g(k1, k2)h1(k1)} = 0 a.e. This, in turn, implies that g(k1, k2)h1(k1) = 0 a.e.

For a reason similar to that used above, it follows that g(k1, k2) = 0 a.e. Note that a

two-sided, or bilateral, Laplace transform is unique only, i.e., one-to-one onto its inverse,

when not only the function but also the region of convergence is specified (Poularikas and

Seely, 2000). However, in our case, because of the use of exponential family functions,

the region of convergence is not restricted, hence this subtle issue does not apply here.

In fact, an unrestricted region of convergence is a regularity condition: it is violated, for

example, in the case of a deterministic stopping rule, but not when a stochastic stopping

rule is used.

This derivation is quite general. Clearly, the argument can be extended to a vector

of arbitrary length. Note however that we have used the fact that K1 and K2 are in-

dependent. While this is true for the mean and the variance related sufficient statistics

for normal samples, it is not true in general. However, the extension to dependent suf-

ficient statistics is almost trivial: we can replace h1(k1) by h1(k1|k2) in (A.2)–(A.5).

Furthermore, a univariate version of this argument generalizes Example 1.
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The multivariate extension of this argument will be used in Section 4. It is not true

however, that such an argument can cover all situations, for example, for the sequential

trial case. A simple but instructive counterexample is provided next.

Example 3 (Univariate normal sample with coupled mean and variance). Let Yi ∼
N(µ, τ2µ2), i = 1, . . . , n, with µ unknown. In the case that τ2 is known, there is

no complete sufficient statistic for µ. On the other hand, when τ2 is unknown, there is a

complete sufficient statistic for (µ, τ2).

The kernel of the log-likelihood immediately follows from (A.1), upon equating σ2 =

τ2µ2:

ℓ = −n
2

(ln τ2 + 2 lnµ)− 1

2τ2µ2

n∑

i=1

y2
i +

1

τ2µ

n∑

i=1

yi −
n

2τ2
. (A.6)

Assume τ2 known and consider the function

g(k1, k2) =
k2

1

τ2 + n
− k2

τ2 + 1
. (A.7)

Because E(K2
1 ) = n2µ2 +nτ2µ2 = nµ2(τ2 +n) and E(K2) = nµ2(τ2 +1), it readily fol-

lows that the expectation of g(K1,K2) is zero, while the function is non-trivial. Function

g(k1, k2) satisfies the definition of incompleteness only because τ2 is a known constant.

The score equation for (A.6) can be written as:

nµ2 +
K1µ

τ2
− K2

τ2
= 0,

with solution

µ̂ =
−K1 ±

√
K1 + 4nτ2

2nτ2
.

Clearly, µ̂ + g(K1,K2) would provide another estimator with the same expectation, for

every non-trivial function g(k1, k2) with expectation zero. The derivations above show

that this type of function exists. Adding such a function comes down to reweighing the

amount of information taken from K1 relative to that from K2.

This counterexample is interesting because, at first sight, it is close to Examples 1 and

2. However, in both of these earlier examples, the sufficient statistic and the parameter

are of the same dimension, while here, the statistic is by necessity two-dimensional. If it

is restricted to either K1 or K2, then it is no longer sufficient.

But when τ2 is unknown, the sufficient statistic and the parameter are again of the

same dimension as in Example 2. The score for τ2 leads to:

τ2 =
2

n

(
K2

2µ2
− K1

µ
+
n

2

)
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and to solutions:

µ̂ =
K1

n
, τ̂2 =

nK2

k2
1

− 1.

This example, with τ2 known, is similar to the sequential-trial case where the sufficient

statistic consists not only of the data collected, but also of the sample size realized, i.e.,

a one-dimensional parameter needs a two-dimensional sufficient statistic. The following

example sets this out in some generality. It is based on developments in Milanzi et al.

(2015). In this, a group sequential trial was considered with an arbitrary number of looks

L and exponential family distributed outcomes. It generalizes the results of Milanzi et al.

(2016), who only considered a trial with two possible sample sizes, n and 2n.

Example 4 (Sequential trial with stochastic stopping rule). Consider a sequential trial

with L pre-specified looks, with sample sizes n1 < n2 < · · · < nL. Assume that there

are nj i.i.d. observations Y1, . . . , Ynj
, from the jth look that follow an exponential family

distribution with density

fθ(y) = h(y) exp {θy − a(θ)} , (A.8)

for θ the natural parameter, a(θ) the mean generating function, and h(y) the normalizing

constant. There is no complete sufficient statistic for the mean µ or, equivalently, for the

natural parameter θ.

Subsequent developments are based on a generic data-dependent stochastic stopping

rule, which we write as:

π(N = nj |knj
) = F

(
knj

∣∣ψ) = F
(
knj

)
, (A.9)

where knj
=
∑nj

i=1 yi is a realisation from an exponential family density:

fnj
(k) = hnj

(k) exp
{
θknj

− nja(θ)
}
. (A.10)

While we do not need to provide an explicit expression for the stopping rule at this point,

as our developments apply to a broad class, it is useful to note that Milanzi et al. (2016)

studied in detail the behaviour of stopping rules taking the form F
(
α+ βknj

/nmj
)
, for

some power m and some cumulative distribution function F (·). Our inferential target is

the parameter θ, or a function thereof.

In a sequential setting, a convenient minimal sufficient statistic is (K3, N), with K3 =∑N
i=1 Yi. Following the developments in the above papers, the joint distribution for
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(K3, N) is:

p(K3, N) = f0(K3, N) F (KN), (A.11)

f0(kn1 , n1) = fn1 (kn1 ), (A.12)

f0(knj
, nj) =

∫
f0(knj−1 , nj−1)fnj−nj−1 (knj

− knj−1 )
[
1− F (knj−1 )

]
dknj−1 .

(A.13)

If (K3, N) were complete, then there would exist a function g(K3, N) such that

E [g(K3, N)] = 0 if and only if g(K3, N) = 0, implying that

0 =

∫
g(kn1 , n1)fn1(kn1 )F (kn1 )dkn1 +

L−2∑

j=2

∫
g(knj

, nj)H(knj
)F (knj

)dknj

+

∫
g(knL

, nL)H(knL
)F (knL

)dknL
, (A.14)

with

H(knj
) =

∫
. . .

∫

︸ ︷︷ ︸
j−1

f0(knj−1 , nj−1)fnj−nj−1 (knj
−knj−1 )

[
1− F (knj−1 )

]
dkn1 . . . dknj−1 .

Substituting the general exponential form (A.10) into (A.14), and applying properties of

exponential family probability distributions, gives

0 =

∫
hnL−n1e

(θkn1)

∫
g(kn1 , n1)F (kn1 )hn1 (kn1 ) exp(θkn1 )dkn1

+

L−2∑

j=2

∫
hnL−nj

e(θknj
)

∫
g(knj

, nj)H̃(knj
) exp(θknj

− nj)F (knj
)dknj

+

∫
g(knL

, nL)H̃(knL
) exp(θknL

)F (knL
)dknL

, (A.15)

where

H̃(knj
) =

[∫
. . .

∫

︸ ︷︷ ︸
j−1

j−1∏

i=1

hn1 (kn1 )hni+1−ni
(kni+1 − kni

) [1− F (kni
)]dkn1 . . . dknj−1

]
.

Upon noting that the right hand side is a convolution and making use of properties of

linearity and uniqueness of the Laplace transform it can be shown that:

g(knL
, nL)H̃(knL

) = −
L−1∑

j=1

∫
g(zj, nj)H̃(zj)F (zj)dzj ,

g(knL
, nL) =

∑L−1
j=1

∫
g(zj , nj)H̃(zj)F (zj)dzj

H̃(knL
)

.
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Note that the Laplace transform is unique in both the unilateral as well as the bilateral

case. In the unilateral case, this property is straightforward. In the bilateral case, the

additional requirement needs to be added that this uniqueness holds over the region of

absolute convergence. As mentioned earlier, this region of convergence is not restricted

as a stochastic stopping rule is applied. Assigning, for example, arbitrary constants to

g(n1, kn1 ), . . . , g(nL−1, knL−1), a value can be found for g(nL, knL
) 6= 0, contradicting

the requirement for (K3, N) to be complete, hence establishing incompleteness. From

applying the Lehmann-Scheffé theorem, no best mean-unbiased estimator is guaranteed

to exist. The practical consequence of this is that even estimators as simple as a sample

average need careful consideration and comparison with alternatives. To do this, we

embed the sample average in a broader class of linear estimator, and also study it from a

likelihood perspective.

Consider the special case of L = 2, n1 = n, and n2 = 2n, a normally distributed

endpoint with mean µ and variance 1, and probit probability of stopping after the first

look equal to Φ(α + βk/n), where Φ(·) is the standard normal cumulative distribution

function. Then, following Molenberghs et al. (2014), incompleteness is established by

constructing a non-trivial function g(K3, N) (where K3 is the sample sum and N is the

realized sample size, i.e., N can take values n and 2n), satisfying for all µ:

g(k, 2n) · p0(2n, k) = −
∫
φn(k − z) · g(z, n) · φn(z) ·Φ

(
α+

β

n
z

)
dz, (A.16)

where φ(·) is the standard normal density. Molenberghs et al. (2014) gave two examples

of such a function, one of which being:

g(k, n) =
λ

Φ
(
α+ β

nk
) , (A.17)

g(k, 2n) = − λ

1− Φ

(
α+ βk

2n√
2n+β2

2n

,

) , (A.18)

with λ 6= 0 an arbitrary constant.
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Example 5 (Known parameter). Consider the bivariate case studied in Example 2 but

now such that θ2 is known.

The requirement for an expectation-zero function is:
∫
dk2h2(k2)e−A(θ2)eθ2k2

∫
dk1g(k1, k2)h1(k1|k2)e−A(θ1,k2)eθ1k1 = 0. (A.19)

Choose g(k1, k2) = g(k2). Condition (A.19) becomes:

e−A(θ2)

∫
dk2h2(k2)eθ2k2g(k2)

∫
dk1h1(k1|k2)e−A(θ1,k2)eθ1k1

= e−A(θ2)

∫
dk2h2(k2)eθ2k2g(k2) = 0. (A.20)

Hence, we merely need to satisfy:
∫
g(k2)h2(k2)eθ2k2dk2 = 0. (A.21)

Importantly, because θ2 is known, the left hand side of (A.21) is not a Laplace transform.

Interpreting (A.21) as an inner product, we need only find a function g(k2) ⊥ h2(k2)eθ2k2 ,

which is straightforward.

Example 6 (Univariate normal sample with identical mean and variance). Let Yi ∼
N(µ, µ), i = 1, . . . , n. Then K2 =

∑n
i=1 Y

2
i is a complete sufficient statistic for µ.

This example is surprisingly different from Example 3, because now the kernel of the

log-likelihood is:

ℓ = −n
2

lnµ− 1

2µ

n∑

i=1

y2
i −

nµ

2
,

so K1 disappears. We clearly have a scalar sufficient statistic, and completeness is trivial.

Note that the score equation takes the simple form

µ2 + µ =
K2

n
,

leading to the maximum likelihood estimator:

µ̂ =

√
4K2/n+ 1− 1

2
.

In Example 4, the conditional likelihood accommodating both K3 and N has a non-

linear correction term relative to the ordinary least squares solution to the likelihood

equations in the standard case of a fixed sample size (Molenberghs et al., 2014; Milanzi

et al., 2016, 2015).
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Example 7 (Univariate normal sample with general coupling of mean and variance). Let

Yi ∼ N(µ, µ2λ), i = 1, . . . , n. Then there is a complete sufficient statistic for µ only for

λ = 0 or λ = 1/2.

When λ = 0, Example 1 is recovered. Example 6 follows for λ = 1/2. In all other

cases, the sufficient statistic is bivariate, which follows from the kernel of the log-likelihood:

ℓ(µ) ∝ −nλ lnµ− K2

2µ2λ
+

K1

µ2λ−1
− n

2µ2λ−2
.

Given that K1 ∼ N(nµ, nµ2λ) and K2 ∼ χ2
nµ2λ , it follows that E(K1) = nµ, E(K2) =

2nµ2λ, and E(K2
1 ) = n2µ2 + nµ2λ. Consider a function

g(k1, k2) = αk1 + βk2
1 + γk2. (A.22)

The expectation is

E {g(K1,K2)} = αnµ+ βn2µ2 + (βn+ 2γn)µ2λ.

When λ = 1 every choice γ = −β(n + 1)/2 produces a non-zero function with zero

expectation. For λ 6= 1, in addition to being different from 0 and 1/2 as well of course,

there is no non-trivial solution. However, from Proposition 1, we know that for all λ 6=
0, 1/2, the sufficient statistic is incomplete. So it is seen that it is not because the posited

function (A.22) fails to provide a counterexample that there exists none. We now know

there are such functions, but the proposition obviates the need to explicitly construct one.

Next, we provide an additional example, using a contingency table.

Example 8 (Bivariate contingency table). Consider an M1 ×M2 contingency table with

conditional row probabilities ϕ(k1|k2) and marginal column probabilities π(k2).

First, assume that all probabilities are unknown and to be estimated. Assume that

there is a function g(k1, k2) with zero expectation. Then

M1∑

k1=1

M2∑

k2=1

g(k1, k2)ϕ(k1|k2)π(k2) = 0, (A.23)

with sum constraints on the parameters:
∑M2

k2=1 π(k2) = 1 and
∑M1

k1=1 ϕ(k1|k2) = 1,

for every value of k2. Because (A.23) should hold for all values of the parameters,

g(k1, k2) = 0 follows immediately from algebraic results on polynomials.

Second, assume that π(k2) is given and choose g(k1, k2) = g(k2). Then, (A.23)

simplifies to
M1∑

k1=1

M2∑

k2=1

g(k2)ϕ(k1|k2)π(k2) =

M2∑

k2=1

g(k2)π(k2) = 0.

Because the vector π is given, we merely need a set of constants g such that g ⊥ π.
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Example 9 (Univariate outcomes with random sample size). Consider Yi ∼ N(µ, 1), with

sample size N , with 1 ≤ N ≤ n and the probability of realizing sample size N equal to

πN . The sufficient statistic for µ is incomplete.

The sufficient statistic is (K3, N) with K3 =
∑N

i=1 Yi and N the usual sample size.

Assume that all πN > 0, for N = 1, . . . , n; this simplifies the calculations without loss of

generality. Choose a function g(k,N) = aN . It then follows that

E {g(K3, N)} =

∫ n∑

N=1

g(k,N)πNφ(k;Nµ,N)dk

=
n∑

N=1

aNπN

∫
φ(k;Nµ,N)dk

=
n∑

N=1

aNπN .

This expectation equals zero if a vector a ⊥ π is chosen. Choosing (a1, . . . , an−1) freely,

then

an = − 1

πn

n−1∑

N=1

aNπN

satisfies the requirement. In the next example, we consider clustering between the out-

comes.

Example 10 (Correlated outcomes with compound-symmetry structure and random

sample size). The setting is similar to that of Example 9, except that the vector

Y ∼ N(µ1N , σ
2IN+τ2JN ), with 1N a vector of ones of length N , IN the N -dimensional

identity matrix, and JN an N ×N matrix of ones. The sufficient statistic for (µ, σ2, τ2)

is incomplete.

The sufficient statistic is (K3 =
∑N

i=1 Yi,K4 = Y ′Y ,K5 = Y ′JNY , N), as will be

clear from Example 13. By choosing a function g(k1, k2, k3, N) = aN the same solution

a ⊥ π follows. This result does not depend in any way on this particular normality

assumption, as can be formalized in the next example.

Example 11 (Vector-valued data and parameter, with completely random sample size).

Assume an exponential family structure f(k, N) = fN (k)π(N |k)
notation

= fN(k)πN (k).

The sufficient statistic is incomplete.

Choose g(k, N) = gN(k) = aN/πN (k) for πN (k) 6= 0 and 0 otherwise. Then

E {g(K3, N)} =

n∑

N=1

∫
fN (k)πN (k)gN (k)dk =

n∑

N=1

aN

∫
fN (k)dk =

n∑

N=1

aN = 0
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for any zero-sum sequence.

Of course, by using the term clustered data we do imply that N clusters of sizes

Ni (i = 1, . . . ,m) are sampled. We have not considered this level of generality yet.

Example 11 will be generalized next.

Example 12 (N clusters of completely random size). Consider N clusters of sizes Ni

(i = 1, . . . , N), with sufficient statistics [K = K {(Y i)} ;N = N {(Ni)}]. The suffi-

cient statistic is incomplete.

This result has the same form as in the in the previous example, with gN (k) =

aN/πN (k) this time, and
∑

N

aN = 0.

Example 13 (Compound-symmetry clusters of random size). Consider clustered data

Y i ∼ N(µ1Ni
, σ2INi

+ τ2JNi
), for i = 1, . . . , N . The sufficient statistic for (µ,σ2,τ2) is

incomplete.

The terms in the log-likelihood that are data-dependent, and hence produce the suf-

ficient statistic, follow from

N∑

i=1

−

1

2
(Y i − µ1Ni

)′(σ2INi
+ τ2JNi

)−1(Y i − µ1Ni
)

=

N∑

i=1

−1

2
(Y i − µ1Ni

)′

(
INi
− τ2

σ2 +Niτ2
JNi

)
(Y i − µ1Ni

)

=
N∑

i=1

µ

σ2 +Niτ2




Ni∑

j=1

Yij


− 1

2σ2




N∑

i=1

Ni∑

j=1

Y 2
ij




+
N∑

i=1

τ2

2σ2(σ2 +Niτ2)




Ni∑

j=1

Yij




2

. (A.24)

The three terms in (A.24) are qualitatively different. Indeed, the middle one corresponds

to a single sufficient statistic, the sum of all squares across clusters, while the first and

last split into as many sufficient statistics as there are unique cluster sizes. To properly

formalize this, assume that there are L different cluster sizes, and that there are cℓ clusters

among the data of size nℓ. Evidently, m =
∑L

ℓ=1 cℓ. Based on (A.24) and the multiplicity
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of the cluster sizes, the sufficient statistics are:

S1ℓ =

cℓ∑

i=1

nℓ∑

j−1

Y
(ℓ)
ij , (A.25)

S2 =

L∑

ℓ=1

cℓ∑

i=1

nℓ∑

j−1

(
Y

(ℓ)
ij

)2

, (A.26)

S3ℓ =

cℓ∑

i=1




nℓ∑

j−1

Y
(ℓ)
ij




2

, (A.27)

S4ℓ = cℓ, (A.28)

where the superscript (ℓ) is used to indicate that the summation is restricted to data from

clusters of size nℓ. The conditional and marginal expectations of (A.25)–(A.28) are:

E(S1ℓ|cℓ) = cℓnℓµ,

E(S1ℓ) = mµπℓnℓ,

E(S2|cℓ) =
L∑

ℓ=1

cℓnℓ(σ
2 + τ2 + µ2),

E(S2) = N(σ2 + τ2 + µ2)
L∑

ℓ=1

πℓnℓ,

E(S3ℓ|cℓ) = cℓ
{
nℓ(σ

2 + τ2 + µ2) + nℓ(nℓ − 1)(τ2 + µ2)
}
,

E(S3ℓ) = mπℓnℓ
{

(σ2 + τ2 + µ2) + (nℓ − 1)(τ2 + µ2)
}
,

E(S4ℓ) = mπℓ.

Group all sufficient statistics into S and define a function

g(s) =

L∑

ℓ=1

λℓ
s1ℓ

s4ℓ
. (A.29)

Then,

E {g(S|S4)} =

L∑

ℓ=1

λℓ
E(S1ℓ|S4ℓ)

S4ℓ
= µ

L∑

ℓ=1

λℓnℓ,

and hence

E {g(S)} = µ

L∑

ℓ=1

λℓnℓ.

Once again, every solution λ ⊥ n, where n = (n1, . . . , nL)′, provides a counterexample,

establishing incompleteness.
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Example 14 (General clustered-data setting with random cluster sizes). Consider clus-

tered data Y i of size Ni, for i = 1, . . . , N , following an exponential family with data-

and cluster-size components f(yi|θ, Ni) and f(Ni|ψ). Whenever Ni can take more than

one value, the sufficient statistic for θ is generally incomplete.

Example 15 (Fully observed 2 × 1 contingency table). Consider a binomial experiment

based on a binary variable Yi taking values 1 and 2, with n trials and parameter p

(i = 1, . . . , n). Denote the number of 1s and 2s by Z21 and Z22, respectively, such that

Z21 + Z22 = n. The sufficient statistic for p is complete.

(The first of the double index is redundant in this example, but is needed in the

following one.) Because of the sum constraint, the sufficient statistic is Z21 (or Z22), and

the MLE is p̂ = Z21/n. The result is obvious. Now turn to the same setting where not

all observations are made.

Example 16 (Partially missing 2× 1 contingency table). Consider a binomial experiment

based on a binary variable Yi taking values 1 and 2, with n trials and parameter p

(i = 1, . . . , n). Denote the number of 1s and 2s by Z21 and Z22, respectively, and let the

number of trials with unobserved outcome be Z1. Then, Z21 + Z22 + Z1 = n. Assume

that the missing data are missing at random. The sufficient statistic is incomplete if

ignorable likelihood is used.

In the above, missing at random means that the missing data mechanism does not

depend on unobserved information, given observed information. Under missingness at

random, mild regularity conditions, and drawing likelihood inferences, it is well-known

that the missing-data mechanism can be ignored. For details, see Little and Rubin (2002).

Let Ri = 1 if Yi is observed and Ri = 0 otherwise. Further, let q = P (Yi = 1). Full

likelihood means that p and q are both estimated from the data. It is easy to show that

p̂ = Z21/(Z21 + Z22) and q̂ = (Z21 + Z22)/n. When both parameters are estimated,

the sufficient statistic (because of the sum constraint) and the parameter vector are both

two-dimensional, establishing completeness. However, under missingness at random the

likelihood factors into a factor containing p only and a factor with only q. It is then

common practice to ignore the factor containing q and to restrict efforts to estimation of

p. This leads to the same estimator for p. The sufficient statistic remains two-dimensional:

both Z21 and Z22, because their sum is random as well, unlike in the non-missing-data

case. It is then easy to construct a function g(z21, z22), such that E[g(Z21, Z22)] = 0 for

every value of p:

g(z21, z22) =
Z21 + Z22

q
− Z1

1− q . (A.30)
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Example 17 (Partially missing 2 × 2 contingency table). Consider a contingency table

with supplemental margin, cross-classifying two binary outcomes (Yi1, Yi2), (i = 1, . . . , n),

and with counts Z2jk and Z1j (j, k = 1, 2). Unless the supplemental margin is empty,

the sufficient statistic for the response profile probabilities pjk under ignorable likelihood

is incomplete.

Under ignorability, only the probabilities pjk are estimated (subject to their sum being

one), and not the missingness probabilities qj , where qj is the probability of observing

the second outcome Yi2 for a subject with Yi1 = j. Because E(Z2jk) = npjkqj and

E(Z1j) = npj+(1 − qj), where the + sign instead of k indicates summation over k, it

follows that the functions

E[gj(Z2j1, Z2j2)] = (1− qj)(Z2j1 + Z2j2)− qjZ1j ,

(j = 1, 2), have zero expectation.

Example 18 (Standard exponential distribution for continuous times). Consider Yi (i =

1, . . . , n) i.i.d. with exponential density f(yi) = λe−λyi . The parameter is λ, the sufficient

statistic K1 is complete.

The first derivative of the log-likelihood based on the above model is

∂ℓ

∂λ
=
n

λ
−K1,

from which it clearly follows that the dimension of both parameter and minimal sufficient

statistic are equal to one.

Example 19 (Standard Poisson distribution for count data). Consider Yi (i = 1, . . . , n)

i.i.d. with Poisson probability P (yi) = 1
yi!λ

yie−λ. The parameter is λ, the sufficient

statistic K1 is complete.

The first derivative of the log-likelihood is

∂ℓ

∂λ
=

1

λ
K1 − n,

from which it follows also here that the dimension of both parameter and minimal sufficient

statistic are equal to one.

Example 20 (Integrated exponential probabilities for counts). Consider Yi (i = 1, . . . , n)

i.i.d. with probabilities following from integrating the exponential density between two

subsequent integer values: P (yi) = e−λyi(1 − e−λ). The parameter is λ, the sufficient

statistic K1 is complete.
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The first derivative of the log-likelihood is

∂ℓ

∂λ
= −K1 + n

e−λ

1− e−λ
,

from which it follows once more that the dimension of both the parameter as well as the

minimal sufficient statistics are equal to one.

Note that, while in Examples 18–19 the estimators for λ are equal to the sample

average λ̂ = Y = K1/n, for Example 20 the estimator is

λ̂ = − ln

(
Y

1 + Y

)
.

Of course, this difference is inconsequential for the completeness result.

Example 21 (Integrated Weibull probabilities for counts). Consider Yi (i = 1, . . . , n) i.i.d.

with probabilities following from integrating the Weibull density between two subsequent

integer values:

P (yi) = e−λyρ

i − eλ(yi+1)ρ

.

The parameter is (λ, ρ), representing location and shape, but no reduction in statistics is

possible, i.e., it consists of all individual values (Yi)i.

The log-likelihood derivatives are:

∂ℓ

∂λ
=

n∑

i=1

−e−λyρ

i yρi + e−λ(yi+1)ρ

(yi + 1)ρ

e−λyρ

i − eλ(yi+1)ρ
,

∂ℓ

∂ρ
=

n∑

i=1

−e−λyρ

i yρi ln(yi) + e−λ(yi+1)ρ

(yi + 1)ρ ln(yi + 1)

e−λyρ

i − eλ(yi+1)ρ
.

Clearly, no dimension reduction of the data is possible: the parameter is two-dimensional,

but the sufficient statistic is of length n. Upon noting that

E(yi) =

+∞∑

n=0

e−λnρ − 1 = α,

(α is used for notational purposes) it follows that a function

g (y1, . . . , yn) =

n∑

i=1

βiyi,

has expectation

E [g (y1, . . . , yn)] = α

n∑

i=1

βi,

which is equal to zero for any zero-sum (contrast) vector (β1, . . . , βn)′.
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Appendix for Chapter 5

Section B.1 explains the incompleteness in the compound-symmetry model using the defi-

nition. The resulting lack of closed-form solutions for MLE are outlined in Section B.2 and

further calculations in Section B.3. More on the derivation of weights for the compound-

symmetry case are given in Section B.4. Section B.5 and B.6 give more details about

respectively a first and second simulation study. Section B.7 describes the use of R for

the analysis of the case study.

B.1 Incompleteness in the Compound-symmetry Model

Based on (5.1) The conditional and marginal expectations of (A.25)–(A.28) are:

E(W1k|ck) = cknkµ,

E(W1k) = Nµπknk,

E(W2|ck) =

L∑

k=1

cknk(σ
2 + d+ µ2),

E(W2) = N(σ2 + d+ µ2)

L∑

k=1

πknk,

E(W3k|ck) = ck
{
nk(σ2 + d+ µ2) + nk(nk − 1)(d+ µ2)

}
,

E(W3k) = Nπknk
{

(σ2 + d+ µ2) + (nk − 1)(d+ µ2)
}
,

E(W4k) = Nπk.

Group all sufficient statistics in W and define a function

g(w) =

L∑

k=1

λk
w1k

w4k
. (B.1)
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Then,

E {g(W |W 4)} =

L∑

k=1

λk
E(W1k|W4k)

W4k
= µ

L∑

k=1

λknk,

and hence

E {g(W )} = µ

K∑

k=1

λknk.

Thus, every solution λ ⊥ n, where n = (n1, . . . , nK)′, provides a counterexample,

establishing incompleteness.

Such a vector λ exists if and only if K ≥ 2, for which it is assumed that at least two

ck > 0 (i.e., at least two different cluster sizes occur).

B.2 Likelihood-based Estimation of the CS Model

B.2.1 Score Functions

The score function has components:

∂ℓ

∂µk
=

1

σ2
k + nkdk




ck∑

i=1

n1∑

j=1

y
(k)
ij − cknkµk


 , (B.2)

∂ℓ

∂σ2
k

=
−cknk

2σ2
k

· σ
2
k + (nk − 1)dk
σ2
k + nkdk

+
cknkSk

2σ4
k

−dk(2σ2
k + nkdk)cknkTk

2σ4
k(σ2

k + nkdk)2
, (B.3)

∂ℓ

∂dk
=

−cknk
2(σ2

k + nkdk)
+

cknkTk
2(σ2

k + nkdk)2
, (B.4)

with

Sk =
1

cknk
Qk =

1

cknk

ck∑

i=1

Z
(k)′

i Z
(k)
i , (B.5)

Tk =
1

cknk
Rk =

1

cknk

ck∑

i=1

Z
(k)′

i Jnk
Z

(k)
i . (B.6)

B.2.2 Lack of Closed-form Solution when K ≥ 2

The lack of a closed form when K ≥ 2 is well known, but we highlight a few relevant

features here. More detail is given in Appendix B.3. Function (5.8) can be turned into

the log-likelihood kernel for the conventional situation where there is a common mean
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parameter and common variance components across all cluster sizes, i.e., ℓ(µ, σ2, d). The

score functions follow from summing the terms in (B.2)–(B.4) across cluster sizes:

∂ℓ

∂µ
=

K∑

k=1

∂ℓ

∂µk

∣∣∣∣
µk=µ

,
∂ℓ

∂σ2
=

K∑

k=1

∂ℓ

∂σ2
k

∣∣∣∣
σ2

k
=σ2

,
∂ℓ

∂d
=

K∑

k=1

∂ℓ

∂dk

∣∣∣∣
dk=d

. (B.7)

Solving the score equation in (B.7) for the mean, using that

Σ−1
nk

=
1

σ2
Ink
− d

σ2(σ2 + nkd)
Jnk

,

leads to the identity:

µ̂ =

∑K
k=1

nkck

σ2+nkd
Y

(k)

∑K
k=1

nkck

σ2+nkd

=

∑K
k=1

nkck

σ2+nkd
µ̂k

∑K
k=1

nkck

σ2+nkd

, (B.8)

where µ̂k as in (5.9). For the variance components, only implicit identities follow; they

are functions of (B.5)–(B.6). These take the form of high-degree polynomials, for which

no general explicit solution exists. While (B.8) is explicit, it is a weighted average of the

cluster-size specific averages Y
(k)

, with weights depending on the variance components.

This, combined with the result for the variance components, implies that there is no

explicit solution, unless the variance components are known or the cluster size is constant.

B.3 Full Likelihood

Referring to the conventional situations, i.e. ℓ(µ, σ2, d) in (5.6) and the score equation

in (B.7), also second derivatives can be calculated:

∂2ℓ

∂µ2
=

K∑

k=1

−cknk
σ2 + nkd

(B.9)

∂2ℓ

∂σ2∂µ
=

K∑

k=1

−1

(σ2 + nkd)2




ck∑

i=1

nk∑

j=1

y
(k)
ij − cknkµk


 (B.10)

∂2ℓ

∂d∂µk
=

K∑

k=1

−nk
(σ2 + nkd)2




ck∑

i=1

nk∑

j=1

y
(k)
ij − cknkµk


 (B.11)

∂2ℓ

∂µ∂σ2
=

K∑

k=1

(−1

σ4
+
d(2σ2 + nkd)nk
σ4(σ2 + nkd)2

) ck∑

i=1

nk∑

j=1

Z
(k)
ij (B.12)
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∂2ℓ

(∂σ2)2
=

K∑

k=1

(
cknk
2σ4

· σ
2 + (nk − 1)d

σ2 + nkd
− cknk

2σ2
· d

(σ2 + nkd)2
− cknkSk

σ6

−dcknkTk
σ2(σ2 + nkd)− (2σ2 + nkd)2

σ6(σ2 + nkd)3

)
(B.13)

∂2ℓ

∂d∂σ2
=

K∑

i=1

(
cknk

2(σ2 + nkd)
− cknkTk

σ4
· (σ2 + nkd)2 − nkd(2σ2 + nkd)

(σ2 + nkd)3

)

(B.14)

∂2ℓ

∂µ∂d
=

K∑

k=1

−nk
(σ2 + nkd)2

ck∑

i=1

nk∑

j=1

Z
(k)
ij (B.15)

∂2ℓ

∂σ2∂d
=

K∑

k=1

(
cknk

2(σ2 + nkd)2
− cknkTk

(σ2 + nkd)3

)
(B.16)

∂2ℓ

∂d2
=

K∑

k=1

(
ckn

2
k

2(σ2 + nkd)2
− ckn

2
kTk

(σ2 + nkd)3

)
. (B.17)

Should we use conditional likelihood, then the log-likelihood’s kernel equals:

L ∝
k∏

i=1

1

(2π)n1/2|Σn1 |1/2
exp

{
−1

2
(yi1 − µn1

)′Σ−1
n1

(yi1 − µn1
)

}

×




Φ(α+ y′
i1β)

Φ

(
α+µ′

n1
β√

1+β′

Σn1β/n1

)




×
N∏

i=k+1

1

(2π)n2/2|Σn2 |1/2
exp

{
−1

2
(yi − µn2

)′Σ−1
n2

(yi − µn2
)

}

×




1− Φ(α+ y′
i1β)

1− Φ

(
α+µ′

n1
β√

1+β
′

Σn1β/n1

)


 (B.18)

ℓ ∝ −1

2

k∑

i=1

{
ln |Σn1 |+ (yi − µn1

)′Σ−1
n1

(yi1 − µn1
)
}

−k ln Φ(α̃+ µ′
n1
β̃)

−1

2

N∑

i=k+1

{
ln |Σn2 |+ (yi − µn2

)′Σ−1
n2

(yi − µn2
)
}

−(N − k) ln
{

1− Φ(α̃+ µ′
n1
β̃)
}
, , (B.19)

with α̃ = α√
1+β′

Σn1β/n1

and β̃ =
β√

1+β′

Σn1β/n1
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The corresponding score equations are:

∂ℓ

∂µ
=

1

σ2 + n1d




k∑

i=1

n1∑

j=1

yij − kn1µ


− kn1j

′

n1
β̃
φ(α̃ + µ′

n1
β̃)

Φ(α̃+ µ′
n1
β̃)

+
1

σ2 + n2d




N∑

i=k+1

n2∑

j=1

yij − (N − k)n2µ




−(N − k)n2j
′

n1
β̃
φ(α̃ + µ′

n1
β̃)

Φ(α̃+ µ′
n1
β̃)
, (B.20)

with ∂ℓ
∂σ2 and ∂ℓ

∂d identical to (B.3) and (B.4). The components of the Hessian are:

∂2ℓ

∂µ2
=

−kn1

σ2 + n1d
− (N − k)n2

σ2 + n2d

−kn1j
′

n1
β̃

[
−Φ(α̃+ µ′

n1
β̃) · φ(α̃ + µ′

n1
β̃) · (α̃+ µ′

n1
β̃) · j′

n1
β̃

Φ2(α̃+ µ′
n1
β̃)

−
φ2(α̃+ µ′

n1
β̃) · j′

n1
β̃

Φ2(α̃+ µ′
n1
β̃)

]

+(N − k)n2j
′

n1
β̃

×
[
−(1− Φ(α̃+ µ′

n1
β̃)) · φ(α̃+ µ′

n1
β̃) · (α̃+ µ′

n1
β̃) · j′

n1
β̃

(1− Φ(α̃ + µ′
n1
β̃))2

+
φ2(α̃+ µ′

n1
β̃) · j′

n1
β̃

(1− Φ(α̃+ µ′
n1
β̃))2

]
(B.21)

∂2ℓ

∂σ2∂µ
=

−1

(σ2 + n1d)2




k∑

i=1

n1∑

j=1

yij − kn1µ




− 1

(σ2 + n2d)2




N∑

i=k+1

n2∑

j=1

yij − (N − k)n2µ


 (B.22)

∂2ℓ

∂d∂µ
=

−n1

(σ2 + n1d)2




k∑

i=1

n1∑

j=1

yij − kn1µ




− n2

(σ2 + n2d)2




N∑

i=k+1

n2∑

j=1

yij − (N − k)n2µ


 (B.23)

with ∂2ℓ
∂µ∂σ2 , ∂2ℓ

(∂σ2)2 , ∂2ℓ
∂d∂σ2 , ∂2ℓ

∂µ∂d , ∂2ℓ
∂σ2∂d , and ∂2ℓ

∂(d)2 indentical to (B.12), (B.13), (B.14),

(B.15), (B.16), and (B.17).
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B.4 Derivation of Optimal Scalar Weights for Compound-

symmetry Case

To find the optimal scalar weight with minimum variance for µ we use the method of

Lagrange with the constraint that the weights ak need to sum to 1:

Q =

K∑

k=1

a2
k

σ2 + nkd

cknk
− λ

(
K∑

k=1

ak − 1

)
. (B.24)

Solving the first partial derivative we become an expression for ak involving λ. Summing

this one produces an expression for λ, leading to the complete formula for ak. Precisely,

the system of equations is:

∂Q

∂ak
= 2ak

σ2 + nkd

cknk
− λ = 0,

∂Q

∂λ
=

K∑

k=1

ak − 1 = 0,

or, alternatively:

ak =
λ

2

cknk
σ2 + nkd

,

λ =

(
1

2

K∑

k=1

cknk
σ2 + nkd

)−1

,

and hence

ak =

cknk

σ2+nkd∑K
m=1

cmnm

σ2+nmd

.

In the same manner, expressions for bk and gk can be found, as we will show next.

For σ2:

Q = 2σ4
K∑

k=1

b2
k

1

ck(nk − 1)
− λ

(
K∑

k=1

bk − 1

)
,

producing the system:

∂Q

∂bk
=

4σ4bk
ck(nk − 1)

− λ = 0,

∂Q

∂λ
=

K∑

k=1

bk − 1 = 0,

which can be rewritten as:

4σ4bk = λck(nk − 1),

λ =
4σ4

∑K
k=1 ck(nk − 1)

,
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and finally:

bk =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

.

For d, the objective function is:

Q =
K∑

k=1

g2
kvk − λ(

K∑

k=1

gk − 1),

with

vk =
2

cknk

(
σ4

nk − 1
+ 2dσ2 + nkd

2

)
.

The system of equations now is:

∂Q

∂gk
= 2gkvk − λ = 0,

∂Q

∂λ
=

K∑

k=1

gk − 1 = 0,

leading to:

gk = λ
1

2vk
,

λ =
2

∑K
k=1

1
vk

,

giving the solution:

gk =

cknk

σ4

nk−1 +2dσ2+nkd2

∑K
m=1

cmnk

nm−1 + 2dσ2 + nmd2
.

B.4.1 Cluster-by-cluster Analysis

We study the case of the most extreme partitioning, i.e., where each of the clusters is

analyzed separately. This can be relevant in cases with perhaps a limited number of very

to extremely large clusters. This means that ck ≡ 1 throughout. Clearly, the nk will then

no longer be unique. We will examine this case in detail, and contrast a first weighted

estimator with an ad hoc one.

B.4.1.1 The Weighted Estimator for the Cluster-by-cluster Case

The estimator follows from setting ck ≡ 1 and hence K ≡ N throughout. For example,

this special case can easily be considered for all expressions in Sections 5.4.1.1–5.4.1.3.

Because ck enters the inverse of the variance-covariance matrix multiplicatively, as is seen

from (5.12)–(5.13), the optimal estimator that is obtained when each cluster is considered
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to be its own stratum, is identical to the one obtained when strata are defined in terms

of all clusters of a given size. The same is true for the scalar weights.

It is insightful to consider in more detail the special case where further the cluster

sizes are all identical to n. One then easily obtains:

µ̂ =
1

Nn

N∑

i=1

n∑

j=1

Yij , (B.25)

σ̂2 =
1

Nn(n− 1)

(
n

N∑

i=1

Z ′
iZi −

N∑

i=1

Z ′
iJnZi

)

=
1

Nn(n− 1)
(nQ−R), (B.26)

d̂ =
1

Nn(n− 1)

(
N∑

i=1

Z ′
iJnZi −

N∑

i=1

Z ′
iZi

)

=
1

Nn(n− 1)
(Q−R), (B.27)

with obvious notation for Q and R, inspired by (B.5)–(B.6). The corresponding variance-

covariance elements, similar in spirit to (5.12)–(5.13), are:

var(µ̂) =
σ2 + nd

Nn
, (B.28)

var

(
σ̂2

d̂

)
=




2σ4

N(n−1) − 2σ4

Nn(n−1)

− 2σ4

Nn(n−1)
2
Nn

[
σ4

n−1 + 2σ2d+ nd2
]

 . (B.29)

This estimator coincides with the MLE, as is known from Molenberghs, Verbeke, and Iddi

(2011).

B.4.1.2 A Two-stage Estimator for Compound Symmetry

In linear mixed models, there is a method of estimation, sometimes called the two-stage

approach (Laird and Ware, 1982; Verbeke and Molenberghs, 2000), in which each cluster

is analyzed separately to begin with, using linear regression, after which the cluster-

specific parameters are summarized into fixed effects. Although the above cluster-by-

cluster analysis is superficially similar to this, it is not equivalent. In particular, there is

no bias (as can be seen in the two stage method), and the maximum likelihood estimator

is recovered.

This approach is most useful when cluster sizes are not constant, and in models that

are more complex than compound symmetry. However, to gain some insight, we develop

the details of the method for the CS model with constant cluster size.
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For the mean, (B.25) is retained, as the average of the cluster-specific averages Y i.

Further, define:

s2 =
1

Nn

N∑

i=1

n∑

j=1

(Yij − Y i)2, (B.30)

t2 =
1

N

N∑

i1

(Y i − µ̂)2. (B.31)

Straightforward algebra shows:

E(s2) =
n− 1

n
σ2, (B.32)

E(t2) =
N − 1

N

(
d+

1

n
σ2

)
. (B.33)

Should n and N approach infinity, then it follows that s2 and t2 are asymptotically

unbiased estimators for σ2 and d, respectively. However, this is not always reasonable.

In applications such as the NTP data (Section 3.1),??), it is fair to say that the cluster

size has a biological upper limit. In other situations, however, such as meta-analyses, it

is sensible to assume that both n and N approach infinity.

In the next section, we will study the consequences of removing the bias. For now, a

small, obvious modification is:

s2
∗ =

n

n− 1
s2, (B.34)

t2∗ =
N

N − 1
t2. (B.35)

Now, s2
∗ is unbiased, while E(t2∗) = d + σ2/n, the bias σ2/n can be made to disappear

asymptotically provided it is sensible to let n grow large.

It is of interest to consider the variance-covariance structure of the estimators s2, t2,

s2
∗, and t2∗, as well as to make relative efficiency considerations. This will be done next.

B.4.1.3 Connections Between Estimators

Comparing algebraic expressions (B.26)–(B.27) with (B.30)–(B.31), leads to the linear

relationships:

s2 =
n− 1

n
σ̂2 + 0 · d̂, (B.36)

t2 =
N − 1

Nn
σ̂2 +

N − 1

N
d̂. (B.37)

Relationships (B.36)–(B.37) can be combined with (B.29) to produce:

var

(
s2

t2

)
=




2(n−1)σ4

Nn2 0

0 2(N−1)2

N2n

[
σ4

n + 2σ2d+ nd2
]

 (B.38)
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and, similarly,

var

(
s2

∗

t2∗

)
=




2σ4

N(n−1) 0

0 2
Nn

[
σ4

n + 2σ2d+ nd2
]

 . (B.39)

From its definition it follows that s2
∗ ≡ σ̂2. The same is not true for t2∗. One reason

to consider it nevertheless is its independence from s2
∗. Indeed, (µ̂, s2

∗ ≡ σ̂2, t2∗)′ is an

estimator with mutually independent components. While the same is true when s2 and

t2 are used instead, the biases are larger.

For this case then, the choice between d̂ and t2∗ is in terms of a trade-off between

efficiency and independence.

To gauge the efficiency loss when using t2∗, the mean squared error is:

MSE(t2∗) =
2

Nn

(
σ4

n
+ 2σ2d+ nd2

)
+

1

n2
σ4,

and hence the relative MSE:

RMSE(t2; d̂) =
2
(
σ4

n + 2σ2d+ nd2
)

+ N
n σ

4

2
(
σ4

n−1 + 2σ2d+ nd2
) , (B.40)

which approaches infinity when N does, while n would remain constant. In other words,

this estimator is inconsistent unless it is being applied in situations where n can also be

considered to be large.

There are three distinct situations. First, when N/n = λn + o(n), for some λ, i.e.,

when N is of the order of n2, then, based on (B.40), the ARE is 2(d2 +λσ4)/[2d2]. The

magnitude of the efficiency loss depends on sizes of the parameters involved. Second,

when O(N) < O(n2), the ARE equals 1. This includes the cases where N is constant,

N = n1/2, N = n, and N = n3/2, for example. A constant or slowly increasing

N is plausible in a meta-analytic context. Third, if N/n increases too quickly, i.e.,

O(N/n) > O(n), then the estimator t2∗ is inconsistent. This is the case, in particular, for

bounded n.

The estimators s2 and t2 can be combined linearly to produce unbiased estimators. In

other words, based on (B.32)–(B.33), the following corrections can be applied to (B.30)–

(B.31):

s2
corr =

n

n− 1
s2, (B.41)

t2corr =
N

N − 1
t2 − N

(n− 1)(N − 1)
s2. (B.42)

Interestingly, this requirement reproduces (B.36)–(B.37): the requirement of an unbiased

estimator reproduces σ̂2 and d̂, presented in (B.26)–(B.27) and hence also with their

variance.
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B.5 Details About the First Simulation Study

The simulation study, summarized in Section 5.5, is described in detail here.

B.5.1 Simulation Method

The design of the simulation study is as follows.

• Each generated set of data consists of ck clusters of size nk, for k = 1, . . . ,K. We

choose K = 4 throughout.

• For a generated set of data, the splitting is done by placing all clusters of a given

size in one sub-sample.

• The CS model parameters are µ = 0, d = 1, and σ2 = 2.

• After estimating the three model parameters within each sub-sample, they are com-

bined using the following weighting methods: (a) equal, (b) proportional, where the

weights are

wk =
ck∑4
ℓ=1 cℓ

,

and (c) size-proportional, where the weights for µ and d are:

wk
cknk∑4
ℓ=k cℓnℓ

,

while for σ2 we take:

wk =
ck(nk − 1)∑4
ℓ=1 cℓ(nℓ − 1)

.

• Per setting, 100 replications are considered.

These settings are applied to various combinations of the nk and ck, now described in

turn.

B.5.2 Setting 1: Equal ck · nk, Different ck and nk.

Consider 150 samples in each split, as follows: (c1, n1) = (3, 50), (c2, n2) = (5, 30),

(c3, n3) = (10, 15), and (c4, n4) = (15, 10). The results are presented in Table B.1.

Graphical depictions can be found in Figures B.1 and B.2. Figure B.1 shows that there is

a different amount of information in the various sub-samples. This is not a problem, rather

a consequence of the way the splits are created and the different amounts of information

carried in each. It reminds us that we need to be judicious how the information from the

splits will be weighted. It is not a surprise that equal weights are a poor choice. The
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other methods perform similarly, and all do very well. To varying degrees, the same will

be seen in Settings 2 and 3.

Table B.1: First simulation study. Setting 1. Average of split-specific and combined

(weighted) parameters and their precision estimates.

µ var(µ) d var(d) σ2 var(σ2)

split1 -0.00396 0.05779 0.68143 0.41395 1.98676 0.00296

split2 0.05697 0.03071 0.80997 0.19712 1.98578 0.00304

split3 -0.02111 0.01174 0.95161 0.07869 1.97690 0.00319

split4 0.01123 0.00626 0.98870 0.04677 1.98056 0.00347

Equal 0.01078 0.03769 0.85793 0.09988 1.98250 0.01406

Prop 0.00698 0.03230 0.92245 0.08568 1.98081 0.01907

Size prop 0.01078 0.03769 0.85793 0.09988 1.98260 0.01405

Full 0.00780 0.03513 0.98016 0.08614 1.98257 0.01392

B.5.3 Setting 2: Different ck · nk, Equal ck, Different nk

To see the effect of split size, the following choices are made: (c1, n1) = (4, 25), (c2, n2) =

(4, 50), (c3, n3) = (4, 125), and (c4, n4) = (4, 250). As a consequence, the size of the

splits will be 100, 200, 500, and 1000, respectively. Table B.2 summarized the results,

with graphical displays presented in Figures B.3 and B.4.

B.5.4 Setting 3: Different ck · nk, Different ck, Equal nk

We now choose: (c1, n1) = (10, 20), (c2, n2) = (20, 20), (c3, n3) = (50, 20), and

(c4, n4) = (100, 20). Table B.3 summarizes the results. Graphs can be found in Fig-

ures B.5 and B.6.

B.5.5 Optimal, Approximate Optimal, and Iterated Optimal

Weights

Optimal weights were discussed in Section 5.4.1.1. When we plug the MLE’s into the

optimal weights, the result of using these weights is the MLE’s itself. Of course, this is a

circular reasoning, which is why one needs to resort to, for example, the approximate or

iterated optimal weights derived in Section 5.4.1.2. For both of these, using Settings 1–3,

we conducted simulations. They are reported in Figures B.7–B.9.
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Figure B.1: First simulation study. Setting 1. Split-specific results.

It is noteworthy that the behavior of the iterated optimal weights depends on ck and

nk. First, they often but not always converge in a single iteration; the maximum number

of iterations observed in our simulations being 6. Second, the iterated optimal weights

converge to size optimal weights for σ2 and to proportional weights for d.

Taken together, it follows that both approximately optimal and iterated optimal

weights provide excellent results. The specific attraction of the approximate optimal

weights is that they obviate the need for iteration, which is a factor of stability and speed.



146 Appendix B. Appendix for Chapter 5

−0.5 0.0 0.5

0.
0

1.
0

2.
0 µ̂

D
en

si
ty

Equal
Prop
Size prop
Full

0.00 0.02 0.04 0.06 0.08 0.10

0
10

30

var(µ̂)

D
en

si
ty

Equal
Prop
Size prop
Full

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

d̂

D
en

si
ty

Equal
Prop
Size prop
Full

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10 var(d̂)

D
en

si
ty

Equal
Prop
Size prop
Full

1.6 1.8 2.0 2.2 2.4

0.
0

1.
0

2.
0

3.
0

σ̂
2

D
en

si
ty

Equal
Prop
Size prop
Full

0.010 0.015 0.020 0.025 0.030

0
50

15
0

var(σ̂
2)

D
en

si
ty

Equal
Prop
Size prop
Full

Figure B.2: First simulation study. Setting 1. Combining the results from the four

splits, using equal, proportional, and size proportional weights. This is compared with full

maximum likelihood.

B.6 Details About the Second Simulation Study

The aim of this study is to compare the proposed method to two alternatives:

1. full maximum likelihood;

2. the proposed sample-splitting method, allowing for closed forms;

3. using multiple imputation (MI) first, to render the clusters of equal sizes, and then

apply closed-form solutions to the augmented balanced data, together with the
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Table B.2: First simulation study. Setting 2. Average of split-specific and combined

(weighted) parameters and their precision estimates.

µ var(µ) d var(d) σ2 var(σ2)

split1 -0.02515 0.05227 0.83440 0.52423 2.00347 0.00730

split2 0.01287 0.05157 0.86891 0.57904 1.97285 0.00160

split3 0.06812 0.03586 0.74147 0.23681 2.00165 0.00026

split4 -0.03676 0.02979 0.68241 0.14117 1.99216 0.00006

Equal 0.00477 0.05111 0.78180 0.14770 1.99253 0.00935

Prop 0.00477 0.05111 0.78180 0.14770 1.99253 0.00935

Size prop -0.00147 0.07139 0.72798 0.16585 1.99328 0.00447

Full 0.00530 0.06339 0.89599 0.14604 1.99333 0.00446

Table B.3: First simulation study. Setting 3. Average of split-specific and combined

(weighted) parameters and their precision estimates.

µ var(µ) d var(d) σ2 var(σ2)

split1 0.00343 0.00900 0.84739 0.05169 2.02445 0.00190

split2 0.02553 0.00304 1.00224 0.01754 2.01962 0.00047

split3 -0.00010 0.00045 0.95794 0.00212 1.99765 0.00007

split4 0.01151 0.00012 1.01226 0.00064 1.98944 0.00002

Equal 0.01009 0.01139 0.95496 0.02694 2.00779 0.00486

Prop 0.00939 0.00604 0.98690 0.01369 1.99702 0.00234

Size prop 0.00939 0.00604 0.98690 0.01369 1.99702 0.00234

Full 0.00939 0.00614 1.00487 0.01372 1.99702 0.00233

combination rules.

B.6.1 Simulation Plan

In order to study the effect of cluster sizes (nk) and number of clusters of each size (ck),

5 different configurations are considered:

Config. 1. ck = (15, 25, 30, 20, 10), nk = (8, 5, 3, 9, 15);

Config. 2. ck = (150, 250, 300, 200, 100), nk = (8, 5, 3, 9, 15);

Config. 3. ck = (1500, 2500, 3000, 2000, 1000), nk = (8, 5, 3, 9, 15);
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Figure B.3: First simulation study. Setting 2. Split-specific results.

Config. 4. ck = (15, 25, 30, 20, 10), nk = (80, 50, 30, 90, 150);

Config. 5. ck = (15, 25, 30, 20, 10), nk = (800, 500, 300, 900, 1500).

Each configuration is repeated 100 times.

Each cluster is generated from a CS model with µ0 = 0, d0 = 1, and σ2
0 = 4.

For estimating the parameters using the full unbalanced data, PROC MIXED in SAS

(Version 9.4) is used with the covariance structure in the REPEATED statement set to

type=cs.

The closed form solutions and their variances are implemented in R in three different

ways. First, the formulas are implemented directly using ‘for’ loops. Following the ideas in
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Figure B.4: First simulation study. Setting 2. Combining the results from the four

splits, using equal, proportional, and size proportional weights. This is compared with full

maximum likelihood.

Sikorska et al. (2013), it might be faster to replace ‘for’ loops with vectorized computation.

For µ̂k it is straightforward, since one just needs to compute an arithmetic average. If

Z is a nk times ck matrix with its ith column defined as Z(k)
i =

(
Y

(k)
i − µk1nk

)
, then

computing
∑ck

i=1 Z
(k)′

i Z
(k)
i is equivalent to replacing each element in matrix Z by its

square, and then sum over the sum of its columns. Furthermore, Jnk
Z

(k)
i would simply

compute the sum of columns in matrix Z. Therefore,
∑ck

i=1 Z
(k)′

i Jnk
Z

(k)
I is equivalent

to post-multiplying Z by the sum of its columns and then sum over this vector. In this
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Figure B.5: First simulation study. Setting 3. Split-specific results.

way, within each split, the parameters can be estimated avoiding ‘for’ loops.

Second, it is also possible to find the estimates for all of the splits at once instead of

computing them separately.

A third way consists of calculating all the estimates together and not split by split in a

‘for’ loop. This approach is possible via imposing balance through adding missing values

in the matrix but, when multiplying and summing, ignoring the missing values. This is

very easy in R.

We will compare computation time between these three approaches, for the five con-

figurations.
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Figure B.6: First simulation study. Setting 3. Combining the results from the four

splits, using equal, proportional, and size proportional weights. This is compared with full

maximum likelihood.

Additionally, to combine the results from sample splitting, the same weights as used

in the case study are considered here as well: equal, proportional, approximate scalar,

scalar, and approximate optimal. In the case of the approximate optimal weights both

simple and proper variances are calculated.

For the multiple imputation based approach, M = 20 imputations are considered and

the conventional combination rules applied.

Note that the MI approach cannot be used with configurations 1, 4, and 5, because

the number of available subjects in the observed dataset is less than the number of



152 Appendix B. Appendix for Chapter 5

−0.5 0.0 0.5

0.
0

1.
0

2.
0 µ̂

D
en

si
ty

Prop
Approx. Opt.
Iter Opt.
Full

0.00 0.02 0.04 0.06

0
10

30

var(µ̂)

D
en

si
ty

Prop
Approx. Opt.
Iter Opt.
Full

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

1.
2

d̂

D
en

si
ty

Prop
Approx. Opt.
Iter Opt.
Full

0.0 0.1 0.2 0.3

0
5

10
15

var(d̂)

D
en

si
ty

Prop
Approx. Opt.
Iter Opt.
Full

1.5 2.0 2.5

0.
0

1.
0

2.
0

3.
0

σ̂
2

D
en

si
ty

Size prop
Approx. Opt.
Iter. Opt.
Full

0.008 0.010 0.012 0.014 0.016 0.018 0.020

0
50

15
0

25
0

var(σ̂
2)

D
en

si
ty

Size prop
Approx. Opt.
Iter. Opt.
Full

Figure B.7: First simulation study. Setting 1. (Size) proportional, approximate, and

iterated optimal weights, as well as full maximum likelihood.

repeated measurements, leading to a singular covariance matrix. From the remaining

configurations 2 and 3, we have chosen #2, which implies smaller numbers and hence is

more challenging.

For each configuration we report three results: the estimated parameters, their stan-

dard errors, and the mean square error (MSE). Furthermore, we report computation time.
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Figure B.8: First simulation study. Setting 2. (Size) proportional, approximate, and

iterated optimal weights, as well as full maximum likelihood.

B.6.2 Simulation results

Based on the simulation results, it appears that using equal weights is not recommended,

while using proportional weights produces results comparable with ML. Of course, in case

of σ2 the approximate scalar weights work better comparing with ML. An interesting

outcome of the simulation is that by keeping the number of clusters of different sizes

constant, but allowing the cluster sizes to increase, improves estimation of σ2, while

increasing the number of clusters and keeping their sizes constant improves the estimation

of d. This is not surprising, because d is the between-cluster variability, which is easier to
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Figure B.9: First simulation study. Setting 3. (Size) proportional, approximate, and

iterated optimal weights, as well as full maximum likelihood.

estimate from a larger number of clusters. This should be seen against the background

of relatively small differences anyway.

The results based on MI are not comparable with sample-splitting results. In partic-

ular, the variance component d is underestimated using MI, while σ2 is overestimated.

The larger standard errors in this case suggest that the sample-splitting methods use

information more efficiently.

Comparing computation times, the closed-form approaches are the clear winners, fur-

ther enhanced by smaller standard errors. Furthermore, it follows that computing the

estimates in a semi-parallel fashion, thus avoiding ‘for’ loops within the splits but using
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Figure B.12: Second simulation study. Estimates for σ2 (first row) and standard errors

(second row).
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Table B.4: Second simulation study. Mean, standard deviation (S.D.) and MSE for µ

among 100 replications for each configuration using different combination weights com-

paring with full sample MLE.

Config. Equal Prop Approx. sc. Scalar Approx. opt. ML

Mean -1.72277E-02 -1.51605E-02 -1.51605E-02 -1.21296E-02 -1.21296E-02 -1.56028E-02

1 S.D. (1.32751E-01) (1.28989E-01) (1.28989E-01) (1.32435E-01) (1.32435E-01) (1.29150E-01)

MSE 1.77434E-02 1.67015E-02 1.67015E-02 1.75108E-02 1.75108E-02 1.67564E-02

Mean -9.39926E-04 6.93419E-04 6.93419E-04 1.27613E-03 1.27613E-03 7.59533E-04

2 S.D. (3.93526E-02) (3.95534E-02) (3.95534E-02) (3.84321E-02) (3.84321E-02) (3.83996E-02)

MSE 1.53403E-03 1.54930E-03 1.54930E-03 1.46389E-03 1.46389E-03 1.46036E-03

Mean -8.30934E-04 -1.25609E-03 -1.25609E-03 -1.26810E-03 -1.26810E-03 -1.31356E-03

3 S.D. (1.44839E-02) (1.47545E-02) (1.47545E-02) (1.41310E-02) (1.41310E-02) (1.41704E-02)

MSE 2.08376E-04 2.17095E-04 2.17095E-04 1.99298E-04 1.99298E-04 2.00517E-04

Mean 9.30928E-03 2.53713E-03 2.53713E-03 8.29367E-03 8.29367E-03 2.82086E-03

4 S.D. (9.26881E-02) (8.32009E-02) (8.32009E-02) (9.76672E-02) (9.76672E-02) (8.28999E-02)

MSE 8.59183E-03 6.85960E-03 6.85960E-03 9.51227E-03 9.51227E-03 6.81163E-03

Mean 9.77532E-03 1.02173E-02 1.02173E-02 8.72381E-03 8.72381E-03 1.02422E-02

5 S.D. (1.09769E-01) (1.04876E-01) (1.04876E-01) (1.04982E-01) (1.04982E-01) (1.04847E-01)

MSE 1.20243E-02 1.09934E-02 1.09934E-02 1.09872E-02 1.09872E-02 1.09880E-02

then between splits, is most efficient. Unless the nk’s are very large, computing all es-

timates at once is the most efficient. Of course, if the estimates for different splits can

be done in parallel (without ‘for’ loops), this is more efficient than estimating them all at

once.

B.7 Analysis of the NTP Data Using R

First, this Appendix briefly describes the use of some building blocks in R for the analysis

of the case study discussed in Section 3.1. The text file containing these functions is

available for download at www.ibiostat.be.

• splitmeth(idvector, yvector): computes the size of each cluster, giving the

identification vector and the responses. Afterwards it combines the clusters with

the same size together in a block.

• ckblock(idvector, yvector): Identification vectors and outcomes isolated per

cluster size in the previous function are used in this function seperately. For each

block the cluster size, the size of the block, the mean, variance, correlation and the

variance-covariance matrix are computed.

• estimators(idvector, yvector): computes all the estimators mentioned in this

chapter, given the identification vector and the outcomes. It uses the two functions
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Table B.5: Second simulation study. Mean and standard deviation (S.D.) for standard

errors of µ estimates in 100 replications for each configuration using different combination

weights comparing with full sample MLE.

Config. Equal Prop Approx. sc. Scalar Simple opt. Proper opt. ML

1 Mean 1.29844E-01 1.29733E-01 1.29733E-01 1.20593E-01 1.20593E-01 1.41085E-01 1.29648E-01

S.D. (1.18175E-02) (1.07496E-02) (1.07496E-02) (1.09122E-02) (1.09122E-02) (2.25155E-02) (9.95614E-03)

2 Mean 4.23655E-02 4.23056E-02 4.23056E-02 4.11657E-02 4.11657E-02 4.12635E-02 4.14298E-02

S.D. (1.08386E-03) (8.88747E-04) (8.88747E-04) (8.71465E-04) (8.71465E-04) (8.90259E-04) (8.66432E-04)

3 Mean 1.34008E-02 1.33822E-02 1.33822E-02 1.30725E-02 1.30725E-02 1.30728E-02 1.30799E-02

S.D. (1.21880E-04) (9.92324E-05) (9.92324E-05) (9.68871E-05) (9.68871E-05) (9.68974E-05) (9.62652E-05)

4 Mean 1.06373E-01 1.01232E-01 1.01232E-01 9.60807E-02 9.60807E-02 3.30358E-01 1.03382E-01

S.D. (9.80278E-03) (7.26031E-03) (7.26031E-03) (8.36242E-03) (8.36242E-03) (1.39042E-01) (7.17708E-03)

4 Mean 1.05176E-01 9.84615E-02 9.84615E-02 9.45066E-02 9.45066E-02 2.81427E+00 1.00533E-01

S.D. (1.10711E-02) (8.18259E-03) (8.18259E-03) (8.14229E-03) (8.14229E-03) (1.41211E+00) (8.28537E-03)

above, splitmeth to split the data according to cluster size and ckblockto com-

pute the estimators in each block. The function gives the estimators of µ, σ2 and

d together with their precision.

Next, the R functions to compute CS sample splitting estimates and variances are

described. Section B.7.1 will describe the input of the functions, the output of each

function will de described in Section B.7.2. Each function is followed by an example as

well. The functions themselves are presented in Section B.7.3.

There are three functions provided to estimate CS parameters (µ, σ2, d). The function

est.CS estimates the CS parameters and their variances using vectorized (semi-parallel)

calculations, i.e. the for loops are avoided for calculation within each split. The func-

tion est.CS.for implements the formulas in 5.9 directly using for loops. The function

est.CS.all estimates the parameters for all of the splits simultaneously.

The function param.free.CS can be used to combine results from different

sub-samples using parameter-free weights: Prop., Equal, and Appr.sc. The function

scalar.weights.CS gives the same results but using scalar weights (approximated by

sub-sample specific estimates). The function approx.optimal.CS combines the results

of different sub-samples using approximated optimal weights, the proper variances for

these estimates are also provided. Finally, the function clusterBYcluster.CS computes

the cluster specific estimate of (µ, σ2, d) using cluster-by-cluster approaches. Combining

them by the desired rule using the three previous functions is straightforward.

B.7.1 Input

Table B.13 describes the input for the various functions.
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Table B.6: Second simulation study. Mean, standard deviation (S.D.) and MSE for d

estimates in 100 replications for each configuration using different combination weights

comparing with full sample MLE.

Config. Equal Prop Approx. sc. Scalar Approx. opt ML

Mean 9.09580E-01 9.00788E-01 9.00788E-01 6.63293E-01 6.71111E-01 9.86549E-01

1 S.D. (2.66885E-01) (2.99736E-01) (2.99736E-01) (2.70556E-01) (2.79060E-01) (2.55874E-01)

MSE 7.86910E-02 9.87862E-02 9.87862E-02 1.85840E-01 1.85264E-01 6.49975E-02

Mean 9.98984E-01 9.97534E-01 9.97534E-01 9.72269E-01 9.73771E-01 1.00712E+00

2 S.D. (7.44958E-02) (8.28143E-02) (8.28143E-02) (7.28186E-02) (7.22762E-02) (7.08463E-02)

MSE 5.49515E-03 6.79570E-03 6.79570E-03 6.01854E-03 5.85958E-03 5.01969E-03

Mean 1.00004E+00 9.99697E-01 9.99697E-01 9.97218E-01 9.97153E-01 1.00019E+00

3 S.D. (2.61046E-02) (2.82480E-02) (2.82480E-02) (2.48989E-02) (2.48068E-02) (2.44715E-02)

MSE 6.74637E-04 7.90063E-04 7.90063E-04 6.21496E-04 6.17332E-04 5.92900E-04

Mean 9.40257E-01 9.50756E-01 9.50756E-01 7.65219E-01 7.65362E-01 9.96005E-01

4 S.D. (1.53414E-01) (1.48216E-01) (1.48216E-01) (1.91865E-01) (1.91614E-01) (1.49451E-01)

MSE 2.68697E-02 2.41734E-02 2.41734E-02 9.15661E-02 9.14038E-02 2.21282E-02

Mean 9.63459E-01 9.68182E-01 9.68182E-01 8.21266E-01 8.21270E-01 1.00958E+00

5 S.D. (1.73767E-01) (1.63471E-01) (1.63471E-01) (1.72162E-01) (1.72163E-01) (1.69235E-01)

MSE 3.12283E-02 2.74677E-02 2.74677E-02 6.12894E-02 6.12881E-02 2.84459E-02

B.7.2 Output

The output of each function is a list (except for scalar.weights.CS) containing the

calculated quantities. The functions est.CS and est.CS.for compute the parameters

estimates with their variances within each split. Table B.14 presents the output for these

two functions. An example of using them is given in Example 22. For estimating the pa-

rameters for all of the splits simultaneously, function est.CS.all can be used. The output

description of this function can be found in Table B.15. An example of using it is presented

in Example 23. One may denote that the input dataset for using this function should make

all clusters of equal size using missing values NaN. The function param.free.CS com-

putes the three parameter free combining rules: Prop., Equal, and Appr.sc., Table B.16

presents the output of this function, an example of using it is given in Example 24. For

computing the scalar weights one may use the function scalar.weights.CS. The out-

put of this function are described in Table B.17 and Example 25 shows how to use it

in practice. Function approx.optimal.CS computes the approximate optimal weights

together with their proper variances. Table B.18 gives the output of this function and

Example 26 will show the use of this function. Finally, for cluster-by-cluster analyses,

the three methods discussed (weighted, two stage, unbiased two stage) are implemented

in the function clusterBYcluster.CS. One may find descriptions of the output of this

function together with an example of using it in Table B.19 and Example 27, respectively.



Appendix B.7. Analysis of the NTP Data Using R 161

Table B.7: Second simulation study. Mean and standard deviation (S.D.) for standard

errors of d estimates in 100 replications for each configuration using different combination

weights comparing with full sample MLE.

Config. Equal Prop. Approx. sc. Scalar Simple opt. Proper opt. ML

1 Mean 5.30888E-01 6.76159E-01 6.76159E-01 4.83519E-01 1.95328E-01 4.66561E+00 2.36408E-01

S.D. (1.00495E-01) (1.66365E-01) (1.66365E-01) (1.10589E-01) (4.01066E-02) (1.40173E+00) (3.91752E-02)

2 Mean 1.60365E-01 2.03126E-01 2.03126E-01 1.45284E-01 7.48056E-02 1.47955E+00 7.60798E-02

S.D. (8.29444E-03) (1.42616E-02) (1.42616E-02) (8.70034E-03) (3.35411E-03) (1.31587E-01) (3.26483E-03)

3 Mean 5.02596E-02 6.34861E-02 6.34861E-02 4.56061E-02 2.39463E-02 4.67989E-01 2.39748E-02

S.D. (8.43976E-04) (1.44201E-03) (1.44201E-03) (8.34510E-04) (3.68251E-04) (1.24414E-02) (3.66865E-04)

4 Mean 1.62410E-01 1.59656E-01 1.59656E-01 1.34256E-01 1.24552E-01 2.35351E-01 1.51740E-01

S.D. (2.83009E-02) (2.05482E-02) (2.05482E-02) (2.31559E-02) (2.51091E-02) (3.00109E-02) (2.11541E-02)

5 Mean 1.54122E-01 1.43313E-01 1.43313E-01 1.22117E-01 1.22024E-01 1.70868E-01 1.43764E-01

S.D. (3.48725E-02) (2.50371E-02) (2.50371E-02) (2.30972E-02) (2.31064E-02) (3.70951E-02) (2.38992E-02)

Example 22.

> est.CS(n,C,Y)

$mu.hat

[1] -0.02008066

$d.hat

[1] 1.05208

$sigma2.hat

[1] 3.893208

$var.mu.hat

[1] 0.01025821

$cov.varcomp

[,1] [,2]

[1,] 0.028870611 -0.003608826

[2,] -0.003608826 0.032020343

Example 23.

> est.CS.all(data2,ck,nk)

$mu.hat

[,1]

[1,] 0.017154093



162 Appendix B. Appendix for Chapter 5

Table B.8: Second simulation study. Mean, standard deviation (S.D.) and MSE for σ2

estimates in 100 replications for each configuration using different combination weights

comparing with full sample MLE.

Config. Equal Prop. Approx. sc. Scalar Approx. opt. ML

Mean 3.98608E+00 3.99739E+00 3.98571E+00 3.98364E+00 3.87487E+00 3.98075E+00

1 S.D. (2.50882E-01) (2.95821E-01) (2.35138E-01) (2.33650E-01) (2.38167E-01) (2.30477E-01)

MSE 6.25062E-02 8.66420E-02 5.49414E-02 5.43140E-02 7.18141E-02 5.29588E-02

Mean 4.00184E+00 4.00681E+00 4.00177E+00 4.00087E+00 3.99027E+00 4.00064E+00

2 S.D. (7.85190E-02) (9.05849E-02) (7.57443E-02) (7.56486E-02) (7.50477E-02) (7.51739E-02)

MSE 6.10698E-03 8.16998E-03 5.68296E-03 5.66624E-03 5.67055E-03 5.59502E-03

Mean 4.00509E+00 4.00491E+00 4.00575E+00 4.00590E+00 4.00472E+00 4.00587E+00

3 S.D. (2.45760E-02) (2.82395E-02) (2.36027E-02) (2.36983E-02) (2.37694E-02) (2.36697E-02)

MSE 6.23828E-04 8.13646E-04 5.84605E-04 5.90806E-04 5.81652E-04 5.89081E-04

Mean 4.01402E+00 4.01190E+00 4.01302E+00 4.01304E+00 4.00363E+00 4.01306E+00

4 S.D. (7.69655E-02) (8.78962E-02) (7.32088E-02) (7.31202E-02) (7.20589E-02) (7.31207E-02)

MSE 6.06101E-03 7.79021E-03 5.47558E-03 5.46319E-03 5.15372E-03 5.46370E-03

Mean 4.00346E+00 4.00338E+00 4.00292E+00 4.00292E+00 4.00192E+00 4.00292E+00

5 S.D. (2.56561E-02) (2.79741E-02) (2.46670E-02) (2.46664E-02) (2.46901E-02) (2.46669E-02)

MSE 6.63599E-04 7.86128E-04 6.10884E-04 6.10854E-04 6.07187E-04 6.10909E-04

[2,] 0.043479563

[3,] -0.156958273

[4,] -0.031153966

[5,] -0.007420771

$sigma2.hat

[1] 3.893208 4.085951 3.901042 4.015487 3.900566

$d.hat

[1] 1.0506935 1.0162879 0.7930084 0.8279435 0.9344471

$var.mu.hat

[1] 0.010248964 0.007333913 0.006977852 0.006370544 0.011944848

$var.d.hat

[1] 0.03196348 0.02822874 0.03485060 0.01648236 0.02863248

$var.sigma2.hat

[1] 0.02887061 0.03339000 0.05072710 0.02015517 0.02173487
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Table B.9: Second simulation study. Mean and standard deviation (S.D.) for standard

errors of σ2 estimates in 100 replications for each configuration using different combination

weights comparing with full sample MLE.

Config. Equal Prop. Approx. sc. Scalar Simple opt. Proper opt. ML

1 Mean 2.53758E-01 2.95524E-01 2.40482E-01 2.38699E-01 2.30855E-01 2.88730E+01 2.35804E-01

S.D. (1.98892E-02) (3.33124E-02) (1.45355E-02) (1.39849E-02) (1.38813E-02) (6.93951E+00) (1.34905E-02)

2 Mean 7.98210E-02 9.26570E-02 7.57927E-02 7.53242E-02 7.48395E-02 8.82494E+00 7.49872E-02

S.D. (1.84469E-03) (3.08841E-03) (1.45443E-03) (1.42354E-03) (1.40575E-03) (6.92140E-01) (1.39989E-03)

3 Mean 2.52202E-02 2.92034E-02 2.39687E-02 2.38353E-02 2.37400E-02 2.78559E+00 2.37444E-02

S.D. (1.85701E-04) (3.12856E-04) (1.42587E-04) (1.40888E-04) (1.40071E-04) (6.70930E-02) (1.39784E-04)

4 Mean 7.22378E-02 8.07793E-02 7.01684E-02 7.01663E-02 6.99970E-02 7.23107E+00 7.01238E-02

S.D. (1.54384E-03) (2.35043E-03) (1.28712E-03) (1.28385E-03) (1.26263E-03) (5.28710E-01) (1.27765E-03)

5 Mean 2.25782E-02 2.52054E-02 2.19702E-02 2.19702E-02 2.19647E-02 2.23651E+00 2.19689E-02

S.D. (1.55999E-04) (2.29649E-04) (1.35364E-04) (1.35358E-04) (1.35462E-04) (5.50362E-02) (1.35379E-04)

$cov.d.sigma2.hat

[1] -0.003608826 -0.006678000 -0.016909033 -0.002239464

-0.001448992

Example 24.

> param.free.CS (nk,ck,mu.split.est,sigma2.split.est,

d.split.est,mu.split.var,sigma2.split.var,

d.split.var)

$mu

Est Var

Equal 0.8486860 0.0001863644

Prop 0.8350032 0.0001755510

Appr.sc. 0.8350032 0.0001755510

$sigma2

Est Var

Equal 0.008473228 2.368028e-07

Prop 0.008471484 1.973433e-07

Appr.sc. 0.008327288 1.725952e-07

$d

Est Var

Equal 0.01443741 5.351632e-06

Prop 0.01538224 5.861071e-06
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Table B.10: Second simulation study. Computation time (in seconds) using closed-form

solutions with different implementation forms, compared to PROC MIXED.

Split by split PROC

Config. without loops using loops Together MIXED

1 Mean 0.00520 0.00980 0.00640 0.34155

S.D. (0.00882) (0.00943) (0.00823) (0.17711)

2 Mean 0.02150 0.07340 0.05660 0.35575

S.D. (0.01617) (0.02006) (0.09662) (0.03073)

3 Mean 0.17980 0.73480 0.43400 0.81783

S.D. (0.02292) (0.05835) (0.11543) (0.02582)

4 Mean 0.00220 0.00610 0.00360 2.58808

S.D. (0.00579) (0.01497) (0.00689) (0.40720)

5 Mean 0.04030 0.27490 0.02130 629.58333

S.D. (0.01521) (0.01941) (0.00872) (116.09435)

Appr.sc. 0.01538224 5.861071e-06

Example 25.

scalar.weights.CS (nk,ck,mu.split.est,sigma2.split.est,

d.split.est,mu.split.var,sigma2.split.var,

d.split.var)

Est. Var

mu 0.841588794 1.700247e-04

sigma2 0.008313578 1.716135e-07

d 0.013715408 4.986101e-06

Example 26.

approx.optimal.CS (nk,ck,sigma2.split.est,d.split.est,

sigma2.split.var,d.split.var)

$mu.est

[1] 0.8415888

$varcomp.est
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Table B.11: Second simulation study. Mean, standard deviation (S.D.) and MSE for CS

parameter estimates in 100 replications for configuration 2 using different combination

weights comparing with full sample MLE and MI-MLE.

Equal Prop. Approx. sc. Scalar Approx. opt. MI ML

Mean -5.09643E-03 -2.62061E-03 -2.62061E-03 -2.88933E-03 -2.88933E-03 -8.04195E-03 -3.28224E-03

µ S.D. (4.85424E-02) (4.91772E-02) (4.91772E-02) (4.68032E-02) (4.68032E-02) (6.00662E-02) (4.71723E-02)

MSE 2.35877E-03 2.40108E-03 2.40108E-03 2.17698E-03 2.17698E-03 3.63654E-03 2.21375E-03

Mean 9.98392E-01 9.95216E-01 9.95216E-01 9.70589E-01 9.71627E-01 3.51123E-02 9.92960E-01

d S.D. (7.33193E-02 (7.46946E-02) (7.46946E-02) (7.59516E-02) (7.53362E-02) (1.83983E-02) (7.50610E-02)

MSE 5.32455E-03 5.54638E-03 5.54638E-03 6.57598E-03 6.42380E-03 9.31343E-01 5.62737E-03

Mean 4.00782E+00 4.00791E+00 4.00581E+00 4.00544E+00 3.99400E+00 5.32627E+00 4.00347E+00

σ2 S.D. (7.66500E-02) (8.98881E-02) (7.19708E-02) (7.13441E-02) (7.19080E-02) (1.55770E-01) (7.56968E-02)

MSE 5.87763E-03 8.06169E-03 5.16181E-03 5.06871E-03 5.15505E-03 1.78301E+00 5.68472E-03

Table B.12: Second simulation study. Mean and standard deviation (S.D.) for the standard

error of CS parameter estimates in 100 replications for configuration 2 using different

combination weights comparing with full sample MLE and MI-MLE.

Equal Prop. Approx. sc. Scalar Simple opt. Proper opt. MI ML

µ Mean 4.24162E-02 4.22766E-02 4.22766E-02 4.11356E-02 4.11356E-02 4.12439E-02 4.95431E-02 4.14004E-02

S.D. (1.21548E-03) (8.59430E-04) (8.59430E-04) (9.31222E-04) (9.31222E-04) (9.42598E-04) (7.65032E-03) (9.11785E-04)

d Mean 1.60545E-01 2.02922E-01 2.02922E-01 1.45623E-01 7.47531E-02 1.48865E+00 9.10211E-02 7.54391E-02

S.D. (8.88524E-03) (1.47416E-02) (1.47416E-02) (9.84170E-03) (3.76197E-03) (1.29914E-01) (5.18621E-03) (3.38044E-03)

σ2 Mean 7.99442E-02 9.26315E-02 7.58626E-02 7.54139E-02 7.49171E-02 8.86450E+00 1.64310E-01 7.50377E-02

S.D. (1.87358E-03) (3.14842E-03) (1.39531E-03) (1.34244E-03) (1.33807E-03) (6.56714E-01) (2.27104E-02) (1.42688E-03)

[1] 0.006059707 0.014069710

$mu.var

[1] 0.0001771469

$varcomp.var

[,1] [,2]

[1,] 7.503554e-08 -1.089792e-08

[2,] -1.089792e-08 5.144086e-06

$proper.var.mu

[1] 0.0001771471

$proper.var.varcomp

[,1] [,2]

[1,] 8.045528e-06 -9.606275e-06
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Eq Appr. sc. MI ML
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Figure B.13: Second simulation study. Estimated CS parameters (first row) and their

standard error (second row) using sample splitting, MI-MLE, and MLE.

[2,] -9.606275e-06 2.111345e-05

One may note that once the cluster-specific estimates have been obtained using any

of the cluster-by-cluster approaches, one can easily combine them with the desired rule

using the available functions. The output are organized in accordance with the input of

other functions, so they can be directly plugged in.

Example 27.

> clusterBYcluster.CS(nk,ck,Data)

$mu.split.est
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Table B.13: Function input.

Input Description

n an integer indicating the common cluster size within each split

C an integer indicating the number of clusters within each split

Y a vector containing the response values corresponding to each

split

data a 2-column matrix with response variable as its first column

and splits indicator as its second column. All clusters should

be of equal size by placing NaN to make smaller clusters the

same size as the largest one.

nk a vector containing the cluster sizes

ck a vector containing the number of clusters of size nk
mu.split.est a vector containing the µ̂’s from all sub-samples.

sigma2.split.est a vector containing the σ̂2’s from all sub-samples.

d.split.est a vector containing the d̂’s from all sub-samples.

mu.split.var a vector containing the Var(µ̂)’s from all sub-samples.

sigma2.split.var a vector containing the Var(σ̂2)’s from all sub-samples.

d.split.var a vector containing the Var(d̂)’s from all sub-samples.

Data (only applicable in function clusterBYcluster.CS)

a 3-column matrix with first column the subject, second

column the response variable, and third column the split

indexes, which show which observation belongs to which

sub-sample.

[1] 0.8058733 0.8500635 0.8350303 0.8645111 0.9579167 0.7938929

0.8111373 0.8538187

$mu.split.var

Weighted TwoStage TwoStageUnbiased

[1,] 0.001307539 0.001376916 0.001478020

[2,] 0.001650106 0.001810324 0.002043291

[3,] 0.001334065 0.001390168 0.001517057

[4,] 0.001092201 0.001189274 0.001332732

[5,] 0.003312091 0.003506955 0.005190838

[6,] 0.003285979 0.003373701 0.003849875
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Table B.14: Function output: est.CS and est.CS.for

Output Description

mu.hat a scalar presenting µ̂.

d.hat a scalar presenting d̂.

sigma2.hat a scalar presenting σ̂2.

var.mu.hat a scalar presenting variance of µ̂.

cov.varcomp a matrix presenting covariance matrix of (σ̂2, d̂)

Table B.15: Function output: est.CS.all

Output Description

mu.hat a vector presenting µ̂ for each split.

d.hat a vector presenting d̂ for each split.

sigma2.hat a vector presenting σ̂2 for each split.

var.mu.hat a vector presenting variance of µ̂ for each split.

var.d.hat a vector presenting variance of d̂ for each split.

var.sigma2.hat a vector presenting variance of σ̂2 for each split.

cov.d.sigma2.hat a vector presenting covariance of (σ̂2, d̂) for each split.

[7,] 0.001098199 0.001127220 0.001198495

[8,] 0.001034920 0.001055199 0.001136498

$sigma2.split.est

Weighted TwoStage TwoStageUnbiased

[1,] 0.011562832 0.010406549 0.011562832

[2,] 0.011776069 0.010093773 0.011776069

[3,] 0.008146211 0.007405646 0.008146211

[4,] 0.014040871 0.013104813 0.014040871

[5,] 0.005344821 0.004676719 0.005344821

[6,] 0.010580691 0.009824927 0.010580691

[7,] 0.006458361 0.005920164 0.006458361

[8,] 0.003998299 0.003690738 0.003998299

$sigma2.split.var

Weighted TwoStage TwoStageUnbiased
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Table B.16: Function output: param.free.CS

Output Description

mu a matrix with columns µ̃ and Var(µ̃) for Equal, Proper, and

Appr.sc. weights, rows 1–3, respectively.

sigma2 a matrix with columns σ̃2 and Var(σ̃2) for Equal, Proper, and

Appr.sc. weights, rows 1–3, respectively.

d a matrix with columns d̃ and Var(d̃) for Equal, Proper, and

Appr.sc. weights, rows 1–3, respectively.

Table B.17: Function output: scalar.weights.CS

Output Description

- a matrix with columns µ̃ and Var(µ̃) for scalar weights.

[1,] 1.980727e-06 1.299555e-06 1.980727e-06

[2,] 5.136141e-06 2.772361e-06 5.136141e-06

[3,] 1.106012e-06 7.554214e-07 1.106012e-06

[4,] 3.129302e-06 2.374623e-06 3.129302e-06

[5,] 2.720678e-06 1.594811e-06 2.720678e-06

[6,] 2.152904e-06 1.600612e-06 2.152904e-06

[7,] 4.461008e-07 3.149770e-07 4.461008e-07

[8,] 1.903143e-07 1.381729e-07 1.903143e-07

$d.split.est

Weighted TwoStage TwoStageUnbiased

[1,] 0.018456799 0.019613082 0.02101402

[2,] 0.013168657 0.014850953 0.01670732

[3,] 0.015268213 0.016008777 0.01746412

[4,] 0.008893749 0.009829807 0.01105853

[5,] 0.009268172 0.009936274 0.01490441

[6,] 0.025532065 0.026287829 0.03004323

[7,] 0.018131189 0.018669386 0.01983622

[8,] 0.014181322 0.014488883 0.01560341

$d.split.var
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Table B.18: Function output: approx.optimal.CS

Output Description

mu.est µ̃ obtained by approximate optimal weights

varcomp.est (σ̃2, d̃) obtained by approximated optimal weights

mu.var Var(µ̃) obtained by approximate optimal weights

varcomp.var covariance matrix of (σ̃2, d̃) obtained by

approximated optimal weights

proper.var.mu VarProper(µ̃) obtained by approximate optimal weights

proper.var.varcomp proper covariance matrix of (σ̃2, d̃) obtained by

approximate optimal weights

Weighted TwoStage TwoStageUnbiased

[1,] 5.130954e-05 0.007715211 6.553629e-05

[2,] 4.911611e-05 0.008261736 7.515067e-05

[3,] 4.272263e-05 0.005140078 5.523509e-05

[4,] 2.148616e-05 0.003950645 3.197116e-05

[5,] 6.586221e-05 0.002231365 1.616688e-04

[6,] 1.727735e-04 0.006083359 2.371446e-04

[7,] 4.100850e-05 0.005122242 4.883729e-05

[8,] 2.999080e-05 0.003263327 3.616558e-05

$Var.varcomp

$Var.varcomp[[1]]

[,1] [,2]

[1,] 1.980727e-06 -1.980727e-07

[2,] -1.980727e-07 5.130954e-05

$Var.varcomp[[2]]

[,1] [,2]

[1,] 5.136141e-06 -7.337344e-07

[2,] -7.337344e-07 4.911611e-05

$Var.varcomp[[3]]

[,1] [,2]

[1,] 1.106012e-06 -1.005466e-07
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Table B.19: Function output: clusterBYcluster.CS

Output Description

mu.split.est a vector containing cluster-by-cluster estimated µ for each clus-

ter

mu.split.var a matrix with rows the variances of estimated µ for each cluster

and with columns indicating the three methods: weighted, two-

stage, and unbiased two-stage

sigma2.split.est a matrix with rows the estimated σ2 for each cluster and

columns indicating the three methods: weighted (σ̂2), two-

stage (s2) and unbiased two-stage (s2
∗)

sigma2.split.var a matrix with rows the variances of estimated σ2 for each clus-

ter and its columns indicate the three methods:

weighted (σ̂2), two stage (s2) and unbiased two stage (s2
∗)

d.split.est a matrix with rows the estimated d2 for each cluster and

columns indicating the three methods: weighted (σ̂2), two-

stage (t2), and unbiased two-stage (t2∗)

d.split.var a matrix with rows the variances of estimated d2 for each clus-

ter and columns indicating the three methods: weighted (σ̂2),

two-stage (t2) and unbiased two-stage (t2∗)

Var.varcomp a list containing matrices as its elements. The matrices are the

full covariance matrices for (σ̂2, d̂) from a weighted cluster-by-

cluster analysis

[2,] -1.005466e-07 4.272263e-05

$Var.varcomp[[4]]

[,1] [,2]

[1,] 3.129302e-06 -2.086202e-07

[2,] -2.086202e-07 2.148616e-05

$Var.varcomp[[5]]

[,1] [,2]

[1,] 2.720678e-06 -3.400847e-07

[2,] -3.400847e-07 6.586221e-05
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$Var.varcomp[[6]]

[,1] [,2]

[1,] 2.152904e-06 -1.537789e-07

[2,] -1.537789e-07 1.727735e-04

$Var.varcomp[[7]]

[,1] [,2]

[1,] 4.461008e-07 -3.717507e-08

[2,] -3.717507e-08 4.100850e-05

$Var.varcomp[[8]]

[,1] [,2]

[1,] 1.903143e-07 -1.463956e-08

[2,] -1.463956e-08 2.999080e-05

B.7.3 R Functions

Here are the R functions.

est.CS <- function(n,C,Y){

y.matrix=matrix(Y,n,C)

mu.hat=mean(Y)

Z=Y-mu.hat

Z.matrix=matrix(Z,n,C)

J=matrix(1,n,n)

tmp1=sum(apply(Z.matrix^2,2,sum))

tmp2=apply(Z.matrix%*%matrix(apply(Z.matrix,2,sum),C,1),2,sum)

tmp3=1/((C*n)*(n-1))

sigma2.hat=tmp3*((n*sum(tmp1))-sum(tmp2))

d.hat=tmp3*(sum(tmp2)-sum(tmp1))

var.mu.hat=(sigma2.hat+(n*d.hat))/(C*n)

cov.varcomp=(2*(sigma2.hat^2)/((C*n)*(n-1)))*matrix(

c(n,-1,-1,(((sigma2.hat^2) + ((2*(n-1))*(d.hat*sigma2.hat)) +

((n*(n-1))*(d.hat^2)))/(sigma2.hat^2))),2,2)

return(list(mu.hat=mu.hat,d.hat=d.hat,sigma2.hat=sigma2.hat

,var.mu.hat=var.mu.hat,cov.varcomp=cov.varcomp))
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}

est.CS.for <- function(n,C,Y){

y.matrix=matrix(Y,n,C)

mu.hat=mean(Y)

Z=Y-mu.hat

Z.matrix=matrix(Z,n,C)

tmp2=rep(0,C)

tmp1=rep(0,C)

J=matrix(1,n,n)

for (i in 1:C){

tmp1[i]=t(Z.matrix[,i])%*% Z.matrix[,i]

tmp2[i]= (t(Z.matrix[,i])%*%J)%*%Z.matrix[,i]

}

tmp3=1/((C*n)*(n-1))

sigma2.hat=tmp3*((n*sum(tmp1))-sum(tmp2))

d.hat=tmp3*(sum(tmp2)-sum(tmp1))

var.mu.hat=(sigma2.hat+(n*d.hat))/(C*n)

cov.varcomp=(2*(sigma2.hat^2)/((C*n)*(n-1)))*matrix(

c(n,-1,-1,(((sigma2.hat^2) + ((2*(n-1))*(d.hat*sigma2.hat)) +

((n*(n-1))*(d.hat^2)))/(sigma2.hat^2))),2,2)

return(list(mu.hat=mu.hat,d.hat=d.hat,sigma2.hat=sigma2.hat,

var.mu.hat=var.mu.hat,cov.varcomp=cov.varcomp))

}

est.CS.all <- function(data,ck,nk){

Y.mat=matrix(data[,1],max(nk),dim(data)[1]/max(nk))

split.idx.sub=matrix(data[,2],max(nk),dim(data)[1]/max(nk))[1,]

split.matrix=matrix(0,length(ck),sum(ck))

for (i in 1:length(ck)){

split.matrix[i,split.idx.sub==i]=1

}

subj.mean=apply(Y.mat,2,sum,na.rm=T)

split.mu.hat=(split.matrix%*%subj.mean)/(ck*nk)

subj.mu.hat=t(split.matrix)%*%split.mu.hat

mean.mat=matrix(rep(c(subj.mu.hat),max(nk)),max(nk),
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length(subj.mean),byrow=T)

Z.mat=(Y.mat-mean.mat)

tmp1.1=matrix(rep(apply(Z.mat^2,2,sum,na.rm=T),length(ck)),

length(ck),sum(ck),byrow=T)

tmp1=apply(split.matrix*tmp1.1,1,sum)

tmp2.1=matrix(rep(apply(Z.mat,2,sum,na.rm=T),length(ck)),

length(ck),sum(ck),byrow=T)

tmp2.2=split.matrix*tmp2.1

Z.mat.zero=Z.mat

Z.mat.zero[is.na(Z.mat)==TRUE]=0

tmp2=apply(Z.mat.zero%*%t(tmp2.2),2,sum,na.rm=T)

tmp3=1/((ck*nk)*(nk-1))

split.sigma2.hat=tmp3* ((nk*tmp1)-tmp2)

split.d.hat=tmp3*(tmp2-tmp1)

split.var.mu.hat=(split.sigma2.hat + (nk*split.d.hat))/(ck*nk)

varcomp.factor=(2*(split.sigma2.hat^2)/((ck*nk)*(nk-1)))

split.var.d.hat=varcomp.factor*(((split.sigma2.hat^2) +

((2*(nk-1))*(split.d.hat*split.sigma2.hat)) +

((nk*(nk-1))*(split.d.hat^2)))/(split.sigma2.hat^2))

split.var.sigma2.hat=varcomp.factor*nk

split.cov.d.sigma2.hat=-1*varcomp.factor

return(list(mu.hat=split.mu.hat,sigma2.hat=split.sigma2.hat,

d.hat=split.d.hat,var.mu.hat=split.var.mu.hat,

var.d.hat=split.var.d.hat,

var.sigma2.hat=split.var.sigma2.hat,

cov.d.sigma2.hat=split.cov.d.sigma2.hat))

}

param.free.CS <- function(nk,ck,mu.split.est,sigma2.split.est,

d.split.est,mu.split.var,sigma2.split.var,

d.split.var){

num.split=length(ck)

# Calculating parameter free weights

Equal=rep(1/num.split,num.split)

Prop=ck/sum(ck)

Appr.sc=(ck*nk)/sum(ck*nk)

# mu
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mu.eq=c(sum(Equal*mu.split.est),sum((Equal^2)*mu.split.var))

mu.prop=c(sum(Prop*mu.split.est),sum((Prop^2)*mu.split.var))

mu.appr.sc=mu.prop

mu=rbind(mu.eq,mu.prop,mu.appr.sc)

colnames(mu)=c("Est","Var")

rownames(mu)=c("Equal","Prop","Appr.sc.")

# Sigma2

sigma2.eq=c(sum(Equal*sigma2.split.est),

sum((Equal^2)*sigma2.split.var))

sigma2.prop=c(sum(Prop*sigma2.split.est),

sum((Prop^2)*sigma2.split.var))

sigma2.appr.sc=c(sum(Appr.sc*sigma2.split.est),

sum((Appr.sc^2)*sigma2.split.var))

sigma2=rbind(sigma2.eq,sigma2.prop,sigma2.appr.sc)

colnames(sigma2)=c("Est","Var")

rownames(sigma2)=c("Equal","Prop","Appr.sc.")

# d

d.eq=c(sum(Equal*d.split.est),sum((Equal^2)*d.split.var))

d.prop=c(sum(Prop*d.split.est),sum((Prop^2)*d.split.var))

d.appr.sc=d.prop

d=rbind(d.eq,d.prop,d.appr.sc)

colnames(d)=c("Est","Var")

rownames(d)=c("Equal","Prop","Appr.sc.")

return(list(mu=mu,sigma2=sigma2,d=d))

}

scalar.weights.CS

<- function(nk,ck,mu.split.est,sigma2.split.est,d.split.est,

mu.split.var,sigma2.split.var,d.split.var){

ak=(ck*nk)/(sigma2.split.est + (nk*d.split.est))

w.mu=ak/sum(ak)

bk=ck*(nk-1)

w.sigma2=bk/sum(bk)

gk=(ck*nk)/

(((sigma2.split.est^2)/(nk-1))
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+((2*sigma2.split.est)*d.split.est)+(nk*(d.split.est^2)))

w.d=gk/sum(gk)

mu.scalar=c(sum(w.mu*mu.split.est), sum(mu.split.var* (w.mu^2)))

d.scalar=c(sum(w.d*d.split.est), sum(d.split.var* (w.d^2)))

sigma2.scalar=c(sum(w.sigma2*sigma2.split.est),

sum(sigma2.split.var* (w.sigma2^2)))

param.scalar=rbind(mu.scalar,sigma2.scalar,d.scalar)

colnames(param.scalar)=c("Est.","Var")

rownames(param.scalar)=c("mu","sigma2","d")

return(param.scalar)

}

approx.optimal.CS

<- function(nk,ck,mu.split.est,sigma2.split.est,d.split.est,

sigma2.split.var,d.split.var){

library(magic)

num.split=length(ck)

#Calculating approximated optimal weights

W=NULL

for (i in 1:num.split){

V1=(2*(sigma2.split.est[i]^2))/(ck[i]*(nk[i]-1))

V2=(-1)*((2*(sigma2.split.est[i]^2))/(ck[i]*nk[i]*(nk[i]-1)))

V3=(2/(ck[i]*nk[i]))*((sigma2.split.est[i]^2

/(nk[i]-1))+((2*d.split.est[i])

*sigma2.split.est[i])+(nk[i]*(d.split.est[i]^2)))

W[[i]]=solve(matrix(c(V1,V2,V2,V3),2,2))

}

V.total=apply(simplify2array(W),c(1,2),sum)

W.inv=solve(V.total)

W.opt=NULL

sigma2.d=rbind(sigma2.split.est,d.split.est)

sigma2.d.est=matrix(0,dim(sigma2.d)[1],dim(sigma2.d)[2])

for (i in 1:num.split){

W.opt=W.inv %*% W[[i]]

sigma2.d.est[,i]=W.opt%*% sigma2.d[,i]
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}

varcomp.est=apply(sigma2.d.est,1,sum)

varcomp.var=W.inv

# Calculating proper Variance

A1=((sigma2.split.est^2) + (nk*d.split.est))^3

A2=(sigma2.split.est*d.split.est)*((2*sigma2.split.est)

*(nk*d.split.est))

A3=d.split.est*((sigma2.split.est+(nk*d.split.est))^2)

A=A1-A2-A3

dev.w.sigma2=NULL

dev.w.d=NULL

C3.tmp=NULL

C4.tmp=NULL

for (i in 1:num.split){

tmp1=(-1*ck[i]*nk[i])/A1[i]

tmp2=matrix(c(A[i] ,1 ,1, nk[i]),2,2)

dev.w.sigma2[[i]]=tmp1*tmp2

dev.w.d[[i]]=tmp1 * matrix(c(1,nk[i],nk[i],(nk[i]^2)),2,2)

II=as.matrix(diag(2)-(W.inv%*%W[[i]]))

Theta=c(sigma2.split.est[i],d.split.est[i])

Rho=II%*%Theta

C3.tmp[[i]]=adiag(dev.w.d[[i]],dev.w.sigma2[[i]])

C4.tmp[[i]]= kronecker (diag(2),Rho)

}

C1.tmp=t(kronecker(c(1,1),diag(2)))

C2.tmp=kronecker(diag(2),W.inv)

proper.var=NULL

for (i in 1:num.split){

C=((C1.tmp%*%C2.tmp)%*%C3.tmp[[i]])%*%C4.tmp[[i]]

AA=W.inv%*%(W[[i]])

B=AA+C

VV=diag(c(d.split.var[i],sigma2.split.var[i]))

proper.var[[i]]=(B%*%VV)%*%t(B)
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}

Proper.var=apply(simplify2array(proper.var),c(1,2),sum)

# Approximate weights for mu

Am=(ck*nk)/(sigma2.split.est+(nk*d.split.est))

w.mu=Am/sum(Am)

mu.est=sum(w.mu*mu.split.est)

mu.var=1/sum(Am)

# Proper variance for mu

proper.var.mu1=mu.var

TMP2=rep(0,num.split)

TMP.1=rep(0,num.split)

for (k in 1:num.split){

TMP1=2*ck[k]*(nk[k]^2)

for (m in 1:num.split){

TMP2[m]=Am[m]*((mu.split.est[k]-mu.split.est[m])^2)

}

TMP.1[k]=TMP1*sum(TMP2)

}

TMP.2=sum(Am)^4

proper.var.mu=sum(TMP.1)/TMP.2

Proper.var.mu=(1/sum(Am))+ proper.var.mu

return(list(mu.est=mu.est,varcomp.est=varcomp.est,mu.var=mu.var,

varcomp.var=varcomp.var,proper.var.mu=Proper.var.mu,

proper.var.varcomp=Proper.var))

}

clusterBYcluster.CS <- function(nk,ck,Data){

# Data should be a 3-column matrix with first column the subject,

# second column the response and third column the split indexes

# which show which observation belongs to which sub-sample.

num.split=length(ck)

Var.varcomp=NULL

mu.split.est=rep(0,num.split)

mu.split.var=matrix(0,num.split,3)
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d.split.est=matrix(0,num.split,3)

sigma2.split.est=matrix(0,num.split,3)

d.split.var=matrix(0,num.split,3)

sigma2.split.var=matrix(0,num.split,3)

for (k in 1:num.split){

# Making data for each cluster

split.data=Data[Data[,3]==k,]

n=nk[k]

N=ck[k]

# Computing t^2

data.matrix=matrix(split.data[,2],n,N)

mu.hat=sum(apply(data.matrix,2,sum))/(prod(dim(data.matrix)))

t2=sum((apply(data.matrix,2,mean)-mu.hat)^2)/(dim(data.matrix)[2])

#Computing S^2

mean.vec=apply(data.matrix,2,mean)

SS=rep(0,dim(data.matrix)[2])

for (i in 1:dim(data.matrix)[2]){

SS[i]=sum((data.matrix[,i]-mean.vec[i])^2)

}

s2=sum(SS)/prod(dim(data.matrix))

# Computing s^2* and t^2*

s2.star=(dim(data.matrix)[1]/(dim(data.matrix)[1]-1))*s2

t2.star=(dim(data.matrix)[2]/(dim(data.matrix)[2]-1))*t2

# Computing \widehat{\sigma}^2 and \widehat{d}

Z=data.matrix-mu.hat

J=matrix(1,dim(Z)[1],dim(Z)[1])

ZZ=rep(0,dim(Z)[2])

ZJZ=rep(0,dim(Z)[2])

for (i in 1:dim(Z)[2]){

ZZ[i]=t(Z[,i])%*% Z[,i]

ZJZ[i]=(t(Z[,i])%*%J)%*%Z[,i]

}

d.hat=(1/(N*n*(n-1))) * (sum(ZJZ)-sum(ZZ))

sigma2.hat=(1/(N*n*(n-1)))* ((n*sum(ZZ))-sum(ZJZ))
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# computing the variance of \widehat{\mu} \widehat{\sigma}^2

and \widehat{d}

var.mu=(sigma2.hat+ (n*d.hat))/(N*n)

var1=(2*(sigma2.hat^2))/(N*(n-1))

var12=(-1)*(2*(sigma2.hat^2))/(N*n*(n-1))

var2=(2/(n*N))*(((sigma2.hat^2)/(n-1)) + (2*sigma2.hat*d.hat)

+ (n*(d.hat^2)))

var.varcomp=matrix(c(var1,var12,var12,var2),2,2)

# computing the variance of \widehat{\mu} \widehat{\sigma}^2

and \widehat{d}

#based on the two stage approach

var.mu.2stage=(s2+ (n*t2))/(N*n)

var.s2=(2*(n-1)*(s2^2))/(N*(n^2))

var.t2=(2*((N-1)^2))/((N^2)*n) * (((s2^2)/n) + (2*s2+t2 )

+ (n*(t2^2) ))

# computing the variance of \widehat{\mu} \widehat{\sigma}^2

and \widehat{d}

#based on the unbiased two stage approach

var.mu.2stage.unbiased=(s2.star+ (n*t2.star))/(N*n)

var.s2.star=(2*(s2.star^2))/ (N*(n-1))

var.t2.star= (2/(N*n)) * (((s2.star^2)/n)+(2*s2.star*t2.star)

+(n*(t2.star^2)))

# Saving the results

mu.split.est[k]=mu.hat

Var.varcomp[[k]]=var.varcomp

mu.split.var[k,]=c(var.mu,var.mu.2stage,var.mu.2stage.unbiased)

d.split.est[k,]=c(d.hat,t2,t2.star)

sigma2.split.est[k,]=c(sigma2.hat,s2,s2.star)

d.split.var[k,]=c(var.varcomp[2,2],var.t2,var.t2.star)

sigma2.split.var[k,]=c(var.varcomp[1,1],var.s2,var.s2.star)
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}

colnames(mu.split.var)=c("Weighted","TwoStage",

"TwoStageUnbiased")

colnames(d.split.var)=c("Weighted","TwoStage",

"TwoStageUnbiased")

colnames(sigma2.split.var)=c("Weighted","TwoStage",

"TwoStageUnbiased")

colnames(d.split.est)=c("Weighted","TwoStage",

"TwoStageUnbiased")

colnames(sigma2.split.est)=c("Weighted","TwoStage","TwoStageUnbiased")

return(list(mu.split.est=mu.split.est,mu.split.var=mu.split.var,

sigma2.split.est=sigma2.split.est, sigma2.split.var=sigma2.split.var,

d.split.est=d.split.est,d.split.var=d.split.var,

Var.varcomp=Var.varcomp))}





Appendix C

Appendix for Chapter 6

Section C.1 gives the contrast between the AR(1) model and the balanced conditionally

independent model. Section C.2 outlined detailed derivations expressions presented in

Sections 6.2 and 6.3. Details on the simulation study and data analysis are presented

respectively in Section C.3 and Section C.4.

C.1 The Balanced Conditionally Independent Model

In this case, one imposes the following structure on (6.1):

• X
(k)
i can be rewritten in terms of a first matrix that imposes structure between clus-

ters (e.g., treatment effect), termed A(k)
i , and a second one that imposes structure

within clusters (e.g., time evolution), T (k)
i

′
= (Z

(k)
i

′
, Q

(k)
i

′
)′.

• The matrices A(k)
i , Z(k)

i , and Q(k)
i are constant among all clusters of size nk.

• The matrix Σ
(k)
i = σ2Ink

.

This is the general, balanced growth-curve model as studied by Lange and Laird (1989)

and Verbeke and Fieuws (2007). Building on their development, we will now derive

sufficient statistics and associated maximum likelihood estimators for the parameters in

this model. This can be expressed

Y = A(β1,β2)

(
Z

Q

)
+BZ + ε.

Here, Y is an N × n matrix stacking the outcomes of all clusters of size c, A, Z, and

Q group the designs mentioned in Section 6.2, the vectors β1 and β2 contain the fixed

183
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effects, B contains N rows of length q, representing the q-dimensional random-effects

vector, and ε shares its dimensions with Y .

Now, define K the projection matrix such that K ′K = Ir−q, for an appropriate

dimension r, and ZK = 0. Then, set P = QK and consider the projection model:

Y 1 ≡ Y K = Aβ2P + εK.

The variance of a cluster is σ2Ir−q. Next, define H such that H ′H = Iq and QH = 0.

A second projection model emerges:

Y 2 ≡ Y H = Aβ1 +B + εH.

The variance of a cluster is σ2Iq +H ′DH , with D the variance-covariance matrix of the

vector of random effects. Importantly, projections Y 1 ⊥ Y 2.

Conventional algebra leads from these to the following set of sufficient statistics:

T1 = (A′A)−1A′Y 1P
′(PP ′)−1, (C.1)

T2 = tr
{
Y ′

1

[
I −A(A′A)−1A′

]
Y 1

}
, (C.2)

T3 = (A′A)−1A′Y 2, (C.3)

T4 = Y ′
2

[
I −A(A′A)−1A′

]
Y 2. (C.4)

Sufficient statistics (C.1)–(C.4) lead to the maximum likelihood estimators:

β̂1 = T1, (C.5)

β̂2 = T3, (C.6)

σ̂2 =
1

N(n− q)T2, (C.7)

D̂ =
1

N
T4 − σ̂2Iq. (C.8)

Note that the estimators for the fixed effects do not involve the variance components.

C.2 Algebraic Derivations in the AR(1) Case

Here, we present more detailed derivations of the key algebraic expressions presented in

Sections 6.2 and 6.3.
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C.2.1 Some Useful Expressions

Consider,

C =




1 ρ ρ2 ρ3 . . .

1 ρ ρ2 . . .
. . .

. . .
. . .

1 ρ

1



, (C.9)

then,

Σ = σ2C. (C.10)

It can be shown that:

det(C) =
(
1− ρ2

)n−1
(C.11)

The inverse of C can be calculated as follows:

C−1 =
1

1− ρ2




1 −ρ . . . 0

−ρ 1 + ρ2 . . . . . .
. . .

. . .
. . .

1 + ρ2 −ρ
−ρ 1




, (C.12)

as one may see C−1 is a symmetric-tridiagonal matrix with constant diagonal except for

the outer entries, and constant first off-diagonal.

Consider:

C−1 =
1

1− ρ2
G. (C.13)

Then, by taking the derivative with respect to ρ:

∂C−1

∂ρ
=

2ρ

(1− ρ2)2
G+

1

1− ρ2
H, (C.14)

where, H = ∂G
∂ρ and has the form:

H =




0 −1 . . . 0

−1 2ρ
. . . . . .

. . .
. . .

. . .
. . .

. . . 2ρ −1

0 −1 0




. (C.15)
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Also, considering the fact CC−1 = I, one can derive:

∂C−1

∂ρ
= −C−1 ∂C

∂ρ
C−1. (C.16)

C.2.2 The Likelihood Estimators in a Given Cluster

The likelihood function for an nk-dimensional multivariate normal sample of size ck has

the following form:

L =

Ck∏

i=1

1

|Σ|1/2(2π)nk/2
exp

{
−1

2
(yi − µi)′Σ−1(yi − µi)

}
. (C.17)

Therefore, the non-constant terms of the log-likelihood are as follows:

ℓ ∝ −Ck
2

ln |Σ|.1
2

Ck∑

i=1

(yi − µi)′Σ−1(yi − µi), (C.18)

which considering (C.11) for AR(1):

|Σ| =
(
σ2
)nk

(
1− ρ2

)nk−1
. (C.19)

As a general case, if we consider the mean as linear model with the form µi = Xiβ, one

can derive:

∂ℓ

∂µi
= Σ−1

Ck∑

i=1

(yi − µi) = 0⇒ β̂ = (X ′X)−1X ′y. (C.20)

Now expanding the log-likelihood for σ2 and ρ, we have:

ℓ ∝ −Ck
2
nk ln σ2 − Ck

2
(nk − 1) ln(1− ρ2)− 1

2

Ck∑

i=1

(yi − µi)′Σ−1(yi − µi). (C.21)

Considering Σ = σ2C and (C.12), the derivative with respect to σ2 is as follows:

∂ℓ

∂σ2
= −Cknk

2

1

σ2
+

1

2

1

(σ2)2

Ck∑

i=1

(yi − µi)′C−1(yi − µi). (C.22)

Solving ∂ℓ
∂σ2 = 0 gives:

σ̂2 =
1

Cknk

Ck∑

i=1

(yi − µi)′C−1(yi − µi). (C.23)

One may notice that C−1 contains the parameter ρ.
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Taking the derivative of (C.21) with respect to ρ gives:

∂ℓ

∂ρ
=
Ck(nk − 1)

2

2ρ

1− ρ2
− 1

σ2

Ck∑

i=1

(yi − µi)′ ∂C
−1

∂ρ
(yi − µi). (C.24)

Setting ∂ℓ
∂ρ = 0 gives:

σ̂2 2ρ̂

1− ρ̂2
=

1

Ck(nk − 1)

Ck∑

i=1

(yi − µi)′ ∂C
−1

∂ρ
(yi − µi). (C.25)

Solving (C.23) and (C.25) gives σ̂2 and ρ̂. For any (nk × nk) matrix Q,
∑
i(yi −

µi)
′Q(yi−µi) equals tr {SQ}, where tr denotes the trace of a matrix, and S =

∑
i(yi−

µi)(yi −mi)
′. Hence, from (C.23), (C.25), (C.13), (C.14), and (C.16), one can write:





(1− ρ̂2)σ̂2 = 1
Cknk

tr{SG},
(1− ρ̂2)σ̂2 = 1

Cknk
tr{SG}+ 1−ρ̂2

2ρ̂

1
Ck(nk−1)

1
Ck(nk−1 tr{SH}.

(C.26)

Set g = tr{SG} and h = tr{SH}, it follows that

g

nk
+

1− ρ̂2

2ρ̂
h = 0. (C.27)

Given that both g and h are functions of ρ only, ρ can be estimated using (C.27). Givenρ,

one can use one of equations in (C.26) to estimate σ2.

Let us consider some special cases. For nk = 2:

G =

(
1 −ρ
−ρ 1

)
, H =

(
0 −1

−1 0

)
.

Therefore, g and h can be computed as:

g = tr

[(
S11 S12

S21 S22

)(
1 −ρ
−ρ 1

)]
= S11 − 2ρS12 + S22.

h = tr

[(
S11 S12

S21 S22

)(
0 −1

−1 0

)]
= −2S12.

Now using (C.27):

ρ̂(S11 − 2ρ̂S12 + S22 + (1− ρ̂2)(−2S12),

which gives:

ρ̂ =
2S12

S11 + S22
. (C.28)
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Then, using first equation in (C.26):

(1− ρ̂2)σ̂2 =
1

2Ck
(S11 − 2ρ̂S12 + S22),

which gives:

σ̂2 =
S11 + S22

2Ck
. (C.29)

For nk = 3:

g = tr






S11 S12 S13

S21 S22 S23

S31 S32 S33







1 −ρ 0

−ρ 1 + ρ2 − ρ
0 −ρ 1







= S11 + S22 + S33 − 2ρ(S12 + S23) + ρ2S22,

h = tr






S11 S12 S13

S21 S22 S23

S31 S32 S33







0 −1 0

−1 2ρ −1

0 −1 0







= −2(S12 + S23) + 2ρS22.

Let,



S = S11 + S22 + S33

R = S12 + S23

⇒




g = S + ρ2S22 − 2ρR

h = −2R+ 2ρS22

Using (C.27):

2S22ρ
3 −Rρ2 − (S + 3S22)ρ+ 3R = 0. (C.30)

Considering the results for nk = 2 and nk = 3, one can calculate (C.27) for the

general case nk = n as follows.

(n− 1)S̃ρ3 − (n− 2)Rρ2 − (nS̃ + S)ρ+ nR = 0 (C.31)

with:




S = S11 + . . .+ Snn,

S̃ = S22 + . . .+ Sn−1,n−1,

R = S12 + S23 + . . .+ Sn−1,n.

Then using (C.26):

σ̂2 =
1

Cn

1

(1− ρ̂2)
(S + ρ̂2S̃ − 2ρ̂R). (C.32)

For nk > 2, (C.31) is a third-degree polynomial. One can show that this equation has

only one root in [−1, 1].
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Proof. Consider:

f(ρ) = (n− 1)S̃ρ3 − (n− 2)Rρ2 − (nS̃ + S)ρ+ nR

f ′(ρ) = 3(n− 1)S̃ρ2 − 2(n− 2)Rρ− (nS̃ + S)

f ′′(ρ) = 6(n− 1)S̃ρ− 2(n− 2)R

The discriminant of f ′(ρ) is as follows:

∆f ′(ρ) = (n− 2)2R2 + 3(nS̃ + S)(n− 1)S̃ ≥ 0.

Therefore f ′(ρ) has no root and hence f(ρ) is monotone. One may see f ′(0) ≤ 0,

therefore, f(ρ) is a monotonically decreasing function (I). One can show f(1) ≤ 0 and

f(−1) ≥ 0 (II). Considering (I) and (II) together, one may conclude f(ρ) must necessarily

cross the horizontal line only once between [−1, 1].

This shows the unique ρ̂ can be easily estimated solving (C.31) using Cardano’s formula

(Franci and Rigatelli , 1979).

C.2.3 Hessians, Covariance Matrices, and Optimal Weights

Given the MLEs for the AR(1) covariance structure, the Hessians and covariance matrices

of the MLEs can be derived. Following the general results obtained about optimal weights,

they can be used to compute the exact optimal weights in the case of the AR(1) structure.

As mean and variance parameters are orthogonal in the normal case, we can consider the

second derivative for fixed effects and variance components separately.

C.2.3.1 Second derivative with respect to fixed effects

As
∂ℓ

∂β
=

Ck∑

i=1

X ′
i Σ−1(yi − µi),

we have:

E

[
∂ℓ

∂β

(
∂ℓ

∂β

)′
]

=

Ck∑

i=1

X ′
iΣ

−1E(yi − µi)(yi − µi)′Σ−1Xi

=

Ck∑

i=1

X ′
iΣ

−1Xi.

For the special case of just an intercept Xi = 1:

E

[
∂ℓ

∂β

(
∂ℓ

∂β

)′
]

=

Ck∑

i=1

1′Σ−11 =
Ck

σ2(1− ρ2)

[
(nk − 2)ρ2 − 2(nk − 1)ρ+ nk

]
. (C.33)

Therefore, the variance for µ̂ can be computed as inverse of (C.33).
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C.2.3.2 Second derivative with respect to variance components

To calculate the derivatives with respect to variance components rather than ∂C−1

∂ρ , we

need K = ∂C−1

∂ρ2 . Using these derivatives:





∂
∂ρ2

(
ρ

1−ρ2

)
= 2 1+ρ2

(1−ρ2)2 ,

∂
∂ρ

ρ
(1−ρ2)2 = 1+3ρ2

(1−ρ2)3 ,

∂
∂ρ

1+ρ2

(1−ρ2)2 = 2ρ(3+ρ2)
(1−ρ2)3 .

(C.34)

it follows that

∂C−1

∂ρ2
= K =

1

(1− ρ2)3




2(1 + 3ρ2) −2ρ(3 + ρ2) 0

−2ρ(3 + ρ2) 4(1 + 3ρ2)
. . .

. . .
. . .

. . .
. . .

0 −2ρ(3 + ρ2) 2(1 + 3ρ2).




(C.35)

The second-derivatives are:




∂2ℓ
∂(σ2)2 = Cknk

2
1

(σ2)2 − 1
(σ2)3

∑Ck

i=1(yi − µi)′C−1(yi − µi),
∂2ℓ
∂ρ2 = Ck(nk−1)(1+ρ2)

(1−ρ2)2 − 1
2σ2

∑Ck

i=1(yi − µi)′K(yi − µi),
∂2ℓ
∂ρ∂σ2 = 1

2(σ2)2

∑Ck

i=1(yi − µi)′ ∂C−1

∂ρ (yi − µi).

(C.36)

To construct the expected Hessian and covariance matrix, one needs to find the expecta-

tions of the expressions in (C.36).

E

(
∂2ℓ

∂(σ2)2

)
= −Cknk

2

1

(σ2)2
. (C.37)

This follows from the fact that:

E

(
Ck∑

i=1

(yi − µi)′C−1(yi − µi)
)

= Cktr
{

E [(yi − µi)′(yi − µi)]C−1
}
,

and E [(yi − µi)(yi − µi)′] = σ2C.

For the second derivative with respect to ρ:

E

[
∂2ℓ

∂ρ2

]
=
Ck(nk − 1)(1 + ρ2)

(1− ρ2)2
− Ck

2
tr{KS}. (C.38)

Likewise:

E

[
∂2ℓ

∂ρ∂σ2

]
=

Ck
2σ2

tr

{
C
∂C−1

∂ρ

}
. (C.39)
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Substituting for tr{KS} and tr
{
C ∂C−1

∂ρ

}
we get:

E

[
∂2ℓ

∂ρ∂σ2

]
=
Ck(nk − 1)

σ2

ρ

1− ρ2
. (C.40)

E

[
∂2ℓ

∂ρ2

]
= −Ck(nk − 1)

1 + ρ2

(1 − ρ2)2
. (C.41)

Using (C.37), (C.40), and (C.41) one obtains the 2× 2 Hessian matrix as follows:

H = −Ck
(

nk

2(σ2)2 −nk−1
σ2

ρ
1−ρ2

−nk−1
σ2

ρ
1−ρ2 (nk − 1) 1+ρ2

(1−ρ2)2

)
. (C.42)

The determinant of the Hessian in (C.42) is as follows:

det(H) =
C2
k(nk − 1)(nk − (nk − 2)ρ2)

2(σ2)2(1− ρ2)2
. (C.43)

So,

−H−1 =
1

Ck(nk − (nk − 2)ρ2)

(
2(σ2)2(1 + ρ2) 2ρσ2(1 − ρ2)

2ρσ2(1 − ρ2) nk

nk−1 (1− ρ2)2

)
. (C.44)

The Hessian for the unbiased estimator differs slightly from its MLE counterpart:

H̃ = −Ck
(

nk−1
2(σ2)2 −nk−1

σ2
ρ

1−ρ2

−nk−1
σ2

ρ
1−ρ2 (nk − 1) 1+ρ2

(1−ρ2)2

)
, (C.45)

det(H̃) =
C2
k(nk − 1)2

2(σ2)2(1− ρ2)
. (C.46)

Therefore,

−H̃−1 =
1

Ck(nk − (nk − 2)ρ2)

(
2(σ2)2(1 + ρ2) 2ρσ2(1− ρ2)

2ρσ2(1 − ρ2) (1− ρ2)2

)
. (C.47)

Having the covariance matrix, one may easily find the optimal weights using

Wopt. =
V −1
k∑K

i=1 V
−1
i

(C.48)

The variance of an estimator obtained using the optimal weights in (C.48) can be calcu-

lated as
(∑K

i=1 V
−1
i

)−1

.

C.2.4 Proof of Proposition 6.1

Proof. Consider an estimator of the form:

µ̃α =
1

c

c∑

i=1

n∑

j=1

αjYij , (C.49)
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for a vector of weights α = (α1, . . . , αn)′. Because the clusters are i.i.d. it is evident that

the components of α do not depend on the cluster index i. Clearly, the requirement that

E(µ̃α) = µ implies the condition

n∑

j=1

αj = 1. (C.50)

An expression of the variance of µ̃α combined with this requirement produces the objective

function:

Q = σ2




n∑

j=1

α2
j + 2

∑

j<k

αjαkρ
|j−k|


− λ




n∑

j=1

αj − 1


 , (C.51)

with λ a Lagrange multiplier. Taking the derivative of (C.51) w.r.t. α leads to, after

rearrangement:

α =
λ

2σ2
C−11.

Given that we have an explicit form for C−1, it follows that

α =
λ

2σ2(1 + ρ)
ρ(1), (C.52)

with ρ(1) = (1, 1 − ρ, . . . , 1 − ρ, 1)′. Combining (C.52) with constraint (C.50) leads to

λ = 2σ2(1 + ρ)/[2 + (n− 2)(1− ρ)], hence

α =
1

[2 + (n− 2)(1− ρ)]
ρ(1),

establishing the MLE. This completes the proof.

C.2.5 Optimal weights in case of a general mean structure X
(k)
i β

Cluster size specific expressions are:

β̂k =

(
ck∑

i=1

X
(k)′

i Σ−1
k X

(k)
i

)−1( ck∑

i=1

X
(k)′

i Σ−1
k Y

(k)
i

)
(C.53)

and

var(β̂k) = Vk =

(
ck∑

i=1

X
(k)′

i Σ−1
k X

(k)
i

)−1

. (C.54)

The combination ruleis

β̃k =

K∑

i=1

Akβ̂k, (C.55)
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with

V −1
k =

1

σ2

ck∑

i=1

X
(k)′

i C−1
k X

(k)
i (C.56)

and Ck is as described in Supplementary Materials C.2.1.

The first factor in (C.53) can be split into three parts:

(1− ρ2)X
(k)′

i C−1
k X

(k)
i = X

(k)′

i (1 + ρ2)IkX
(k)
i (C.57)

− ρ2X
(k)′

i




1 0 . . . . . . 0

0 0
...

...
. . .

... 0 0

0 . . . . . . 0 1




X
(k)
i (C.58)

− ρX(k)′

i




0 1 0 . . . 0

1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 1

0 . . . 0 1 0




X
(k)
i . (C.59)

(C.57) simplifies to (1 + ρ2)X
(k)′

i X
(k)
i , while (C.58) equals

ρ2




x2
ki11 + x2

kink1 xki11 · xki22 + xkink1 · xkink2 . . . xki11 · xki1p + xkink1 · xkinkp

x2
ki12 + x2

kink2

. . .

x2
ki1p + x2

kinkp
.



.

(C.60)

Defining X(k)
i1 = (xki11 . . . xki1p)

t and X(k)
ink

= (xkink1 . . . xkinkp)
t, (C.58) equals

ρ2[X
(k)
i1 0 . . . 0 X

(k)
ink

]X
(k)
i . (C.61)

For the third term, define X
(k)−
ij = (xki2j . . . xkinkj)

t and X
(k)+
ij =

(xki1j . . . xkink−1j)
t. As a consequence, (C.59) will equal

−ρ[X
(k)−′

i ·X(k)+
i +X

(k)+′

i ·X(k)−
i ]. (C.62)
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In summary:

(1− ρ2)X
(k)′

i C−1
k X

(k)
i = (1 + ρ2)X

(k)′

i X
(k)
i

− ρ2[X
(k)
i1 0 . . . 0 X

(k)
ink

]X
(k)
i

− ρ[X
(k)−′

i ·X(k)+
i +X

(k)+′

i ·X(k)−
i ]

notation
= F1k. (C.63)

The second factor in (C.53), using the same notations for Y (k)
i as described above, can

be rewritten as:

(1− ρ2)X
(k)′

i C−1
k Y

(k)
i = (1 + ρ2)X

(k)′

i Y
(k)
i

−ρ2




xki11 · yki1 + xkink1 · ykink

xki12 · yki1 + xkink2 · ykink

...

xki1p · yki1 + xkinkp · ykink




−ρ[X
(k)−′

i · Y (k)+
i +X

(k)+′

i · Y (k)−
i ]

not.
= F2k. (C.64)

Combining (C.63) and (C.64) the overall estimate equals:

β̃k =

K∑

i=1

Akβ̂k

=

K∑

i=1

(
K∑

m=1

F1m

)−1

F2k (C.65)

C.2.6 Delta Method for the Mean Estimator

By plugging in ρk and defining a′
k = ck[nk − (nk − 2)ρk], equation (C.66) simplifies to

ak =
a′
k∑K

m=1 a
′
m

, (C.66)

and (6.21) becomes

var(µ̂k) = vk =
σ2
k(1 + ρk)

a′
k

. (C.67)
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The first derivatives equal

∂µ̃

∂µk
= ak =

a′
k∑K

m=1 a
′
m

,

∂µ̃

∂σ2
k

= 0,

∂µ̃

∂ρk
=
−ck(nk − 2)

∑K
m=1 a

′
m(µk − µm)

(∑K
m=1 a

′
m

)2 , (C.68)

and these can be combined using the delta method, resulting in (6.24):

var(µ̃) =
K∑

i=1

a
′2
k(∑K

k=1 a
′
k

)2 ·
σ2
k(1− ρ2

k)

a′
k

+

∑K
k=1

[
ck(nk − 2)

∑K
m=1 a

′
m(µk − µm)

]2

(∑K
k=1 a

′
k

)4 · 1− ρ2
k

ck(nk − 1)
.

C.2.7 Calculating ρ̂ and σ̂2 in R

In this section, we consider the implementation of the calculations for the variance com-

ponents in R. This can be done with a few simple lines of code. For fixed Ck = C and

nk = n, and given the data y, the function est.ar1 estimates the variance components

and provides a plot for the third-degree polynomial in (C.31). This visually underscores

that there is only one root in [−1, 1]. Figure C.1 shows (C.31) for 10 simulated data

sets; clearly, there is a single root only in [−1, 1]. For convenience, the R code is given

in Supplementary Materials C.5. Other functions to find variances and iterated optimal

weights are also available.

C.3 Details on Additional Simulations

C.3.1 Simulations with Proportional and Size-proportional Weights

Here we consider C1 = 500, C2 = 250, C3 = 250, C4 = 500, and n1 = 5, n2 = 10, n3 =

10, n4 = 5. Parameters are set to µ = 0, σ = 2 and ρ = (0.1, 0.5, 0.8). The data are

generated 100 times and the model is fitted using PROC MIXED in SAS (for a single

overall intercept). For combining the results from different sub-samples we have used

proportional weights and size-proportional weights:




Prop = Ck∑
l
Cl

,

Size.Prop = Cknk∑
l
Clnl

.
. (C.69)
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Figure C.1: Calculations. The third degree polynomial in (C.31) for 10 different generated

data. The red vertical line shows ρ̂.

The results are compared with full likelihood (Table C.1). In contrast to the compound-

symmetry case, the size-proportional weights show much better results than the propor-

tional weights. Furthermore, the size-proportional weights in the current simulation are

identical with the equal weights. The nk’s have a much larger influence in the AR(1) case

compared to CS. Figures C.2, C.3, and C.4 make the comparisons easier.

C.3.2 Simulations with Proportional and Size-proportional

Weights: ρ near 0/1

We now present a comparison between proportional and size-proportional weights. We see

that, for ρ’s near 1 (i.e., near CS), size-proportional weights are worse than proportional

weights.

We consider c1 = 500, c2 = 250, c3 = 250, c4 = 500, and n1 = 5, n2 = 10, n3 = 10,

n4 = 5. Parameters are set as µ = 0, σ = 2 and ρ ∈ {0.01, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99}.
The data are generated 100 times and the model is fitted using PROC MIXED in SAS (for

a single overall intercept). For combining results from different sub-samples we have used

proportional weights and size-proportional weights as in (C.69). The results are compared

with full likelihood results.

In Figure C.5, for ρ = 0.99 and 0.95, the size-proportional weights perform worse than

the proportional weights. This is expected, because in this case AR(1) approaches CS.

This result is clearer in the left panel of Figure C.5, where the standard deviations are
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Table C.1: Simulation study. Comparing proportional, size-proportional and iterated op-

timal weights with full likelihood for AR(1) covariance structure.

µ̂ Sd ρ̂ Sd σ̂2 Sd

Prop. -0.00190 0.01615 0.10027 0.01158 1.99642 0.03002

ρ = 0.1 Size.Prop. -0.00207 0.01538 0.10024 0.01080 1.99793 0.02853

It.Opt. -0.00206 0.01538 0.10024 0.00993 1.99792 0.02850

ML -0.00207 0.01538 0.10032 0.01078 1.99793 0.02850

Prop. -0.00212 0.02221 0.49966 0.00954 2.00349 0.03652

ρ = 0.5 Size.Prop -0.00155 0.02156 0.49955 0.00898 2.00257 0.03494

It.Opt. -0.00168 0.02149 0.49956 0.00826 2.00265 0.03486

ML -0.00170 0.02150 0.49986 0.00896 2.00259 0.03488

Prop. 0.00195 0.02890 0.79923 0.00549 1.99529 0.04989

ρ = 0.8 Size.Prop 0.00234 0.02904 0.79911 0.00530 1.99542 0.04907

It.Opt. 0.00213 0.02855 0.79915 0.00486 1.99538 0.04859

ML 0.00212 0.02855 0.79937 0.00527 1.99519 0.04861

shown. For ρ’s near 1, the proportional weights are as efficient as full likelihood, while as

ρ moves further from 1 this would happen for size-proportional weights.

Figure C.6 shows this phenomenon more clearly, as for some selected ρ’s

(0.01, 0.5, 0.95) the density plot for all 100 simulated datasets is plotted rather than

a boxplot. The size-proportional weights are better than proportional weights if ρ is not

very close to 1. As soon as ρ becomes 0.95 or 0.99, the size-proportional weights become

worse.

C.3.3 Simulations With Optimal Weights

Given the covariance matrix of the parameter estimators, finding the optimal weights is

straightforward, but in practice the unknown parameters therein need to be estimated.

Here we compare the iterative weights with size-proportional weights and ML. See Figures

C.7, C.8, C.9, and Table C.1. As expected, the optimal weights lead to estimates very

close to the MLE; the difference between them being numerical.

Size-proportional weights are used as the initial weights to begin the iterative proce-

dure. One interesting outcome of this simulation is that the iterative procedure always

converged after just one iteration. This means, iterated optimal weights are just like the

approximated optimal weights, but there, instead of using θ̂k from each sub-sample, one

may use θ̃ obtained from all sub-samples using a non-optimal but good weight.
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Figure C.2: Simulation study. Comparing proportional and size-proportional weights with

full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.1.

C.3.4 Simulations on Computation Time

Here, some summary tables are presented to summarize the results which are already

presented via figures earlier. Furthermore, a table and a figure are added to compare

computation time for closed form solutions to numerical ones.

In each table the mean of the estimated parameter and its standard deviation using

the 100 replications are given, together with the standard deviation of those 100 numbers

(in parentheses). If θ is the parameter of interest, θ̂ is its estimate and θ0 is its real value,
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Figure C.3: Simulation study. Comparing proportional and size-proportional weights with

full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.5.

then the MSE is computed as follows:

MSE(θ̂) =
1

100

100∑

i=1

(θ̂ − θ0)2. (C.70)

Table C.2 summarizes the results for µ. The sample splitting estimates are computed

using proportional and size-proportional (identical to equal weights in this case) weights.

The results using the full sample are also given. The third column in Table C.2 presents

the averaged (over 100 replications) estimated µ and its standard deviation. The fourth

column presents the averaged estimated standard deviation for µ̂ (over 100 replications)
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Figure C.4: Simulation study. Comparing proportional and size-proportional weights with

full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.8.

and its standard deviation. The last column shows the MSE computed using (C.70) for

µ0 = 1. Tables C.3 and C.4 shows the same results for ρ and σ2 (σ2
0 = 2), respectively.

Table C.5 compares the computation time between closed-form and interative meth-

ods. The closed-form solutions are implemented in R and for the numerical methods the

MIXED procedure in SAS is used, with error covariance structure set to AR(1).

The data are generated using n = 10 for all clusters, with c is varying from 100 to

1000000. Therefore, the design is balanced and the point of this comparison is to see

how the computation time is reduced in each split.
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Figure C.5: Simulation study. Boxplots comparing proportional and size-proportional

weights with full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ =

0.99, 0.95, 0.9, 0.8, 0.5, 0.2, 0.01. In every section of the boxplots (which are separated

by dashed lines) the first out of three represents the proportional weights, the middle of is

size-propotional weights and the one on the right shows the results for the full likelihood.

The first row presents the estimates while the second row shows the standard deviations

of these estimates.

As one may see in Table C.5 and Figure C.10, using closed form solutions significantly

reduces the computation time. This means, as well as the computation time reduction due

to splitting the data, using closed form solutions within each split the computation time
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Figure C.6: Simulation study. Comparing proportional, size-proportional and full likelihood

results via their empirical density for the 100 replications. In all of the figures µ = 0

and σ2 = 2. The first row is for ρ = 0.01, the middle one is for ρ = 0.5 and last one

corresponds to ρ = 0.99. In each figure the ticker dotted line corresponds to full likelihood,

the dashed line is for size-proportional weights and the solid line is for proportional weights.

reduction is also huge: for example, for a million clusters, the reduction is from almost

one hour to less than 5 seconds. Figure C.10 shows that computation time using closed

form solution changes linearly with the number of clusters, while this will be exponential

using an iterative solution.

To assess the effect of the overall size of the dataset, the model is fitted to two
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Figure C.7: Simulation study. Comparing iterated optimal and size-proportioanl weights

with full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.1.

concatenated copies of the same set. Computation time results are presented in Table C.5

and Figure C.10. The data are generated with µ = 0, σ2 = 2, and ρ = 0.25.

C.4 Details on PANSS Data Analysis

As one may see from Table C.6, by far the majority of the study subjects have complete

data and hence belong to the first pattern.

Figure C.11 presents boxplots for the entire set of data, for the subjects from the first

pattern only, and for various split samples.
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Figure C.8: Simulation study. Comparing iterated optimal and size-proportioanl weights

with full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.5.

To examine the choice of an AR(1) covariance structure, Table C.7 shows three model

selection criteria to compare different error covariance structures. Changing from inde-

pendence structure (R = σ2I) to compound-symmetry (R = σ2I) the criteria decrease

with a large amount, and the same when changing to AR(1). The step to an unstructured

covariance does not make a big difference (considering that the unstructured covariance

would has 21 parameters to estimate compared to 2 parameters in the AR(1) model).

Therefore, AR(1) seems to be a good choice.

The 95% confidence intervals, accompanying (6.26), are presented in Figure C.12. In
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Figure C.9: Simulation study. Comparing iterated optimal and size-proportioanl weights

with full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ = 0.8.

order to give more insight in these results, Figure C.13 shows the 95% confidence interval

in each split, comparing with the full sample splits (the horizontal dashed line in the

figure).

The 95% confidence intervals, accompanying (6.27), are presented in Figure C.14.

Figure C.15 shows the 95% confidence intervals for the parameter estimates in each split

comparing with the full sample estimate (the horizontal dashed-like in the figure.)
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Table C.2: Simulation study. Estimating µ and its standard deviation. The mean (stan-

dard deviation) of the 100 replications are given together with mean squared errors for

ρ = 0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights compar-

ing with the full likelihood results.

ρ0 method mean(µ̂) (s.d.) mean(s.e.(µ̂)) (s.d.) MSE×104

Prop. -0.00271 (0.01462) 0.01503 (0.00020) 2.19000

0.01 Size Prop. -0.00277 (0.01320) 0.01429 (0.00018) 1.80172

Full -0.00275 (0.01319) 0.01428 (0.00018) 1.79828

Prop. 0.00158 (0.01677) 0.01752 (0.00025) 2.81056

0.2 Size Prop. 0.00085 (0.01616) 0.01673 (0.00021) 2.59147

Full 0.00090 (0.01615) 0.01672 (0.00021) 2.58880

Prop. 0.00391 (0.02244) 0.02217 (0.00037) 5.13770

0.5 Size Prop. 0.00397 (0.02191) 0.02155 (0.00035) 4.91201

Full 0.00396 (0.02182) 0.02148 (0.00034) 4.87038

Prop. 0.00130 (0.02790) 0.02894 (0.00050) 7.72450

0.8 Size Prop. -0.00049 (0.02710) 0.02912 (0.00045) 7.27464

Full 0.00053 (0.02713) 0.02862 (0.00045) 7.29130

Prop. -0.00828 (0.03006) 0.03221 (0.00056) 9.63393

0.9 Size Prop. -0.00727 (0.03145) 0.03306 (0.00070) 10.3224

Full -0.00803 (0.02998) 0.03207 (0.00057) 9.54258

Prop. 0.00162 (0.03663) 0.03597 (0.00064) 13.3123e

0.99 Size Prop. -0.00007 (0.03930) 0.03797 (0.00088) 15.2876

Full 0.00156 (0.03666) 0.03597 (0.00064) 13.3305

C.5 R Code

Estimating variance components

est.ar1 <- function(C,n,Y,Plot=1){

# making a matrix out of the response vector

Resp=matrix(Y,n,C)

# Computing cross products

SS=crossprod(t(Resp))

# Computing S, \tilde{S} and R
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Table C.3: Simulation study. Estimating ρ and its standard deviation. The mean (stan-

dard deviation) of the 100 replications are given together with mean squared errors for

ρ = 0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights compar-

ing with the full likelihood results.

ρ0 method mean(ρ̂) (s.e.) mean(s.e.(ρ̂)) (s.e.) MSE

Prop. 0.01077 (0.01237) 0.01165 (0.00006) 1.52178e-04

0.01 Size Prop. 0.01115 (0.01200) 0.01087 (0.00004) 1.43974e-04

Full 0.01123 (0.01203) 0.01084 (0.00004) 1.44675e-04

Prop. 0.19960 (0.01213) 0.01133 (0.00007) 1.45806e-04

0.2 Size Prop. 0.19973 (0.01145) 0.01058 (0.00005) 1.29974e-04

Full 0.19986 (0.01142) 0.01056 (0.00005) 1.29174e-04

Prop. 0.49956 (0.00963) 0.00954 (0.00011) 9.19119e-05

0.5 Size Prop. 0.49965 (0.00904) 0.00898 (0.00008) 8.11057e-05

Full 0.49990 (0.00904) 0.00896 (0.00008) 8.08877e-05

Prop. 0.79973 (0.00541) 0.00548 (0.00012) 2.90660e-05

0.8 Size Prop 0.79990 (0.00483) 0.00529 (0.00009) 2.31132e-05

Full 0.80018 (0.00489) 0.00525 (0.00009) 2.36726e-05

Prop. 0.90017 (0.00286) 0.00321 (0.00008) 8.14862e-06

0.9 Size Prop. 0.90013 (0.00297) 0.00318 (0.00008) 8.76257e-06

Full 0.90040 (0.00292) 0.00312 (0.00008) 8.60114e-06

Prop. 0.98994 (0.00038) 0.00039 (0.00001) 1.45292e-07

0.99 Size Prop. 0.98992 (0.00042) 0.00041 (0.00002) 1.77848e-07

Full 0.98997 (0.00037) 0.00039 (0.00001) 1.37289e-07

S=sum(diag(SS))

S.tilde=sum(diag(SS)[2:(n-1)])

tmp.R=SS

diag(tmp.R)=NA

tmp.R2 = (matrix(tmp.R[which(!is.na(tmp.R))],nrow=n,ncol=n-1))

R=sum(tmp.R2[1,])

# Finding the coefficients of the 3rd degree polynomial and its roots

P1=(n-1)*S.tilde

P2=(n-2)*R

P3=((n*S.tilde)+S)
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Table C.4: Simulation study. Estimating σ2 and its standard deviation. The mean (stan-

dard deviation) of the 100 replications are given together with mean squared errors for

ρ = 0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights compar-

ing with the full likelihood results.

ρ0 method mean(σ̂2) (s.e.) mean(s.e.(σ̂2)) (s.e.) MSE

Prop. 1.99964 (0.02960) 0.02981 (0.00049) 8.67280e-04

0.01 Size Prop. 2.00165 (0.02836) 0.02834 (0.00040) 7.98842e-04

Full 2.00167 (0.02832) 0.02832 (0.00040) 7.97002e-04

Prop. 2.00581 (0.02907) 0.03093 (0.00055) 8.70077e-04

0.2 Size Prop. 2.00484 (0.02778) 0.02936 (0.00044) 7.87298e-04

Full 2.00473 (0.02772) 0.02933 (0.00044) 7.83248e-04

Prop. 1.99783 (0.03860) 0.03638 (0.00097) 1.47960e-03

0.5 Size Prop. 1.99890 (0.03747) 0.03488 (0.00085) 1.39116e-03

Full 1.99897 (0.03748) 0.03481 (0.00085) 1.39152e-03

Prop. 2.00013 (0.04900) 0.05002 (0.00166) 2.37744e-03

0.8 Size Prop. 2.00136 (0.04423) 0.04930 (0.00137) 1.93881e-03

Full 2.00101 (0.04569) 0.04880 (0.00142) 2.06754e-03

Prop. 2.00122 (0.05767) 0.05872 (0.00196) 3.29407e-03

0.9 Size Prop. 2.00089 (0.06037) 0.05915 (0.00230) 3.60829e-03

Full 2.00115 (0.05876) 0.05793 (0.00198) 3.41986e-03

Prop. 1.99683 (0.06941) 0.07117 (0.00254) 4.77911e-03

0.99 Size Prop. 1.99527 (0.07598) 0.07484 (0.00344) 5.73813e-03

Full 1.99641 (0.06940) 0.07093 (0.00253) 4.78099e-03

P4=n*R

PP=polynomial(c(P4,-P3,-P2,P1))

roots=polyroot(PP)

Roots=Re(roots)[abs(Im(roots)) < 1e-6]

rho.hat=Roots[abs(Roots)<1]

# Plotting the 3rd degree polynomial if requested

if (Plot==1){

plot(PP,xlim=c(-1.5,1.5),xlab="rho",ylab="3rd degree polynomial")
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Table C.5: Simulation study. The computation time for a sample with n = 10 and

c =1e+02, 1e+03, 1e+04, 5e+04, 1e+05, 3e+05, 5e+05, 7e+05, 9e+05, 1e+06. The

closed form solution is obtained by implementing the results of this chapter in R, and

the numerical solution is obtained using PROC MIXED in SAS to estimate a repeated

measurement model with AR(1) covariance structure.

time (s) 1e+02 1e+03 1e+04 5e+04 1e+05 3e+05 5e+05 7e+05 9e+05 1e+06

Closed form 0.00 0.00 0.03 0.23 0.34 1.45 2.07 3.37 4.40 4.89

Numerical 0.08 0.13 1.04 10.45 34.74 268.96 770.74 1611.43 2724.31 3399.47

abline(h=0,col=2)

abline(v=Roots[abs(Roots)<1],lty=2,lwd=2,col=2)

abline(v=-1,lty=2)

abline(v=1,lty=2)

}

# Estimating \sigma2

tmp1=1/(C*n)

tmp2=1/(1-(rho.hat^2))

tmp3=S+((rho.hat^2)*S.tilde)

tmp4=2*rho.hat*R

sigma2.hat=(tmp1*tmp2)*(tmp3-tmp4)

return(list(rho.hat=rho.hat,sigma2.hat=sigma2.hat))

}

Computing variance of parameter estimates

cov.ar1 <- function(ck,nk,rho,sigma2){

num.split=length(ck)

var.mu1=(ck/(sigma2*(1-(rho^2))))* (((nk-2)*rho^2)-(2*((nk-1)*rho))+nk)

var.mu=1/var.mu1

w.mu=var.mu1/sum(var.mu1)

# Note that the unbiased version of the covariance is used here
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Figure C.10: Simulation study. Comparing computation time using closed form (left) and

numerical (right) solutions. The horizontal axis shows number of clusters (c) and the

vertical axis shows the computation time in seconds.

v22=2*(sigma2^2)*(1+(rho^2))

v12=2*sigma2*(1-(rho^2))

v11=(1-rho^2)^2

var.varcomp1=matrix(c(v11,v12,v12,v22),2,2)

varcomp.coef=1/(ck*(nk-((nk-2)*(rho^2))))

var.varcomp=outer(var.varcomp1,varcomp.coef)

W.total=0

for (i in 1:num.split){

W.total=W.total+solve(var.varcomp[,,i])

}

w.varcomp=array(0,c(2,2,num.split))

for (i in 1:num.split){

w.varcomp[,,i]=solve(W.total)%*%solve(var.varcomp[,,i])

}

return(list(var.mu=var.mu,var.varcomp=var.varcomp
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Table C.6: PANSS data. Number of clusters in each trial for each cluster pattern.

Trial

n Pattern FIN-1 FRA-3 INT-2 INT-3 INT-7 Total

∗ ∗ · · · · · · · · 17 8 71 43 3 142

2 ∗ · ∗ · · · · · · · 0 0 2 0 1 3

∗ · · · ∗ · · · · · 0 0 1 0 0 1

∗ ∗ ∗ · · · · · · · 8 4 83 41 7 143

3 ∗ · ∗ · ∗ · · · · · 0 0 2 0 0 2

∗ ∗ · · ∗ · · · · · 1 0 3 1 0 5

∗ ∗ ∗ · ∗ · · · · · 11 0 85 66 5 167

∗ · ∗ · ∗ · ∗ · · · 0 0 1 0 1 2

4 ∗ · ∗ · ∗ · · ∗ · · 0 0 1 0 0 1

∗ ∗ ∗ · · · ∗ · · · 0 0 3 0 0 3

∗ ∗ ∗ ∗ · · · · · · 0 4 1 0 0 5

∗ ∗ · ∗ · · ∗ · · · 0 1 0 0 0 1

∗ · ∗ · · · ∗ ∗ · · 0 0 0 0 1 1

∗ ∗ ∗ · ∗ · ∗ · · · 58 0 85 35 6 184

∗ ∗ ∗ · ∗ · · ∗ · · 0 0 8 0 1 9

∗ ∗ · · ∗ · ∗ ∗ · · 0 0 6 0 0 6

5 ∗ ∗ ∗ · · · ∗ ∗ · · 0 0 8 0 0 8

∗ · ∗ · ∗ · ∗ ∗ · · 0 0 3 0 2 5

∗ · ∗ · ∗ · · ∗ · ∗ 0 0 1 0 0 1

∗ ∗ ∗ ∗ ∗ · · · · · 0 44 0 0 0 44

∗ ∗ · ∗ ∗ ∗ · · · · 0 1 0 0 0 1

∗ ∗ ∗ · ∗ · ∗ ∗ · · 0 0 986 240 74 1300

∗ ∗ · · ∗ · ∗ ∗ ∗ · 0 0 1 0 0 1

6 ∗ ∗ ∗ · · · ∗ ∗ · ∗ 0 0 1 0 0 1

∗ ∗ ∗ · ∗ · ∗ · ∗ · 0 0 1 0 0 1

∗ ∗ ∗ · ∗ ∗ ∗ · · · 0 0 2 0 0 2

,w.mu=w.mu,w.varcomp=w.varcomp))

}

Computing iterated optimal weights

iterate.optimal.ar1 <- function(ck,nk,u.split,var.comp.split,tol){
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Figure C.11: PANSS data. Boxplots for the entire set of data, for the subject from the

first pattern only, and for various split samples.

Table C.7: PANSS data. Comparing different error covariance structures using three

model comparison criteria for model (6.26) (residual log-likelihood value; AIC; BIC).

Three R structures: Ind. : independence structure (R = σ2I), CS: compound-symmetry

structure (R = σ2I + dJ), AR(1): AR(1) structure (Rij = σ2ρ|i−j|), UN: unstructured

(Rij = σ2
ij).

Model -2 Res.log.lik. AIC BIC

Unstructured 80005.1 80047.1 80164.1

AR(1) 80522.6 80526.6 80537.8

Compound symm. 82683.1 82687.1 82698.3

Independence 89546.1 89548.1 89553.7

num.split=length(ck)

W.size.prop=(nk*ck)/sum(nk*ck)

rho.hat= sum(var.comp.split[1,]*W.size.prop)

sigma2.hat=sum(var.comp.split[2,]*W.size.prop)

diff=10

var.comp.hat=matrix(c(rho.hat,sigma2.hat),2,1)

count=0

while (diff>tol){

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

W.mu=WW$w.mu
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W.varcomp=WW$w.varcomp

var.comp.hat=0

for (i in 1:num.split){

var.comp.hat=var.comp.hat+W.varcomp[,,i]%*%var.comp.split[,i]

}

W.mu.old=W.mu

W.varcomp.old=W.varcomp

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

W.mu=WW$w.mu

W.varcomp=WW$w.varcomp

diff1=norm(as.matrix(W.mu-W.mu.old))

diff2=sum(apply(W.varcomp-W.varcomp.old,3,norm))

diff=max(c(diff1,diff2))

count=count+1

}

var.comp.hat=0

for (i in 1:num.split){

var.comp.hat=var.comp.hat+W.varcomp[,,i]%*%var.comp.split[,i]

}

W.total=0

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

for (i in 1:num.split){

W.total=W.total+solve(WW$var.varcomp[,,i])

}

mu.hat=sum(W.mu*mu.split)

return(list(W.mu=W.mu,W.varcomp=W.varcomp,mu.hat=mu.hat

,varcomp.hat=var.comp.hat, var.mu.hat=1/sum(1/WW$var.mu),

var.varcomp.hat=solve(W.total),num.iterate=count))

}
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Figure C.12: PANSS data. 95% confidence intervals for fixed effects and variance com-

ponents estimates and the standard deviations of these estimates using sample splitting,

combined with proportional (Pr - first) and size-proportional (S-Pr - second) weights, and

full likelihood (Fl - third). The dashed horizontal line shows the full likelihood estimate.

The model used in here is without trial effect (6.26).
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Figure C.13: PANSS data. 95% confidence intervals for fixed effects and variance com-

ponents estimates and the standard deviations of these estimates within each split. The

dashed horizontal line shows the full likelihood estimate. The model used in here is

without trial effect (6.27).
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Figure C.14: PANSS data. 95% confidence intervals for fixed effects and variance com-

ponents estimates and the standard deviations of these estimates using sample splitting,

combined with proportional (Pr - first) and size-proportional (S-Pr - second) weights, and

full likelihood (Fl - third). The dashed horizontal line shows the full likelihood estimate.

The model used in here is with trial effect (6.27).
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Figure C.15: PANSS data. 95% confidence intervals for fixed effects and variance com-

ponents estimates and the standard deviations of these estimates within each split. The

dashed horizontal line shows the full likelihood estimate. The model used in here is with

trial effect (6.27).
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Appendix for Chapter 7

D.1 Calculations of the Optimal Weights

Obtaining optimal weights is standard, but nevertheless useful to briefly review here for

our purposes. We seek to minimize the variance, var(ψ̃) =
∑N
i=1 α

2
i var(ψi). Write

vi = var(ψi) so var(ψ̃) =
∑N
i=1 α

2
i vi, and define the objective function:

Q =

N∑

i=1

α2
i vi − λ

(
N∑

i=1

αi − 1

)
, (D.1)

with λ a Lagrange multiplier.

To properly calculate the weights, the first derivative of Q with respect to weights αi
are taken and equated to zero:

∂Q

∂αi
= 2αivi − λ = 0,

2αivi = λ ⇒ αi = λ
1

2vi
. (D.2)

By summing both sides, the left hand side is equal to 1 and an expression for λ is

obtained:

1 =
∑

i

αi =
λ

2

N∑

i=1

1

vi
⇒ λ =

2
∑N

i=1
1
vi

. (D.3)

Plugging (D.3) into (D.2), the weights are:

αi =
v−1
i∑
j v

−1
j

. (D.4)
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Appendix for Chapter 8

Section E.1 presents the estimating equations under exchangeability. Detailed calculations

for Section 8.2 can be found in Section E.2. Section E.3 gives all details about the

implementation in SAS.

E.1 Pairwise Estimating Equations Under Exchangeability

Molenberghs et al. (2011) proved that under exchangeability, meaning that the distribution

of any sub-vector of Y i is that of any other sub-vector of equal length or a permutation

thereof, the estimating equations simplify considerably.

In the general formula

UCS,dr =

N∑

i=1

∑

s∈S

[
Ri,s
πi,s
· δsU s(Y

(s)o
i ) +

(
1− Ri,s

πi,s

)
· δsEY m

i |Y o

i
U s(Y

(s)
i )

]
, (E.1)

the term EY m

i |Y o

i
U s(Y

(s)
i ) equals EY m

i |Y o

i
[U s(Y

(s)o
i ) +U s(Y

(s)m
i )|Y (s)o

i ]. Now,

the expectation over the second term can be replaced by E
Y (s)m

i |Y (s)o

i

U s(Y
(s)m
i )|Y (s)o

i ,

due to the full exchangeability and the fact that the score contributions arise from deriva-

tives of sub-vectors of Y i. Under this the conditional expectations vanishes and (E.1)

reduces to

UCS,dr =

N∑

i=1

∑

s∈S

δsUs(Y
(s)o
i ). (E.2)

This makes the naive available case version not only valid, but actually doubly robust.

Of course, this is the case only under exchangeability.
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E.2 Detailed Calculations for Section 8.2

The general formulation is outlined at the beginning of Section 8.2 resulting in the estimat-

ing equations in Table 8.1. In this part of the appendix some more detailed calculations

on parts of Section 8.2 can be found.

Let us consider precision estimation. In the singly robust case we must also take

into account the uncertainty coming from the parameters of the weight model. The

asymptotic variance-covariance matrix can than be estimated using the sandwich estimator

in Eq. (8.11). The logistic form of the missingness model equals

πi =

ni∏

j=2

(
1 + ez

′

ijψ
)−1

and

∂πi
ψ

= −
ni∑

k=2




ni∏

j=2,j 6=k

(1 + ez
′

ijψ)−1


 · ez

′

ikψ

(
1 + ez

′

ik
ψ
)2 · z

′
ik

= −
ni∑

k=2

z′
ik · ez

′

ijψ ·
(

1 + ez
′

ikψ
)−1

·
ni∏

j=2

(
1 + ez

′

ijψ
)−1

= −πi ·
(

ni∑

k=2

z′
ik · pik

)

with ψ the missingness parameter and zij stacked with covariates prior to the jth

moment.

The parameter ψ is estimated from the weight model, a logistic regression with

Li =

ni∏

j=2

eRijz
′

ijψ

1 + ez′

ij
ψ

ℓi =

ni∑

j=2

[
Rijz

′
ijψ − ln

(
1 + ez

′

ijψ
)]

W i =

ni∑

j=2

zij(Rij − pil)

Rij =

{
0 if j < di

1 if j = di

The first block of Eq. (8.11), ∂V i

∂θ
, can be straightforwardly calculated from the Ba-

hadur model with the ψ-parameter kept fixed. The same for the weight model, ∂W i

∂ψ
can
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be deducted from is logistic structure. More attention and thorough calculations should

go to the third part, ∂V i

∂ψ
. In contrast to the other two, this one is not directly computable

by software and needs some extra programming. For the three cases respectively:

• CC, sr: V i = R̃i

πi

∑
j<k U i(yij , yik) and W i =

∑ni

j=2 zij(Rij − pij)

∂V i

∂θ
=
R̃i
πi

∑

j<k

∂U i(yij , yik)

∂θ

∂W i

∂ψ
= −

ni∑

j=2

(zijz
′
ij)pij(1− pij)

∂V i

∂ψ
=
R̃i
πi

∑

j<k

U i(yij , yik)

(
ni∑

l=2

z′
ilpil

)

• CP, sr: V i =
∑
j<k<di

Rik

πik
U i(yij , yik) and W i =

∑ni

j=2 zij(Rij − pij)

∂V i

∂θ
=

∑

j<k<di

Rik
πik

∂U i(yij , yik)

∂θ

∂W i

∂ψ
= −

ni∑

j=2

(zijz
′
ij)pij(1− pij)

∂V i

∂ψ
=

∑

j<k<di

Rik
πik

U i(yij , yik)

(
k∑

l=2

z′
ilpil

)

• AC, sr: V i =
∑
j<k

[
Rij

πij
U i(yij) + Rik

πik
U i(yik|yij)

]
and W i =

∑ni

j=2 zij(Rij −
pij)

∂V i

∂θ
=
∑

j<k

[
Rij
πij

∂U i(yij)

∂θ
+
Rik
πik

∂U i(yik|yij)
∂θ

]

∂W i

∂ψ
= −

ni∑

j=2

(zijz
′
ij)pij(1− pij)

∂V i

∂ψ
=
∑

j<k

[
Rij
πij
U i(yij) +

Rik
πik

U i(yik|yij)
]( k∑

l=2

z′
ilpil

)

The doubly robust version is extend with a predictive model for the unobserved re-

sponses, given the observed ones. The asymptotic variance-covariance estimator is than

outlined in Eq. (8.12), given we use the full expressions in Table 8.1. For the predictive

model a separate Bahadur model is implemented, meaning that a third score equation

T (φ) representing the conditional Bahadur model joins the entire score.
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Here we focus on the first row of Eq. (8.12), as ∂W i

∂ψ
is identical as in the single robust

case and ∂T i

∂φ
follows directly form the conditional Bahadur model. For the expectations

in the formulas Eq. (8.8)-(8.9) are used.

Also here for the three cases respectively:

• CC, dr: V i =
∑
j<k

[
R̃i

πi
U i(yij , yik) +

(
1− R̃i

πi

)
EY m

|yoU i(yij , yik)
]

∂V i

∂θ
=
∑

j<k


 R̃i

πi

∂U i(yij , yik)

∂θ
+

(
1 −

R̃i

πi

) 1∑

yij=0

1∑

yik=0

∂U i(yij , yik)

∂θ
q(yij , yik)




∂V i

∂ψ
=
∑

j<k




 R̃i

πi

U i(yij , yik) −
R̃i

πi

1∑

yij =0

1∑

yik=0

U i(yij , yik)q(yij , yik)



(

ni∑

l=2

z
′

ilpil

)


∂V i

∂φ
=
∑

j<k



(

1 −
R̃i

πi

) 1∑

yij =0

1∑

yik=0

U i(yij , yik)

(
∂q(yij , yik)

∂φ

)
′




• CP, dr: V i =
∑
j<k<ni

[
Rijk

πijk
U i(yij , yik) +

(
1− Rijk

πijk

)
EY m

|yoU i(yij , yik)
]

∂V i

∂θ
=

∑

j<k<ni


Rik

πik

∂U i(yij , yik)

∂θ
+
(

1 −
Rik

πik

) 1∑

yij=0

1∑

yik=0

∂U i(yij , yik)

∂θ
q(yij , yik)




∂V i

∂ψ
=

∑

j<k<ni




Rik

πik

U i(yij , yik) −
Rik

πik

1∑

yij =0

1∑

yik=0

U i(yij , yik)q(yij , yik)



(

k∑

l=2

z
′

ilpil

)


∂V i

∂φ
=

∑

j<k<ni



(

1 −
Rik

πik

) 1∑

yij =0

1∑

yik=0

U i(yij , yik)

(
∂q(yij , yik)

∂φ

)
′




• AC, dr: V i =
∑
j<k

Rik

πik
U i(yik|yij) +

∑di−1
j=1

Rij

πij
U i(yij)

+
∑
j<k

(
1− Rik

πik

)
EY m

|yoU i(yik|yij) +
∑di−1
j=1

(
1− Rij

πij

)
EY m

|yoU i(yij)
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∂V i

∂θ
=
∑

j<k

Rik

πik

∂U i(yik|yij)

∂θ
+

di−1∑

j=1

Rij

πij

∂U i(yij)

∂θ

+
∑

j<k

(
1 −

Rik

πik

) 1∑

yik=0

∂U i(yik|yij)

∂θ
q(yik|yij) +

di−1∑

j=1

(
1 −

Rij

πij

) 1∑

yij=0

∂U i(yij)

θ
q(yij)

∂V i

∂ψ
=
∑

j<k

[(
Rik

πik

U i(yik|yij) −
Rik

πik

1∑

yik=0

U i(yik|yij)q(yik|yij)

)(
k∑

l=2

z
′

ilpil

)]

+

di−1∑

j=1




Rij

πij

U i(yij) −
Rij

πij

1∑

yij =0

U i(yij)q(yij)



(

j∑

l=2

z
′

ilpil

)


∂V i

∂φ
=
∑

j<k

(
1 −

Rik

πik

)
U i(yik|yij)

(
∂q(yik|yij)

∂φ

)
′

+

di−1∑

j=1

(
1 −

Rij

πij

)
U i(yij)

(
∂q(yij)

∂φ

)
′

All three expressions coincide as expressed in Eq. (8.1). In this case it is not needed

to explicitly model the missigness and the entire score reduces to Si = (V i,T i).

The asymptotic variance-covariance matrix can be estimated using

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂φ

0
∂T i
∂φ


 and I1 =

1

N

N∑

i=1

Si(θ̂, φ̂)S′
i(θ̂, φ̂). (E.3)

Notice that to avoid complex and too long formulas for the derivatives in this section

of the appendix, factors representing a deviation with the amount of pairs or pairs with a

single observation are omitted. Although these factors most of time cancel when solving

the estimating equations for the parameters, they are necessary for the calculation of the

standard errors as they get estimated to big otherwise.

E.3 Implementation with SAS

E.3.1 Full Likelihood Based Bahadur Model

To apply the full likelihood Bahadur model, the original format of the GSA data was used:

PATID gsabin1 gsabin2 gsabin3 gsabin4 pca0 intercept

1 0 . . . 3 1

2 1 . . . 5 1
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3 1 1 1 0 1 1

4 1 0 . . 4 1

6 0 . . . 4 1

...

Further, the NLMIXED procedure of SAS (SAS 9.4) was applied, when all possible profiles

were considered. For a theoretical background on the Bahadur model, see Section 2.2.2.

Note, that variable intercept is used here only to make it possible to apply the gen-

eral(.) statement of proc nlmixed. For the first-order correlations, a Toepliz structure was

assumed, for the higher-order correlations a general form of the correlations.

proc nlmixed data=gsa;

parms beta0=0 beta1=0 beta2=0 beta3=0 rho_1 rho_2=0 rho_3=0 rho_123=0

rho_124=0 rho_134=0 rho_234=0 rho_1234=0;

eta_1 = beta0 + beta1*1 + beta2*1+ beta3*pca0 ;

eta_2 = beta0 + beta1*2 + beta2*4+ beta3*pca0 ;

eta_3 = beta0 + beta1*3 + beta2*9+ beta3*pca0 ;

eta_4 = beta0 + beta1*4 + beta2*16+ beta3*pca0 ;

nu_1=exp(eta_1)/(1+exp(eta_1));

nu_2=exp(eta_2)/(1+exp(eta_2));

nu_3=exp(eta_3)/(1+exp(eta_3));

nu_4=exp(eta_4)/(1+exp(eta_4));

e_1=(gsabin1-nu_1)/sqrt(nu_1*(1-nu_1));

e_2=(gsabin2-nu_2)/sqrt(nu_2*(1-nu_2));

e_3=(gsabin3-nu_3)/sqrt(nu_3*(1-nu_3));

e_4=(gsabin4-nu_4)/sqrt(nu_4*(1-nu_4));

if (gsabin2 =. and gsabin3 =. and gsabin4 =.)then do;

c=1;

loglik=log(c)+gsabin1*log(nu_1)+(1-gsabin1)*log(1-nu_1);

end; else

if (gsabin2 ne . and gsabin3 =. and gsabin4 =.) then do;

c=1+rho_1*e_1*e_2;

loglik=log(c)+gsabin1*log(nu_1)+(1-gsabin1)*log(1-nu_1)+

gsabin2*log(nu_2)+(1-gsabin2)*log(1-nu_2);

end; else

if (gsabin2 ne . and gsabin3 ne . and gsabin4 =.) then do;

c=1+rho_1*e_1*e_2+rho_2*e_1*e_3+rho_1*e_2*e_3+rho_123*e_1*e_2*e_3;

loglik=log(c)+gsabin1*log(nu_1)+(1-gsabin1)*log(1-nu_1)+

gsabin2*log(nu_2)+(1-gsabin2)*log(1-nu_2)+gsabin3*log(nu_3)+

(1-gsabin3)*log(1-nu_3);

end; else

if (gsabin2 ne . and gsabin3 ne . and gsabin4 ne .) then do;



Appendix E.3. Implementation with SAS 227

c=1+rho_1*e_1*e_2+rho_2*e_1*e_3+rho_3*e_1*e_4+rho_1*e_2*e_3+rho_2*e_2*e_4+

rho_1*e_3*e_4+rho_123*e_1*e_2*e_3+rho_124*e_1*e_2*e_4+rho_134*e_1*e_3*e_4

+rho_234*e_2*e_3*e_4+rho_1234*e_1*e_2*e_3*e_4;

loglik=log(c)+gsabin1*log(nu_1)+(1-gsabin1)*log(1-nu_1)+gsabin2*log(nu_2)+

(1-gsabin2)*log(1-nu_2)+gsabin3*log(nu_3)+(1-gsabin3)*log(1-nu_3)+

gsabin4*log(nu_4)+(1-gsabin4)*log(1-nu_4);

end;

model intercept ~ general(loglik);

run;

E.3.2 Pairwise Likelihood Based Model

In this section we list some examples of data formatting and the code to fit the model

to different cases of the estimating equation. In these examples, some cases are omitted

due to their mutual similarity. Complete cases and complete pairs are different in their

inverse probability weights: for complete cases, the weights are calculated based on the

probability of a patient to be completely observed, for complete pairs the probability to

be observed until a certain time-point. After the model is fitted, the principle of the

sandwich-type robust variance estimation will be applied to obtain precision estimates.

E.3.2.1 Naive Case

For modeling using naive estimating equations, all possible pairs from the sequence of

GSA measurement per patient were considered. If the response measurement of a pair

was missing, the 999 code was used instead. As result, the data was re-formated as

follows:

PATID pca0 intercept responsej timej timej_2 responsek timek timek_2

1 3 1 0 1 1 999 2 4

1 3 1 0 1 1 999 3 9

1 3 1 0 1 1 999 4 16

2 5 1 1 1 1 999 2 4

2 5 1 1 1 1 999 3 9

2 5 1 1 1 1 999 4 16

3 1 1 1 1 1 1 2 4

3 1 1 1 1 1 1 3 9

3 1 1 1 1 1 0 4 16

3 1 1 1 2 4 1 3 9

3 1 1 1 2 4 0 4 16

3 1 1 1 3 9 0 4 16

4 4 1 1 1 1 0 2 4

4 4 1 1 1 1 999 3 9

4 4 1 1 1 1 999 4 16

4 4 1 0 2 4 999 3 9
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4 4 1 0 2 4 999 4 16

6 4 1 0 1 1 999 2 4

6 4 1 0 1 1 999 3 9

6 4 1 0 1 1 999 4 16

...

For the available cases the whole data was used, for the complete pairs and complete
cases the corresponding subject selection. Herewith, the code for the available cases:

proc nlmixed data=model_gsa_ac_naive;

parms beta0=0 beta1=0 beta2=0 beta3=0 rho_1=0 rho_2=0 rho_3=0;

eta_j = beta0 + beta1*timej + beta2*timej_2+ beta3*pca0 ;

eta_k = beta0 + beta1*timek + beta2*timek_2+ beta3*pca0 ;

nu_j = exp(eta_j)/(1+exp(eta_j));

nu_k = exp(eta_k)/(1+exp(eta_k));

if (timej=1 and timek=2) or (timej=2 and timek=3) or (timej=3 and timek=4)

then mu11 = nu_j*nu_k + rho_1*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=3) or (timej=2 and timek=4)

then mu11 = nu_j*nu_k + rho_2*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=4)

then mu11 = nu_j*nu_k + rho_3*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k));

mu10 = nu_j - mu11;

mu01 = nu_k - mu11;

mu00 = 1 - (mu11+mu10+mu01);

if responsej = 1 and responsek = 1 then loglik=log(mu11); else

if responsej = 1 and responsek = 0 then loglik=log(mu10); else

if responsej = 1 and responsek = 999 then loglik=log(mu11 + mu10); else

if responsej = 0 and responsek = 1 then loglik=log(mu01); else

if responsej = 0 and responsek = 0 then loglik=log(mu00); else

if responsej = 0 and responsek = 999 then loglik=log(mu00+mu01);

model intercept ~ general(loglik);

run;

E.3.2.2 Singly Robust Case

First, a dropout model with previous measurement was considered, using the data in the

following format and the corresponding SAS code:

PATID pca0 ID_AC time GSAbin dropout prev

1 3 1 1 0 0 .

1 3 1 2 . 1 0

1 3 1 3 . 1 .
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1 3 1 4 . 1 .

2 5 2 1 1 0 .

2 5 2 2 . 1 1

2 5 2 3 . 1 .

2 5 2 4 . 1 .

3 1 3 1 1 0 .

3 1 3 2 1 0 1

3 1 3 3 1 0 1

3 1 3 4 0 0 1

...

proc nlmixed data=model_weights;

parms gamma0=0 gamma1=0 gamma2=0;

eta = gamma0 + gamma1*prev + gamma2*pca0 ;

nu = exp(eta)/(1+exp(eta));

if dropout = 1 then loglik=log(nu); else

if dropout = 0 then loglik=log(1-nu);

model dropout ~ general(loglik);

run;

Based on probabilities estimated with the dropout model, the inverse probabilities weights
were calculated. So, the data for the analysis of the available cases are as follows:

PATID pca0 intercept responsej wij timej timej_2 responsek wik timek timek_2

1 3 1 0 1.00000 1 1 999 1.50253 2 4

1 3 1 0 1.00000 1 1 999 . 3 9

1 3 1 0 1.00000 1 1 999 . 4 16

2 5 1 1 1.00000 1 1 999 1.25292 2 4

2 5 1 1 1.00000 1 1 999 . 3 9

2 5 1 1 1.00000 1 1 999 . 4 16

3 1 1 1 1.00000 1 1 1 1.16671 2 4

3 1 1 1 1.00000 1 1 1 1.36121 3 9

3 1 1 1 1.00000 1 1 0 1.58814 4 16

3 1 1 1 1.16671 2 4 1 1.36121 3 9

3 1 1 1 1.16671 2 4 0 1.58814 4 16

3 1 1 1 1.36121 3 9 0 1.58814 4 16

...

The code for the available cases is as follows:

proc nlmixed data=model_gsa_wi_ac;

parms beta0=0 beta1=0 beta2=0 beta3=0 rho_1=0 rho_2=0 rho_3=0;

eta_j = beta0 + beta1*timej + beta2*timej_2+ beta3*pca0 ;

eta_k = beta0 + beta1*timek + beta2*timek_2+ beta3*pca0 ;

nu_j = exp(eta_j)/(1+exp(eta_j));

nu_k = exp(eta_k)/(1+exp(eta_k));

if (timej=1 and timek=2) or (timej=2 and timek=3) or (timej=3 and timek=4)
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then mu11 = nu_j*nu_k + rho_1*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=3) or (timej=2 and timek=4)

then mu11 = nu_j*nu_k + rho_2*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=4)

then mu11 = nu_j*nu_k + rho_3*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k));

mu10 = nu_j - mu11;

mu01 = nu_k - mu11;

mu00 = 1 - (mu11+mu10+mu01);

if responsek = 1 and responsej = 1 then loglik=wik*log(mu11/(mu11 + mu10)); else

if responsek = 0 and responsej = 1 then loglik=wik*log(mu10/(mu11 + mu10)); else

if responsek = 1 and responsej = 0 then loglik=wik*log(mu01/(mu01 + mu00)); else

if responsek = 0 and responsej = 0 then loglik=wik*log(mu00/(mu01 + mu00)); else

if responsej = 1 and responsek = 999 then loglik= wij*log(mu11 + mu10); else

if responsej = 0 and responsek = 999 then loglik= wij*log(mu00 + mu01);

model intercept ~ general(loglik);

run;

As for naive case, the data and the code was adopted for the complete pairs and complete

cases.

E.3.2.3 Doubly Robust Case

The inverse probability weights were calculated using the same way as for the singly robust

case.

To model the expectations in doubly robust case, a “help” Bahadur model was applied.

To model the marginal probabilities, the expression for the linear predictors were defined

at different time-points. To model pairs, assuming that all previous measurements are

available, the “history”parameters were used taking as reference for the history the re-

sponse with the lower value of the time point (e.g., in pair Y2 - Y3 we used only gsabin1

as the history covariate). If some of the measurements are missing, the corresponding

term in the model will be omitted.

proc nlmixed data=model_gsa_wi_AC;

parms kappa0=0 kappa1=0 kappa2=0 kappa3=0 omega1=0 omega2=0 omega3=0 tau_1=0 tau_2=0 tau_3=0;

if gsabin2 ne . then do;

if (timej=1 and timek=2) or (timej=1 and timek=3) or (timej=1 and timek=4) then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 ;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 ;

end; else

if timej=2 and timek=3 then do;
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eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega1*gsabin1;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega2*gsabin1;

end; else

if timej=2 and timek=4 then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega1*gsabin1;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega3*gsabin1;

end; else

if timej=3 and timek=4 then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega2*gsabin1 + omega1*gsabin2;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega3*gsabin1 + omega2*gsabin2;

end;

end;

if gsabin2 = . then do;

if (timej=1 and timek=2) or (timej=1 and timek=3) or (timej=1 and timek=4) then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 ;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 ;

end; else

if timej=2 and timek=3 then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega1*gsabin1;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega2*gsabin1;

end; else

if timej=2 and timek=4 then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega1*gsabin1;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega3*gsabin1;

end; else

if timej=3 and timek=4 then do;

eta_j = kappa0 + kappa1*timej + kappa2*timej_2+ kappa3*pca0 + omega2*gsabin1;

eta_k = kappa0 + kappa1*timek + kappa2*timek_2+ kappa3*pca0 + omega3*gsabin1;

end;

end;

q_j = exp(eta_j)/(1+exp(eta_j));

q_k = exp(eta_k)/(1+exp(eta_k));

if (timej=1 and timek=2) or (timej=2 and timek=3) or (timej=3 and timek=4)

then mu11 = q_j*q_k + tau_1*sqrt(q_j*(1-q_j)*q_k*(1-q_k)); else

if (timej=1 and timek=3) or (timej=2 and timek=4)

then mu11 = q_j*q_k + tau_2*sqrt(q_j*(1-q_j)*q_k*(1-q_k)); else

if (timej=1 and timek=4)

then mu11 = q_j*q_k + tau_3*sqrt(q_j*(1-q_j)*q_k*(1-q_k));

mu10 = q_j - mu11;

mu01 = q_k - mu11;

mu00 = 1 - (mu11+mu10+mu01);

if responsej = 1 and responsek = 1 then loglik=log(mu11); else
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if responsej = 1 and responsek = 0 then loglik=log(mu10); else

if responsej = 0 and responsek = 1 then loglik=log(mu01); else

if responsej = 0 and responsek = 0 then loglik=log(mu00);

if responsej = 1 and responsek = 999 then loglik= log(mu11 + mu10); else

if responsej = 0 and responsek = 999 then loglik= log(mu00 + mu01);

model intercept ~ general(loglik);

run;

Further, the pairs are complemented with expectations. The data for the analysis looks
as follows:

i r r

n e e

t s t s t

e p i p i

P r o t m o t m

A p c n i e n i e

T c e s m j s m k w w q q q q

I a p e e _ e e _ i i 1 1 0 0

D 0 t j j 2 k k 2 j k 1 0 1 0

1 3 1 0 1 1 999 2 4 1.00000 1.50253 0.65036 0.16425 0.09806 0.08733

1 3 1 0 1 1 999 3 9 1.00000 1.50253 0.65232 0.16229 0.09357 0.09182

1 3 1 0 1 1 999 4 16 1.00000 1.50253 0.70389 0.11072 0.10458 0.08081

2 5 1 1 1 1 999 2 4 1.00000 1.25292 0.55410 0.19757 0.11795 0.13039

2 5 1 1 1 1 999 3 9 1.00000 1.25292 0.55665 0.19501 0.11244 0.13590

2 5 1 1 1 1 999 4 16 1.00000 1.25292 0.61516 0.13650 0.12893 0.11940

3 1 1 1 1 1 1 2 4 1.00000 1.16671 0.73422 0.13026 0.07777 0.05775

3 1 1 1 1 1 1 3 9 1.00000 1.36121 0.73566 0.12882 0.07427 0.06125

3 1 1 1 1 1 0 4 16 1.00000 1.58814 0.77841 0.08607 0.08129 0.05423

3 1 1 1 2 4 1 3 9 1.16671 1.36121 0.77933 0.07623 0.09917 0.04526

3 1 1 1 2 4 0 4 16 1.16671 1.58814 0.79464 0.06092 0.10095 0.04349

3 1 1 1 3 9 0 4 16 1.36121 1.58814 0.86708 0.04133 0.06863 0.02296

...

The code for available cases is as follows:

proc nlmixed data=model_gsa_wi_qs_ac;

parms beta0=0 beta1=0 beta2=0 beta3=0 rho_1=0 rho_2=0 rho_3=0;

eta_j = beta0 + beta1*timej + beta2*timej_2+ beta3*pca0 ;

eta_k = beta0 + beta1*timek + beta2*timek_2+ beta3*pca0 ;

nu_j = exp(eta_j)/(1+exp(eta_j));

nu_k = exp(eta_k)/(1+exp(eta_k));

if (timej=1 and timek=2) or (timej=2 and timek=3) or (timej=3 and timek=4)
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then mu11 = nu_j*nu_k + rho_1*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=3) or (timej=2 and timek=4)

then mu11 = nu_j*nu_k + rho_2*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=4)

then mu11 = nu_j*nu_k + rho_3*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k));

mu10 = nu_j - mu11;

mu01 = nu_k - mu11;

mu00 = 1 - (mu11+mu10+mu01);

Exp_cond1=q11/(q11+q10)*log(mu11/(mu11+mu10))+q10/(q11+q10)*log(mu10/(mu11+mu10));

/*Responsej=1*/

Exp_cond0=q01/(q01+q00)*log(mu01/(mu01+mu00))+q00/(q01+q00)*log(mu00/(mu01+mu00));

/*Responsej=0*/

if responsek = 1 and responsej = 1 then loglik=wik*log(mu11/(mu11 + mu10))

+ (1-wik)*Exp_cond1; else

if responsek = 0 and responsej = 1 then loglik=wik*log(mu10/(mu11 + mu10))

+ (1-wik)*Exp_cond1; else

if responsek = 1 and responsej = 0 then loglik=wik*log(mu01/(mu01 + mu00))

+ (1-wik)*Exp_cond0; else

if responsek = 0 and responsej = 0 then loglik=wik*log(mu00/(mu01 + mu00))

+ (1-wik)*Exp_cond0; else

if responsej = 1 and responsek = 999 then loglik= wij*log(mu11 + mu10) + (1-wik)*Exp_cond1

+ (1-wij)*log(q11+q10); else

if responsej = 0 and responsek = 999 then loglik= wij*log(mu00 + mu01)+ (1-wik)*Exp_cond0

+ (1-wij)*log(q01+q00);

model intercept ~ general(loglik);

run;

After selecting the data for the complete pairs, the model can be fitted using the following
program:

proc nlmixed data=model_gsa_wi_qs_cp;

parms beta0=0 beta1=0 beta2=0 beta3=0 rho_1=0 rho_2=0 rho_3=0;

eta_j = beta0 + beta1*timej + beta2*timej_2+ beta3*pca0 ;

eta_k = beta0 + beta1*timek + beta2*timek_2+ beta3*pca0 ;

nu_j = exp(eta_j)/(1+exp(eta_j));

nu_k = exp(eta_k)/(1+exp(eta_k));

if (timej=1 and timek=2) or (timej=2 and timek=3) or (timej=3 and timek=4)

then mu11 = nu_j*nu_k + rho_1*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=3) or (timej=2 and timek=4)

then mu11 = nu_j*nu_k + rho_2*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k)); else

if (timej=1 and timek=4)
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then mu11 = nu_j*nu_k + rho_3*sqrt(nu_j*(1-nu_j)*nu_k*(1-nu_k));

mu10 = nu_j - mu11;

mu01 = nu_k - mu11;

mu00 = 1 - (mu11+mu10+mu01);

Exp_joint=q11*log(mu11)+q10*log(mu10)+q01*log(mu01)+q00*log(mu00);

if responsej = 1 and responsek = 1 then loglik=wik*log(mu11)+(1-wik)*Exp_joint; else

if responsej = 1 and responsek = 0 then loglik=wik*log(mu10)+(1-wik)*Exp_joint; else

if responsej = 0 and responsek = 1 then loglik=wik*log(mu01)+(1-wik)*Exp_joint; else

if responsej = 0 and responsek = 0 then loglik=wik*log(mu00)+(1-wik)*Exp_joint;

model intercept ~ general(loglik);

run;

And for the selected complete cases data, similar code will be applied to fit the model.



Summary

A random sample is not always of a fixed, a priori determined size. Examples include se-

quential sampling and stopping rules, missing data, and clusters with random size. Often

there then is no complete sufficient statistic. Completeness means that any measurable

function of a sufficient statistic that has zero expectation for every value of the parameter

indexing the parametric model class, is the zero function almost everywhere. A simple

characterization of incompleteness is given for the exponential family in terms of the map-

ping between the sufficient statistic and the parameter, based upon the implicit function

theorem. Essentially this is a comparison of the dimension of the sufficient statistic to

the length of the parameter vector. This results in an easy verifiable criterion for incom-

pleteness, clear and simple to use, even for complex settings as is shown for missing data

and clusters of random size.

The analysis of hierarchical data that take the form of clusters with random size has

received considerable attention in literature. In this work, the focus was on clustered

data with unequal cluster sizes, meaning that a joint model of outcome and sample size

was not studied. Also, the focus here was on samples that are very large in terms of

number of clusters and/or members per cluster, on the one hand, as well as on very small

samples (e.g., when studying rare diseases), on the other. Whereas maximum likelihood

inference is straightforward in medium to large samples, in samples of sizes considered here

it may become prohibitive. Sample-splitting (Molenberghs, Verbeke, and Iddi, 2011) was

proposed as a way to replace iterative optimization of a likelihood that does not admit an

analytical solution, with closed-form calculations. Pseudo-likelihood (Molenberghs et al.,

2014), consisting of computing weighted averages over solutions obtained from subsamples

created according to sample size, was used. As a result, the statistical properties of this

approach were investigated. In a first attempt, the compound-symmetry variance structure

was used to investigate this modelling framework. In a subsample with only clusters of
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the same size, there are closed-from solutions and other useful properties can be obtained.

The operational characteristics are studied using simulations. It follows that the proposed

non-iterative methods have a strong beneficial impact on computation time.

Next, statistically and computationally efficient estimation in a hierarchical data set-

ting with unequal cluster sizes and an AR(1) covariance structure was studied. As for the

compound-symmetry model, the pseudo-likelihood and split-sample methods of Fieuws

and Verbeke (2006) and Molenberghs, Verbeke, and Iddi (2011) were used. Maximum

likelihood estimation for AR(1) requires numerical iteration when cluster sizes are un-

equal. A near optimal non-iterative procedure was proposed. Results showed that the

method is statistically nearly as efficient as maximum likelihood, but shows great savings

in computation time.

The odds ratio is a frequently used measure to investigate the association between

binary variables. Often, such outcomes are measured across strata of different sizes.

Mantel and Haenszel (1959) proposed estimators for a common odds ratio, taking into

account the stratification. The most common one is among the best known and most

used estimators in statistics.

The setting studied by Mantel and Haenszel fits within this framework of sample-

splitting and combining with proper weights. The Mantel and Haenszel estimator does

not follow from optimality considerations, but nevertheless has properties similar to and

often better than the optimal estimator. This was done by comparing it to the optimal

estimator, whose existence was demonstrated in spite of the absence of complete sufficient

statistics. It is shown, via simulations, that the optimal estimator outperforms the Mantel-

Haenszel estimator only in certain settings with huge sample sizes.

Missing data is almost inevitable in correlated-data studies. For non-Gaussian out-

comes with moderate to large sequences, direct-likelihood methods can involve complex,

hard-to-manipulate likelihoods. Popular alternative approaches, like generalized estimat-

ing equations, that are frequently used to circumvent the computational complexity of

full likelihood, are less suitable when scientific interest, at least in part, is placed on the

association structure; pseudo-likelihood methods are then a viable alternative. When the

missing data are missing at random, Molenberghs et al. (2011) proposed a suite of cor-

rections to the standard form of pseudo-likelihood, taking the form of singly and doubly

robust estimators. They provided the basis, and exemplified it in insightful yet primarily

illustrative examples. The important case of marginal models for hierarchical binary data

was considered. Our doubly robust estimator is more convenient than the classical doubly

robust estimators. The ideas are illustrated using a marginal model for a binary response,

more specifically a Bahadur model.



Samenvatting

Een steekproef is niet steeds van een vaste, vooraf bepaalde grootte. Voorbeelden zijn

sequentiële studies, ontbrekende gegevens en ongebalanceerde hiërarchische data. In dit

soort settings is er vaak geen complete sufficient statistic. Een eenvoudige karakterise-

ring van completeness wordt geformuleerd voor de exponentiële familie in termen van de

dimensievergelijking tussen de sufficient statistic en de parameter, gebaseerd op de impli-

ciete functiestelling. Het is een eenvoudig en makkelijk verifieerbaar criterium, zelfs voor

complexe settings met ontbrekende gegevens en ongebalanceerde hiërarchische data.

Ongebalanceerde hiërarchische data werd al vanuit verschillende invalshoeken bestu-

deerd. In deze thesis ligt de focus op steekproeven die zeer groot zijn, m.a.w. veel clusters

of veel metingen per cluster, en die zeer klein zijn (studies van zeldzame ziekten). De

Maximum likelihood estimator bepalen in middelgrote steekproeven is goed uitvoerbaar,

maar in de settings die hier besproken worden, kan dat moeilijkheden met zich meebren-

gen, zoals geen analystische oplossingen van gesloten vorm en de likelihoodsfunctie kan

alleen iteratief geoptimaliseerd worden. Bijgevolg werd de steekproef opgedeeld in stukken

naargelang de grootte van de clusters (Molenberghs, Verbeke, and Iddi, 2011). Deze deel-

steekproeven werden hierdoor gebalanceerd en resulteren wel in oplossingen van gesloten

vorm. Een pseudo-likelihood werd gebruikt om de oplossingen van elke deelsteekproef

te combineren gebruikmakend van gewichten. De eigenschappen van deze methodologie

werden in detail onderzocht op gebalanceerde data die een compound-symmetry covarian-

tiestructuur volgen. Via een simulatiestudie werd de toepasbaarheid onderzocht. Hieruit

volgt dat deze niet-iteratieve methode slechts een korte berekeningstijd vereist en zeer

precies is.

Vervolgens werd deze schattingsmethode verder onderzocht in een ongebalanceerde

hiërarchische dataset met een autoregressive (AR(1)) covariantiestructuur. Ook hier is

deze methode bijna even efficiënt als maximum likelihood en de berekeningstijd is veel
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lager.

The odds ratio is een statistiek die frequent gebruikt wordt om de associatie tussen

binaire variabelen te onderzoeken. Ook in dit soort settings kunnen er groeperingen van

de gegevens voorkomen van ongelijke grootte. De meeste gekende en gebruikte schatter

is deze ontworpen door Mantel and Haenszel (1959).

De schatter combineert de odds ratio van subpopulaties in een gewogen schatter,

maar volgt niet vanuit optimalisatieberekeningen. The Mantel en Haenszel schatter werd

vergeleken met de optimale schatter. Hieruit kan geconcludeerd worden dat de Mantel

en Haenszel schatter over zeer goede eigenschappen beschikt. Enkel in settings met

zeer grote steekproefgroottes zal de optimale schatter het beter dan doen de Mantel en

Haenszel schatter.

Ontbrekende gegevens komen zeer vaak voor in dit soort settings. Voor niet-

normaalverdeelde gegevens van een zeer grote steekproef, kunnen de berekeningen van de

likelihoodsfunctie zeer complex worden. Generalized estimating equations is dan een goed

alternatief, maar minder geschikt indien de interesse (gedeeltelijk) gaat naar de correla-

tiestructuur van de data. Pseudo-likelihoodsfuncties zijn hier beter geschikt. Wanneer de

ontbrekende gegevens missing at random zijn, maakte Molenberghs et al. (2011) enkelvou-

dige en dubbelvoudige robuste aanpassingen aan de standaard pseudo-likelihoodsfunctie

om correcte inferentie te kunnen doen. Waar dat zij de algemene basis hiervan vormden,

focuste dit werk op marginale modellen voor hiërarchische binare data. Een Bahadur

model werd hier gekozen als marginaal model.


