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Abstract: Measurements of both continuous and categorical outcomes appear
in many statistical problems. One such example is the study of teratology and
developmental toxicity, where both the probability that a live fetus is malformed
(ordinal) or of low birth weight (continuous) are important measures in the con-
text of quantitative risk assessment. While multivariate methods of the analysis
of continuous outcomes are well understood, methods for jointly continuous and
discrete outcomes are less familiar. We propose a likelihood-based model that is
an extension of the Plackett-Dale approach. Specification of the full likelihood
will be avoided using pseudo-likelihood methodology. The estimation of safe dose
levels as part of quantitative risk assessment will be illustrated from a develop-
mental toxicity experiment of diethylene glycol dimetyhl ether in mice.
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1 Introduction

Over the last few years society has become increasingly concerned about public
health problems. Especially the potential risk of chemical compounds and other
environmental agents on fertility, pregnancy, birth defects and developmental
abnormalities are of major concern. Regulatory agencies, such as the U.S. En-
vironmental Protection Agency (EPA) and the Food and Drug Administration
(FDA) therefore stimulate reproductive and developmental toxicity research. Be-
cause of ethical reasons, reliable epidemiological information of adverse effects on
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fetal development may often be limited or unavailable. As an alternative, labo-
ratory experiments in small mammalian species can be conducted in advance of
human exposure (Williams and Ryan 1996).

Standard experimental protocols for conducting developmental toxicity studies
were established by the U.S. FDA. In developmental toxicity studies with a Seg-
ment II design, pregnant animals are exposed during the period of major organo-
genesis and structural development to a compound of interest. Dose levels for
this design typically consist of a control group and three or four exposed groups,
each with 20 to 30 pregnant animals. The dams are sacrificed just prior to normal
delivery, at which time the uterus is removed and the contents are thoroughly
examined for the occurence of defects. The viable fetuses are measured for birth
weight and examined carefully for the presence of malformation.

The analysis of developmental toxicity data raises a number of challenges (Aerts
et al. 2002). Indeed, such studies may record both continuous (low birth weight)
and ordinal (malformation indicator) outcomes on each embryo. Correlation be-
tween these outcomes exists and also correlation between the fetuses within litters
is very likely to be present. Since laboratory studies further involve considerable
amounts of time and money, as well as huge numbers of animals, it is essential
that the most appropriate and efficient statistical models are used (Williams and
Ryan 1996).

While multivariate methods for the analysis of continuous outcomes are well
known (Johnson and Wichern 1992), methods for mixed continuous and discrete
outcomes are less familiar. Some attempts have been made towards the joint
analysis of a binary and a continuous outcome. A frequent approach is to decom-
pose the joint distribution into a marginal and conditional component, where the
conditioning can be done on either the binary or continuous response (Catalano
and Ryan 1992, Cox and Wermuth 1992, Cox and Wermuth 1994, Fitzmaurice
and Laird 1995, Olkin and Tate 1961). However, these factorization models may
be difficult to apply for quantitative risk assessment (Geys et al. 1999, Regan
and Catalano 1999). The model, introduced here, is based on the Plackett-Dale
method (Plackett 1965), assuming a Plackett latent variable to model bivariate
endpoints in which one component is continuous and the other is discrete. This
method can easily be used for estimation of a safe dose of exposure.

In Section 2 we introduce the proposed model, and show how we can deal with
the clustering. In Section 3 we apply the model for quantitative risk assessment.
Section 4 summarizes some results of an example of developmental toxicity in
mice.

2 Model for Data of a Mixed Nature

Consider an experiment involving N clusters, the ith of which contains ni indi-
vidual fetuses. Each of the individuals are examined for two outcomes, the degree
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of malformation (e.g. none, minor, severe) and the fetal weight. Let Mik be the
random variable representing the degree of malformation (m = 1, 2, . . . , c) of the
kth individual in litter i, and Wik the continuous weight outcome. Together with
this vector of two responses Zik = (Wik, Mik)T , a vector of covariates Xik is
observed.

First, suppose that all littermates are independent. Let us denote the continuous
cumulative distribution of the weight outcome as FW

ik

, and the discrete cumu-
lative distribution of the malformation outcome as FM

ik

. We assume a normal
distribution for the continuous outcome Wik with mean µik and variance æ2

ik, and
a multinomial distribution for the ordinal outcome Mik, with ºl,ik the cumulative
probability P (Mik ∑ l) of observing a malformation of degree smaller or equal to
l. The dependence between malformation degree and fetal weight can be defined
using a global cross-ratio at cutpoint (w, m):
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Using this relationship, the joint cumulative distribution FW
ik

,M
ik

can be written
as function of the marginal distributions and the global cross-ratio (Plackett
1965). For simplicity we have omitted the cluster-level index i and the fetus-level
index k.
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Based upon this cumulative distribution function FW
ik

,M
ik

(w, m), we can de-
rive a bivariate Plackett density function gik(w, m) for mixed continuous-ordinal
outcomes.

Dose-response models that incorporate litter- and fetus-specific covariates can be
considered for each of the parameters by using appropriate link functions.

Often however, littermates are not independent, but clustered within litters. In
the case of clustering, rather than considering the full likelihood contribution for
each cluster i, i.e., f(wi1, . . . , win

i

, mi1, . . . , min
i

), we avoid the computational
complexity by replacing the full likelihood by a pseudo-likelihood function that
is easier to evaluate. The contribution of the ith litter to the log pseudo-likelihood
function is defined as:

pli =
n

i

k=1

ln gik(w, m).

With this approach, the correlation between weight and malformation outcomes
for an individual fetus is modeled explicitely, but for outcomes from different
littermates independence is taken as a working assumption. Arnold and Strauss
(1991) established consistency and asymptotic normality of the pseudo-likelihood
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estimators. Another advantage is the close connection of the pseudo-likelihood
with likelihood, which enabled Geys, Molenberghs and Ryan (1999) to construct
pseudo-likelihood ratio test statistics that have easy-to-compute expressions and
intuitively appealing limiting distributions. If the amount of clustering is of inter-
est as well, then above pseudo-likelihood function can be extended to incorporate
this as well.

3 Risk Assessment

A primary goal of quantitative risk assessment is to determine a safe level of
exposure. Recent techniques for risk assessment in this area are based on fitting
dose-response models and estimating the dose corresponding to a certain increase
in risk of an adverse effect over background, i.e. benchmark dose. In case of mul-
tiple outcomes, the outcomes are often examined individually, using appropriate
methods to account for the clustering of fetuses within litters, and regulation of
exposure is based on the most sensitive outcome. It has been found, however,
that a clear pattern of correlation exists between these outcomes (Ryan et al.
1991), so that risk assessment based on a joint model may be more appropriate.
The model must both incorporate the correlation between the two outcomes, as
well as the correlation due to clustering. For risk assessment purposes, the joint
probability that an individual fetus is malformed and/or of low fetal weight must
be characterized.

The risk function r(d) representing the probability that the kth fetus in the ith
cluster has a high malformation level of a low birth weight at dose level d can be
written as:

r(d) = P (Wik ∑ Wc or Mik ∏ Mc|d)

where Wc and Mc respectively denote some cutoff value that determines fetal
weight low enough and malformation severe enough to be considered adverse. This
expression can be rewritten using the univariate discrete distribution function
FW

ik

and the joint continuous-discrete distribution function FW
ik

,M
ik

:

r(d) = 1° FM
ik

(Mc ° 1) + FW
ik

,M
ik

(Wc, Mc ° 1).

Based on this probability, a measure for the excess risk r§(d) over background
can be specified, and a safe dose of exposure can be defined. The benchmark
dose (BMD) is the dose d satisfying r§(d) = q, where q is a pre-specified level of
increased response (typically specified as 1, 5 or 10%). To allow for estimation
variability, a 95% lower confidence limit of the BMD such as the lower effective
dose (LED) can be used for determining an acceptable low-risk exposure level
(Crump 1984, Kimmel and Gaylor 1988).
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4 Developmental Toxicity of DYME in Mice

Price et al. (1987) describe a study in which diethylene glycol dimethyl ether
(DYME) was administered to timed-pregnant mice during major organogenesis.
DYME is a component of widely used industrial solvents, used in the manufacture
of protective coatings such as lacquers, metal coatings, baking enamels, etc. The
doses selected for the study were 0, 62.5, 125, 250, and 500 mg/kg/day with 21, 20,
24, 23 and 23 pregnant dams assigned to each of these dose groups, respectively.
Table 1 summarizes the data. Scientific interest lies in the overall risk due to
malformation and low birth weight, i.e. the probability that an individual fetus
is malformed or of low birth weight.

TABLE 1. Summary Data from a DYME Experiment in Mice

Dose Dams Live Litter Size Weight Malformations %
(mean) (mean) none minor severe

0.0 21 282 13.4 0.9998 97.2 2.5 0.4
62.5 20 225 11.3 0.9673 96.0 4.0 0.0
125 24 290 12.1 0.9102 86.9 10.7 2.4
250 23 261 11.3 0.7928 67.0 10.3 22.6
500 23 141 6.1 0.5617 6.4 0.0 93.6

Risk assessment is based on dose-response modelling. Selection of a parsimonious
model relied on the pseudo-likelihood ratio test statistic. The final dose-response
model that we considered here was characterized by
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with di the dose. For this model, the fitted values were close to the observed ones.
There is a significantly negative dose-effect for fetal weight. The dose coefficients
for the malformation probability are also significant. The estimated odds ratio is
less than 1, indicating the negative association between weight and malformation.

In order to calculate a benchmark dose based on this model, we first need to
specify the risk of an adverse effect, i.e. the probability that an individual fetus
is malformed or of low birth weight. Therefore, we need to define a weight below
which a fetus can be considered as being of “low fetal weight”. Because of the
arbitrariness of the cutpoint, estimating a benchmark dose from a continuous
response has led to much discussion (Bosch et al. 1996, Crump 1984). We spec-
ify the cutoff point Wc as two standard errors below the control average fetal
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weight. By means of this definition, fetuses that weighted less than 0.7816g are
considered to be of low fetal weight, which corresponds to a 1,8% rate in the
control animals. Further, we consider two definitions of risk, depending on the
cutpoint Mc for what is considered as a “malformed” fetus. Either we define it
as the probability that a fetus has a minor or severe malformation (Mc = 2), or
a low fetal weight. Alternatively, we define it as the probability that a fetus has
a severe malformation (Mc = 3), or has a low fetal weight.

Table 2 shows for both types of definitions the estimated benchmark doses (in
mg/kg/day) corresponding to the 1% and 10% excess risk, as well as the corre-
sponding 95% lower limit LED (lower effective dose). We also added the corre-
sponding quantities, calculated from univariate versions of the model.

TABLE 2. Risk Assessment for DYME Study in Mice.

Mc = 2 Mc = 3
q Model \BMDq

\LEDq
\BMDq

\LEDq

1% Joint 14.31 12.71 20.79 17.75
Continuous 25.09 24.47 25.09 24.47

Ordinal 26.54 25.67 67.13 60.17
10% Joint 86.56 80.81 104.07 96.22

Continuous 115.65 114.73 115.65 114.73
Ordinal 135.47 132.82 198.16 191.60

We can compare the joint modelling approach with the traditional approach for
multiple outcomes in which the lower of the individual malformation and fetal
weight LEDs is used as an overall LED. The miminum of the two LEDs is more
than 20% higher than those obtained using the bivariate methods which incorpo-
rate the relationship between the two outcomes. Thus, ignoring the correlation
between the two outcomes leads to too high and hence unscientific safe doses.
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