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Abstract:  
Plasmonic nanostructures have demonstrated a remarkable ability to control light in ways never 

observed in nature, as the optical response is closely linked to their flexible geometric design. 

Due to lack of mirror symmetry, chiral nanostructures allow twisted electric field “hotspots” to 

form at the material surface. These hotspots depend strongly on the optical wavelength and 

nanostructure geometry. Understanding the properties of these chiral hotspots is crucial for their 

applications; for instance, in enhancing the optical interactions with chiral molecules. Here, we 

present the results of an elegant experiment: by designing 35 intermediate geometries, we 

“enantiomorph” the structure from one handedness to the other, passing through an achiral 

geometry. We use nonlinear multi-photon microscopy to demonstrate a new kind of double-

bisignate circular dichroism due to enantiomorphing, rather than wavelength change. From group 

theory, we propose a fundamental origin of this plasmonic chiroptical response. Our analysis 

allows the optimization of plasmonic chiroptical materials.  
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Throughout the 19th and most of the 20th century, chirality has been associated with chemistry. 

However, whereas chirality can be crucial for understanding molecules, molecules are not best 

suited for understanding chirality. Indeed, there are various forms of chirality, such as helical 

chirality, propeller chirality, supramolecular chirality, extrinsic chirality, etc.1,2 These forms all 

depend on intrinsic chirality parameters. Ideally, we would like to be able to vary these parameters, 

i.e. to follow the parameter values as chiral systems transition from one chiral form into another. 

However, it is impossible to control the size of atoms, the length of chemical bonds and the 

orientation of orbitals. Modern nanofabrication techniques have lifted these limitations.  

Using modern nanofabrication methods, it is possible to explore the evolution of chiral 

forms, by preparing numerous intermediate geometries. This is important because it opens the 

possibility to tune and optimize the chirality parameters, which enable interesting properties. For 

instance, by maximizing the geometric chirality parameter, it is possible to achieve negative 

refractive index materials.3 Such materials could lead to super-lenses4 and various applications 

that depend on the control of circularly polarized light. In turn, circularly polarized light could 

find applications in spintronics5 and quantum computing6,7. Moreover, by optimizing a parameter 

called optical chirality8 it has been shown that “superchiral” light configurations can be 

achieved. In such configurations, the pitch of the electric field of light is shorter than that of 

circularly polarized light, thereby enabling stronger chiroptical effects.9–11 These effects are 

leading to more sensitive optical detection and characterization of chiral molecules – crucial for 

the pharmaceutical and chemical industries.11–13 Importantly, optical chirality is particularly 

enhanced at the surface of chiral plasmonic nanostructures,14,15 resulting in large enhancements 

in measurable circular dichroism (CD).16–19  
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 Despite the advantages of creating intermediate geometries, it is rare to find studies where 

these have been investigated in detail. Between two enantiomorphs, there can be several 

pathways for intermediate geometries and those might be quite different (Figure 1a). Also, a 

priory, it is not clear what the best number of intermediate geometries should be. In the literature, 

examples can be found of studying both enantiomorphs of a structure, its achiral variant and a 

small number of intermediate steps only.20 Consequently, important interesting behavior can go 

unnoticed.  

 Here, we report an elegant experiment, impossible to perform with chiral molecules: by 

designing 35 intermediate geometries, we “enantiomorph” plasmonic nanostructures from one 

handedness to the other, passing through an achiral geometry. We demonstrate a new kind of 

bisignate (of two signs) circular dichroism due to enantiomorphing, rather than wavelength 

change, in the nonlinear emission from near-field hotspots. Contrary to what would be expected 

from pure geometric considerations, the nonlinear chiroptical signal reverses sign trice, i.e. it is 

double-bisignate. In order to understand this result, we perform a full modal analysis of the 

structures in combination with irreducible representations (group theory). Interestingly, we find 

that, regardless of their handedness, chiral nanostructures contain modes that can be excited by 

both left and right circularly polarized light (LCP and RCP). Furthermore, which modes are 

dominant (i.e. couple strongest to light) depends on the wavelength or the shape/dimensions of 

the nanostructure. It is therefore perfectly possible to engineer chiral nanomaterials that, at a 

given wavelength, can only be excited with the “wrong” kind of circularly-polarized light (CPL). 

Our findings offer the possibility of tuning chiroptical response by selecting particular 

electromagnetic modes, or sets of modes, among hundreds available, which can enable much 

more sensitive chiroptical control than what is currently available.  
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Results| 

We begin by presenting the purely geometric considerations. Starting with left-handed crosses, 

we morph their geometry in discrete steps, first into achiral squares and then into right-handed 

chiral crosses (Figure 1b). For the purposes of comparison, we use a measure of “chiral 

geometric difference” to quantify the geometric chirality. This quantity is defined as 

1 Overlap TotalA A− , where OverlapA  is the area of maximal overlap that can be achieved between left- 

and right-handed shapes, and TotalA  is the sum of the areas of the left and right-handed shapes. 

OverlapA  is found by rotating and translating the two mirror-image shapes relative to each other 

and calculating the maximum overlap. As Figure 1b shows, the chiral geometric difference 

diminishes until it reaches 0 (in the achiral case) and then reverses sign for the mirrored shapes. 

This measure of chirality is in stark contrast to the double-bisignate response found in our 

nonlinear CD measurements.  

For our experiments, we made use of multi-photon microscopy performed with CPL 

illumination at 800 nm and schematized in Figure 1c. The instrument was a standard 

commercial model (the same as in our previous works21), with one difference: the collected light 

was not limited to the second harmonic generation (SHG) but also contained two-photon 

luminescence (TPL). Both these nonlinear optical processes are enhanced in the regions of strong 

local field,22,23 and therefore act as a sensitive probe for local field effects. They can in principle 

be very different (as SHG is governed by symmetry-selection rules) but here we found that the 

SHG and the TPL responses were identical (see Supplementary Figure 1). Consequently, 

collecting both increases the detected signal from the samples and allows the use of lower laser 

power, reducing the risk of potential damage to the samples24.   
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The samples are chiral crosses made of Au, deposited by electron beam lithography 

(EBL) on a Si substrate with a thermal oxide layer, and whose dimensions and depth profile are 

given in Figure 1d. Each cross is composed of four separate nanostripes, with varying width w 

and length l. The separation distance between nanostripes, at the centre of the crosses, is constant 

at 200 nm. The crosses are arranged in a 40 40×  μm2 square array, with the distance between 

cross centres also kept constant at 3.2 μm.  

Figure 2a shows scanning electron microscopy (SEM) images of sample arrays. In these 

arrays, the length of the nanostripes is fixed (1000 nm) and the width changes from 200 nm to 

1000 nm in steps of 200 nm. Underneath each SEM are two corresponding multi-photon 

micrographs, obtained with LCP and RCP. The multi-photon microscopy images are color-coded 

for intensity and they show bright hotspots at the center of the chiral crosses (indicated with 

dashed-line squares for clarity). Similar hotspots have previously been observed at the center of 

G-shaped25 and S-shaped26 nanostructured arrays. The hotspots correspond to a chiral coupling at 

the center of the unit cells that depends on the chirality of the nanostructures and the direction of 

CPL26–28. This dependence is expressed as a directly observable nonlinear CD effect (brightness 

of the hotspots, depending on the direction of CPL). Interestingly though, in this set of samples, 

the nonlinear CD changes sign between the chiral crosses with nanostripe width 200 nm and 600 

nm, even though the structures have the same geometric chirality.     

The CD reversal can be seen more quantitatively in Figure 2b. Here, the nonlinear CD is 

obtained from the detected light upon LCR or RCP illumination according to 

( ) ( )MP MP MP MP
RCP LCP RCP LCPI I I I− + . The individual multi-photon intensity terms MP

LCPI  and MP
RCPI  were 

obtained from the pixel intensity at the center of the chiral crosses, where the chiral coupling is 

maximum and the characteristic response is most pronounced. For each chiral cross, the central 
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hotspot intensity was averaged over 25 pixels (5 5×  pixel array at 0.09 μm per pixel). To account 

for individual variation between crosses, MP
LCPI  and MP

RCPI  were each obtained from further 

averaging the hotspots of 25 individual crosses. The error bars in Figure 2b correspond to the 

standard deviation from this averaging. It should also be noted that the SEM pictures in Figure 

2a are only a subset of the entire range of samples we studied. The full set started from w=100 

nm and progressed to w=1000 nm, in steps of 50 nm. Upon considering the nonlinear CD from 

all these samples, it is obvious that around w=200 nm and around w=800 nm, the chiroptical 

response is unambiguously reversed, i.e. with clearly separated error bars. Conversely, in linear 

scattering spectroscopy measurements (Supplementary Figure 2) no significant CD was found. 

Simulations show that this is unsurprising, as the CD in linear scattering cross sections is found 

to be to the order of 10−4. Furthermore, FDTD simulations of the linear CD response, in 

reflection geometry, showed a significantly different behavior than the one in Figure 2b 

(Supplementary Figure 3). This too is unsurprising as the linear CD measures far-field 

behavior, which differs from the near-field properties probed by multiphoton spectroscopy.  

To understand the reversal of the CD, we need to rigorously examine the electromagnetic 

behavior at the surface of the nanostructures. Here, we formulate the linear optical light 

interaction with the structures in the framework of the electric field - volume integral equations 

(EF-VIEs) 29–34. For the sake of conciseness, we summarize the electric field volume integral 

equation in an operator form (for full forms see Supplementary Discussion 1), 

 ( ) ( ) ( ), ; , ,Z ω ω ω⋅ = incr r' J r' E r ,   (1) 

where ( ),ω′J r  represents the full solution, i.e. the induced current (and charge) flowing in a 

nanostructure due to an incident field ( ),ωincE r , while the impedance operator ( )  , ;  ω′Z r r is related 

with the Green’s function that describes how a part of the nanostructure (at a source point 'r ) 
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electromagnetically interacts with another part (at an observation point r ). The full solution is 

characterized by a set of modes that originate from the eigenvalue problem for equation (1) 35:   

 ( ) ( ) ( ) ( ), ; , ,nZ ω ω λ ω ω⋅ = ⋅n nr r' J r' J r' ,  (2) 

where each mode ( ),   ω′nJ r is a complex spatial distribution that is independent of the incident 

field, at a frequency ω  and with a corresponding eigenvalue  nλ .  

The EF-VIEs approach is well established but here we take the theoretical analysis a 

significant step further by making use of group theory. From the discussion detailed in 

Supplementary Discussion 2 and 3,36 each available mode associated with a given structure 

geometry can be placed in one of four orthogonal irreducible representations 1,2,3,4j=Γ . These 

representations correspond to exclusive excitation with either the two orthogonal linear 

polarizations ( 1Γ for horizontal and 2Γ  for vertical) or the two circular polarizations ( 3Γ  for LCP 

and 4Γ  for RCP). Importantly, each mode in the 3rd irreducible representation has a “correlated” 

mode in the 4th irreducible representation, with identical eigenvalues forming an “accidentally 

degenerate pair”. Crucially, the LCP coupling coefficient of a given 3Γ mode may be different 

from the RCP coupling coefficient of the correlated 4Γ mode. This difference in a mode pair’s 

ability to couple to LCP and RCP incident light can be seen as a type of “modal circular-

dichroism”, and is shown in Figure 3a,b.  

Figure 3a shows pairs of correlated modes in the structures with width 200 nm. In blue, 

the 3Γ  modes are ranked according to their coupling coefficient to LCP. The correlated 4Γ  

modes are shown in red, please note these only couple to RCP. In an achiral structure, both the 

blue and red sets would have identical values and ranking. Not surprisingly, the presence of 

chirality in the structure breaks the symmetry and, overall, the blue modes have higher coupling 
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coefficients. But very counter-intuitively, we also find that, in some pairs, the red modes have 

higher coupling coefficients. This means that, for such modes, light of the “wrong chirality” 

couples more efficiently to the chirality of the nanostructure. An example of this behavior is 

indicated with an arrow on the figure. As we will see next, the exception can become the rule as 

we continue changing the cross width towards an achiral structure. 

Figure 3b shows pairs of correlated modes in the structures with width 800 nm. Here, 

there are more red-dominant pairs of correlated modes than in Figure 3a, to the point that the 

overall calculated CD is reversed, as in the experimental observation. Therefore, in these 

plasmonic nanostructures, the chiroptical response originates from the superposition of all the 

individual modal responses. The modes themselves represent complex spatial distributions of the 

charge density; as an illustration, the first and second modes from Figure 3a and 3b are shown in 

Figure 3c and 3d respectively.    

Mathematically, the overall CD originates from the full solution obtained by linearly 

superposing the contributions from all eigenmodes nJ ,  

 ( ) ( ) ( ), ,ncω ω ω=∑ nJ r' J r' ,  (3) 

where, for a given incident field, the coupling coefficients nc  are given by 

 ( )
( ) ( )

( )
, ,

V
n

n

d
c

ω ω
ω

λ ω

⋅
= ∫ n incJ r' E r' r'

  (4) 

and the volume integration is carried out over the whole nanostructure. Full solutions are shown 

in Supplementary Figure 4. To calculate an overall CD, we make use of the inner product of the 

coupling coefficients given by 

 2) ),( ( ) ()( ( )n n n n
n

nc c c c cω ω ω ω ω∗= = ∑ .  (5) 
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Here, ( )nc ω∗  denotes the complex conjugate of )(nc ω . Since the local field intensity is dependent 

on the square of all coupling coefficients, the local field circular-dichroism can be expressed as: 

 ( )

2 2

2 2

( (
CD

(

)

) )(

)R L
n n

R L
n

al

n

Loc
c c

c c

ω ω

ω ω

−
∝

+
.   (6) 

The L and R superscripts refer to the solutions for LCP and RCP (the achiral case of w=1000 

nm is treated separately, see Supplementary Discussion 4). The results from equation (6) can be 

found in Figure 3e; where the calculated CD is plotted as a function of the nanostripe width (w), 

for the left-handed and right-handed crosses. These numerical results show a bisignate CD 

response corresponding well to the experimental CD curves in Figure 2b.  

We further verify this agreement with a second set of intermediate structures 

(Supplementary Figure 5) in which the nanostripe length is varied, for a constant width of 200 

nm. We observe in both experiments and simulations that the CD emerges away from the achiral 

structure, and subsequently plateaus. Although longer nanostripes support more electromagnetic 

modes than shorter ones, the effect of additional modes on the key central region decreases, the 

longer the nanostripe length. Since the nonlinear CD measurements probe the coupling in the 

center of the crosses, the effect of increasing nanostripe length on the CD plateaus. 

 

Discussion 

This study has focussed on the bisignate CD response as a function of varying structure 

geometry. With respect to wavelength, both linear and nonlinear chiroptical spectra often exhibit 

complex bisignate (of two signs) features.37–41 This behavior can be linked to Kuhn’s sum-rule,42 

which states that the chiroptical response must be zero over all wavelengths. This dependence on 

wavelength has been analyzed in terms of exciton coupling,43 nanoparticle-nanoparticle 



12 
 

Coulomb coupling,44 and energy level hybridization.45 In particular, in the linear optical case it 

was shown that the energetic ordering of the hybridized modes can be changed, resulting in a 

reversal of the CD, upon making small relative position shifts between L-shaped nanoparticles.46 

 In this work, we made use of nonlinear chiroptical methods. There are several techniques 

for mapping near-fields that are based on, for instance, using a superlens,47,48 a nanorod array,49 

or hotspot decorations.24 Yet the most popular method of sub-wavelength imaging remains 

scanning near-field optical microscopy (SNOM),50 which can be performed with circularly 

polarized light for studies of chirality.51–56 For all its advantages, SNOM necessitates long 

scanning times, which renders impractical the imaging of large areas and large sample arrays. 

Moreover, SNOM is limited to samples where the near-field is accessible to the tip of the 

microscope and the presence of the tip itself leads to an increase in complexity.57 An interesting 

alternative can therefore be found in nonlinear microscopy. In particular, second harmonic 

generation (SHG) microscopy is highly sensitive to the near-field intensity, it can probe buried 

interfaces and, for samples that do not require very high mapping resolution (such as ours), it is 

fast and practical. Owing to the lack of background, SHG chiroptical techniques are usually three 

orders of magnitude more sensitive to chirality than their linear optical counterparts,26–28 which 

justifies their use.  

To summarize, we have shown that the origin of the chiroptical response in plasmonic 

nanostructures is due to the selective excitation of available modes, therefore any physical 

property that affects the modes will allow tuning of the chiroptical response. This mechanism 

could also be used to explain previous experimental observations of bisignate CD spectra, where 

different sets of modes can be coupled differently depending on the wavelength of light. 

Furthermore, we can predict that variation of temperature of the nanostructures (e.g. by laser 
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heating) will change the sets of available modes, due to thermal expansion or a change in 

permittivity58, and can lead to tuning the chiroptical response. Further physical processes that 

involve excitation of specific plasmonic modes (Fano resonance, spasers, electromagnetically 

induced transparency, etc.) can also be used to tune that response for desired applications 

(through achieving large chirality parameter). In practice, maximizing the chiroptical response in 

any plasmonic nanostructure is allowed by suppression of the modes that couple to light “with 

the wrong chirality”. Equally important, by locally enhancing a particularly strong mode (e.g. via 

coupling to an auxiliary structure) it is possible to enhance the chiroptical interaction with 

molecules improving enantioselectivity for molecular sensing, separation and synthesis.   
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Methods 

Sample preparation 

Samples were fabricated using an off-the-shelf Silicon wafer with a 100nm thermal oxide layer. A 

dicing saw was used to slice the wafer into 7.5x7.5 mm2 samples, followed by a solvent clean and 

an O2 plasma ashing step. The samples were spin coated with a 100 nm thick polymethyl 

methacrylate (PMMA) supplied by MicroChem and formulated with a 950k molecular weight. A 

sputter coater was used to deposit a 5 nm gold layer on top of the PMMA, which helped minimize 

charging effects during electron beam exposure. A Raith150 Two electron beam lithography 

(EBL) system was used to expose the nanostructures into the PMMA. Each plasmonic array was 

patterned within a 40x40 μm2 area. The main process parameters were 10kV acceleration voltage, 

20μm aperture and 110μC/cm2 beam dosage. Before development of the PMMA resist, the 

samples were immersed for 10 s in a gold etchant solution from Sigma-Aldrich, rinsed with 

deionized water and dried with a nitrogen gun. Development of the resist was achieved by 

immersing the samples for 60 s in a 1:3 methyl isobutyl ketone (MIBK) and isopropyl alcohol 

(IPA) solution, followed by a 60 s immersion in IPA and dried using a flow of nitrogen gas. A 5 

nm titanium and 30 nm gold layers were deposited using an Edwards Auto 500 electron beam 

evaporator at a base pressure below 10-6 mbar, and using respectively the evaporation rates 0.085 

nm/s and 0.22 nm/s. The final process step involved a lift-off of the metallic film around the 

exposed areas of PMMA. This was achieved by leaving the samples immersed in acetone 

overnight, followed the application of a 15 s ultrasonic bath, immersion in IPA for another 60 s 

and dried with a flow of nitrogen gas. 
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SHG Microscope 

SHG microscopy techniques are also the same as seen in Valev, V. K. et al., 201426. Images are 

collected with a confocal laser scanning microscope, Zeiss LSM 510 META (Jena, Germany). The 

sample is illuminated by a femtosecond pulsed Ti:Sapphire laser, directed to the sample by a 

dichroic mirror (HFT KP650) and through a Zeiss 100x Alpha Plan-APOCHROMAT oil objective 

of numerical aperture 1.46. The fundamental excitation wavelength is 800 nm. After passing 

through a dichroic mirror (NFT545) and a band-pass filter (BP 390-465), the nonlinear signals 

(SHG and part of the TPL) are collected by a photomultiplier tube. The image is formed with a 

scanning speed of 12.8µs for the pixel dwell time; and each frame is scanned 8 times and averaged.  

Analysis 

The nonlinear microscopy images obtained contain roughly 60 crosses of each type (normal and 

mirror), with separate images for LCP and RCP illumination. A Python script was used to 

specify the central regions of 25 crosses, with clearly damaged structured avoided. For each 

cross, a 5-pixel by 5-pixel square at the defined central region was intensity-averaged. This result 

was itself then averaged over the 25 selected crosses to obtain a final intensity and statistical 

uncertainty for a particular orientation of cross (normal or mirror) and input polarization (LCP or 

RCP). This was done for each of the considered geometries. These intensities and their 

corresponding uncertainties are used to obtain the results shown in Figure 2b. 
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Figures 

 

Figure 1. a. Representation of two possible pathways to enantiomorph a right-handed structure 

(R) into a left-handed structure (L), through an achiral geometry. Here we examine the pathway 

on the right side of the circle. b. As the left handed chiral crosses change into achiral square 

structures and into right handed chiral crosses, the chiral geometric difference diminishes until it 

reaches 0 in the achiral case and then reverse its value. c. Schematic diagram of the multiphoton 

microscopy experiments. d. Geometry and depth profile of the chiral crosses samples. 
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Figure 2. Varying arm width of the nanostructure features at fixed l=1000nm. SEM images of 4 

structure cells for each geometry (a, top), and SHG microscopy images (a, lower) under 

illumination from left and right circularly polarized light, at 800nm wavelength. Scale (right) 

corresponds to image pixel brightness. b. Measured total nonlinear CD under 800nm wavelength 

light is then calculated for each geometry. Our experiments reveal a counter-intuitive behavior for 

the second-harmonic generation circular dichroism (SHG-CD) – both the 0 value and the reversal 

occur before reaching the achiral geometry. 
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Figure 3. Simulation results showing modal composition of chiroptical response. Modal analysis 

of structures with arm length 1000nm, width 200nm (a) and 800nm (b). The most LCP-dominant 

modes for each structure are plotted showing both LCP coupling strength (blue) and the correlated-

mode RCP coupling strength (red). Modes coupling stronger to RCP than LCP are marked with 
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arrows. Examples of individual modes (normalized absolute charge density) are shown for width 

200nm (c) and 800nm (d). The total coupling strength CD as defined in equation (6) is plotted for 

varying arm width, at fixed l=1000nm under 800nm wavelength light (e). 



Supplementary Figures 
 

 

Figure 1. SHG and TPL emission from cross structures. Multiphoton microscopy images for l=1000 

nm, w=800 nm cross structures. Centre-to-centre spacing between structures is 2.4 µm. The colour scale 
(rainbow, from violet to red) is proportional to the intensity of multiphoton emission. Clear SHG 

enhancement can be seen in 389 nm and 400 nm regions, with TPL showing an identical spatial response 

at other wavelengths. 



 
Figure 2. CD in linear scattering cross section for l=1000 nm structures. a. (Left) Numerically-

obtained linear scattering CD for left-handed (top) and right-handed (bottom) chiral cross structures, with 

varying nanostripe width (legend). (Right) Experimentally obtained linear scattering CD for the same 

structures. b. (Left) Numerically-obtained linear scattering cross sections for left-handed chiral cross 

structures under LCP (top) and RCP (bottom) illumination, with varying arm width (legend). (Right) 
Experimentally obtained linear scattering spectra for the same structures. 

 



 
Figure 3. CD in reflection for l=1000nm structures. a. Numerically-obtained reflection CD spectra for 

left-handed chiral cross structures, with varying arm width (legend). No systematic shift of the spectral 

response is observed when changing the nanostructure dimensions. b. Linear CD with varying arm 

width at 800nm incident light, obtained from spectra shown in a. The lineshape of the CD response is 

drastically different to that obtained from nonlinear CD measurements. c. Comparison of two numerical 

methods used to obtain CD spectra for w=200 nm structure; FDTD Solutions, and COMSOL 

Multiphysics. Overall shape of CD response is in good agreement between the two methods.  



 
Figure 4. Full charge density solutions. Calculated for both LCP and RCP 800nm incident light, for 

varying arm width of the nanostructure features at fixed l=1000 nm (a) and varying arm length of the 

nanostructure features at fixed d=200 nm (b). Full solution is calculated by linearly superposing the 

contributions from all the eigenmodes 𝑱𝑱𝒏𝒏. 



 
Figure 5. Additional experimental and simulated CD results. Varying arm length of the nanostructure 

features at fixed w=200 nm. a. SEM images of 4 structure cells for each geometry. b. Chiral geometric 

difference for structures of fixed arm width w=200 nm. Measured total multi-photon CD (c), and total 

coupling strength CD (d), under 800 nm wavelength light is then calculated for each geometry. Unlike the 
case of fixed length and varying width, no bisignate CD is observed here.  



Supplementary Discussion 
 
 
Supplementary Discussion 1: Formulating the interaction of light with a nanoscatterer in the 
framework of a Volume Integral Equation (VIE) 
 
In the following, we discuss a Volume Integral Equation (VIE) formalism for light – nanostructure 
interactions. This material can also be found in our previous work 1. It is reviewed here only for the 
sake of completeness. The physical process governing the interaction between light and a general 
scatterer can be described by the following two equations in the frequency domain, 

 ( ) ( ) ( ) ( ) ( ) ( )0 1,  , '.
V

i G dvωµ µ= + = ⋅∫tot inc scat scatE r E r E r E r r r' J r'


  (1) 

In equation (1), the first equation simply states that everywhere in space the total electric field is 
the sum of the impressed incident field and the scattered field. This scattered field is generated by 
the induced currents flowing in the source volume, which gives the gist of the second equation in 
equation (1). Here, μ0 and μ1 are the vacuum permeability and the relative permeability of the 
material filling the space where the scatterer is situated. 𝐺̅𝐺(𝐫𝐫, 𝐫𝐫′) is the electric dyadic Green's 
function. Please note that in this article a e-iωt time convention is employed and the angular 
frequency ω has been systematically suppressed. Especially at the spatial position of the scatterer, 
the total field is linked with the induced current via, 

 ( ) ( )
( )( )0

,  .
1r

V
iωε ε ω

= ∈
− −tot

J r
E r r   (2) 

V in equation (1) and equation (2) denotes the source volume. In equation (2), ε0 and εr(ω) 
represent the vacuum permittivity and the relative permittivity of the material that constitutes the 
scatterer. Combining the above equations, we have 

 ( )
( )( ) ( ) ( ) ( )0 1

0

, ' ,  .
1 V

r

i G dv V
i

ωµ µ
ωε ε ω

− ⋅ = ∈
− − ∫ inc

J r
r r' J r' E r r



  (3) 

In equation (3), since the incident electric field and the electric dyadic Green's function are 
assumed to be known in the first place, the induced current is the main target to solve and can be 
numerically evaluated by, e.g. a Method of Moments (MoM) algorithm. Writing compactly, we have 
the following operator formalism as in the main text, 

 ( ) ( ) ( ), ; , , .Z ω ω ω⋅ = incr r' J r' E r   (4) 

In equation (4), the impedance operator 𝐙𝐙(𝒓𝒓, 𝒓𝒓′;𝜔𝜔) is 

 ( )
( )( ) ( ) ( )0 1

0

1, ; ,  '.
1 V

r

Z i G dv
i

ω δ ωµ µ
ωε ε ω

= − − ⋅
− − ∫r r' r r' r r'



  (5) 

A Dirac delta is added in equation (5) to emphasize the local approximation. 
 
  



Supplementary Discussion 2: Modes and Symmetry in 4I Structures 
 
In the following numerical analysis, the in-principle infinite dimensional impedance operator Z is 
approximated by a finite dimensional one, that is, a matrix. Since our discussions are actually 
conducted with respect to this matrix, here after we will use the terms operator and matrix 
interchangeably. 
 
Symmetry and a Group Representation Theoretical Approach 
Aside from all the differences in dimensions, the structures’ symmetry is unchanged. That is, all the 
structures carry a C4 symmetry group (see the symmetry operations in Supplementary Figure 6a). 
There are four symmetry operations in this group: the identity operation E where no 

transformation is conducted, a rotation of 𝜋𝜋
2

, a rotation of π and a rotation of  3𝜋𝜋
2

. All of these 

rotations are about the z axis and are named as 𝐶𝐶41,𝐶𝐶42, and 𝐶𝐶43. 
 

 

 
Supplementary Figure 6 Illustration of the symmetry operations and the irreducible representation for the C4 group. 

a, demonstrates the symmetry operations for a 4I chiral structure. These symmetry operations form a group and the 

irreducible representations of the group are shown in b. 

 
Since symmetry operations are always applied based on coordinates, we should be able to find 

a corresponding set of matrices to “represent” these operations. Here, we especially focus on the 
matrices with the lowest dimensionalities, that is, the irreducible representations. Since the group 
under discussion is an Abelian group, we have four irreducible representations and they are shown 
in Supplementary Figure 6b. Moreover, in contrast to these transformations operating on 
coordinates, we follow Wigner’s conventions 2–4 and define transformation operators which 
operate on functions, 

 ( ) ( ) ( ) ( )1 1,  .R RP f f R P R R− −= = ⋅r r f r f r   (6) 

In equation (6), this definition is illustrated for both scalar functions (such as charge, etc.) and 
vector functions (such as currents, electromagnetic fields, etc.). These transformation operators 

are commutative with the impedance operator ( )  , ;  ω′Z r r (see proof in Supplementary 



Discussion 3) used in the electric field volume integral equation, 

 ( ) ( ) ( ), ; , , .Z ω ω ω⋅ = incr r' J r' E r   (7) 

Combining the group’s irreducible representations and its transformation operators, we can 
further construct a set of projection operators 2–4 for the group under discussion, 

 ( )* .j
j j R

R

l
R P

h
= Γ∑   (8) 

In equation (8), a projection operator is characterized by the subscript j which marks an 
irreducible representation. Here, j may run from one to four. 𝑙𝑙𝑗𝑗  is the dimensionality for an 
irreducible representation and since every irreducible representation has a dimensionality of one, 
𝑙𝑙𝑗𝑗  is equal to one. Then, the summation is carried out with respect to all the symmetry operations. 
 

 

Supplementary Figure 7 Illustration of exemplary eigenmodes for the 4I structures. In the columns, we find 

eigenmodes that belong to the same irreducible representation. In all the plots, the top surface charge is shown and 

coded by the blue color and the yellow color to represent the negative and positive charge accumulations. 

 
A Mix of Modes and Symmetry: A Group Theoretical Approach 
Now, we are ready to combine the above discussions on the eigenvalue problem with group 



representation theory. On the one hand, all the eigenmodes can be categorized according to the 
irreducible representations (and hence the projection operators). Notice that in equation (8) the 
jth projection operator is defined for the jth irreducible representation 3,4, see an illustration of 
eigenmode categorization in Supplementary Figure 7. It is also known that the functions (for 
example, in the current case, the eigenmodes) that belong to different irreducible representations 
are orthogonal to each other in an inner product sense 2–4. The above is equivalent to saying that, 
according to irreducible representations, an eigenspace (in which one finds all the eigenmodes) 
can be split into several invariant subspaces (in which one finds all the eigenmodes belonging to 
an irreducible representation). 

On the other hand, we apply the projection operators to both sides of equation (7), 

 .= ⇔ = ⇔ =j j j j j jZJ E Z J E ZJ E      (9) 

In equation (9), the second step is established because the projection operator is a weighted sum 
of the transformation operators (see equation (8)) and the transformation operators (as defined 
in equation (6)) are commutative with the impedance operator.  𝐽𝐽𝑗𝑗 and  𝐸𝐸𝑗𝑗  are projected full 
solution currents and excitations due to the 𝑗𝑗𝑡𝑡ℎ  irreducible representation. equation (9) actually 
states that only the current and excitation that belong to the same irreducible representation are 
coupled with each other. Take the “left” structure excited by a left polarized light as an example. In 
Supplementary Figure 8, we demonstrate the absolute value of the top surface charge distribution 
(see Supplementary Figure 8a) and the 2-norm of the projected excitation (see Supplementary 
Figure 8b). There, it can be readily seen that since the excitation solely contains a component that 
belongs to the 3rd irreducible representation, only the current associated with the same irreducible 
representation is excited. 
 

 

Supplementary Figure 8 Illustration of projected full solutions (a) and the norm of the projected excitations (b) for 

the “left” structure. In (a), the color is coded from blue to yellow to represent the absolute value of the top surface 

charge distribution. In all the subplots of (a), the same color scale is employed. 



 

 
Supplementary Figure 9 Illustration of coupling coefficients of the left circularly polarized light (LCP, the blue bar) 

and the right circularly polarized light (RCP, the yellow bar) for the “left” structure. 

 
 Again, since the projected currents or the projected excitations belong to different irreducible 
representations, they are orthogonal to each other. As a result, the projected currents can only be 
reconstructed by the eigenmodes associated with the same irreducible representation. Hence, we 
can rewrite  

 ( ) ( ) ( ), ,ncω ω ω=∑ nJ r' J r'   (10) 

as 

 ( ) ( ) ( ), ,, , .ω ω ω=∑j j n jc nJ r' J r'   (11) 

In equation (11),  j represents a certain irreducible representation. In Supplementary Figure 9, 
for an irreducible representation, a sum is taken for the absolute value of all the coupling 
coefficients of the eigenmodes that are associated with this irreducible representation. It can be 
immediately seen from this figure that when a left circularly polarized light is used to irradiate the 
“left” structures, only the eigenmodes (the sum of whose coupling coefficients is marked by the 
blue strip) that belong to the 3rd irreducible representation are excited. However, when a right 
circularly polarized light is employed, only the eigenmodes (the sum of whose coupling coefficients 
is marked by the yellow strip) that are associated with the 4th irreducible representation are 
stimulated. 
 
  



Supplementary Discussion 3: On the commutative relation between an impedance operator and 
transformation operators  
 
In this section, we prove the fact the impedance operator 𝐙𝐙(𝐫𝐫, 𝐫𝐫′;ω) defined by, 
 

 ( ) ( ) ( ), ; , ,Z ω ω ω⋅ = incr r' J r' E r   (12) 

is indeed commutative with a transformation operator, 

 ( ) ( ) ( ) ( ), ; ' , ; ' .R RP PZ r Z rω ω⋅ ⋅=r r' J r r' J   (13) 

As we consider a specific frequency, in the following we will systematically suppress the frequency 
variable appearing in equation (5). We assume that the targeted structure holds some symmetry 
operation R. In accordance with this symmetry operation we can define a transformation operator 
which works on functions, for example, the current in equation (4), 
 

 ( ) ( )1 .RP R R−= ⋅J r' J r'   (14) 

 
In this work the structure is put on top of a glass substrate occupying the lower half space. 
Consequently, the symmetry operation and its corresponding transformation operator are actually 
confined to the x-y plane. For example, the symmetry operation can be represented by a matrix, 
 

 
0
0 .

0 0 1

xx xy

yx yy

R R
R R R

 
 =  
 
 

  (15) 

 
Especially, here we focus on two types of elementary transformations in the x-y plane: rotations 
about the origin by an angle θ and reflections about a line which makes an angle θ with the x axis,  
 

 
cos sin 0 cos2 sin 2 0
sin cos 0 ,  sin 2 cos2 0 .

0 0 1 0 0 1
rot reflR R

θ θ θ θ
θ θ θ θ

−   
   = = −   
   
   

  (16) 

 
In equation (16), the matrices are orthogonal matrices with a determinant either +1 or -1. Other 
more complex transformations, for example, inversions, can be constructed by combining the 
above two elementary operations. 

Moreover, due to the presence of the lower half space, we can split the dyadic Green’s function 
in equation (5) into two parts, that is, a direct wave part and a reflected wave part, 
 

 ( ) ( ) ( )0, , , .rG G G= +r r' r r' r r'   (17) 

 
For the direct field part, a closed form expression in the spatial domain is 
 



 ( ) ( )0 2 2, , .
ikreG I g I

k k r
∇∇ ∇∇   = + = +      

r r' r r'   (18) 

 
It can be seen from the last expression in equation (18) that 𝑔𝑔(𝒓𝒓, 𝒓𝒓′) is only dependent on the 
distance between observation and source point and thus can be replaced by  𝑔𝑔(|𝒓𝒓 − 𝒓𝒓′|) . 
Correspondingly, we apply the impedance operator that only regards the direct field interaction to 
an arbitrary current distribution that is operated on by a transformation operator 𝑃𝑃𝑅𝑅 , 
 

 ( ) ( ) ( ) ( )1
0 2, ' '.

V R V
dv d

k
vG P I g R R−∇∇ ⋅ + − ⋅ ⋅  

=∫ ∫r r' J r' r r' J r'   (19) 

 
To tackle equation (19), we perform a change of variables to the original source coordinate system, 
i.e. 𝐱𝐱′ = 𝑅𝑅−1𝒓𝒓′, 
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2 2

1
2

'd

'
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  (20) 

 
In the above derivation, we use the following facts:  
1) Since we have changed variables, a Jacobian must appear in combination with the infinitesimal 

element, that is, 𝑑𝑑𝑑𝑑′ =  |𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅)| ∙ 𝑑𝑑𝑑𝑑′. However, the symmetry operation R is represented by 
an orthogonal matrix. Since the absolute value of the determinant of an orthogonal matrix is 1, 
this term is dropped in the second expression. 

2) The integral limits in equation (20) are unchanged only because we assume that the structure 
is invariant under the symmetry operation R. 

3) To reach the last expression, we notice that any orthogonal transformation does not affect the 
distance between two points. 

Notice that the gradient operator in equation (20) is taken with respect to the original observation 
coordinate system. In the transformed coordinate, the gradient operator reads, 
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  (21) 



 ( )

( )

( )

( )

( )

( )

( )

( )1 .

X Y Zf f
x x x x X

X Y Zf R f f R f
y y y y Y

X Y Z ff Zz z z z

−

   ∂ ∂ ∂ ∂ ∂ 
     ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂ ∂    ∇ = = = ⋅∇    ∂ ∂ ∂ ∂ ∂

    ∂∂ ∂ ∂ ∂         ∂ ∂ ∂ ∂ ∂   

x

x x

r x x x

xx

  (22) 

 
Combining equation (21) and equation (22) with equation (20), the last expression in equation 
(20) becomes 
 

 ( ) ( ) ( ) ( )1 1
02 ' '.,

V V
R I g R R G Rd d

k
τ τ− −∇ ∇ ⋅ + − ⋅ ⋅ ⋅  

=∫ ∫x x r x' J x' r x' J x'   (23) 

 
In the derivation of equation (23), it is noticed that I is simply an identity operator. As a result, the 
commutative relation between the direct wave impedance part and the transformation operator is 
proved, 
 

 ( ) ( ) ( ) ( )0 0, ,' '.RV VRG P P Gdv dv⋅ ⋅=∫ ∫r r' J r' r r' J r'   (24) 

 
For the reflected wave part, we can express its corresponding Green’s function in the Cartesian 
coordinate system as well as in the cylindrical coordinate system, that is, 
 

 ( ) ( )/ /
, , , ' .

s p s p
r rG G z zϕ ρ= +r r'   (25) 

 
In equation (25), it is emphasized that the reflected wave is dependent on a relative angle φ, a 
transverse distance ρ and the sum of vertical distances 𝑧𝑧 + 𝑧𝑧′ between the observation point and 
the source point, 
 

 ( ) ( ) ( )tan  ϕ ρ−
= = − + −

−

2 2'
, ' ' .

'
y y

x x y y
x x

  (26) 

 
The superscript in equation (25) refers to the s-polarized and the p-polarized parts for the 
reflected wave. A closed form expression in the spatial domain reads, 
 

 
( ) ( )

( ) ( )

, ,

1 2

, , , '

cos2 sin 2 1 0
, ' , ' ,

sin 2 cos2 0 14 4

s s
r r

s s

G G z z

i iF z z F z z

ϕ ρ

ϕ ϕ
ρ ρ

ϕ ϕ

= +

   
= + + +   −   

r r'
 

  (27) 

 
( ) ( )

( ) ( )

, ,

1 2

, , , '

cos2 sin 2 1 0
, ' , ' .

sin 2 cos2 0 14 4

p p
r r

p p

G G z z

i iF z z F z z

ϕ ρ

ϕ ϕ
ρ ρ

ϕ ϕ

= +

   
= + − +   −   

r r'
 

  (28) 



 
In equation (27) and (28), the functions 𝐹𝐹1𝑠𝑠,𝐹𝐹2𝑠𝑠,𝐹𝐹1

𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹2
𝑝𝑝 are only dependent on the transverse 

and vertical distances and the detailed functional form of these functions are not of interest in this 
work. Note that equation (27) and (28) ignore the horizontal – vertical, vertical – horizontal, and 
vertical – vertical couplings, since they are not affected by the symmetry operations given in 
equation (15). 

Next, we apply the reflected wave Green’s function to an operated current, 
 

 ( ) ( ) ( ) ( )/ /
, ' '.,

s p s p
r rRV V

G P G Rd Rv R dv=⋅ ⋅ ⋅∫ ∫r r' J r' x x' J x'   (29) 

 
In equation (29) the same change of variables as in equation (20) is employed. To find a relation 
between the original and transformed coordinate system, it is noticed that the rotated source 
coordinate x’ and the rotated observation coordinate x have no effect on the vertical distance z + z′ 
and the transverse distance ρ, that is, ρ(𝒓𝒓, 𝒓𝒓′) = 𝜌𝜌(𝒙𝒙,𝒙𝒙′). However, the relative angle φ is altered, 
 
  for rotations,ϕ θ ϕ= + '   (30) 
  for reflections.ϕ θ ϕ= −2 '   (31) 

 
Combining the above observations and applying to the relative angle, the transverse distance and 
the vertical distance, we can re-write equation (27) and equation (28). Take equation (27) as an 
example, 
 

 
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

, ,

1 2

', , '

cos2 ' sin 2 ' 1 0
, ' , ' ,

sin 2 ' cos2 ' 0 14 4

,
s s
r r

s s

G G z z

i iF z z F

R R

z z

θ ϕ ρ

θ ϕ θ ϕ
ρ ρ

θ ϕ θ ϕ

= + +

+ +   
= + + +   + − +   

x x'
 

  (32) 

 
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

, ,

1 2

2 ', , '

cos2 2 ' sin 2 2 ' 1 0
, ' , ' .

sin 2 2 ' cos2 2 ' 04 4

,

1

s s
r r

s s

G G z z

i iF z z F z z

R R θ ϕ ρ

θ ϕ θ ϕ
ρ ρ

θ ϕ θ ϕ

= − +

− −   
= + + +   − − −   

x x'
 

 (33) 

 
equation (32) and (33) are respectively for rotation and reflection operations. As suggested by 
equation (29), we right-multiply equation (32) and (33) by R. It can be proven that 
 

 ( ) ( )
( ) ( )

cos2 ' sin 2 ' cos sin cos sin cos2 ' sin 2 '
.

sin 2 ' cos2 ' sin cos sin cos sin 2 ' cos2 '
θ ϕ θ ϕ θ θ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ θ θ ϕ ϕ
+ + − −     

=      + − + −     
  (34) 

 ( ) ( )
( ) ( )

cos2 2 ' sin 2 2 ' cos2 sin 2 cos2 sin 2 cos2 ' sin 2 '
.

sin 2 2 ' cos2 2 ' sin 2 cos2 sin 2 cos2 sin 2 ' cos2 '
θ ϕ θ ϕ θ θ θ θ ϕ ϕ
θ ϕ θ ϕ θ θ θ θ ϕ ϕ
− −      

=      − − − − − −     
 

 (35) 
 
Subsequently, we have 
 

 ( ) ( ), ,, .,
s s
r rR RG R R G⋅ = ⋅x x' x x'
 

  (36) 



 
Similar proofs can be constructed for the p-polarized light as well. Substituting equation (36) into 
equation (29) immediately gives, 
 

 ( ) ( ) ( ) ( ) ( ) ( )/ / /
' ' ', , , .

s p s p s p
r r rR RV V V

dv R dG P G Gv P dv⋅ ⋅ ⋅= ⋅ =∫ ∫ ∫r r' J r' x x' J x' r r' J r'   (37) 

 
Hence, the commutative relation between the dyadic Green’s function used in this work and the 
rotation and reflection symmetry operations is proved.  
 
 
  



Supplementary Discussion 4: On the Symmetry of the Square Structures 
 

 

Supplementary Figure 10 Illustration of symmetry operations in the 𝐶𝐶4 group (a) and the 𝐶𝐶4𝑣𝑣 group (c) and the 

groups’ character tables (b and d). 

By comparing Supplementary Figure 10 (a) with (c) and Supplementary Figure 10 (b) with (d), we 
can readily see that the  𝐶𝐶4𝑣𝑣 group actually includes all the symmetry operations that are in 
the 𝐶𝐶4 group. Therefore, an irreducible representation of the 𝐶𝐶4𝑣𝑣 group is still a representation of 
the  𝐶𝐶4 group if only the identity operation and the rotation operations  𝐶𝐶4,𝐶𝐶2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶43 are 
considered. But this representation is in general a reducible representation of the 𝐶𝐶4 group. The 
fact that the 𝐶𝐶4 group has a lower symmetry may indicate that the 2-fold degeneracy suggested by 
the 𝐶𝐶4𝑣𝑣 group may be lifted. How this degeneracy is lifted can be answered by checking how many 
times the irreducible representations of the 𝐶𝐶4 group is included in a reducible representation. 

Mathematically, the number of times can be calculated by referring to the characters 3, 
 

 ( )
( ) ( ) ( ) ( ) ( )*

'

1
.

i j i

G Gj
R

a R R
h

χ χ= ∑   (38) 

 
In equation (38),  𝑎𝑎 represents the number of times the jth irreducible representation of 
the 𝐺𝐺′ group appearing in the ith reducible representation of the 𝐺𝐺 group. In the current scenario, 
the 𝐺𝐺′ group and the 𝐺𝐺 group are the 𝐶𝐶4 group and the 𝐶𝐶4𝑣𝑣 group. Furthermore, the sum is taken 
over all the symmetry operations (in total ℎ) in the 𝐺𝐺’ group. χ is the character of a representation 
and is defined as the sum of the diagonal elements of a representation. 

In the following, we find that how many times  𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾4 (the irreducible 
representations of the 𝐶𝐶4  group) are included in  Γ1, Γ2,Γ3, Γ4 𝑎𝑎𝑎𝑎𝑎𝑎 Γ5 (the irreducible 



representations of the 𝐶𝐶4𝑣𝑣 group) respectively. Since Γ1 and Γ2 have the same representation for the 
identity and the rotation operations, they can be treated together, 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1

1 2

2

1 2

3

1 2

4

/

/

/

/

1
1 1 1 1 1 1 1 1 1,

4
1

1 1 1 1 1 1 1 1 0,
4
1

1 1 1 1 1 1 0,
4
1

1 1 1 1 1 1 0.
4

a

a

a i i

a i i

γ

γ

γ

γ

Γ Γ

Γ Γ

Γ Γ

Γ Γ

 = + ⋅ + + + ⋅ + + + ⋅ + + + ⋅ + = 

 = + ⋅ + + − ⋅ + + + ⋅ + + − ⋅ + = 

 = + ⋅ + + − ⋅ + + − ⋅ + + + ⋅ + = 

 = + ⋅ + + + ⋅ + + − ⋅ + + − ⋅ + = 

  (39) 

 
For Γ3 and Γ4, we obtain 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 4

1

3 4

2

3 4

3

3 4

3

/

/

/

/

1
1 1 1 1 1 1 1 1 0,

4
1

1 1 1 1 1 1 1 1 1,
4
1

1 1 1 1 1 1 0,
4
1

1 1 1 1 1 1 0.
4

a

a

a i i

a i i

γ

γ

γ

γ

Γ Γ

Γ Γ

Γ Γ

Γ Γ

 = + ⋅ + + + ⋅ − + + ⋅ + + + ⋅ − = 

 = + ⋅ + + − ⋅ − + + ⋅ + + − ⋅ − = 

 = + ⋅ + + − ⋅ − + − ⋅ + + + ⋅ − = 

 = + ⋅ + + + ⋅ − + − ⋅ + + − ⋅ − = 

  (40) 

 
For Γ5, we have 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

5

1

5

2

5

3

5

4

1
1 2 1 0 1 2 1 0 0,

4
1

1 2 1 0 1 2 1 0 0,
4
1

1 2 0 1 2 0 1,
4
1

1 2 0 1 2 0 1.
4

a

a

a i i

a i i

γ

γ

γ

γ

Γ

Γ

Γ

Γ

 = + ⋅ + + + ⋅ + + ⋅ − + + ⋅ = 

 = + ⋅ + + − ⋅ + + ⋅ − + − ⋅ = 

 = + ⋅ + + − ⋅ + − ⋅ − + + ⋅ = 

 = + ⋅ + + + ⋅ + − ⋅ − + − ⋅ = 

  (41) 

 
Based on the above equations, when all the mirroring symmetries are removed, Γ1/Γ2 of 
the  𝐶𝐶4𝑣𝑣 group will become the first irreducible representation  𝛾𝛾1 of the  𝐶𝐶4 group. Similarly, 
Γ3/Γ4 of the 𝐶𝐶4𝑣𝑣 group will form the irreducible representation 𝛾𝛾2 of the 𝐶𝐶4 group. Lastly, the 2-
dimensional irreducible representation  Γ5 of the  𝐶𝐶4𝑣𝑣 group breaks into the irreducible 
representations  𝛾𝛾3 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾4 of the  𝐶𝐶4 group. In this way, we can properly link the eigenmodes 
associated with different irreducible representations of the  𝐶𝐶4 group with the eigenmodes 
associated with different irreducible representations of the 𝐶𝐶4𝑣𝑣 group. 

It is known that a projection operator can be defined for the ith irreducible representation of 
a group G 3, 
 

 ( )
( )

( ) ( )* .
i

i iG
G G R

RG

l
R P

h
χ= ∑   (42) 



 
In equation (42), 𝑙𝑙𝐺𝐺

(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝐺𝐺  are the dimensionality of the ith irreducible representation of a group 
G and the number of elements in the group. 𝜒𝜒𝐺𝐺

(𝑖𝑖)(𝑅𝑅) and 𝑃𝑃𝑅𝑅  are the character of the ith irreducible 
representation and the transformation operator for a symmetry operation in the group. Lastly, the 
summation is conducted with respect to all the symmetry operations in the group. Following 
Wigner’s convention 3, the transformation operator is defined as, 
 

 ( ) ( ) ( ) ( )1 1, .
R R

P f f R P R R− −= = ⋅x x f x f x   (43) 

 
In equation (43), the first equation and the second equation are for scalar and vector functions, 
respectively. Here, we especially focus on the 5th irreducible representation of the  𝐶𝐶4𝑣𝑣 group. 
equation (42) reads, 
 

 ( ) ( ) ( ) ( )5 5 5 5 5
3

4 4 4 4 4 2 4 4

** * * 3
4 2 4

1
.

4v v v v vC C E C C C C C C
E P C P C P C Pχ χ χ χΓ Γ Γ Γ Γ = ⋅ + ⋅ + ⋅ + ⋅ 

 
   (44) 

 
In equation (44) the mirroring operations are omitted because 1) they are not the elements that 
are shared by the 𝐶𝐶4𝑣𝑣 group and the 𝐶𝐶4 group; 2) their characters are zero. Further, we notice that 
the characters of the 5th irreducible representation of the 𝐶𝐶4𝑣𝑣 group can be expressed in terms of 
the characters of the irreducible representations of the 𝐶𝐶4 group 3, 
 

 ( ) ( ) ( ) ( ) ( )5 5 1 5 2 5 3 5 4

4 1 4 2 4 3 4 4 4
.

vC C C C C
R a R a R a R a Rγ γ γ γ

γ γ γ γχ χ χ χ χΓ Γ Γ Γ Γ= ⋅ + ⋅ + ⋅ + ⋅   (45) 

 
Substituting equation (45) into equation (44), we recollect all the terms according to the 
irreducible representations, 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 1 5 2 5 3 5 4

4 1 4 2 4 3 4 4 4

5 5 5 5

1 4 2 4 3 4 4 4

* * * *

1 2 3 4

1
4

.

vC C R C R C R C R
R R R R

C C C C

a R P a R P a R P a R P

a a a a

γ γ γ γ
γ γ γ γ

γ γ γ γ

χ χ χ χΓ Γ Γ Γ Γ

Γ Γ Γ Γ

 
= ⋅ + ⋅ + ⋅ + ⋅ 

 
= ⋅ + ⋅ + ⋅ + ⋅

∑ ∑ ∑ ∑

   
 

 (46) 
 
In the derivation of the last equation in equation (46), the definition for the projection operation 
in equation (42) is reused. By noticing the results from the above, we can conclude that 
 

 ( ) ( ) ( )
4 4 4

5 3 4
.

vC C C
= +     (47) 

Since 1) the application of the projection operator ( )
4

5

vC
  on the left hand side of equation (47) to 

all the eigenmodes of the four square structure actually give the modes that belong to the 5th 

irreducible representation and 2) the projection operator ( )
4

5

vC
  is the sum of two operators that 



are associated with the 3rd and 4th irreducible representations of the four bar structure, the 
projected eigenmodes should be a mix of the eigenmodes that belong to the 3rd and 4th irreducible 
representations of the four bar structure. Consequently, the excitation of a mode in the four square 
structure by a circularly polarized light will introduce the response from both the “left” mode and 
the “right” mode. 
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