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Abstract: To asses the sensitivity for non-random dropout in a selection model
framework, several methods were developed. None of them are without limita-
tions. In this paper, a new method called kernel weighted influence is proposed. It
uses several features of global and local influence approaches. Together with the
use of nonparametric techniques, it provides a challenging new technique with a
variety of options.
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1 Introduction

In a longitudinal study, each unit is measured on several occasions. It is not
unusual for some sequences of measurements to terminate early for reasons
outside the control of the investigator, any unit so affected is often called a
dropout. Little and Rubin (1987) make important distinctions between dif-
ferent missing values processes. A dropout process is said to be completely
random (MCAR) if the dropout is independent of both unobserved and
observed data and random (MAR) if, conditional on the observed data,
the dropout is independent of the unobserved measurements; otherwise the
dropout process is termed non-random (MNAR) or non-ignorable.

To represent such a model, Diggle and Kenward (1994) proposed a selection
model which consists of two parts: a measurement part and a missingness
process part. Such a model, which tries to represent a non-random dropout
mechanism, relies on strong and untestable assumptions. Not only the as-
sumed distributional form can be misspecified but also the presence of
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influential observations can have a large impact. Two well known methods
to investigate the influence of individual cases are global influence, based on
case-deletion, and local influence, where the model is slightly perturbed to
study the stability of the model, as is done by Lesaffre and Verbeke (1998).
In Thijs et al (2000), Molenberghs et al (2001) and Verbeke et al (2001), the
latter method was used to investigate the influence of non-random missing-
ness as part of a sensitivity analysis in the selection modeling framework. In
the next sections these methods will be introduced briefly and an extension
will be proposed.

2 A Selection Model for Non-Random Dropout

Let us assume that for subject i, i = 1, · · · , N , a sequence of responses Yij

is measured at two occasions j = 1, 2. Let Ri be a missingness indicator
and assume that yi1 is always observed. Then ri = 1 if yi2 is missing and
ri = 0 if yi2 is observed. The measurement part of the model of Diggle and
Kenward (1994), which is in fact a linear mixed model, is given by

Yi = (Yi1, Yi2) ª N(XiØ, Vi), i = 1, . . . , N,

where Ø is a vector of fixed effects and Vi = ZiGZ
0

i + Σi. The Xi and Zi

contain covariate values. The missingness process is described by

logit[Pr(Ri = 1|yi1, yi2)] = √
0

+ √
1

yi1 + √
2

yi2,

where Pr(Ri = 1|yi1, yi2) is the probability for the ith subject to drop out.
If √

2

differs from zero, the missingness process is non-random.

3 Influence Measures

3.1 Kernel Weights

Classical influence measures like the global influence and local influence
approach are essentially based on cases. Global influence was based on the
calculation of likelihood displacements when cases are left out one by one. In
a local influence approach, one strategy is to examine the normal curvature
in the direction of each observation. Our proposal is to extend these two
approaches by looking in the neighborhood of the outcomes (y

1i, y2i, ri).
Therefore we introduce the following weights. If ri = 0,
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and if ri = 1,

wi(y1j , y2j , rj) =
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where K is a gaussian kernel function, h
1

and h
2

are two possibly different
bandwidths and rj is the missingness indicator for subject j. The moti-
vation of the weights is as follows. If ri = 0, (y

1i, y2i) is a completer and
all completers in the neighborhood get low weight. All other subjects get
high weight, including the dropouts. If ri = 1, y

2i is not observed and all
dropouts in the neighborhood are given low weight, while all other subjects
get high weight.

3.2 Kernel Weighted Global Influence

Let us introduce a weighted loglikelihood

l(∞; wi) =
N

X

j=1

wij lj(∞),

with ∞ = (µ,√), grouping the parameters of the measurement and dropout
model and wij the jth component of the vector wi. The global influ-
ence measure CDi compares the loglikelihood l(∞) =

PN
j=1

lj(∞) with the
weighted loglikelihood l(∞;wi) with wi = (1, . . . , 1, 0, 1, . . . , 1) where the 0
is located at the ith entry. Thus CDi is given by

CDi = 2[l(∞̂)° l(∞̂
(°i); wi)]. (1)

To explore a neighbourhood of the outcome (y
1j , y2j , rj), one can look at

a vector wi where the jth component obtains weight wij = wi(y1j , y2j , rj)
as introduced in Section 3.1. This extension of the well known global in-
fluence approach is able to allocate groups of influential cases with similar
outcomes, thus avoiding the problem of masking.

3.3 Kernel Weighted Local Influence

The principle is to investigate how the results of an analysis are changed
under infinitesimal perturbations of the model. Analytically this method
looks locally on the MNAR parameter in the dropout model. Let us denote
this MNAR parameter by !. The MAR assumption corresponds to the case
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where ! equals the null vector, denoted by !
0

. The likelihood displacement
then considered is given by

LD(!) = 2[l(∞̂|!
0

)° l(∞̂!|!0

)]

with

l(∞|!) =
N

X

i=1

li(∞|!i).

This takes into account the variability of b∞. Indeed, LD(!) will be large
if `(∞|!

0

) is strongly curved at b∞, which means that ∞ is estimated with
high precision, and small otherwise. Cook (1986) proposed to look at local
influence, i.e., at the normal curvatures Ch in the direction of some N
dimensional vector h of unit length. One evident choice is the vector hi

containing 1 in the ith position and 0 elsewhere, corresponding to the
perturbation of the ith weight only. This reflects the influence of allowing
the ith subject to drop out non-randomly, while the others can only drop
out at random. The local influence approach can be extended by looking at
hi where the jth component equals 1 ° wi(y1j , y2j , rj) with wi as defined
in Section 3.1. This method is more general and can provide new insights
in the method of local influence.

4 The Mastitis Data

In the mastitis dataset the reduction in milk yield from cows who suffer
from an infectious disease of the udder is registered. At two different time-
points 107 cows were followed. There were 20 dropouts. A kernel weighted
global influence analysis with bandwidths h

1

= h
2

= 0.2 on this data leads
to the following influential subjects. The cows corresponding to numbers

4, 5, 54, 66, 69 and 89 seem to have a large influence. Subjects 54 and 69
were not found with the classical global influence, due to masking.
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