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Abstract: In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds
of constant φ-sectional curvature. For such submanifold, we investigate curvature properties.
We establish some inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants)
and the scalar curvature (intrinsic invariant). Moreover, we prove that the equality cases of the
inequalities hold if and only if the imbedding curvature tensors h and h∗ of the submanifold
(associated with the dual connections) satisfy h = −h∗, i.e., the submanifold is totally geodesic
with respect to the Levi–Civita connection.
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1. Introduction

A fundamental problem in the general theory of Riemannian submanifolds is to establish
simple relationships between the main intrinsic invariants and the main extrinsic invariants of the
submanifolds [1]. Obviously, such simple relationships can be provided by certain types of inequalities.
Furthermore, the investigation of ideal submanifolds in a space form, namely the study of submanifolds
satisfying the equality case of such inequalities, is another basic problem of this field [2].

On one hand, it is well known that the theory of Chen invariants provides solutions to these
problems. Chen proved initially in [1] some optimal inequalities between the intrinsic δ-curvatures of
Chen and the extrinsic squared mean curvature of submanifolds in a real space form. Later, these sharp
inequalities (called Chen inequalities) have been extended for different types of submanifolds in various
ambient spaces, for example, arbitrary Riemannian manifolds, Kähler manifolds, and Kenmotsu space
forms (see [3] and the references therein). The Chen ideal submanifolds have also been investigated,
i.e., the submanifolds that do realize an optimal equality in Chen inequalities (see, e.g., the recent
work [4]).
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On the other hand, the study of δ-Casorati curvatures, initiated in [5,6], offers new solutions to
the above problems. The Casorati curvature is a concept preferred by Casorati over the traditional
Gauss curvature and the mean curvature because it corresponds better with the common intuition
of curvature [7]. Koenderink [8] and Verstraelen [9] studied the meaning of the Casorati curvature in
geometry and other fields, like human/computer vision. Notice that some results in terms of isotropical
Casorati curvature of production surfaces were obtained in [10]. A geometrical interpretation of
the Casorati curvature of submanifolds in Riemannian manifolds was given in [11]. Very recently,
Brubaker et al. [12] gave a geometric interpretation of Cauchy–Schwarz inequality in terms of Casorati
curvature. The first optimal inequalities involving the extrinsic δ-Casorati curvatures and the intrinsic
scalar curvature of submanifolds in real space forms were proved in [5,6]. Later, this knowledge has
been extended (e.g., see [13–19]). Submanifolds for which these equalities hold are called Casorati ideal
submanifolds. Recently, Lee et al. [20] studied optimal inequalities in terms of δ-Casorati curvatures
of submanifolds in Kenmotsu space forms. We recall that the Kenmotsu geometry is an area of contact
geometry initiated by Kenmotsu in [21], with many applications, e.g., in physics (geometrical optics,
classical mechanics, thermodynamics, geometric quantization) and control theory [22]. This geometry
arose in a natural way in the paper [21], where the author proposed to investigate the geometric
properties of the warped product of the complex space with the real line. It is indeed a natural problem
since this product is one of the three classes in Tanno’s classification of connected almost contact
Riemannian manifolds with an automorphism group of maximum dimension [22].

In 1985, Amari defined the notions of statistical manifold and conjugate connection in the basic
study on information geometry [23]. It is well known that there is a deep relationship between
statistical manifolds and entropy [24]. We notice that a characterization of the class of statistical
manifolds having coordinate systems for which the relative entropy (Kullback–Leibler divergence)
is a Bregman divergence was obtained by Nagaoka [25]. On the other hand, Dillen et al. studied
in [26] the conjugate (dual) connections on a semi-Riemannian manifold. Moreover, the authors found
in [26] a new formulation of Radon’s theorem in affine differential geometry, proving a necessary
and sufficient condition for the existence of an affine immersion which realizes the induced affine
connection and the induced affine second fundamental form. The geometry of statistical manifolds also
provides interesting issues for differential geometry, statistics, machine learning, etc. (see, e.g., [27–32]).
In particular, the differential geometry field is focused on topics such as submanifold theory of
statistical manifolds [33], Hessian geometry [34], statistical submersions [35], complex manifold theory of
statistical manifolds ([29,36,37]), contact theory on statistical manifolds [38], and quaternionic theory on
statistical manifolds [39]. For the above problems, Aydin et al. obtained Chen–Ricci inequalities [40] and
a generalized Wintgen inequality [41] for submanifolds in statistical manifolds of constant curvature.
Moreover, Lee et al. established optimal inequalities involving the Casorati curvatures and the
normalized scalar curvature on submanifolds of statistical manifolds of constant curvature [42].
These inequalities were extended by Aquib and Shahid [43] in the setting of statistical submanifolds
in quaternion Kähler-like statistical space forms. On the other hand, Mihai et al. [44] proved an Euler
inequality and a Chen–Ricci inequality for statistical submanifolds of Hessian manifolds of constant
Hessian curvature.

Recently, Furuhata et al. [45] introduced the concept of Kenmotsu statistical manifold, which is
locally obtained as the warped product of a holomorphic statistical manifold and a line. They proved
that a Kenmotsu statistical manifold of constant φ-sectional curvature is constructed from a special
Kähler manifold, which is an important example of holomorphic statistical manifold. In this respect,
the authors considered the warped product of two statistical manifolds and investigated the statistical
sectional curvature of this warped product. Then, they equipped a Kenmotsu manifold with a
natural affine connection and studied how to construct a Kenmotsu statistical manifold of constant
φ-sectional curvature as the warped product of a holomorphic statistical manifold and a line. It would
thus be of interest to study inequalities concerning the extrinsic δ-Casorati curvatures for statistical
submanifolds in Kenmotsu statistical manifolds. In this article, we establish inequalities in terms
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of the extrinsic normalized δ-Casorati curvatures and the intrinsic scalar curvature of statistical
submanifolds in Kenmotsu statistical manifolds of constant φ-sectional curvature. The methodology
is based on a constrained extremum problem. Furthermore, we study the equality cases. We derive
that the equality at all points characterizes the submanifolds that are totally geodesic with respect to
the Levi–Civita connection.

2. Preliminaries

Let (M̄, ḡ) be a (2n + 1)-dimensional Riemannian manifold with an affine connection ∇̄.
Denote by Γ(E) the set of sections of a vector bundle E → M̄, e.g., Γ(TM̄(p,q)) means the set of
all tensor fields on M̄ of type (p, q). Let T̄ ∈ Γ(TM̄(1,2)) be the torsion tensor field of ∇̄. A pair (∇̄, ḡ) is
called a statistical structure [45] on M̄ if (1) the torsion tensor field T̄ of ∇̄ vanishes and (2) the Codazzi
equation (∇̄X ḡ)(Y, Z) = (∇̄Y ḡ)(X, Z) holds for any X, Y, Z ∈ Γ(TM̄). Any connection ∇̄ satisfying
the condition ∇̄XY− ∇̄YX = XY−YX for X, Y ∈ Γ(TM̄) is called torsion-free.

A statistical manifold [33] is a Riemannian manifold (M̄, ḡ) in which there exists a pair of
torsion-free affine connections ∇̄ and ∇̄∗ that satisfy

Z ḡ(X, Y) = ḡ(∇̄ZX, Y) + ḡ(X, ∇̄∗ZY),

for any X, Y, Z ∈ Γ(TM̄). The statistical manifold is denoted by the triplet (M̄, ḡ, ∇̄). The connections
∇̄ and ∇̄∗ are called dual connections.

Remark 1. If (M̄, ḡ, ∇̄) is a statistical manifold, then we notice as follows:

1. (∇̄∗)∗ = ∇̄.
2. (M̄, ḡ, ∇̄∗) is also a statistical manifold.
3. Any torsion-free affine connection ∇̄ always has a dual connection ∇̄∗ performing

∇̄+ ∇̄∗ = 2∇̄0, (1)

where ∇̄0 denotes the Levi–Civita connection on M̄.

Let M be an (m + 1)-dimensional submanifold of a (2n + 1)-dimensional statistical manifold
(M̄, ḡ) and g the induced metric on M. Then, the Gauss formulas are as follows:

∇̄XY = ∇XY + h(X, Y),

∇̄∗XY = ∇∗XY + h∗(X, Y),

for any X, Y ∈ Γ(TM), where h and h∗ are symmetric (0, 2)-tensors, called the imbedding curvature
tensor of M in M̄ for ∇̄, and the imbedding curvature tensor of M in M̄ for ∇̄∗, respectively.

Denote by R and R̄ the curvature tensors fields associated with ∇ and ∇̄, respectively. Then the
Gauss equation for the submanifold M of M̄ (with respect to the connection ∇̄) is [33]

ḡ(R̄(X, Y)Z, W) = g(R(X, Y)Z, W) + ḡ(h(X, Z), h∗(Y, W))− ḡ(h∗(X, W), h(Y, Z)), (2)

for any X, Y, Z, W ∈ Γ(TM).
Similarly, if R∗ and R̄∗ denote the curvature tensors fields associated with the connections∇∗ and

∇̄∗, respectively, then the Gauss equation with respect to the connection ∇̄∗ is [33]

ḡ(R̄∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + ḡ(h∗(X, Z), h(Y, W))− ḡ(h(X, W), h∗(Y, Z)), (3)

for any X, Y, Z, W ∈ Γ(TM).
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If (M̄, ḡ, ∇̄) is a statistical manifold and M is a submanifold of M̄, then (M, g,∇) is also a statistical
manifold with the induced connection ∇ and the induced metric g.

For a statistical manifold (M, g,∇), the tensor field S ∈ Γ(TM(1,3)) called the statistical curvature
tensor field of (M, g,∇) is defined as [46]:

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}, (4)

for X, Y, Z ∈ Γ(TM).
For a statistical structure (ḡ, ∇̄) on M̄, we set K̄ = ∇̄ − ∇̄0 according to [45], which implies:

∇̄ = ∇̄0 + K̄. (5)

It follows that the tensor field K̄ ∈ Γ(TM̄(1,2)) satisfies

K̄XY = K̄YX, g(K̄XY, Z) = g(Y, K̄XZ),

for any X, Y, Z ∈ Γ(TM̄). We denote
K̄XY = K̄(X, Y).

Let π = spanR{v, w} be a two-dimensional subspace of Tp M, for p ∈ M. The sectional curvature
of M for π is defined by [46]:

σ(π) =
g(S(v, w)w, v)

g(v, v)g(w, w)− g2(v, w)
. (6)

Let {e1, ..., em+1} be an orthonormal basis of the tangent space Tp M, for p ∈ M, and let
{em+2, ..., e2n+1} be an orthonormal basis of the normal space T⊥p M. The scalar curvature τ at p is
given by

τ(p) = ∑
1≤i<j≤m+1

σ(ei ∧ ej) = ∑
1≤i<j≤m+1

g(S(ei, ej)ej, ei), (7)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
. (8)

The mean curvature vector fields of M, denoted by H and H∗, are given by:

H =
1

m + 1

m+1

∑
i=1

h(ei, ei), H∗ =
1

m + 1

m+1

∑
i=1

h∗(ei, ei).

We remark that, from Equation (1), we derive 2h0 = h+ h∗ and therefore 2H0 = H + H∗, where h0

and H0 are the second fundamental form and the mean curvature field of M, respectively, with respect
to the Levi–Civita connection ∇0 on M.

Then, the squared mean curvatures of the submanifold M in M̄ are calculated by:

‖H‖2 =
1

(m + 1)2

2n+1

∑
α=m+2

(
m+1

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1

(m + 1)2

2n+1

∑
α=m+2

(
m+1

∑
i=1

h∗αii

)2

,

where hα
ij = ḡ(h(ei, ej), eα) and h∗αij = ḡ(h∗(ei, ej), eα), for i, j ∈ {1, ..., m + 1}, α ∈ {m + 2, ..., 2n + 1}.
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The Casorati curvatures of the submanifold M in M̄ are defined by the squared norms of h and h∗

over the dimension (m + 1), denoted by C and C∗, respectively, as follows:

C = 1
m + 1

‖h‖2 =
1

m + 1

2n+1

∑
α=m+2

m+1

∑
i,j=1

(
hα

ij

)2
,

C∗ = 1
m + 1

‖h∗‖2 =
1

m + 1

2n+1

∑
α=m+2

m+1

∑
i,j=1

(
h∗αij

)2
.

Let L be an s-dimensional subspace of Tp M, s ≥ 2 and let {e1, . . . , es} be an orthonormal basis of
L. Hence, the Casorati curvatures C(L) and C∗(L) of L are given by:

C(L) =
1
s

2n+1

∑
α=m+2

s

∑
i,j=1

(
hα

ij

)2
, C∗(L) =

1
s

2n+1

∑
α=m+2

s

∑
i,j=1

(
h∗αij

)2
.

The normalized δ-Casorati curvatures δC(m) and δ̂C(m) of the submanifold Mn are given by

δC(m)|p =
1
2
C |p +

m + 2
2(m + 1)

inf{C(L)|L a hyperplane of Tp M}

and
δ̂C(m)|p = 2C |p −

2m + 1
2(m + 1)

sup{C(L)|L a hyperplane of Tp M}.

Similarly, we can define the dual normalized δ∗-Casorati curvatures δ∗C(m) and δ̂∗C(m) of the
submanifold M in M̄, just replacing C by C∗ in the last two relations:

δ∗C(m)|p =
1
2
C∗ |p +

m + 2
2(m + 1)

inf{C∗(L)|L a hyperplane of Tp M}

and
δ̂∗C(m)|p = 2C∗ |p −

2m + 1
2(m + 1)

sup{C∗(L)|L a hyperplane of Tp M}.

The generalized normalized δ-Casorati curvatures δC(r; m) and δ̂C(r; m) of M in M̄ are defined in [6] as:

δC(r; m)|p = r C |p +a(r) inf{C(L) | L a hyperplane of Tp M},

if 0 < r < m(m + 1), and

δ̂C(r; m)|p = r C |p +a(r) sup{C(L) | L a hyperplane of Tp M},

if r > m(m + 1), whereby a(r) is set as

a(r) =
m(r + m + 1)(m2 + m− r)

(m + 1)r
,

for any positive real number r, different from m(m + 1).
Moreover, the dual generalized normalized δ∗-Casorati curvatures δ∗C(r; m) and δ̂∗C(r; m) of the

submanifold M in M̄ are given by:

δ∗C(r; m)|p = r C∗ |p +a(r) inf{C∗(L) | L a hyperplane of Tp M},

if 0 < r < m(m + 1), and

δ̂∗C(r; m)|p = r C∗ |p +a(r) sup{C∗(L) | L a hyperplane of Tp M},
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if r > m(m + 1), whereby a(r) is set above.
Obviously, the (dual) generalized normalized δ- and δ∗-Casorati curvatures are a natural

generalization of the (dual) normalized δ- and δ∗-Casorati curvatures, due the fact that δC(m), δ̂C(m),
δ∗C(m) and δ̂∗C(m) can be recovered from δC(r; m), δ̂C(r; m), δ∗C(r; m) and δ̂∗C(r; m), respectively, for
some particular values of r as follows:

δC(m) =
1

m(m + 1)
δC

(
m(m + 1)

2
; m
)

, δ̂C(m) =
1

m(m + 1)
δ̂C (2m(m + 1); m) , (9)

δ∗C(m) =
1

m(m + 1)
δ∗C

(
m(m + 1)

2
; m
)

, δ̂∗C(m) =
1

m(m + 1)
δ̂∗C (2m(m + 1); m) . (10)

We recall that a statistical submanifold (M, g,∇) in (M̄, ḡ, ∇̄) is called totally geodesic with respect
to the connection ∇̄ if the second fundamental form h of M for ∇̄ vanishes identically [46].

Consider that (M̄, ḡ) is a (2n + 1)-dimensional almost contact metric manifold with the structure
tensors (ḡ, φ, ξ), where ḡ ∈ Γ(TM̄(0,2)) is the Riemannian metric on M̄, φ ∈ Γ(TM̄(1,1)), ξ ∈ Γ(TM̄).
These structure tensors satisfy:

φξ = 0, ḡ(ξ, ξ) = 1, φ2X = −X + η(X)ξ, ḡ(φX, Y) + ḡ(X, φY) = 0,

where η is a 1-form on M̄ such that η(X) = ḡ(X, ξ), for any X, Y ∈ Γ(TM̄).
The almost contact metric manifold (M̄, ḡ) is said to be a Kenmotsu manifold if the formulas:

(∇̄0
Xφ)(Y) = ḡ(φX, Y)ξ − η(Y)φX,

∇̄0
Xξ = X− η(X)ξ

hold for any X, Y ∈ Γ(TM̄).
We outline that the Kenmotsu geometry turns out to be a valuable chapter of contact geometry

with many applications in theoretical physics, providing an excellent setting to model space time near
black holes or bodies with large gravitational fields [47]. One reason to study the Kenmotsu manifolds
is that this class of manifolds is one of the three classes in Tanno’s classification of connected almost
contact metric manifolds whose automorphism group has a maximum dimension. Another reason is
that these manifolds are in some sense complementary to Sasaki manifolds: while some properties of
Kenmotsu manifolds can be obtained deforming slowly properties of Sasaki manifolds, others are very
different [22].

Denote (M̄, ḡ, φ, ξ) a Kenmotsu manifold and let (∇̄, ḡ) be a statistical structure on M̄,
where ∇̄ = ∇̄0 + K̄ is given as in Equation (5). A quadruple (∇̄, ḡ, φ, ξ) is called a Kenmotsu statistical
structure [45] on M̄ if the relation:

K̄(X, φY) + φK̄(X, Y) = 0

holds for any X, Y ∈ Γ(TM̄).
A manifold equipped with a Kenmotsu statistical structure is called a Kenmotsu statistical manifold.

Notice that if (M̄, ∇̄, ḡ, φ, ξ) is a Kenmotsu statistical manifold, then (M̄, ∇̄∗, ḡ, φ, ξ) is too.
A Kenmotsu statistical manifold (M̄, ∇̄, ḡ, φ, ξ) is of constant φ-sectional curvature c if and

only if [45]:
S̄(X, Y)Z = c−3

4 {ḡ(Y, Z)X− ḡ(X, Z)Y)}
+ c+1

4 {ḡ(φY, Z)φX− ḡ(φX, Z)φY− 2ḡ(φX, Y)φZ
− ḡ(Y, ξ)ḡ(Z, ξ)X + ḡ(X, ξ)ḡ(Z, ξ)Y
+ ḡ(Y, ξ)ḡ(Z, X)ξ − ḡ(X, ξ)ḡ(Z, Y)ξ},

(11)

for any X, Y, Z ∈ Γ(TM̄).
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Let M be an (m + 1)-dimensional statistical submanifold of a Kenmotsu statistical manifold
(M̄, ∇̄, ḡ, φ, ξ). Then, any vector field X tangent to M can be decomposed uniquely into its tangent
and normal components PX and FX, respectively, thus:

ΦX = PX + FX. (12)

Given a local orthonormal frame {e1, e2, · · · , em+1} of M, then the squared norm of P is
expressed by:

‖P‖2 =
m+1

∑
i,j=1

g2(Pei, ej).

Next, we consider the constrained extremum problem

min
x∈M

f (x). (13)

The Hessian of the function f on the manifold M̄ is defined by the (0, 2)-tensor:

Hess( f )(X, Y) = X(Y( f ))− (∇̄0
XY)( f ),

where ∇̄0 is the Levi–Civita connection on M̄. We recall the following result.

Theorem 1. If the submanifold M is complete and connected, in addition to the gradient of f being normal at a
point p to M, and the bilinear form A : Tp M× Tp M→ R given by:

A(X, Y) = Hess( f )(X, Y) + ḡ(h0(X, Y), grad f ), (14)

is positive definite in p, then p is an optimal solution of the problem (13) [48].

Remark 2. If the bilinear form A defined by Equation (14) is positive semi-definite on the submanifold M, then
the critical points of f |M, which coincide with the points where the gradient of f is normal to M, are global
optimal solutions of the problem (13) [48].

3. Results’ Main Inequalities

Theorem 2. Let M be an (m + 1)-dimensional statistical submanifold of a (2n + 1)-dimensional Kenmotsu
statistical manifold (M̄, ∇̄, ḡ, φ, ξ) of constant φ-sectional curvature c. Then:

(i) For any real number r such that 0 < r < m(m + 1), the generalized normalized δ-Casorati curvatures
δC(r; m) and δ∗C(r; m) satisfy

2τ ≤ δ0
C(r; m) + (m + 1)C0 − 2(m + 1)2‖H0‖2 (15)

+ (m + 1)2 ḡ(H, H∗) +
3(c + 1)

4
‖P‖2 +

m
4
[c(m− 1)− 3m− 5],

where δ0
C(r, m) and C0 are defined by 2δ0

C(r, m) = δC(r; m) + δ∗C(r; m) and 2C0 = C + C∗.
(ii) For any real number r such that r > m(m + 1), the generalized normalized δ-Casorati curvatures δ̂C(r; m)

and δ̂∗C(r; m) satisfy

2τ ≤ δ̂0
C(r; m) + (m + 1)C0 − 2(m + 1)2‖H0‖2 (16)

+ (m + 1)2 ḡ(H, H∗) +
3(c + 1)

4
‖P‖2 +

m
4
[c(m− 1)− 3m− 5],

where δ̂0
C(r, m) is defined by 2δ̂0

C(r, m) = δ̂C(r; m) + δ̂∗C(r; m).
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In addition, the equality cases of Equations (15) and (16) hold identically at all points p ∈ M if and
only if the imbedding curvature tensors h and h∗ of the submanifold associated with the dual connections ∇̄
and ∇̄∗ satisfy

h = −h∗. (17)

Proof. From Equations (2)–(4), we get:

2ḡ(S̄(X, Y)Z, W) = 2g(S(X, Y)Z, W)− ḡ(h(Y, Z), h∗(X, W)) + ḡ(h(X, Z), h∗(Y, W))

−ḡ(h∗(Y, Z), h(X, W)) + ḡ(h∗(X, Z), h(Y, W)), (18)

where X, Y, Z, W ∈ Γ(TM).
Let {e1, ..., em+1} and {em+2, ..., e2n+1} be orthonormal bases of Tp M and T⊥p M, respectively,

for p ∈ M. Setting X = Z = ei and Y = W = ej for i, j ∈ {1, ..., m + 1}, and summing over
1 ≤ i, j ≤ m + 1 in Equation (18), we obtain:

2τ(p) = (m + 1)2 ḡ(H, H∗)− ∑
1≤i,j≤m+1

ḡ(h∗(ei, ej), h(ei, ej)) (19)

+
3(c + 1)

4
‖P‖2 +

m
4
[c(m− 1)− 3m− 5].

Because 2H0 = H + H∗ and 2C0 = C + C∗, the latter relation becomes:

2τ(p) = 2(m + 1)2‖H0‖2 − (m + 1)2

2
‖H‖2 − (m + 1)2

2
‖H∗‖2

−2(m + 1)C0 +
m + 1

2
(C + C∗) + 3(c + 1)

4
‖P‖2

+
m
4
[c(m− 1)− 3m− 5]. (20)

Let P be the quadratic polynomial in the components of the second fundamental form defined by

P = rC0 + a(r) C0(L) +
m + 1

2
(C + C∗)− (m + 1)2

2
(‖H‖2 + ‖H∗‖2)

−2τ(p) +
3(c + 1)

4
‖P‖2 +

m
4
[c(m− 1)− 3m− 5], (21)

where L is a hyperplane of Tp M.
Suppose that the hyperplane L is spanned by the tangent vectors e1, ..., em, avoiding loss of

generality. Then, from Equations (20) and (21), we derive that P has the expression

P =
2n+1

∑
α=m+2

2m + r + 2
m + 1

m+1

∑
i,j=1

(h0α
ij )

2 + a(r)
1
m

m

∑
i,j=1

(h0α
ij )

2 − 2

(
m+1

∑
i=1

h0α
ii

)2
 . (22)

Moreover, from Equation (22), we get:
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P =
2n+1

∑
α=m+2

{ [2(2m + r + 2)
m + 1

+
2a(r)

m

]
∑

1≤i<j≤m
(h0α

ij )
2 +

2(2m + r + 2)
m + 1

m

∑
i=1

(h0α
i m+1)

2

+

(
2m + r + 2

m + 1
+

a(r)
m
− 2
) m

∑
i=1

(h0α
ii )

2

−4 ∑
1≤i<j≤m+1

h0α
ii h0α

jj +

(
2m + r + 2

m + 1
− 2
)
(h0α

m+1 m+1)
2
}

≥
2n+1

∑
α=m+2

[
rm + a(r)(m + 1)

m(m + 1)

m

∑
i=1

(h0α
ii )

2 +
( r

m + 1

)
(h0α

m+1 m+1)
2 − 4 ∑

1≤i<j≤m+1
h0α

ii h0α
jj

]
.

Let fα be a quadratic form defined for any α ∈ {m + 2, ..., 2n + 1} by fα : Rm+1 → R,

fα(h0α
11 , h0α

22 , ..., h0α
m+1 m+1) =

m

∑
i=1

rm + a(r)(m + 1)
m(m + 1)

(h0α
ii )

2

+
r

m + 1
(h0α

m+1 m+1)
2 − 4 ∑

1≤i<j≤m+1
h0α

ii h0α
jj .

We study the constrained extremum problem

min fα

with the constraint
Q : h0α

11 + h0α
22 + ... + h0α

m+1 m+1 = kα,

where kα is a real constant.
The first order partial derivatives system is:

∂ fα

∂h0α
ii

= 2
rm + a(r)(m + 1)

m(m + 1)
h0α

ii − 4

(
m+1

∑
k=1

h0α
kk − h0α

ii

)
= 0

∂ fα

∂h0α
m+1 m+1

=
2r

m + 1
h0α

m+1 m+1 − 4
m

∑
k=1

h0α
kk = 0,

for every i ∈ {1, ..., m}, α ∈ {m + 2, ..., 2n + 1}.
The system solution, satisfying the constraint Q, is the critical point with the expression:

h0α
ii =

2m(m + 1)
2m2 + [r + a(r) + 2]m + a(r)

kα,

h0α
m+1 m+1 =

2(m + 1)
2m + r + 2

kα,

for any i ∈ {1, ..., m}, α ∈ {m + 2, ..., 2n + 1}.
Let p be an arbitrary point of Q, p ∈ Q. We consider that the 2-formA : TpQ× TpQ→ R given by:

A(X, Y) = Hess( fα)(X, Y) + 〈h′(X, Y), (grad fα)(p)〉,

where h′ is the second fundamental form of Q in Rm+1 and 〈·,·〉 is the standard inner product on Rm+1.
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The Hessian matrix of fα is as follows:

Hess( fα) =


b −4 . . . −4 −4
−4 b . . . −4 −4

...
...

. . .
...

...
−4 −4 . . . b −4
−4 −4 . . . −4 2r

m+1

 ,

where b is a real constant, namely

b = 2
rm + a(r)(m + 1) + 2m2 + 2m

m(m + 1)
.

As the hyperplane Q is totally geodesic in Rm+1, considering a vector field X ∈ TpQ, that is
satisfying the condition ∑m+1

i=1 Xi = 0, we get

A(X, X) = b
m

∑
i=1

X2
i +

2r
m + 1

X2
m+1 − 8

m+1

∑
i,j=1(i 6=j)

XiXj

= b
m

∑
i=1

X2
i +

2r
m + 1

X2
m+1 + 4

(
m+1

∑
i=1

Xi

)2

− 8
m+1

∑
i,j=1(i 6=j)

XiXj

= b
m

∑
i=1

X2
i +

2r
m + 1

X2
m+1 + 4

m+1

∑
i=1

X2
i

≥ 0.

However, according to the Remark 2, the critical point (h0α
11 , ..., h0α

m+1 m+1) is the only optimal
solution, i.e., the global minimum point of problem. In addition, fα(h0α

11 , ..., h0α
m+1 m+1) = 0.

Thus, we obtain P ≥ 0 and this implies

2τ ≤ rC0 + a(r) C0(L) +
m + 1

2
(C + C∗)− (m + 1)2

2
(‖H‖2 + ‖H∗‖2)

+
3(c + 1)

4
‖P‖2 +

m
4
[c(m− 1)− 3m− 5],

for every tangent hyperplane L of Tp M. Consequently, we get immediately both inequalities
Equations (15) and (16) from the above relation, taking infimum and supremum respectively, over all
tangent hyperplanes L of Tp M.

Next, we investigate the equality cases of the inequalities Equations (15) and (16). First of all,
we determine the critical points

hc = (h0 m+2
11 , h0 m+2

12 , . . . , h0 m+2
m+1 m+1, . . . , h0 2n+1

11 , . . . , h0 2n+1
m+1 m+1)

of P as the solutions of following system of linear homogeneous equations:
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∂P
∂h0α

ii
= 2

[
2m + r + 2

m + 1
+

a(r)
m
− 2
]

h0α
ii − 4

m+1

∑
k 6=i,k=1

h0α
kk = 0,

∂P
∂h0α

m+1 m+1
= 2

r
m + 1

h0α
m+1 m+1 − 4

m

∑
k=1

h0α
kk = 0,

∂P
∂h0α

ij
= 4

[
2m + r + 2

m + 1
+

a(r)
m

]
h0α

ij = 0, i 6= j,

∂P
∂h0α

i m+1
=

4(2m + r + 2)
m + 1

h0α
i m+1 = 0.

We achieve h0α
ij = 0, with i, j ∈ {1, ..., m + 1} and α ∈ {m + 2, ..., 2n + 1}. Because P ≥ 0

and P(hc) = 0, then the critical point hc is a minimum point of P . Therefore, the equality cases
hold in both inequalities Equations (15) and (16) if and only if hα

ij = −h∗αij , for i, j ∈ {1, ..., m + 1},
α ∈ {m + 2, ..., 2n + 1}, and the conclusion is now clear.

Remark 3. Equation (17) signifies that the submanifold M is totally geodesic with respect to the connection
∇̄0. Hence, the equality case at all points in both inequalities (7) and (8) characterizes the totally geodesic
submanifolds with respect to the Levi–Civita connection.

Corollary 1. Let M be an (m + 1)-dimensional statistical submanifold of a (2n + 1)-dimensional Kenmotsu
statistical manifold (M̄, ∇̄, ḡ, φ, ξ) of constant φ-sectional curvature c. Then:

(i) The normalized δ-Casorati curvatures δC(m) and δ∗C(m) satisfy

ρ ≤ δ0
C(m) +

1
m
C0 − 2(m + 1)

m
‖H0‖2 (23)

+
m + 1

m
ḡ(H, H∗) +

3(c + 1)
4m(m + 1)

‖P‖2 +
c(m− 1)− 3m− 5

4(m + 1)
,

where 2δ0
C(m) = δC(m) + δ∗C(m) and 2C0 = C + C∗.

(ii) The normalized δ-Casorati curvatures δ̂C(m) and δ̂∗C(m) satisfy

ρ ≤ δ̂0
C(m) +

1
m
C0 − 2(m + 1)

m
‖H0‖2 (24)

+
m + 1

m
ḡ(H, H∗) +

3(c + 1)
4m(m + 1)

‖P‖2 +
c(m− 1)− 3m− 5

4(m + 1)
,

where 2δ̂0
C(m) = δ̂C(m) + δ̂∗C(m).

Moreover, the equality cases of Equations (23) and (24) hold identically at all points if and only if the
imbedding curvature tensors h and h∗ of the submanifold associated with the dual connections ∇̄ and ∇̄∗ satisfy
Equation (17), i.e., M is a totally geodesic submanifold with respect to the Levi–Civita connection.

Proof. The conclusion follows immediately from Theorem 2, taking account of Equations (8)–(10).

Remark 4. Corollary 1 is the statistical counterpart of the Theorem 1 from [20].

4. An Example and Concluding Remarks

Remark 5. Any Kenmotsu manifold can be obtained locally as follows (see ([45], Proposition 3.2)).
Let (M0, g0, J) be an almost Hermitian manifold. Set M̄ = M0 ×R, ḡ = e2tg0 + (dt)2, ξ = ∂

∂t ∈ Γ(TM̄),
and define φ ∈ Γ(TM̄(1,1)) by φU = JU, for any U ∈ Γ(TM̄) and φξ = 0. Then:

1. The triple (ḡ, φ, ξ) is an almost contact metric structure on M̄.
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2. The pair (g0, J) is a Kähler structure on M0 if and only if (ḡ, φ, ξ) is a Kenmotsu structure on M̄.

Remark 6. Let (M0, g0, J) be a Kähler manifold and (M̄ = M0 × R, ḡ, φ, ξ) be the Kenmotsu manifold
as in Remark 5. Let (∇̄ = ∇ḡ + K̄, ḡ) be a statistical structure on M̄. Define Λ ∈ Γ(TM̄(0,2) ⊗ TM0),
λ ∈ Γ(TM̄(0,2)) and K ∈ Γ(TM0) as in ([45], Theorem 3.8). Then, it follows that (∇̄ = ∇ḡ + K̄, ḡ) is a
Kenmotsu statistical structure on M̄ if and only if (∇ = ∇g0 + K, g0, J) is an holomorphic statistical structure
on M0, and the formulas Λ(X, ξ) = 0, λ(X, V) = 0 hold for X ∈ Γ(TM̄) and V ∈ Γ(TM0). Moreover, if the
Kenmotsu statistical manifold (M̄ = M0 × R, ∇̄ = ∇g + K̄, ḡ, φ, ξ) is of constant φ-sectional curvature
c, then c = −1 and (M0,∇ = ∇g0 + K, g0, J) is of constant holomorphic sectional curvature 0 (see ([45],
Proposition 3.9)).

Hence, from Theorem 2 and Corollary 1, we derive the following results.

Theorem 3. Let (M0,∇ = ∇g0 + K, g0, J) be a holomorphic statistical manifold of constant holomorphic
sectional curvature 0 and (M̄ = M0×R, ∇̄ = ∇̄ḡ + K̄, ḡ, φ, ξ) be the Kenmotsu statistical manifold of constant
φ-sectional curvature constructed as in Remark 6. If M is an (m + 1)-dimensional statistical submanifold of
M̄, then:

(i) For any real number r such that 0 < r < m(m + 1), the generalized normalized δ-Casorati curvatures
δC(r; m) and δC∗(r; m) satisfy

2τ ≤ δ0
C(r; m) + (m + 1)C0 − 2(m + 1)2‖H0‖2 (25)

+ (m + 1)2 ḡ(H, H∗)−m(m + 1),

where 2δ0
C(r, m) = δC(r; m) + δ∗C(r; m) and 2C0 = C + C∗.

(ii) For any real number r such that r > m(m + 1), the generalized normalized δ-Casorati curvatures δ̂C(r; m)

and δ̂∗C(r; m) satisfy

2τ ≤ δ̂0
C(r; m) + (m + 1)C0 − 2(m + 1)2‖H0‖2 (26)

+ (m + 1)2 ḡ(H, H∗)−m(m + 1),

where 2δ̂0
C = δ̂C(r; m) + δ̂∗C(r; m).

Moreover, the equality cases of Equations (25) and (26) hold identically at all points if and only if the
imbedding curvature tensors h and h∗ of the submanifold associated to the dual connections ∇̄ and ∇̄∗ satisfy
Equation (17), i.e., M is a totally geodesic submanifold with respect to the Levi–Civita connection.

Corollary 2. Let (M0,∇ = ∇g0 + K, g0, J) be an holomorphic statistical manifold of constant holomorphic
sectional curvature 0 and (M̄ = M0×R, ∇̄ = ∇̄ḡ + K̄, ḡ, φ, ξ) be the Kenmotsu statistical manifold of constant
φ-sectional curvature constructed as in Remark 6. If M is an (m + 1)-dimensional statistical submanifold of
M̄, then:

(i) The normalized δ-Casorati curvatures δC(m) and δ∗C(m) satisfy

ρ ≤ δ0
C(m) +

1
m
C0 − 2(m + 1)

m
‖H0‖2 +

m + 1
m

ḡ(H, H∗)− 1 (27)

where 2δ0
C(m) = δC(m) + δ∗C(m) and 2C0 = C + C∗.

(ii) The normalized δ-Casorati curvature δ̂C(m) and δ̂∗C(m) satisfy

ρ ≤ δ̂0
C(m) +

1
m
C0 − 2(m + 1)

m
‖H0‖2 +

m + 1
m

ḡ(H, H∗)− 1, (28)

where 2δ̂0
C(m) = δ̂C(m) + δ̂∗C(m).
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Moreover, the equality cases of Equations (27) and (28) hold identically at all points if and only if the
imbedding curvature tensors h and h∗ of the submanifold associated with the dual connections ∇̄ and ∇̄∗ satisfy
Equation (17), i.e., M is a totally geodesic submanifold with respect to the Levi–Civita connection.

Example 1. We consider the Kenmotsu manifold (H2n+1, ḡ, φ, ξ) from ([45], Example 3.3). We recall that

H2n+1 = {(x1, ..., xn, y1, ..., yn, z) ∈ R2n+1|z > 0}

and the structure tensors (ḡ, φ, ξ) are given by

ḡ = z−2{(dx1)2 + ... + (dxn)2 + (dy1)2 + ... + (dyn)2 + (dz)2},

φ
∂

∂xα
=

∂

∂yα
, φ

∂

∂yα
= − ∂

∂xα
, φ

∂

∂z
= 0

and
ξ = −z

∂

∂z
.

In the following, we set
K̄(X, Y) = ν η(X) η(Y) ξ,

for any X, Y ∈ Γ(TH2n+1) and ν ∈ C∞(H2n+1), where η is the 1-form on H2n+1 given by η(·) = ḡ(·, ξ).
Then, it follows that (H2n+1, ∇̄ = ∇̄ḡ + K̄, ḡ, φ, ξ) is a Kenmotsu statistical manifold with constant φ-sectional
curvature c = −1 (see ([45], Example 3.10)).

Next, let M be any (m + 1)-dimensional submanifold of the Kenmotsu statistical manifold H2n+1.
Then, the inequalities Equations (25) and (26) are satisfied. In particular, the statistical submanifold M = H2p+1

of H2n+1, with 0 < p < n, attains equality in both inequalities Equations (25) and (26) because M is a totally
geodesic submanifold of H2n+1 with respect to the Levi–Civita connection.

5. Conclusions

It is well known that many applications of Amari’s dual geometries involve one or more
submanifolds imbedded in a manifold [33]. In particular, it follows that it is of great interest to
find simple relationships between various invariants of the submanifolds and manifolds. In this
work, using the fundamental equations for statistical submanifolds, we established such relationships
between some basic extrinsic and intrinsic invariants of statistical submanifolds in Kenmotsu statistical
manifolds of constant φ-sectional curvature. The results stated here motivate further studies to obtain
similar relationships for many kinds of invariants of similar nature, for statistical submanifolds in
several ambient spaces, like holomorphic statistical manifolds [46], Sasakian statistical manifolds [38]
and cosymplectic statistical manifold [49].
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