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Abstract We study chemical reaction networks with discrete state spaces and
present sufficient conditions on the structure of the network that guarantee the
system exhibits an extinction event. The conditions we derive involve creating
a modified chemical reaction network called a domination-expanded reaction
network and then checking properties of this network. Unlike previous results,
our analysis allows algorithmic implementation via systems of equalities and
inequalities and suggests sequences of reactions which may lead to extinction
events. We apply the results to several networks including an EnvZ-OmpR
signaling pathway in Escherichia coli.
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1 Introduction

Continuous state differential equations are a popular modeling choice for the
chemical concentrations of biochemical reaction networks in several disciplines,
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including industrial chemistry and systems biology. However, differential equa-
tions should only be used to model chemical concentrations when the counts of
the reactant species are high (Kurtz 1972; Anderson and Kurtz 2011; Ander-
son and Kurtz 2015). When the multiplicities of some of the individual species
are low, as is often the case in enzymatic and genetic systems, it is important
to use a model with a discrete state space which tracks individual molecular
counts.

Predictions pertaining to the long-term behavior of a particular system can
change dramatically depending upon whether the system is modeled with a
continuous or discrete state space. In particular, discrete space models may
exhibit an extinction event where none exists in the corresponding continuous
state model. For example, consider the following chemical reaction network:

X1 +X2 2X2

X2 X1

1

2

3

(1)

where the labels correspond to the enumeration of the reactions. The deter-
ministic mass action model predicts an asymptotically stable steady state for
a wide range of parameter values. However, for the discrete space model with
stochastic mass-action kinetics and M = X#

1 + X#
2 , where X#

i is the count

of species Xi, the state {X#
1 = M,X#

2 = 0} is the inevitable absorbing state
regardless of parameter values. This extinction event can be achieved by reac-
tion 3 occurring until the count of species X2 is zero, at which point no further
reactions may occur.

Several frameworks exist for tracking trajectories of discrete state chemical
reaction systems, including those of continuous time Markov chains (Anderson
and Kurtz 2011; Anderson and Kurtz 2015) and stochastic Petri nets (Bause
and Kritzinger 2002). In these settings, the admissible transitions between
states are assumed to occur randomly at a known rate and the occurrence of
each reaction instantaneously updates the system according to the stoichiom-
etry of the associated reaction. Analysis of such systems is typically conducted
by generating sample trajectories (through a stochastic simulation algorithm,
e.g. Gillespie’s Algorithm (Gillespie 1976) or the next reaction method (Gibson
and Bruck 2000; Anderson 2007)), by analyzing the evolution of the probabil-
ity distribution via Kolmogorov’s forward equations (i.e. the chemical master
equation), by characterizing the stationary distributions of the models (An-
derson et al. 2011), or by studying the stochastic equations for the model
(Anderson and Kurtz 2011; Anderson and Kurtz 2015).

The study of extinction events in discrete interaction models is well-established
in population dynamics and epidemic modeling, but the corresponding study
in systems biology has only recently gained widespread attention. Anderson
et al. (2014) described a large class of systems for which an extinction event
necessarily occurs in the discrete model. Interestingly, this class of models
had previously been shown by Shinar and Feinberg (2010) to have a particular
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“robustness” when modeled with deterministic ordinary differential equations.
Brijder (2015) utilized tools from Petri Net Theory to further extend the scope
of networks known to have extinction behavior by relating a kernel condition
introduced in Anderson et al. (2014) to the T -invariants of the corresponding
Petri net. Related recent work analyzing transient and post-extinction behav-
ior in discrete chemical reaction systems has been conducted by Enciso (2016)
and Anderson et al. (2017).

In this paper, we further develop a network-based approach to determining
when discrete-space chemical reaction systems may exhibit an extinction event.
Our main results, Lemma 2 and Theorem 1, state that a chemical reaction
network with a discrete state space exhibits an extinction event if there is a
modified network, called the domination-expanded reaction network, on which
a particular set of inequalities on the edges cannot be satisfied. The conditions
we present may be summarized as systems of equalities and inequalities and,
like Corollary 2 of Brijder (2015), suggest computational implementation.

For example, the network (1) can be correspond with the following domination-
expanded network

X1 +X2 2X2

X2X1

1

2

3

D1
D2

(2)

where we treat the arrows labeled D1 and D2 as reactions in a new network.
As will be described later in the paper, the network (2) can be furthermore
corresponded to the following system of equalities and inequalities

(Cond. 1) : (αR)1 = 0, (αD)2 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)1 ≥ (αR)2 ≥ 0.

(3)

on the vector of reaction counts α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈
Z5
≥0. Since there is no vector α 6= 0 satisfying (3), Theorem 1 guarantees that

the chemical reaction network (1) on a discrete state space has an extinc-
tion event. A computational implementation of Theorem 1 is explored in the
companion paper of Johnston (2017).

The notation of the paper is drawn from chemical reaction network theory,
which has proven effective for relating topological properties of a network’s
reaction graph to its admissible qualitative dynamical behaviors (Horn 1972;
Horn and Jackson 1972; Feinberg 1972; Feinberg 1987; Feinberg 1988). The
notions introduced here may be equivalently defined in the context of Petri
nets (Bause and Kritzinger 2002; Brijder 2015). We also adopt the following
common notation throughout the paper:

– R≥0 = {x ∈ R | x ≥ 0} and R>0 = {x ∈ R | x > 0},
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– for v = (v1, . . . , vn) ∈ Rn≥0, we define supp(v) = {i ∈ {1, . . . , n} | vi > 0},
– for a set X = {X1, X2, . . . , Xn} of indexed elements and a subset W ⊆ X,

we define supp(W ) = {i ∈ {1, . . . , n} | Xi ∈W},
– for a subset W ⊆ X, we define the complement W c = {x ∈ X | x 6∈W},
– for v,w ∈ Rn, we define v ≤ w if vi ≤ wi for each i ∈ {1, . . . , n}.

2 Background

We outline the background notation and terminology relevant to the study
of chemical reaction network theory (CRNT). (For further background, see
Martin Feinberg’s online lecture notes [13].)

2.1 Chemical Reaction Networks

The fundamental object of interest in CRNT is the following.

Definition 1 A chemical reaction network (CRN) is given by a triple of
finite sets (S, C,R) where:

1. The species set S = {X1, . . . , Xm} contains the species of the CRN.
2. The reaction set R = {R1, . . . , Rr} consists of ordered pairs (y, y′) ∈ R

where

y =

m∑
i=1

yiXi and y′ =

m∑
i=1

y′iXi, (4)

and where the values yi, y
′
i ∈ Z≥0 are the stoichiometric coefficients.

We will also write reactions (y, y′) as y → y′.
3. The complex set C consists of the linear combinations of the species in

(4). Specifically, C = {y | y → y′ ∈ R} ∪ {y′ | y → y′ ∈ R}. The number of
distinct complexes is denoted |C| = n.
Allowing for a slight abuse of notation, we will let y denote both the com-
plex itself and the complex vector y = (y1, . . . , ym)T ∈ Zm≥0.

We assume an arbitrary but fixed ordering of the species, reactions and com-
plexes. It is common to impose that a CRN does not contain any self-loops
(i.e. reactions of the form y → y). Since this assumption is not used in our
results, and since it is common to allow self-loops in Petri Net Theory, we will
not make this assumption here.

The interpretation of reactions as directed edges naturally gives rise to a
reaction graph G = (V,E) where the set of vertices is given by the complexes
(i.e. V = C) and the set of edges is given by the reactions (i.e. E = R). The
following terminology will be used.

(i) A complex y is connected to a complex y′ if there exists a sequence of
complexes y = yµ(1), yµ(2), . . . , yµ(`) = y′ such that either yµ(k) → yµ(k+1)

or yµ(k+1) → yµ(k) for all k ∈ {1, . . . , `− 1}.
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(ii) There is a path from y to y′ if there is a sequence of distinct complexes
such that y = yµ(1) → yµ(2) → · · · → yµ(`) = y′.

(iii) A maximal set of mutually connected complexes is called a linkage class
(LC) while a maximal set of mutually path-connected complexes is called
a strong linkage class (SLC). The set of LCs will be denoted L while the
set of SLCs will be denoted W.

(iv) An SLC W ∈ W is called terminal if there are no outgoing reactions,
i.e. y ∈W and y → y′ ∈ R implies y′ ∈W . The set of terminal SLCs will
be denoted T ⊆ W. A complex y ∈ C is called terminal if it belongs to a
terminal SLC, and a reaction y → y′ ∈ R is terminal if y is terminal.

(v) A set Y ⊆ C is called an absorbing complex set if it contains every ter-
minal complex and has no outgoing edges, i.e. y ∈ Y and y → y′ ∈ R
implies y′ ∈ Y. A complex y ∈ Y is called Y-interior, and a reaction
y → y′ ∈ R is called Y-interior if y is Y-interior; otherwise they are
Y-exterior.

Absorbing complex sets are a generalization of the set of terminal complexes
of a CRN, since they must contain, but may be strictly larger than, this set.
Note that the set of terminal complexes is an absorbing complex set of the
CRN, as is the set Y = C. We will be particularly interested in the case where
Y is the set of terminal complexes, as this provides the foundation upon which
our main results are built.

To each reaction y → y′ ∈ R we associate a reaction vector y′ − y ∈ Zm
which tracks the net gain and loss of each chemical species as a result of the
occurrence of this reaction. The stoichiometric subspace is defined by

S = span {y′ − y ∈ Zm | y → y′ ∈ R} .

The stoichiometric matrix Γ ∈ Zm×r is the matrix with the reaction vectors
as columns. A CRN is said to be conservative (respectively, subconservative)
if there exists a c ∈ Zm>0 such that cTΓ = 0T (respectively, cTΓ ≤ 0T ). The
vector c is called a conservation vector (respectively, subconservation vector).

We present three examples in order to illustrate the definitions.

Example 1 Reconsider the CRN given by (1) in the introduction. This CRN
has the sets S = {X1, X2},R = {X1+X2 → 2X2, 2X2 → X1+X2, X2 → X1},
and C = {X1 +X2, 2X2, X2, X1}. The linkage classes are

L = {{X1 +X2, 2X2}, {X2, X1}}

while the SLCs are

W = {{X1 +X2, 2X2}, {X2}, {X1}} .

Note that SLCs may consist of singletons. The terminal SLCs are

T = {{X1 +X2, 2X2}, {X1}} .
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The stoichiometric matrix is as follows:

Γ =

[
−1 1 −1
1 −1 1

]
.

The stoichiometric subspace is given by S = span{(1,−1)T }, and there is the
conservation vector c = (1, 1)T .

Example 2 Consider the following CRN:

X1 2X2

X2 2X1

1

2

The set of terminal complexes is {2X2, 2X1}. There are several additional
choices for absorbing complex sets, including Y = {X1, 2X2, 2X1} and Y =
{2X2, X2, 2X1}. The stoichiometric matrix is as follows:

Γ =

[
−1 2
2 −1

]
.

The stoichiometric subspace is given by S = span{(−1, 2)T , (2,−1)T } = R2.
There is no vector c ∈ Z2

>0 for which cTΓ ≤ 0T , so the CRN is not conservative
or subconservative.

Example 3 Consider the following CRN:

X1 +X2 X1 X2
1

2

3

The stoichiometric matrix is as follows:

Γ =

[
0 −1 1
−1 1 −1

]
.

There is no vector c ∈ R2
>0 such that cTΓ = 0T , so the CRN is not conserva-

tive; however, the vector c = (1, 1)T has the property that cTΓ = (−1, 0, 0) ≤
0 so that the CRN is subconservative.

2.2 Chemical Reaction Networks with Discrete State Spaces

For CRNs with discrete state spaces, we let X = (X#
1 , . . . , X

#
m)T ∈ Zm≥0 denote

a discrete state where X#
i corresponds to the molecular count of species Xi.

For brevity, we often call a discrete state simply a state. We will say that a
complex y ∈ C is charged at state X ∈ Zm≥0 if X#

i ≥ yi for all i ∈ {1, . . . ,m}.
Note that a reaction may only occur from a state X if the species counts are
sufficient for the source complex of that reaction.

We introduce the following terminology, which is adapted from the con-
ventions of stochastic processes.
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Definition 2 Consider a CRN on a discrete state space. Then:

1. A state X ∈ Zm≥0 reacts to a state Y ∈ Zm≥0 (denoted X→ Y) if there is
a reaction y → y′ ∈ R such that Y = X + y′ − y and y is charged at state
X.

2. A state Y ∈ Zm≥0 is reachable from a state X ∈ Zm≥0 (denoted X ; Y)
if there exists a sequence of states such that X = Xν(1) → Xν(2) → · · · →
Xν(l) = Y.

3. A state X ∈ Zm≥0 is recurrent if, for any Y ∈ Zm≥0, X ; Y implies
Y ; X; otherwise, the state is transient.

We let X(t) = (X#
1 (t), . . . , X#

m(t))T ∈ Zm≥0 denote the discrete state of our
system at time t, so that the system evolves as follows:

X(t) = X(0) + Γ N(t) (5)

where N(t) = (N1(t), . . . , Nr(t))
T and, for all k ∈ {1, . . . , r}, Nk(t) ∈ Z≥0 is

the number of times the kth reaction has occurred up to time t. There are sev-
eral established frameworks for modeling the time-evolution of CRNs on dis-
crete state spaces, including that of continuous time Markov chains (CTMCs)
and stochastic Petri nets. We will not concern ourselves with precise dynam-
ical details; rather, we will focus on where trajectories may evolve in Zm≥0. A
similar treatment was conducted by Paulevé et al. (2014).

Note that the state space of a subconservative CRN is finite (Theorem 1 of
Memmi and Roucairol 1975). For subconservative CRNs, therefore, the notion
of recurrence introduced above agrees with the notion of positive recurrence
from the language of CTMC (Lawler 2006).

We now extend the properties of recurrence and transience of states to the
complexes of a CRN.

Definition 3 Consider a CRN on a discrete state space. Then:

1. A complex y ∈ C is strongly recurrent from X ∈ Zm≥0 if, for any Y ∈ Zm≥0
such that X ; Y, there is a Z ∈ Zm≥0 for which Y ; Z and y is charged
at Z; otherwise, y is weakly transient from X.

2. A complex y ∈ C is weakly recurrent from X ∈ Zm≥0 if there is a Y ∈ Zm≥0
such that X ; Y and y is strongly recurrent from Y; otherwise, y is
strongly transient from X.

In plain English, a complex y is strongly recurrent from a state if, no matter
where the process goes, it can always reach a state where y is charged. A
complex is y is weakly recurrent from a state if the process can reach a state
from which y is strongly recurrent.

To show that a complex can be weakly recurrent (respectively, weakly
transient) without being strongly recurrent (respectively, strongly transient),
consider the following CRN:

∅ 2X1 X1 X2
1 2

3

4
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For any state X = (X#
1 , X

#
2 ) ∈ Z2

≥0 satisfying X#
1 + X#

2 ≥ 2, we have
that the complex 2X1 is strongly transient and the complexes X1 and X2

are both weakly recurrent and weakly transient but not strongly recurrent or
strongly transient. This is due to the observation that there are sequences of
reactions which can lead to either the state {X#

1 = 0, X#
2 = 0}, from which

no complexes are ever charged, or to one of the states {X#
1 = 1, X#

2 = 0} and

{X#
1 = 0, X#

2 = 1}, from which both X1 and X2 are strongly recurrent.
The following clarifies the type of behavior for CRNs on discrete state

spaces in which we will be interested.

Definition 4 Consider a CRN on a discrete state space. We will say that the
CRN exhibits:

1. an extinction event on Y ⊆ C from X ∈ Zm≥0 if every complex y ∈ Y is
strongly transient from X.

2. a guaranteed extinction event on Y ⊆ C if it has an extinction event
on Y from every X ∈ Zm≥0.

Example 4 Consider the CRN (1) introduced in the introduction. Through

repeated application of reaction 3, we can arrive at the state {X#
1 = M,X#

2 =

0} where M = X#
1 + X#

2 . Since this is a possible outcome from any initial
X ∈ Z2

≥0, we have that this CRN has a guaranteed extinction event on Y =
{X1 + X2, 2X2, X2}. Notice that no reaction may occur after the extinction
event.

Example 5 Consider the CRN in Example 3. Notice that the reaction X1 +
X2 → X1 cannot occur indefinitely since all other reactions in the CRN pre-
serve X#

1 + X#
2 . It follows that the model has a guaranteed extinction event

on Y = {X1 + X2}. Notice, however, that for every state X ∈ Z2
≥0 satisfying

X#
1 + X#

2 ≥ 1 the complexes X1 and X2 are both strongly recurrent from
X. An extinction event therefore does not necessarily imply that all reactions
must cease.

3 Main results

In this section, we motivate and present the main new constructions and theory
of the paper (Lemma 2 and Theorem 1).

3.1 Domination-expanded Reaction Networks

We introduce the following.

Definition 5 Let y, y′ ∈ C denote two distinct complexes of a CRN. We say
that y dominates y′ if y′ ≤ y. We define the domination set of a CRN to
be

D∗ = {(y, y′) ∈ C × C | y′ ≤ y, y 6= y′} . (6)
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The notion of complex domination was introduced by Anderson et al.
(2014) as an adaptation of the notion of “differing in one species” introduced by
Shinar and Feinberg (2011). The domination property was extended to SLCs
by Brijder (2015) who also showed that, for conservative CRNs, the domina-
tion properties give rise to a binary relation on the SLCs of a CRN whose
transitive closure is a partial ordering on the SLCs of the CRN (Lemma 2 of
Brijder 2015). We note that the definition of complex domination in Definition
5 is consistent with (Brijder 2015) but reversed from (Anderson et al. 2014).

Example 6 Consider the CRNs from Examples 1, 2, and 3 respectively. For the
CRN in Example 1, we set y1 = X1 + X2, y2 = 2X2, y3 = X2, and y4 = X1

and have y3 ≤ y1, y3 ≤ y2, and y4 ≤ y1. For the CRN in Example 2, we set
y1 = X1, y2 = 2X2, y3 = X2, and y4 = 2X1, and have y1 ≤ y4 and y3 ≤ y2.
For the CRN in Example 3, we set y1 = X1 +X2, y2 = X1, and y3 = X2, and
have y2 ≤ y1 and y3 ≤ y1.

The key construction of this paper is the following, which uses the dom-
ination relations ≤ to expand CRNs into larger CRNs we call domination-
expanded reaction networks.

Definition 6 We say that (S, C,R ∪ D) is a domination-expanded reac-
tion network (dom-CRN) of the CRN (S, C,R) if D ⊆ D∗ and R ∩ D = ∅.
Furthermore, we say a dom-CRN is Y-admissible if, given an absorbing com-
plex set Y ⊆ C of the dom-CRN, we have (y, y′) ∈ D implies y′ ∈ Yc.

A dom-CRN is a CRN which consists of the original CRN with additional
directed edges corresponding to some (potentially all) of the domination rela-
tions y′ ≤ y. Note that the reaction arrows flow from the dominating complex
to the “smaller” complex in the domination relation, i.e. y′ ≤ y implies we add
y → y′. Like reactions, we will denote domination relations as either (y, y′)
or y → y′. A dom-CRN is Y-admissible if we do not add any reactions which
lead to the absorbing complex set Y of the dom-CRN.

Remark 1 When applying Definition 6, we will commonly let the absorbing
complex set Y coincide with the set of terminal complexes of the dom-CRN,
which we will show is a subset of the terminal complexes of original CRN in
Lemma 1. In such cases, we will say a dom-CRN is simply admissible with the
understanding that Y is the set of terminal complexes.

Note that a dom-CRN is a CRN itself and therefore has associated to it all
of the quantities and structural matrices given Section 2.1. While a dom-CRN
in general may have different structural properties than the original CRN, an
important restriction is given by the following result, which is based on Lemma
2 of (Brijder 2015). The proof is contained in Appendix A.

Lemma 1 If a CRN is subconservative, then for any dom-CRN: (i) the SLCs
of the CRN and the dom-CRN coincide, and (ii) every terminal SLC of the
dom-CRN is a terminal SLC of the CRN.
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We can interpret Lemma 1 as saying that, for a subconservative CRN, the
addition of domination edges does not create new cycles between SLCs since
this would create new SLCs.

Example 7 Consider the CRN (1) from the Introduction and Examples 1 and
6. Recall that the CRN is conservative, and therefore subconservative, so that
Lemma 1 applies. The dom-CRN with the maximal number of reactions is
given by the following:

X1 +X2 2X2

X2X1

1

2

3

D1
D2 D3

where we have indexed the domination relations for clarity. As guaranteed
by Lemma 1, the SLCs of the CRN and dom-CRN coincide. Notice that the
terminal complex X1 in the dom-CRN above is terminal in the original CRN,
but that the terminal complexes X1+X2 and 2X2 in the CRN are not terminal
in the dom-CRN.

Notice also that this dom-CRN is not admissible since the domination
relations X1 + X2 → X1 leads to the terminal complex X1. Consider instead
the subset D = {X1 + X2 → X2, 2X2 → X2} ⊂ D∗. This generates the dom-
CRN given as (2) in the Introduction. This dom-CRN is admissible since D
contains no domination edges which lead to the terminal complex X1.

Example 8 Consider the CRN from Examples 2 and 6. Recall that the CRN
is neither conservative nor subconservative. Thus, Lemma 1 stands silent. The
maximal dom-CRN is given by the following:

X1 2X2

X22X1

1

2

DD

We have that there is only one SLC in the dom-CRN, which is given by
{X1, 2X2, X2, 2X1}, so that the SLCs of the CRN and dom-CRN do not co-
incide. We can see, therefore, that the conclusion of Lemma 1 does not hold
in general if we remove the subconservative assumption.

3.2 Y-Exterior Forests and Balancing Vectors

The following concept is adapted from numerous sources in graph theory.
Directed rooted trees have been used extensively in CRNT (Craciun et al.
2009; Johnston 2014) and the related notion of arborescences was utilized in
(Boros 2013). Note that a forest is a graph which can be formed as the union
of disjoint trees.
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Definition 7 Consider a CRN (S, C,R) and a Y-admissible dom-CRN (S, C,R∪
D) where Y ⊆ C is an absorbing complex set on the dom-CRN. Then (S, C,RF∪
DF ) where RF ⊆ R and DF ⊆ D is called an Y-exterior forest if, for every
complex y ∈ Yc, there is a unique path in RF ∪ DF from y to Y.

A Y-exterior forest is a forest in the usual sense in graph theory after con-
tracting Y to a single point in the dom-CRN. Note that Definition 7 places no
restrictions on Y-interior reactions. By convention, we will include all such re-
actions in every Y-exterior forest. If Y consists solely of the terminal complexes
of the dom-CRN, we say (S, C,RF ∪ DF ) is simply an exterior forest.

We will be interested in particular in Y-exterior forests which satisfy the
following property.

Definition 8 Consider a CRN (S, C,R) and a Y-admissible dom-CRN (S, C,R∪
D) where Y ⊆ C is an absorbing complex set on the dom-CRN. Let D be
ordered so that D = (D1, . . . , Dd) where d = |D|, and let Γ be the stoi-
chiometric matrix associated with the original CRN. Then a Y-exterior forest
(S, C,RF∪DF ) is said to be balanced if there is a vector α = (αR, αD) ∈ Zr+d≥0
with αk > 0 for at least one Y-exterior reaction which satisfies:

1. supp(αR) ⊆ supp(RF ) and supp(αD) ⊆ supp(DF );
2. αR ∈ ker(Γ ); and

3. for every Rk = y → y′ ∈ RF ∪ DF where y ∈ Yc, we have αk ≥
∑

Rl∈Θ(y)

αl

where Θ(y) = {Rl ∈ RF ∪ DF | Rl = y′′ → y}.

Otherwise, the Y-exterior forest is said to be unbalanced.

The third condition of Definition 8 can be interpreted as saying that, for every
y ∈ Yc, the weight of the outgoing edge in the Y-exterior forest must be at
least as large as the sum of all incoming edges.

When taken together, the three conditions of Definition 8 generate a set
of equalities and inequalities on the edges of the dom-CRN. This suggests a
computational implementation. Such an implementation is presented in the
companion paper by Johnston (2017) where the conditions of Definition 7 and
8 are checked on 458 models from the European Bioinformatics Institute’s
BioModels Database. The program is implemented using a series of linear
programming modules.

Example 9 Recall the CRN (1) taken from the introduction, Examples 1, 6,
and 7, and the admissible dom-CRN from Example 7. This dom-CRN admits
several exterior forests, for example the following substructures in bold red:

X1 +X2 2X2

X2X1

X1 +X2 2X2

X2X1

1

2

3

D1
D2

1

2

3

D1
D2
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Note that every nonterminal complex has a unique path to X1. We now check
whether these exterior forests are balanced by Definition 8 by checking equal-
ities and inequalities on the vector of edges of the following form:

reaction:
α =

1 2 3
((αR)1, (αR)2, (αR)3,︸ ︷︷ ︸

αR

D1 D2

(αD)1, (αD)2).︸ ︷︷ ︸
αD

1. In order for the left exterior forest to be balanced, it is required that we find
a vector α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈ R5

≥0, α 6= 0, satisfying:
(Cond. 1) : (αR)2 = 0, (αD)1 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)2 ≥ (αR)1 ≥ 0.

We can choose (1, 0, 1, 0, 1) so that this is balanced exterior forest.
2. In order for the right exterior forest to be balanced, it is required that

we find a nontrivial vector α = ((αR)1, (αR)2, (αR)3, (αD)1, (αD)2) ∈ R5
≥0,

α 6= 0, satisfying:
(Cond. 1) : (αR)1 = 0, (αD)2 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 = 0

(αR)1 − (αR)2 − (αR)3 = 0

(Cond. 3) : (αR)3 ≥ (αD)1 ≥ (αR)2 ≥ 0.

Substituting Condition 1 into Condition 2 gives (αR)2+(αR)3 = 0 which is
inconsistent with the requirement from Condition 3 that (αR)3 ≥ (αR)2 ≥
0 and at least one entry be nonzero. It follows that this is an unbalanced
exterior forest.

3.3 Conditions for Extinction Events

We now present the main results of this paper, which are inspired by Theorem
1 and Corollary 2 of (Brijder 2015). The proof of Lemma 2 is contained in
Appendix B.

Lemma 2 Consider a subconservative CRN and a Y-admissible dom-CRN
where Y ⊆ C is an absorbing complex set on the dom-CRN. Suppose that there
is a complex y ∈ Yc of the dom-CRN which is weakly recurrent from a state
X ∈ Zm≥0 in the discrete state space CRN. Then every Y-exterior forest of the
dom-CRN is balanced.

This result places restrictions on the structure of a subconservative CRN that
does not experience a guaranteed extinction event. We will be more frequently
interested in when discrete extinction occurs, and therefore present the follow-
ing result which follows immediately as the contrapositive of Lemma 2.
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Theorem 1 Consider a subconservative CRN and a Y-admissible dom-CRN
where Y ⊆ C is an absorbing complex set on the dom-CRN. Suppose there is a
Y-exterior forest of the dom-CRN which is unbalanced. Then the discrete state
space CRN has a guaranteed extinction event on Yc.

Recall that an exterior forest is unbalanced if there is a set of equalities and
inequalities on the edges of the dom-CRN which cannot be satisfied. The
question of determining sufficient conditions for discrete extinction is there-
fore reduced to determining the feasibility of particular sets of equalities and
inequalities.

Notice also that, even if a CRN permits many Y-exterior forests, it is
sufficient for a single one to be unbalanced for an extinction event to follow.
Furthermore, the set of strongly transient complexes corresponds to the set
of complexes not in Y. Note that this may contain terminal complexes in the
original CRN (see Example 7).

Remark 2 By convention, when applying Theorem 1, if no mention of an ab-
sorbing complex set Y ⊆ C is made, it is assumed to be the set of terminal
complexes in the dom-CRN.

Example 10 Reconsider the CRN analyzed in Example 1, 6, and 7. This CRN
is conservative, and in Example 9 we showed that there is an admissible dom-
CRN with an unbalanced exterior forest. It follows from Theorem 1 that the
discrete state space CRN has a guaranteed extinction event on the set of non-
terminal complexes of the dom-CRN. That is, from all states X ∈ Zm≥0, there
is guaranteed to be a time after which the count of the species is insufficient
for any reaction from the complexes X1 + X2, 2X2, and X2 to occur. This
is consistent with our earlier observation that the state {X#

1 = M,X#
2 = 0}

where M = X#
1 + X#

2 absorbs all trajectories through repeated application
of the reactions 2X2 → X1 + X2 and X2 → X1. Notice that this pathway
consists of the true reactions in the unbalanced exterior forest.

3.4 EnvZ-OmpR Signaling Pathway

In this section, we consider a CRN which was proposed as underlying the
EnvZ/OmpR signaling pathway in Escherichia coli in (Shinar and Feinberg
2011). This CRN has been studied previously with a discrete state space by
Anderson et al. (2014) and Brijder (2015) where it was shown to exhibit a
guaranteed extinction event.

Example 11 Consider the following reaction mechanism, which was proposed
by Shinar and Feinberg (2011) as underlying the EnvZ/OmpR signaling path-
way in Escherichia coli in the Supplemental Material:
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X1 X2 X3 X4

X4 +X5 X6 X2 +X7

X3 +X7 X8 X3 +X5

X1 +X7 X9 X1 +X5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

where X1 = EnvZ-ADP , X2 = EnvZ , X3 = EnvZ-ATP , X4 = EnvZ p, X5 =
OmpR, X6 = EnvZ p-OmpR, X7 = OmpRp, X8 = EnvZ-ATP-OmpRp, X9 =
EnvZ-ADP-OmpRp.

Consider the admissible dom-CRN with D = {X1 + X5
D1−→ X1, X1 +

X7
D2−→ X1, X2 + X7

D3−→ X2, X3 + X5
D4−→ X3, X3 + X7

D5−→ X3}. The dom-
CRN may be graphically represented as:

X1 +X7

X9

X1 +X5

X1 X2 X3 X4

X3 +X7 X8 X3 +X5

X4 +X5X6X2 +X7

1

2

3

4

5

6

7

8

9

10

11

1213

14

D2

D1

D5 D4

D3

Consider furthermore the following exterior forest:

X1 +X7

X9

X1 +X5

X1 X2 X3 X4

X3 +X7 X8 X3 +X5

X4 +X5X6X2 +X7

1

2

3

4

5

6

7

8

9

10

11

1213

14

D2

D1

D5 D4

D3

In the highlighted structure (bold red), there is a unique path from every
complex to the terminal complex X4. It can be seen directly that this exterior
forest is unbalanced by noting that we need a vector α = (αR, αD) ∈ Z19

≥0,
α 6= 0, which has support on a subset of the red highlighted structure above.
To satisfy Condition 2 of Definition 8, we need to satisfy αR ∈ ker(Γ ). We can
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check that ker(Γ ) ∩ Rr≥0 has the generators:

reaction: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ker(Γ ) ∩ Rr≥0 = { (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0),
(0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1) }

The first five vectors correspond to reversible reaction pairs in the CRN and so
may be ignored. In order to obtain a nontrivial vector αR, we require (αR)5 >
0. To build such a vector using the sixth vector yields a vector with support on
(αR)11 while building it out of the seventh vector yields a vector with support
on (αR)14. Neither of these options is consistent with Condition 1 of Definition
8 so that the exterior forest is unbalanced. It follows by Theorem 1 that the
discrete state space CRN has a guaranteed extinction event, and that every
complex except X4 is strongly transient. In fact, all trajectories are absorbed
by a state where X#

4 > 0, X#
7 > 0, and X#

i = 0 for i ∈ {1, 2, 3, 5, 6, 8, 9}.
This result was previously obtained in the Supplemental Online Material

of (Anderson et al. 2014) and also proved for a simplified CRN by Brijder
(2015). Notably, our method of constructing a dom-CRN suggests pathways
toward extinction by restricting to the reactions in the unbalanced exterior
forest. We have the following pathway:

1. Fire reactions 10 and 13 until X#
8 = 0 and X#

9 = 0.

2. Fire reaction 1 until X#
1 = 0.

3. Fire reactions 6 and 8 until X#
6 = 0 and either X#

4 = 0 or X#
5 = 0.

4. Fire reactions 3 and 5 until X#
2 = 0 and X#

3 = 0.

5. Repeat steps 3 and 4 until X#
5 = 0.

Notice that the sequences of reactions in steps 3 and 4 convert X2 into X4

and vice versa, but that X5 is irreversibly converted into X7. It follows that
X#

5 = 0 will eventually be attained and consequently that the algorithm will
terminate.

A similar pathway was constructed by Anderson et al. (2014) for a smaller
model but was not apparent by the main result (Theorem 4) itself. We have
constructed the pathway here by firing the extremal reactions in the Y-exterior
forest to exhaustion, and tracking which species disappear.

3.5 Importance of Technical Conditions

In this section, we provide further examples which demonstrate how to apply
Theorem 1, and which demonstrate the necessity of several of the technical
conditions required of the result.
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Example 12 presents a CRN which can be shown to have an extinction
event for an absorbing complex set Y ⊆ C which is not the set of terminal
complexes in the dom-CRN. Example 13 presents a CRN which does not have
a guaranteed extinction event, but which can be shown to have an unbalanced
exterior forest if we do not insist on the underlying dom-CRN being admissible.
Example 14 demonstrates that including Condition 3 of Definition 8 allows
further classification of CRNs with extinction events than would be possible
otherwise.

Example 12 It is natural to wonder whether, when applying Theorem 1, there
is an advantage to generalizing the set of terminal complexes to an absorbing
complex set Y ⊆ C. To show that there is, consider the following CRN:

2X1 X2 +X3 2X3 2X2
1 2

3

4

There are no domination relations so that the only dom-CRN corresponds to
the CRN shown, and it is trivially admissible. The only exterior forest consists
of all reactions. Notable, it contains reactions 1 and 2 on the nonterminal
component. We can easily determine that α = (α1, α2, α3, α4) = (0, 2, 1, 0)
satisfies the conditions of Definition 8 and therefore that this exterior forest
is balanced. Therefore, Theorem 1 does not apply and we may not conclude
that an extinction event occurs.

Consider instead taking Y = {X2 + X3, 2X3, 2X2}. This set is absorbing
and contains every terminal complex of the CRN. The only exterior forest
again contains all reactions but only reaction 1 is Y-exterior. Since there is
no balancing vector α for which α1 6= 0, we may conclude by Theorem 1 that
there is a guaranteed extinction event on Yc = {2X1}. In fact, we can see this
directly since repeated application of reaction 1 will deplete X1 and there are
no pathways by which to replenish it.

Example 13 It is natural to wonder whether it is necessary to insist on dom-
CRNs being Y-admissible. To show that removing this assumption from The-
orem 1 can lead to misclassification, consider the following CRN:

2X1 2X2 X2 X3

1

2

3

4

The CRN has only the single domination relation X2 ≤ 2X2. Since the corre-
sponding domination relation 2X2 → X2 leads to a terminal component in any
resulting dom-CRN, we may not add it, so that the only admissible dom-CRN
corresponds to the original CRN.

Suppose, however, that we do not insist on dom-CRNs being admissible.
Specifically, suppose we allow the following dom-CRN:

2X1 2X2 X2 X3

1

2

3

4

D
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The only exterior forest is given in bold red as follows:

2X1 2X2 X2 X3

1

2

3

4

D

Notice that we have included the terminal reactions in the exterior forest. In
order to be balanced, we must find a vector α = (α1, α2, α3, α4, αD) which is
nonzero on at least one of the nonterminal reactions α1 and α2, such that

(Cond. 1) : α2 = 0

(Cond. 2) : − 2α1 + 2α2 = 0

2α1 − 2α2 − α3 + α4 = 0

α3 − α4 = 0

(Cond. 3) : αD ≥ α1 ≥ 0.

Conditions 1 and 2 imply that α1 = 0 so that α is does not have support on
the nonterminal portion of the dom-CRN. It follows that the exterior forest is
unbalanced. Note, however, that Theorem 1 remains silent since the presented
dom-CRN is not admissible. There is, however, clearly no extinction event
in this CRN since all reactions of the discrete state space CRN are strongly
recurrence from any state X ∈ Z3

≥0 satisfying X#
1 + X#

2 + X#
3 ≥ 3. This ex-

ample therefore highlights the importance of the assumption that dom-CRNs
be Y-admissible.

Example 14 It is natural to wonder whether Condition 3 of Definition 8 is
useful in classifying discrete state space CRNs with extinction events. To see
that it can be, consider the following CRN:

X1 +X2 2X1 2X2

1

2

3

There are no domination relations so the dom-CRN coincides with the original
CRN. We have only the following exterior forest in bold red:

X1 +X2 2X1 2X2.
1

2

3

In order for this exterior forest to be balanced, we need to have a vector α =
(α1, α2, α3), α 6= 0, which satisfies the following equalities and inequalities:

(Cond. 1) : α2 = 0

(Cond. 2) : α1 − α2 − 2α3 = 0

− α1 + α2 + 2α3 = 0

(Cond. 3) : α3 ≥ α1 ≥ 0.

Condition 1 reduces Condition 2 to α1 = 2α3, so that, combining with Con-
dition 3, we have

α3 ≥ α1 = 2α3 ≥ 0.
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This can only be satisfied by α1 = 0 and α3 = 0, which is a violation of the
requirement that α be nonzero. It follows that the exterior forest is unbalanced
and therefore, by Theorem 1, the discrete state space CRN has a guaranteed
extinction event on the nonterminal complexes X1 +X2 and 2X1. Note, how-
ever, that the vector α = (2, 0, 1) satisfies Conditions 1 and 2 of Definition
8. It follows that Condition 3 of Definition 8 allows furthermore classification
of CRNs with extinction events than Conditions 1 and 2 allow by themselves.
Note also that this CRN is not classified as having a guaranteed extinction
event by Corollary 2 of (Brijder 2015).

3.6 Conditions are Sufficient but not Necessary

It is natural to wonder whether the conditions of Lemma 2 and Theorem 1
are necessary as well as sufficient for a discrete state space CRN to have an
extinction event. Examples 15 and 16 show that the conditions are sufficient
only.

Example 15 Consider the following CRN:

X1 X2

X2 +X3 X1 +X3

X3 +X4 X1 +X4

1

2

3

4

The CRN has a guaranteed discrete extinction event, since X3 may convert
into X1 through reaction 3, then X1 may convert into X2 through reaction 1.
This shuts down all reactions.

To show that Theorem 1 is incapable of affirming this extinction event, it
is necessary to show that every Y-exterior forest of every Y-admissible dom-
CRN is balanced. We start by considering the terminal complexes and the set

D = {X1 +X3
D1−→ X1, X1 +X4

D2−→ X1}. This gives the following dom-CRN:

X2 +X3 X1 +X3

X3 +X4 X1 +X4

X1 X2
1

2

3

4

D1

D2

This dom-CRN is admissible and admits only a single exterior forest in bold
red:

X2 +X3 X1 +X3

X3 +X4 X1 +X4

X1 X2
1

2

3

4

D1

D2
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This forest is balanced if we have a nontrivial vector α = ((αR)1, (αR)2, (αR)3, (αR)4, (αD)1,
(αD)2), αR 6= 0, which satisfies the following:



(Cond. 1) : (αR)4 = 0

(Cond. 2) : − (αR)1 + (αR)2 + (αR)3 − (αR)4 = 0

(αR)1 − (αR)2 = 0

− (αR)3 + (αR)4 = 0

(Cond. 3) : (αD)1 + (αD)2 ≥ (αR)1 ≥ 0

(αD)1 ≥ (αR)2

(αD)2 ≥ (αR)3.

(7)

This can be satisfied by the vector α = (1, 1, 0, 0, 1, 0). It follows that the forest
is balanced, and since this is the only exterior forest for the given dom-CRN,
no conclusion may be reached as a result of Theorem 1.

We now consider more general absorbing complex sets Y ⊆ C. Notice that
any potential Y which contains a subset of {X2, X1, X2 + X3, X1 + X3} can
be balanced by the α above, with perhaps different support on αD. If X1 ∈ Y,
however, we must have D = ∅ in order for the dom-CRN to be Y-admissible.
Otherwise, we would have an edge in D which would lead to Y. For D = ∅,
however, we have that X3 + X4 and X1 + X4 are terminal in the dom-CRN
and therefore X3 +X4 and X1 +X4 must be included in Y. This leaves Y = C
which has an empty exterior forest. There are no other cases to consider, so
we are done.

It follows that every Y-exterior forest of every Y-admissible dom-CRN is
balanced. Since the CRN has a guaranteed extinction event, however, it follows
that the conditions of Theorem 1 are not necessary for extinction events in
discrete state space CRNs.

Example 16 To show that the gap raised in Example 15 may not be easily
overcome by structural considerations alone, consider the following CRN:

X1 X2

X2 +X4 X1 +X4

X3 +X5 X1 +X5

1

2

3

4

This is the CRN in Example 15 with X3 replaced with X4 in the reaction 2, and
X4 replaced with X5 in reactions 3 and 4. Examples 15 and 16 share significant
structural data, including connectivity of paths, domination relations between
complexes, and ker(Γ ).

Taking D = {X1+X4 → X1, X1+X5 → X1} gives the following admissible
dom-CRN:
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X2 +X4 X1 +X4

X3 +X5 X1 +X5

X1 X2
1

2

3

4

D1

D2

We arrive at the same balancing equalities and inequalities (7) as Example
15, so that every Y-exterior forest on this dom-CRN is balanced. Since the
connectivity and domination relations are shared with Example 15, we can
exhaust nontrivial Y-admissible dom-CRNs in the same way, and we conclude
that Theorem 1 is inconclusive.

In contrast to Example 15, this example does not exhibit an extinction
event for most initial conditions. Every complex is strongly recurrent from
every state X5

≥0 such that X#
4 > 0, X#

5 > 0, and any one of X#
1 , X#

2 , and X#
3

is positive. This analysis suggests that comprehensive conditions for extinction
events must depend on further structural information than that considered in
this paper.

4 Conclusions and Future Work

In this paper, we have presented novel conditions (Lemma 2 and Theorem 1) on
the structure of a CRN that are sufficient to guarantee that the corresponding
CRN exhibits an extinction event. The conditions presented generalize the
dependence on terminal SLCs in (Anderson et al. 2014) and (Brijder 2015),
and also produces a system of equalities and inequalities which can be directly
verified. Our conditions are fundamentally graphic-theoretical in nature and
suggest pathways to extinction.

The results of this paper have consequences for the well-studied area of
CTMC models of biochemical reaction networks. In particular, the extinctions
guaranteed to exist by the analysis presented here are often rare events on
relevant timescales. In such situations it is their quasi-stationary distributions,
as opposed to their stationary distributions, that must be characterized to gain
insight into model behavior. Analyses on the nature of these distributions has
been conducted by Anderson et al. (2014), Enciso (2016), and Anderson et al.
(2017).

This work raises several promising avenues for future work:

1. While Theorem 1 gives sufficient conditions for discrete extinction, they are
not necessary (see Examples 15 and 16). This raises the question of whether
there are structural conditions which are both sufficient and necessary for
discrete extinction and, if so, which further structural components of the
CRN might be utilized in such a result.

2. The conditions of Theorem 1 consist of a system of equalities and inequal-
ities. This suggests a computational implementation amenable, in particu-
lar, to the methods of linear programming. Linear programming has already
been used widely in CRNT for verifying CRNs with desirable structural
properties when desirable structural properties are present (Johnston et al.
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2012; Johnston et al. 2014; Johnston 2016; Szederkényi 2010). This com-
putational framework is explored and utilized to characterize CRNs with
extinction events in the companion paper by Johnston (2017).
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Appendix A Proof of Lemma 1

Proof Proof of (i): Consider a subconservative CRN and dom-CRN. Since
the reactions of the CRN are contained in the reactions of the dom-CRN, it
follows that the SLCs of CRN remain strongly connected in the dom-CRN and
therefore are contained in the SLCs of the dom-CRN.

Now suppose that there is an SLC of the dom-CRN which is not contained
in any SLC of the CRN. It follows that there are SLCs W,W ′ ∈ W of the
CRN such that is a path in the dom-CRN from some complex y0 ∈W to some
complex y′0 ∈ W ′, and there is a path in the dom-CRN from some complex
y′1 ∈W ′ to some complex y1 ∈W . Since W and W ′ are strongly connected, we
can create a cycle in the dom-CRN by constructing a path from y0 to y′0 to y′1
to y1 back to y0. Furthermore, since this is not a cycle in the CRN (otherwise,
W and W ′ would not be maximally strongly connected in the CRN), we have
that there is at least one reaction in this cycle which is from D.

We now index the complexes in the cycle so that, if there are d′ ≥ 1
reactions from D in the cycle, we have the following segments in between
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these reactions:

y
(1)
1 → y

(1)
2 → · · · → y(1)n1

y
(2)
1 → y

(2)
2 → · · · → y(2)n2

...

y
(d′)
1 → y

(d′)
2 → · · · → y(d

′)
nd′

.

(8)

By construction, the segments above are connected by reactions in R and

satisfy y
(i+1)
1 ≤ y(i)ni and y

(1)
1 ≤ y(d

′)
nd′ .

Let α ∈ Zr≥0 denote the vector of counts of the reactions in (8), and define

y
(d′+1)
1 = y

(1)
1 . It follows that

Γα =

d′∑
i=1

ni−1∑
j=1

(
y
(i)
j+1 − y

(i)
j

)

=

d′∑
i=1

(
y(i)ni
− y(i)1

)

=

d′∑
i=1

(
y(i)ni
− y(i+1)

1

)
≥ 0

(9)

by the domination relations y
(i+1)
1 ≤ y

(i)
ni . Since the CRN is subconservative,

it follows that there is a c ∈ Rm>0 such that cTΓ ≤ 0. It follows that we have

0 ≤ [cTΓ ]α = cT [Γα] > 0

where the last strict inequality follows from ci > 0 for i ∈ {1, . . . ,m} and the
observation that at least one component in (9) must be strictly greater than
zero since the complexes of the CRN are stoichiometrically distinct. This is a
contradiction. It follows that such a cycle does not exist in the dom-CRN so
that W and W ′ are SLCs of the CRN. The SLCs of the CRN and dom-CRN
therefore coincide and (i) is shown.

Proof of (ii): Note that (i) guarantees that the CRN and dom-CRN share the
same set of SLCs which we will denote W. Suppose that W ∈ W is terminal
in the dom-CRN but not in the CRN. This implies that there is a reaction
(y, y′) ∈ R where y ∈W and y′ 6∈W ; however, this reaction is included in the
dom-CRN so that W may not be terminal in the dom-CRN. It follows that
every terminal SLC of the dom-CRN is a terminal SLC of the CRN, and (ii)
is shown.

Appendix B Proofs of Lemma 2 and Theorem 1

Remark 3 The following proof is inspired by the proof of Theorem 1 of (Brijder
2015). The notation has been adapted to that of CRNT.
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Proof Consider a subconservative CRN and a Y-admissible dom-CRN where
Y ⊆ C is an absorbing complex set on the dom-CRN. Suppose that there is
a complex y ∈ Yc of the dom-CRN which is weakly recurrent from a state
X ∈ Zm≥0. We will show that every Y-exterior forest is balanced; that is, every

Y-exterior forest admits a vector α = (αR, αD) ∈ Rr+d≥0 satisfying the require-
ments of Definition 8. We will accomplish this by constructing a sequence of
reactions which may be executed indefinitively, and then demonstrating that
this sequence repeats. We will define α based on a specific repeating portion
of this sequence and show that it is balanced.

Let X ∈ Zm≥0 denote our initial state. By the assumption of weak recur-

rence, there is a sequence of reactions from X to X0 such that there is a y ∈ Yc
which is strongly recurrent from X0. It follows from this strong recurrence that
there is a state X1− ∈ Zm≥0 and a complex y1− ∈ Yc such that (i) X0 ; X1−,

(ii) y1− is charged at X1−, and (iii) no complex y ∈ Yc is charged at any state
along the sequence of reactions from X ; X1− except X1−. That is, y1− is
the first Y-exterior complex which becomes charged as a result of the reaction
sequence, and it is first charged at the state X1−. Note that, the first two
conditions follow immediately from the recurrence assumption, and the third
follows by taking any sequence guaranteed by strong recurrence, truncating at
the first Y-exterior complex which becomes charged, and redefining y1− ∈ Yc
accordingly. Note also that, if y1− is charged at X originally, then the sequence
of reactions is empty.

By construction, there is a unique path in the exterior forest from y1− to
Y. Let y1+ ∈ Y denote the complex at the end of this path and X1+ ∈ Zm≥0
denote the state obtained by the sequential occurrence of the true reactions
in the path (i.e. include reactions in RF but exclude domination relations
DF ). Note that (i) X1− ; X1+, (ii) y1+ is charged at X1+, and (iii) this
path contains at least one reaction in RF (i.e. the sequence is nonempty). The
third property follows from the observation that y1− ∈ Yc and y1+ ∈ Y, and
the assumption that the Y-exterior forest is admissible and therefore the last
reaction in any Y-exterior path to Y is in RF .

We now iterate this procedure for i = 2, 3, 4, . . . , starting from the state
X(i−1)+ rather than X. This generates the following sequence of transitions,
which may be continued indefinitely because there is a complex y ∈ Yc which
is strongly recurrent from X0 and the construction of the Y-exterior forest:

X0 ; X1− ; X1+ ; X2− ; X2+ ; · · · (10)

Since the CRN is subconservative, we have that there is a finite number of
accessible states (Theorem 1 of Memmi and Roucairol 1975). It follows that
there is a state in {X1−,X2−, . . .} which is repeated. We let n1 and n2 where
0 < n1 < n2 denote the first and second indices for the set {X1−,X2−, . . .}
such that Xn1− = Xn2−. This gives the following subsequence of (10)

Xn1− ; Xn1+ ; · · ·; X(n2−1)+ ; Xn2−. (11)

Since Xn1− = Xn2−, (11) defines a sequence of reactions which can be repeated
indefinitely.
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We now define the vector α = (αR, αD) ∈ Zr+d≥0 in the following way: (i)
αR consists of the counts of the reactions in the sequence of reactions in (11),
and (ii) αD consists of the counts of the domination relations in the paths
taken to construct the reaction sequences in (11).

We now show that α if balanced according to Definition 8. It is clear, first
of all, that α only has support on RF and DF so that Condition 1 is satisfied.
In order to show that αR ∈ ker(Γ ), we note from Eqn. (2) of the main text,
and the definition of αR, that

Xn2− = Xn1− + ΓαR =⇒ 0 = ΓαR.

It follows that αR ∈ ker(Γ ) and therefore α satisfies Condition 2 of 8. To
verify Condition 3, we note that, since yi− is always chosen to be the first
complex exterior to Y which becomes charged, the only contribution to α
from the nonterminal component comes from the segments corresponding to
Xi− ; Xi+, i.e. the paths from yi− to Y. It follows that, at every complex
exterior to Y, the count of the reaction out is at least as great as the sum of
the reactions in, and α therefore satisfies Condition 3 of Definition 8. Lemma
2 is therefore shown. Since Theorem 1 is the contrapositive of Lemma 2, we
are done.


