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Abstract

In this paper we provide a detailed study of a general family of asymmetric
densities. In the general framework we establish expressions for important charac-
teristics of the distributions, and discuss estimation of the parameters via method-
of-moments as well as maximum likelihood estimation. Asymptotic normality re-
sults for the estimators are provided. The results under the general framework are
then applied to some specific examples of asymmetric densities. The use of the
asymmetric densities is illustrated in real data analysis.
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1 Introduction

Although the normal or bell-shape density is the most standard reference density, to-
gether with the Student’s-t density when heavier tails seem to be more appropriate, the
symmetry of both densities makes them unsuitable for many applications. Investment
return data and household income data are just a few examples of data that can only
be described appropriately with asymmetric distributions. Simon (1955) realized the
importance of asymmetric distributions in sociology, economics, and in many biological
phenomena. Apart from the classical asymmetric distributions such as the log-normal, the
chi-squared, and the Fisher distributions, there are many classes of non-classical asym-
metric distributions that have been proposed in the literature.
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dation) and the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy). The first
author gratefully acknowledges support from the GOA/12/014 project of the Research Fund KU Leu-
ven. The third author acknowledges support from the Flemish Science Foundation (FWO research grant
1518917N), and from the Special Research Fund (Bijzonder Onderzoeksfonds) of Hasselt University.
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One can distinguish some major different approaches for constructing asymmetric
distributions. We briefly review these. Azzalini (1985, 1986, 2005) proposed a general
class of skew distributions with probability density function

fλ(y) = 2Π(λy)f(y), (1.1)

where f(y) is a given density, symmetric around 0, and Π(y) is an absolutely continuous
distribution function with probability density function Π′(y) that is symmetric around 0.
The real-valued parameter λ determines together with f and Π the specific element in
this class of asymmetric densities.

Another approach towards transforming a symmetric distribution into a skew distri-
bution was proposed by Fernández and Steel (1998). For a given unimodal and symmetric
around 0 density f and a scalar index γ ∈ (0,+∞), a density in this class of skew distri-
butions is defined by

fγ(y) =
2

γ + 1
γ





f(γy) if y ≤ 0

f( y
γ
) if y > 0.

(1.2)

Arellano-Valle et al. (2005) proposed a general family of skew distributions that
includes (1.2) as a special case. For a given symmetric around 0 density f , a real-valued
parameter α, and positive asymmetric functions a(·) and b(·), a density in this family is
defined as

fα(y) =
2

a(α) + b(α)





f( y
b(α)

) if y ≤ 0

f( y
a(α)

) if y > 0.
(1.3)

When taking a(α) = b(α), the density fα(y) reduces to a symmetric density.
For constructing an asymmetric density, Nassiri and Loris (2013) start from a given

symmetric around 0 density f , and positive real parameters λ1 and λ2, and define

fλ1,λ2(y) =
2λ1λ2
λ1 + λ2





f(λ1y) if y ≤ 0

f(λ2y) if y > 0.
(1.4)

For any λ1 = λ2 the density fλ1,λ2 is symmetric, with a special case fλ1,λ2 = f when
λ1 = λ2 = 1. When λ1 is larger (respectively smaller) than λ2 one gets a right-skew
(respectively left-skew) density. Note that the family of densities in (1.2) is a special case
of the more general family of Nassiri and Loris (2013) by taking λ1 = γ and λ2 =

1
γ
. The

Arellano-Valle et al. (2005) family given in (1.3) is also a special case of the Nassiri and
Loris (2013) family with λ1 =

1
b(α)

and λ2 =
1

a(α)
.

The family of asymmetric densities (1.4) is thus quite broad, and a detailed study
of it has not been done yet. A first aim of this paper is to establish general properties
for this interesting family of asymmetric densities. A first merit of studying the general
family (1.4), is that several known asymmetric densities can be seen as special cases of it,
with our study allowing to get probabilistic and statistical results on these. Secondly, and
more importantly, this study (i) reveals new insights for existing asymmetric densities
and fills in gaps in the literature; and (ii) provides a detailed study of properties of and
inference for many new asymmetric densities. When it comes to estimation, we focus on
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a special setting by taking λ1 = 1 − α and λ2 = α ∈ (0, 1), which allows for sufficient
modelling flexibility and avoids an additional parameter (to be estimated). In addition
this parametrization has important specific merits. Firstly, the parameters µ and φ are
orthogonal (see Remark 3.1). Secondly, symmetry of fλ1,λ2 is then equivalent to α = 0.5,
which facilitates for example the development of a test of symmetry. Thirdly, the location
parameter of the family corresponds to the αth-quantile of the distribution, which makes
the family very-well suited in studies where quantiles are a main focus, as opposed to a
single mean parameter.

Apart from studying the probabilistic properties of the general family of asymmetric
densities in (1.4), in Section 2.2, we also discuss estimation of the parameters in the
reduced family (λ1 = 1 − α and λ2 = α), and establish the asymptotic distributional
properties of the estimators, in Section 3. In Sections 4 and 5 we apply the general results
to the interesting special cases of asymmetric Laplace and normal densities. In Section
6 we illustrate the use of the discussed large class of families in a real data application.
Some further discussions are provided in Section 7. The Supplemental Material contains
additional results, including a small simulation study, proofs of some of the theoretical
results of Sections 2.2 and 3, a further extension of the statistical estimation part, a study
of asymmetric Student’s-t and asymmetric logistic densities, and an additional real data
example.

2 Quantile-based asymmetric family of densities

2.1 Location-scale asymmetric family

In (1.4) the reference symmetric density f is considered to be a standard version of
the density in a location-scale family of densities, such as a standard normal density, a
standard Laplace density, a standard Cauchy density. By introducing a location parameter
µ ∈ R and a scale parameter φ > 0, we obtain

fλ1,λ2(y;µ, φ) =
2λ1λ2

φ(λ1 + λ2)





f
(
λ1(

µ−y
φ
)
)

if y ≤ µ

f
(
λ2(

y−µ
φ
)
)

if y > µ.
(2.1)

where λ1, λ2 ∈ R
+. With µ = 0 and φ = 1 this reduces to (1.4).

In a recent review of existing asymmetric densities Jones (2015) classified these into
four families. The family given in (2.1) is a member of what he termed as Family 3A asym-
metric densities (“Transformation of Scale including Two-piece”) which takes the form
fS(y) = 2f(W−1(y)), with f a density in a location-scale family of symmetric densities.
Indeed, by taking

W−1(y) =
φ(λ1 + λ2)

λ1λ2

∣∣∣y − µ

φ

∣∣∣
{
λ1I(y ≤ µ) + λ2I(y > µ)

}
,

with I(A) denoting the indicator function (i.e. I(A) = 1 if A holds, and 0 otherwise), we
get the density in (2.1).

The following proposition formally states that the above family of densities consti-
tutes a location-scale family, as soon as f is an element of a location-scale family.

Proposition 2.1. Suppose that f belongs to a location-scale family of symmetric densi-
ties. If Y ∼ fλ1,λ2(·;µ, φ), then, for any β0, β1 ∈ R, β0 + β1Y ∼ fλ1,λ2(·; β0 + β1µ, |β1|φ).
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2.2 Properties of the asymmetric family of densities

Consider a random variable Y with density fλ1,λ2(·;µ, φ) in (2.1). In this section we
provide explicit expressions for (i) the cumulative distribution function of Y and the βth-
quantile of Y (in Theorem 2.1); (ii) the central moments of Y (in Theorem 2.2); and (iii)
the characteristic function of Y (in Theorem 2.3). Denote by F and F−1 respectively the
cumulative distribution and quantile function of the standard symmetric around 0 density
f . The symmetry property of f implies that F (0) = 0.5 and F−1(0.5) = 0. The proofs of
Theorems 2.1 and 2.2 are provided in the Supplemental Material.

Theorem 2.1. If Y is a random variable with asymmetric density fλ1,λ2(·;µ, φ) as in (2.1),
then the cumulative distribution function of Y equals

Fλ1,λ2(y;µ, φ) =





2λ2

λ1+λ2
F
(
λ1(

y−µ
φ
)
)

if y < µ

λ2−λ1

λ1+λ2
+ 2λ1

λ1+λ2
F
(
λ2(

y−µ
φ
)
)

if y ≥ µ,
(2.2)

and for any β ∈ (0, 1), the βth-quantile of Y is given by

F−1
λ1,λ2

(β) =





µ+ φ
λ1
F−1

(β(λ1+λ2)
2λ2

)
if β < λ2

λ1+λ2

µ+ φ
λ2
F−1

(
β(λ1+λ2)+(λ1−λ2)

2λ1

)
if β ≥ λ2

λ1+λ2
,

(2.3)

with in particular

F−1
λ1,λ2

(
λ2

λ1 + λ2

)
= µ. (2.4)

Furthermore, F−1
λ1,λ2

(0) is the minimum and F−1
λ1,λ2

(1) is the maximum value of Y .

For the special standard setting that µ = 0 and φ = 1, expressions (2.2) and (2.3)
can be found in Nassiri and Loris (2013).

We next investigate central moments of Y about µ. Generally, Y has finite rth order
moment (r ∈ R) if and only if a corresponding moment of the symmetric density f exists.
This is formally stated in Theorem 2.2. Of special interest are the expressions for the
mean E(Y ), the variance Var(Y ), the skewness and the kurtosis of Y , with the latter two
defined as respectively

γsk =
E
[
(Y − E(Y ))3

]

{E[(Y − E(Y ))2]}
3
2

and γku =
E
[
(Y − E(Y ))4

]
{
E
[
(Y − E(Y ))2

]}2 . (2.5)

Theorem 2.2. If Y is a random variable with asymmetric density fλ1,λ2(·;µ, φ) as in (2.1),
then the rth central moment of Y about µ , with r ∈ R, is given by

E(Y − µ)r =
φr

(λ1 + λ2)

[λr+1
1 + (−1)rλr+1

2

λr1λ
r
2

]
µr,

where

µr = 2

∫ ∞

0

srf(s)ds. (2.6)
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Furthermore, the mean, variance, skewsness and kurtosis are given by, respectively

E(Y ) = µ+
φ(λ1 − λ2)

λ1λ2
µ1 (2.7)

Var(Y )
not.
= V (Y ) =

φ2

λ21λ
2
2

[(λ1 − λ2)
2(µ2 − µ2

1) + λ1λ2µ2]

γsk =
(λ1 − λ2)[(λ1 − λ2)

2(µ3 − 3µ1µ2 + 2µ3
1) + λ1λ2(2µ3 − 3µ1µ2)]

[(λ1 − λ2)2(µ2 − µ2
1) + λ1λ2µ2]

3
2

(2.8)

and

γku =
(λ5

1 + λ5
2)µ4 − (λ1 + λ2)(λ1 − λ2)

2[4(λ2
1 + λ2

2)µ1µ3 − 6(λ2
1 − λ1λ2 + λ2

2)µ
2
1µ2 + 3(λ1 − λ2)

2µ4
1]

(λ1 + λ2)[(λ1 − λ2)2(µ2 − µ2
1) + λ1λ2µ2]2

.

(2.9)

Remark 2.1. Note from (2.8) and (2.9) that the skewness and the kurtosis do not depend
on the parameters µ and φ, but only on λ1 and λ2, and on the moment-type quantities
(µ1, µ2, µ3 and µ4) of the reference symmetric density f .

Theorem 2.3 provides the expression for the characteristic function of the asymmetric
density (2.1).

Theorem 2.3. If Y is a random variable with asymmetric density fλ1,λ2(·;µ, φ) as in (2.1),
then the characteristic function of Y is given by

ϕ(t) =
2eitµ

(λ1 + λ2)

[
λ2ϕ

+
(
− φt

λ1

)
+ λ1ϕ

+
(φt
λ2

)]
,

where

ϕ+(t) =

∫ ∞

0

eityf(y)dy. (2.10)

Proof. The calculation is straightforward using changes of variables:

E[eitY ] =

∫ ∞

−∞
eityfλ1,λ2(y;µ, φ)dy

=
2λ2

(λ1 + λ2)
eitµ

∫ ∞

0

e
i(− φt

λ1
)x
f(x)dx+

2λ1
(λ1 + λ2)

eitµ
∫ ∞

0

e
i( φt

λ2
)z
f(z)dz

=
2eitµ

(λ1 + λ2)

[
λ2ϕ

+
(
− φt

λ1

)
+ λ1ϕ

+
(φt
λ2

)]
.

It is of interest to look at the basic idea underlying the construction of the asymmetric
density (2.1). With f a symmetric density, the basic idea is to introduce scale factors
λ1 and λ2 in the positive and the negative orthants (with respect to µ) such that the
resulting density retains the mode µ. From the expression of the cumulative distribution
function in Theorem 2.1 it is easy to see that

P (Y > µ)

P (Y ≤ µ)
=
λ1/(λ1 + λ2)

λ2/(λ1 + λ2)
=
λ1
λ2
, (2.11)
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or equivalently
λ2 P (Y > µ) = λ1 P (Y ≤ µ).

from which it is clear that λ1 and λ2 control the allocation of mass to each side of the
mode µ.

In this paper we focus in particular on the setting when λ1 = 1−α and λ2 = α ∈ (0, 1).
In this case the asymmetric density is given by

fα(y;µ, φ) =
2α(1− α)

φ





f
(
(1− α)(µ−y

φ
)
)

if y ≤ µ

f
(
α(y−µ

φ
)
)

if y > µ
(2.12)

and (2.11) reduces to

P (Y > µ)

P (Y ≤ µ)
=

1− α

α
⇐⇒ α P (Y > µ) = (1− α)P (Y ≤ µ),

with now only α controling the mass allocation in the density to the left and the right of
the mode µ. From expression (2.2) in Theorem 2.1 we also know that, with λ1 = 1−α and
λ2 = α, the quantile of order α is equal to µ, the location parameter. As such, the family
of asymmetric densities in (2.12) is tailored towards quantiles, with the αth-quantile its
location parameter.

Remark 2.2. For the well known family of densities (1.2) studied by Fernández and Steel
(1998), which corresponds to taking λ1 = γ and λ2 =

1
γ
, the ratio (2.11) becomes γ2. One

may be tempted to think of (2.12) with µ = 0 and φ = 1 as a reparametrization of (1.2),
by simply matching the expression for P (Y > µ)/P (Y ≤ µ), which yields α = 1

1+γ2 , a

one-to-one transformation between R
+ to (0,1). This is of course not true. Using the

above transformation, the density (2.12) yields the density

fγ(y) =
2γ2

(1 + γ2)2





f( γ2y
1+γ2 ) if y ≤ 0

f( y
1+γ2 ) if y > 0

which is clearly different from the density in (1.2).

From the previous theorems, we easily deduce the following properties for the family
of asymmetric densities in (2.12).

Corollary 2.1. If Y is a random variable with asymmetric density fα(·;µ, φ) in (2.12),
then

(i). the cumulative distribution function of Y is given by

Fα(y;µ, φ) =





2αF
(
(1− α)(y−µ

φ
)
)

if y < µ

2α− 1 + 2(1− α)F
(
α(y−µ

φ
)
)

if y ≥ µ.

and for any β ∈ (0, 1), the βth-quantile of Y is

F−1
α (β) =





µ+ φ
1−α

F−1
(

β
2α

)
if β < α

µ+ φ
α
F−1

(
1+β−2α
2(1−α)

)
if β ≥ α,

with in particular F−1
α (α) = µ.
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(ii). Furthermore, the rth central moment of Y about µ, with r ∈ R, is

E(Y − µ)r = φr
[(1− α)r+1 + (−1)rαr+1

αr(1− α)r

]
µr = φrkr

where we denoted

kr =
[(1− α)r+1 + (−1)rαr+1

αr(1− α)r

]
µr. (2.13)

In particular, the mean, variance, skewsness and kurtosis of Y are, respectively

E(Y ) = µ+
φ(1− 2α)µ1

α(1− α)
(2.14)

V (Y ) =
φ2

α2(1− α)2
[(1− 2α)2(µ2 − µ2

1) + α(1− α)µ2]. (2.15)

γsk =
(1− 2α)[(1− 2α)2(µ3 − 3µ1µ2 + 2µ3

1) + α(1− α)(2µ3 − 3µ1µ2)]

[(1− 2α)2(µ2 − µ2
1) + α(1− α)µ2]

3
2

, (2.16)

and

γku =

[
(1− α)5 + α5

]
µ4 − (1− 2α)2

[
4(1− 2α+ 2α2)µ1µ3 − 6(1− 3α+ 3α2)µ2

1µ2 + 3(1− 2α)2µ4
1

]

[(1− 2α)2(µ2 − µ2
1) + α(1− α)µ2]2

.

(iii). The characteristic function of Y is given by

ϕ(t) = 2eitµ
[
αϕ+

(
− φt

1− α

)
+ (1− α)ϕ+

(φt
α

)]
.

In the sequel we focus on the family of quantile-based asymmetric densities in (2.12).

3 Parameter estimation in the quantile-based asym-

metric family of densities

Let Y1, . . . , Yn be an i.i.d. sample from Y with density (2.12). For a given reference
symmetric around 0 density f and a given index-parameter α ∈ (0, 1), the asymmetric
density (2.12) depends on two parameters µ and φ. A first aim in this section is to provide
estimators for the parameters µ and φ. A secondary aim is also to consider estimation of
the index-parameter α. We discuss maximum likelihood estimation as well as estimation
via a method-of-moments.

3.1 Method-of-moments estimation

When α is known, we consider the first two moments of Y to obtain method-of-moments
estimators for µ and φ. Expressions (2.14) and (2.15) lead to





E(Y ) = µ+ k1φ

E(Y 2) = µ2 + 2µk1φ+ k2φ
2

(3.1)
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where kr is defined in (2.13), and specifically k1 =
1−2α
α(1−α)

µ1 and k2 =
(1−α)3+α3

α2(1−α)2
µ2.

We need to invert the system of equations in (3.1). Squaring the first equation and
subtracting it from the second equation we get

E(Y 2)− (E(Y ))2 = (k2 − k21)φ
2 ⇐⇒ φ2 =

1

(k2 − k21)
{E(Y 2)− (E(Y ))2}. (3.2)

Substituting this expression for φ into the first equation in (3.1) leads to the inverted
system: 




µ = E(Y )− k1√
k2−k21

√
E(Y 2)− (E(Y ))2

φ = 1√
k2−k21

√
E(Y 2)− (E(Y ))2.

(3.3)

Note from (3.2) that k2 − k21 = φ−2V (Y ) > 0.
Based on an i.i.d. sample Y1, . . . , Yn from Y , method-of-moments estimators for µ

and φ are obtained by replacing the population moment E(Y j); j = 1, 2, . . . in the inverted
system of equations (3.3) by their empirical counterparts

Mj =
1

n

n∑

i=1

Y j
i j = 1, 2, . . .

which then leads to the method-of-moments estimators




µ̂n =M1 − k1√
k2−k21

√
M2 −M2

1

φ̂n = 1√
k2−k21

√
M2 −M2

1 .
(3.4)

When α is unknown, we have to consider a third population moment. Recall from its
definition (see (2.5)) that the skewness depends on the three first population moments.
From (2.16) we can also see that for a density (2.12), the skewness is a known function of
α, say h(α). A possible approach would thus be to estimate the skewness by replacing the
three first population moments by their empirical counterparts Mj, j = 1, 2, 3, leading
to an empirical estimate γ̂sk for the skewness. Assuming that the function h is invertible
(i.e., h−1(γsk) exists) then the index-parameter α can be estimated by solving

α̂(1)
n = h−1(γ̂sk). (3.5)

Alternatively, we can exploit the fact that for the density (2.12), it holds that P{Y ≤
µ} = Fα(µ;µ, φ) = α. This leads to the estimator

α̂(2)
n =

1

n

n∑

i=1

I(Yi ≤ µ̂n), (3.6)

with µ̂n as in (3.4). Since this estimator depends on µ̂n, method-of-moments estimators
for (µ, φ, α) are obtained via an iterative procedure. The estimate of α from equation
(3.5) could be a good initial value of α̂n for the iteration procedure.
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3.2 Maximum likelihood estimation

The likelihood function for the full vector of parameters (µ, φ, α) for density (2.12) is

Ln(µ, φ, α) =
[2α(1− α)

φ

]n n∏

i=1

[
f
(
(1− α)

(µ− Yi
φ

))]I(Yi≤µ)

×
[
f
(
α(
Yi − µ

φ

))]I(Yi>µ)

,

leading to the log-likelihood function

ln[Ln(µ, φ, α)] = n ln[2α(1− α)]− n ln(φ) +
n∑

i=1

I(Yi ≤ µ) ln
[
f
(
(1− α)

(µ− Yi
φ

))]

+
n∑

i=1

I(Yi > µ) ln
[
f
(
α(
Yi − µ

φ

))]
. (3.7)

The maximum likelihood estimator (MLE) of θ = (µ, φ, α)T is obtained as a solution to
the problem maxθ∈Θ ln[Ln(µ, φ, α)] where Θ = R×R

+ × (0, 1) is the parameter space of
θ. We assume throughout that the function f is a differentiable function.

If α is known and equals 0.5, then µ = F−1
α (α), i.e. the median of Y . In that case

the log-likelihood function is differentiable, with respect to µ and φ, and maximization is
straightforward.

If α is known but α 6= 0.5, or α is not known, then maximizing the log-likelihood
is not straightforward since the log-likelihood function is not differentiable with respect
to the parameter µ at the points µ = Yi. At points µ 6∈ {Y1, . . . , Yn} the log-likelihood
function is differentiable with respect to µ. In contrast, the log-likelihood function is
differentiable with respect to the parameter φ and the index-parameter α, at all points
of the domain. There is a package fmincon in MATLAB software for solving linear and
nonlinear constraints minimization problems with excellent (close to true value) initial
values. Ardalan et al. (2012) showed with a numerical example that this package may
fail to find the global maximum value, and proposed an algorithm to find the MLE for a
two-piece normal-Laplace distribution. We can generalize this algorithm to find the MLE
for the considered asymmetric family of densities. Assume throughout this section that
the reference symmetric density f is unimodal.

Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) denote the order statistics associated to the i.i.d. sample
Y1, Y2, ..., Yn from Y . Denoting with µ̂ the MLE of µ, and assuming that Y(1) ≤ µ̂ ≤ Y(n),
we can proceed as follows

(i) given φ ∈ (0,∞) and α ∈ (0, 1), the function g1(µ) ≡ ln[Ln(µ, φ, α)] is a concave
function of µ ∈ (−∞,∞);

(ii) given µ ∈ (Y(1), Y(n)) and α ∈ (0, 1), let η = 1
φ
, the function g2(η) ≡ ln[Ln(µ, φ, α)]

is a concave function of η ∈ (0,∞);

(iii) given µ ∈ (Y(1), Y(n)) and φ ∈ (0,∞), the function g3(α) ≡ ln[Ln(µ, φ, α)] is a concave
function of α ∈ (0, 1).

Denote the left-hand derivative and right-hand derivative of the concave function g1(µ)
by g′1−(µ) and g′1+(µ), respectively. Let m be the first index in the set {1, . . . , n} for
which g′1+(Y(m)) ≤ 0, i.e g′1+(Y(m−1)) > 0. Then the following two cases can happen. (i)
If g′1+(Y(m))) = 0 and g′1−(Y(m))) = 0, then the function g1(µ) reaches its maximum at
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the point Y(m), i.e. µ̂ = Y(m). (ii) If g′1+(Y(m)) ≤ 0 and g′1−(Y(m))) < 0, it follows that
Y(m−1) < µ̂ < Y(m), since g

′
1+(Y(m−1)) > 0. But in this case g1(µ) is differentiable at µ̂,

with

g′1(µ̂) = g′1−(µ̂) = g′1+(µ̂) =
∂

∂µ

m−1∑

i=1

ln
[
f
(
(1− α)

(µ− Y(i)
φ

))]∣∣∣
µ=µ̂

+
∂

∂µ

n∑

i=m

ln
[
f
(
α(
Y(i) − µ

φ

))]∣∣∣
µ=µ̂

. (3.8)

Setting g′1(µ̂) = 0 based on equation (3.8), then leads to the MLE of µ in that second
case. Overall, denote the MLE by µ̂ = µ̂(φ, α).

Clearly, maximizing ln[Ln(µ, φ, α)] over φ ∈ (0,∞) is equivalent to maximizing the

function g2(η) over η ∈ (0,∞), where η = 1
φ
. For given (µ, α), the MLE of φ is φ̂(µ, α)

which is obtained by solving the equation ∂
∂φ

ln[Ln(µ, φ, α)] = 0. Similarly, for given

(µ, φ), the MLE of α is α̂(µ, φ) obtained by solving the equation ∂
∂α

ln[Ln(µ, φ, α)] = 0.
From the above it is clear that the maximum likelihood (ML) method results into an

iterative procedure, which needs of course some starting values. Since for given index-
parameter α, the parameter µ is nothing but the αth-quantile of Y , we consider as plau-
sible starting values for (α, µ) the values (α

(j)
0 , µ

(j)
0 ) = ( j

n
, Y(j)), for j = 1, . . . , n. For a

given starting value (α
(j)
0 , µ

(j)
0 ), we then first calculate φ̂(µ

(j)
0 , α

(j)
0 ), leading to starting

values for the whole parameter vector (µ, φ, α). We then iterate until convergence of the

procedure, to get to a first MLE for (µ, φ, α), which we denote by (µ̂(j), φ̂(j), α̂(j)). Run-

ning this computation for all n starting values, and calculating ln
[
Ln

(
µ̂(j), φ̂(j), α̂(j)

)]

for j = 1, . . . , n, we select as the MLE of (µ, φ, α), the value (µ̂(k), φ̂(k), α̂(k)), for which

ln
[
Ln

(
µ̂(k), φ̂(k), α̂(k)

)]
is maximal among the n values.

Obtaining the maximum likelihood estimators is computationally more involved than
calculating the method-of-moments estimators. See also Section 3.3.3 for a further dis-
cussion on and comparison of both estimation methods.

3.3 Asymptotic behaviour of the parameter estimators

We next investigate the asymptotic properties of both, the method-of-moments estimators
and the maximum likelihood estimators. We distinguish between the cases that the index-
parameter α is given, and the case that it is not given and needs to be estimated. Allowing
some mild notational ambiguity, we denote in the former case the unknown parameter
vector by θ = (µ, φ)T and its true value by θ0 = (µ0, φ0)

T ; whereas in the latter case this
is θ = (µ, φ, α)T and θ0 = (µ0, φ0, α0)

T respectively.
The proofs of Theorems 3.1 and 3.4 are deferred to the Appendix, whereas the proofs

of all other results are provided in the Supplemental Material.

3.3.1 Asymptotic behaviour of the method-of-moments estimator

Denote the true moments of Y by

µj,Y = µj,Y (θ0) ≡ E(Y j), j = 1, 2, 3, 4,
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and use the notation

µ∗
3,Y = µ∗

3,Y (θ0) ≡ P{Y ≤ µ0} = E [I{Y ≤ µ0}] = α0.

The method-of-moments estimator for (µ, φ), when the index-parameter α is known, is
given in (3.4). In case α is unknown, the additional estimator in (3.6) is used, and
the estimation procedure becomes an iterative one. In both cases, and for notational
ease, denote the method-of-moments (MoM) estimator by θ̂

(MoM)
n . Theorems 3.1 and 3.2

state the asymptotic normality result for θ̂
(MoM)
n , in case the index-parameter is known,

respectively not known. Herein Nk stands for a k-variate normal distribution.

Theorem 3.1. (Known index-parameter α)
If µ4,Y = E(Y 4) <∞, then

√
n(θ̂(MoM)

n − θ0)
d−→ N2(0,Γ(θ0)) as n→ ∞,

with

Γ(θ) =
φ2

4

1

(k21 − k2)
2

×


 k21k4 − k21k

2
2 − 4 k1k2k3 + 4 k32 2 k31k2 + 2 k21k3 − 5 k1k

2
2 − k1k4 + 2 k2k3

2 k31k2 + 2 k21k3 − 5 k1k
2
2 − k1k4 + 2 k2k3 k4 − 4 k41 + 8 k21k2 − 4 k1k3 − k22


 ,

(3.9)

where kr, for r = 1, 2, 3, 4, is as in (2.13).

Theorem 3.2. (Unknown index-parameter α)
Denote by µY (θ) = (µ1,Y (θ), µ2,Y (θ), µ

∗
3,Y (θ))

T the vector of population moments and
by Mn = (M1,M2,M

∗
3 )

T with M∗
3 = n−1

∑n
i=1 I{Yi ≤ µ}. Further, let m̄n(θ) = Mn −

µY (θ) = 1
n

n∑
i=1

m(Yi,θ) is a vector of moment restrictions which is non-differentiable

with respect to the unknown parameter, and denote the method-of-moments estimator
by θ̂

(MoM)
n . Assume that

(A1) θ̂
(MoM)
n is a consistent estimator of the true parameter θ0 = (µ0, φ0, α0)

T that satisfies

m̄n(θ̂
(MoM)
n ) = 0.

(A2) E[m̄n(θ)] is differentiable at θ0 with matrix of first order derivatives M such that
M is nonsingular.

(A3) Denote vn(θ0) =
1√
n

n∑
i=1

[m(Yi,θ0) − E(m(Yi,θ0))]. Assume that {vn(·) : n ≥ 1} is

stochastically equicontinuous.

(A4) The matrix S = E[m(Y,θ0)m(Y,θ0)
T ] exists.

Then we have
√
n(θ̂(MoM)

n − θ0)
d−→ N3(0,M

−1S(M−1)T ) as n→ ∞, (3.10)

where S = E[m(Y,θ0)m(Y,θ0)
T ].

Note that we have an explicit expression for the asymptotic variance-covariance ma-
trix Γ(θ0) in the known index-parameter case.
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3.3.2 Asymptotic behaviour of the maximum likelhood estimators

The true value θ0 of θ = (µ, φ, α)T is estimated by the MLE θ̂
(MLE)
n = (µ̂

(MLE)
n , φ̂

(MLE)
n , α̂

(MLE)
n )T

obtained as a maximizer of (3.7).
One of the requirements for applying asymptotic normality results from standard

maximum likelihood theory is that the objective function (the log-likelihood) is twice
continuous differentiable. However, the asymmetric density has a non-differentiable peak
at the mode µ, and hence the log-likelihood function ln[Ln(θ)] is non-differentiable at
the points Yi = µ. Therefore, the standard maximum likelihood asymptotic theory is
not directly applicable when one of the unknown parameters is µ, and one has to use
special asymptotic results which account for such an irregularity in the statistical model.
By relying however on fundamental results, such as Theorems 2.1 and 7.1 of Newey and
McFadden (1994) and Theorem 3 as well as its corollary in Huber (1967) we can still
establish the usual asymptotic properties for our maximum likelihood estimators. The
following assumptions are needed.

Assumptions:

(B1) Let ΘR = [−µu, µu] × [φl, φu] × [αl, αu], where |µu| < ∞, 0 < φl ≤ φ ≤ φu < ∞,

and 0 < αl ≤ α ≤ αu < 1, be a compact subset of Θ, and assume that θ0 ∈
◦

ΘR,

with
◦

ΘR the interior of ΘR.

(B2)
∫∞
0

∣∣ ln f(s)
∣∣f(s)ds <∞; where f(s) is the reference symmetric density.

(B3) γr =
∫∞
0
sr−1 · (f ′(s))2

f(s)
ds <∞ for r = 1, 2, 3.

(B4) lim
s→∞

sf(s) = 0 or
∫∞
0
sf ′(s)ds = −1

2
.

Theorem 3.3 guarantees the consistency of the maximum likelihood estimator, whereas
Theorem 3.4 establishes the asymptotic normality result.

Theorem 3.3. Under Assumptions (B1) and (B2), the MLE θ̂
(MLE)
n = (µ̂

(MLE)
n , φ̂

(MLE)
n , α̂

(MLE)
n )T

of θ is (weakly) consistent. That is, θ̂
(MLE)
n

P−→ θ0, as n→ ∞.

Before deriving the asymptotic distribution of the maximum likelihood estimator
θ̂
(MLE)
n , we establish some result on the score vector (in Proposition 3.1) and subsequently

derive the Fisher information matrix in Proposition 3.2.

Proposition 3.1. If Assumption (B4) holds, then the expectation with respect to the

true underlying distribution of the score vector for Y , denoted by ∂ ln fα(Y ;θ)
∂θ

, is zero, i.e.

E
[∂ ln fα(Y ;θ)

∂θ

]
θ=θ0

= 0.

Proposition 3.2. Suppose Assumptions (B3) and (B4) hold. Then the Fisher infor-

mation matrix I(θ) =
[
E
{

∂
∂θi

log fα(Y ;θ) · ∂
∂θj

log fα(Y ;θ)
}]

i,j=1,2,3
for θ = (µ, φ, α)T

is

I(θ) =




2α(1−α)γ1
φ2 0 −2γ2

φ

0 1
φ2 (2γ3 − 1) − (1−2α)(2γ3−1)

α(1−α)φ

−2γ2
φ

− (1−2α)(2γ3−1)
α(1−α)φ

[α3+(1−α)3]2γ3−(1−2α)2

α2(1−α)2


 . (3.11)
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Remark 3.1.

1. Note from the Fisher information matrix in (3.11) that the parameters µ and φ
are always orthogonal (see Cox and Reid, 1987). As consequences we mention: (i)
the ML estimates of µ and φ are asymptotically independent, (ii) the asymptotic
variance for estimating µ is the same whether φ is known or unknown. In addition
this orthogonality property may lead to simpler numerical determination of the ML
estimates for (µ, φ).

2. Note that the quantity γr, defined in Assumption (B3), is always a positive real
number.

Theorem 3.4. Suppose Assumptions (B1)—(B4) hold. Then the MLE θ̂
(MLE)
n is asymp-

totically normally distributed with mean 0 and variance-covariance matrix [I(θ0)]
−1:

√
n(θ̂(MLE)

n − θ0)
d−→ N3(0, I(θ0)

−1) as n→ ∞,

where I(θ) is the Fisher information matrix given in (3.11), with inverse

I(θ)−1 =




γ3φ2

2α(1−α)(γ1γ3−γ2
2)

(1−2α)γ2φ2

2α(1−α)(γ1γ3−γ2
2)

γ2φ
2(γ1γ3−γ2

2)

(1−2α)γ2φ2

2α(1−α)(γ1γ3−γ2
2)

[I(θ)−1]22
(1−2α)γ1φ

2(γ1γ3−γ2
2)

γ2φ
2(γ1γ3−γ2

2)

(1−2α)γ1φ

2(γ1γ3−γ2
2)

α(1−α)γ1
2(γ1γ3−γ2

2)




where

[I(θ)−1]22 =
(6α2γ1γ3 + 2 γ2

2α2 − 4α2γ1 − 6α γ1γ3 − 2 γ2
2α + 4α γ1 + 2 γ1γ3 − γ1)φ

2

2α(1− α)(2γ3 − 1)(γ1γ3 − γ22)
.

If α is known, then the asymptotic variance-covariance matrix of the MLE θ̂n = (µ̂
(MLE)
n , φ̂

(MLE)
n )T

of (µ, φ)T is

I(θ)−1 =




φ2

2α(1−α)γ1
0

0 φ2

2 γ3−1


 . (3.12)

If φ and α are both known, then the asymptotic variance (abbreviated AVar) of µ̂
(MLE)
n is

AVar(µ̂
(MLE)
n ) = φ2

2α(1−α)γ1
.

Note that for the ML estimation method we also have a closed-form expression for the
asymptotic variance-covariance matrix when the index-parameter α is unknown. Since
in case α known we have closed-form expressions for the asymptotic variance-covariance
for both estimation methods, we can compare the performances of the estimators. See
Section 3.3.3.

3.3.3 Comparison between asymptotic properties of MoM and MLE estima-
tors

Suppose that the index-parameter α is given (fixed). From the expressions for the asymp-
totic variances of the method-of-moments and the maximum likelihood estimators for µ
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and φ, provided in (3.9) and (3.12), respectively, we obtain that

RAVar(µ̂n) ≡
AVar(µ̂

(MoM)
n )

AVar(µ̂
(MLE)
n )

=
α (1− α) (k21k4 − k21k

2
2 − 4 k1k2k3 + 4 k32) γ1

2 (k2 − k21)
2 ,

and

RAVar(φ̂n) ≡
AVar(φ̂

(MoM)
n )

AVar(φ̂
(MLE)
n )

=
(k4 − 4 k41 + 8 k21k2 − 4 k1k3 − k22)(2γ3 − 1)

4 (k2 − k21)
2 .

Recall the definition of kr in (2.13), denote kr(α) = (1 − α)r+1 + (−1)rαr+1, and write
kr = {kr(α)/[α(1− α)]r} µr. Further noting that kr(α) = (1−α)r+1− (−α)r+1 and using
the polynomial identity an−bn = (a−b)(an−1+an−2b+. . .+abn−2+bn−1), for a, b ∈ R and
n ∈ N, reveals that kr(α), for r an integer, is a polynomial of degree r in α. Specifically,
we find

k1(α) = 1− 2α k3(α) = 1− 4α + 6α2 − 4α3

k2(α) = 1− 3α + 3α2 k4(α) = 1− 5α + 10α2 − 10α3 + 5α4.
(3.13)

With the above notations we get

RAVar(µ̂n) =
k21(α)k4(α)µ

2
1µ4 − k21(α)k

2
2(α)µ

2
1µ

2
2 − 4k1(α)k2(α)k3(α)µ1µ2µ3 + 4k32(α)µ

3
2

2
(
k2(α)µ2 − k21(α)µ

2
1

)2
α(1− α)

γ1

(3.14)

RAVar(φ̂n) =
k4(α)µ4 − 4k41(α)µ

4
1 + 8k21(α)k2(α)µ

2
1µ2 − 4k1(α)k3(α)µ1µ3 − k22(α)µ

2
2

4
(
k2(α)µ2 − k21(α)µ

2
1

)2 (2γ3 − 1).

(3.15)

The quantity AVar(µ̂
(MoM)
n )/AVar(µ̂

(MLE)
n ) in (3.14) is thus the ratio of a polynomial of

degree six in α and, in the denominator, a polynomial of degree 4 in α multiplied with
the factor α(1−α). The quantity AVar(φ̂

(MoM)
n )/AVar(φ̂

(MLE)
n ) in (3.15) is the ratio of two

polynomials of degree four in α.
Note that kr(0) = 1, for all r; kr(1) = −1, for r odd, and kr(1) = 1, for r even;

kr(0.5) = 0 for r odd, and kr(0.5) = 0.5r for r even. With this knowledge it is easy to
find some details of the behaviour of the ratio’s in (3.14) and (3.15). The denominator in
(3.14) contains the factor α(1 − α) and as such equals zero when α either tends to 0 or
1. The numerator in (3.14) however stays finite for both limiting α values. As a conse-
quence the limit of (3.14) is infinite when α either tends to zero or one. Furthermore, the
limiting cases for α = 0 and α = 1 cöıncide because of the appearance of k1(α) and k3(α)
either in a squared version or the product of both quantities, such that the differences
in signs in the two limiting cases do not enter. Table 3.1 details the behaviour of the
quantities AVar(µ̂

(MoM)
n )/AVar(µ̂

(MLE)
n ) and AVar(φ̂

(MoM)
n )/AVar(φ̂

(MLE)
n ), when α tends to

zero or one, and when α = 0.5, in which case we are back to the setting of the reference
symmetric density.

Table 3.1: General behaviour of RAVar(µ̂n) and RAVar(φ̂n) for α = (limαց0, 0.5, limαր1).

α α = 0.5 limαց0 and limαր1

RAVar(µ̂n) 2µ2γ1 +∞

RAVar(φ̂n)
µ4 − µ2

2

4µ2
2

γ1
µ4 − 4µ4

1 + 8µ2
1µ2 − 4µ1µ3 − µ2

2

4(µ2 − µ2
1)

2
(2γ3 − 1)
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A possible loss in efficiency should be considered together with the computational
advantage of the method-of-methods estimators.

3.4 Examples

Special and appealing choices for the reference symmetric (around 0) density f in (2.12)
are: the standard normal density, the Student’s-t density with ν degrees of freedom, the
standard logistic density and the standard Laplace density. We refer to the resulting
asymmetric densities as the asymmetric normal, Student-t, logistic and Laplace densities,
abbreviated as AND, ATD, ALD, ALaD. See Sections 5, S.5, S.6 and 4 respectively.

Application of Theorems 2.1, 2.2 and 2.3, and Corollary 2.1 to the setting of specific
examples, requires evaluation of the following characteristic quantities of the reference
symmetric density f :

• for applying Theorem 2.1 we need to evaluate expressions for the cumulative distri-
bution function and the quantile function;

• for Theorem 2.2 we need the values for µr, defined in (2.6), for r = 1, 2, 3, 4;

• for Theorem 2.3 we need to calculate the function ϕ+(·) defined in (2.10).

Table S.1 in the Supplemental Material lists the quantities f , F , F−1, µr, for r = 1, 2, 3, 4,
and ϕ+ for the above examples of reference symmetric densities.

For the application of Theorems 3.1, 3.2 and 3.4, we need to verify the assumptions,
which also involves calculation of the quantities γ1, γ2 and γ3 (see Assumption (B3)). In
Table S.1 in the Supplemental Material we also include the values of these quantities for
the special examples of reference symmetric densities.

The information in Tables 3.1 and S.1 allows to study the behaviour of the ratio’s
RAVar(µ̂n) = AVar(µ̂

(MoM)
n )/AVar(µ̂

(MLE)
n ) and RAVar(φ̂n) = AVar(φ̂

(MoM)
n )/AVar(φ̂

(MLE)
n )

for these special cases of densities. See Tables S.2 and S.3 (in the Supplemental Material).

From Table S.3 it is clearly seen that the ratio’s between the asymptotic variance of θ̂
(MoM)
n

and θ̂
(MLE)
n are always equal for α and (1 − α). In Figure 4.1 a plot of RAVar(µ̂n) and

RAVar(φ̂n) for the asymmetric Laplace density is given. See further Section 4.3.3.

For given α, the asymptotic variance of µ̂
(MLE)
n for asymmetric normal and Laplace

densities equals φ2

α(1−α)
since γ1 = 0.5 for both densities. The asymptotic variance of µ̂

(MoM)
n

is just double that of µ̂
(MLE)
n for an asymmetric Laplace distribution in case α = 0.5. On

the other hand, for an asymmetric normal distribution in case of α = 0.5 (i.e. for a

symmetric normal distribution) the asymptotic variance of µ̂
(MoM)
n equals that of µ̂

(MLE)
n .

For an asymmetric Student’s-t distribution with a large value of ν, the value of RAVar(θ̂n)
is very close to that for an asymmetric normal distribution, as can be seen from Tables
S.2 and S.3.

It should be mentioned that Table S.2 not only provides insights in a comparison
between the asymptotic variances of maximum-likelihood and method-of-moments esti-
mators for the family of asymmetric densities in general, but also reveals new insights
about the comparison of the two estimation methods for classical symmetric densities:

• for a normal density, both estimators have the same asymptotic efficiency;

• for a logistic density, the MLE are slightly more efficient (ratio’s close to one);
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• for a Laplace density, the loss in efficiency when using the method-of-moments
estimator is less for the scale estimator than for the location estimator.

In the next sections we look in detail into two special cases of families of asymmetric
densities, and apply the general results to these. Two other cases are studied in Sections
S.5 and S.6 in the Supplemental Material. In each case we start by discussing the re-
lationship with densities in the literature, highlight differences, and emphasize the new
insights gained. We provide the properties of the related densities in (2.1), and discuss
the results on MoM and ML estimators for parameters of densities (2.12).

4 Quantile-based asymmetric Laplace densities

In the last several decades, a lot of research has been done on various forms of asymmetric
Laplace distributions. For a general discussion on these see for example the book by Kotz
et al. (2001). Hinkley and Revankar (1977) proposed an asymmetric double exponential
(Laplace) density and discussed ML parameter estimation establishing asymptotic nor-
mality results in the context of Pareto law underreported data. Kozubowski and Podgórski
(1999) showed that an asymmetric Laplace density is a mixture of two exponential densi-
ties with two different rates. In this section, we briefly review contributions to asymmetric
Laplace distributions, showing that all can be viewed as special cases of the asymmetric
family of densities in (2.1). Important is that the application of our general results in
Sections 2.2 and 3 allow us to find existing results for asymmetric Laplace densities as
special cases, and moreover to complete important existing gaps in the literature.

4.1 Definition of the asymmetric Laplace densities

With the symmetric density f a standard Laplace density as indicate in Table S.1, the
four-parameter asymmetric Laplace density resulting from (2.1) is given by

fλ1,λ2(y;µ, φ) =
λ1λ2

φ(λ1 + λ2)





e−λ1

(
µ−y
φ

)
if y ≤ µ

e−λ2

(
y−µ
φ

)
if y > µ,

(4.1)

and the three-parameter asymmetric Laplace density obtained from (2.12) is

fα(y;µ, φ) =
α(1− α)

φ





e−(1−α)
(

µ−y
φ

)
if y ≤ µ

e−α
(

y−µ
φ

)
if y > µ.

(4.2)

If Y has density (4.1) (respectively (4.2)), we denote Y ∼ ALaD(µ, φ, λ1, λ2) (respectively
Y ∼ ALaD(µ, φ, α). The meaning of the location parameter is given by (2.4), revealing
the quantile link for the location parameter. Yu and Zhang (2005) also considered the
asymmetric Laplace densities in (4.1) and (4.2), and discussed MLE.

There are several reparametrizations of the asymmetric Laplace density in (4.2) in the
literature; see Kotz et al. (2001). For example, by reparameterizing the scale parameter
φ = α

β
, the density (4.2) becomes

fα(y;µ, β) = β(1− α)





e−
β(1−α)

α
(µ−y) if y ≤ µ

e−β(y−µ) if y > µ.
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which was proposed by Hinkley and Revankar (1977, eq. (5)). Another popular asym-
metric Laplace density was proposed by Kotz et al. (2002), and is defined as

fκ(y;µ, σ) =

√
2

σ

κ

1 + κ2





e−
√
2

σκ
(µ−y) if y ≤ µ

e−
√
2κ
σ

(y−µ) if y > µ,
(4.3)

which is also a reparameterization of the density (4.2) with α = κ2

1+κ2 and φ = κσ√
2(1+κ2)

.

An important advantage of the density in (4.2) is that the location parameter µ equals
the αth-quantile of the distribution. Furthermore, the parametrization in (4.2) leads to
orthogonality of the parameters µ and φ. See Remarks 3.1 and 4.1.

4.2 Properties of the asymmetric Laplace densities

Applying Theorems 2.1, 2.2 and 2.3, and Corollary 2.1 to the setting of Section 4.1, we find
the properties of the densities in (4.1) and (4.2). For convenience we collected the findings
in Table 4.1. Since most properties are available in the literature we do not provide details
on the derivations here. For φ = 1, results for the three and four parameter density are
provided in Yu and Zhang (2005); and for the three parameter density they are also in
Poiraud-Casanova and Thomas-Agnan (2000).

Table 4.1: Properties of asymmetric Laplace densities.

Four parameter density Three parameter density

Property in (4.1) in (4.2)

cumulative
distrib. function Fλ1,λ2

(y;µ, φ) Fα(y;µ, φ)

function =





λ2

λ1+λ2
eλ1(

y−µ
φ

) if y ≤ µ

1− λ1

λ1+λ2
e−λ2(

y−µ
φ

) if y > µ
=





αe(1−α)( y−µ
φ

) if y ≤ µ

1− (1− α)e−α( y−µ
φ

) if y > µ

quantile F−1
λ1,λ2

(β) F−1
α (β)

function =





µ+ φ
λ1

ln
(

β(λ1+λ2)
λ2

)
if β ≤ λ2

(λ1+λ2)

µ− φ
λ2

ln
(

(1−β)(λ1+λ2)
λ1

)
if β > λ2

(λ1+λ2)

=





µ+ φ
1−α

ln
(
β
α

)
if β ≤ α

µ− φ
α
ln
(
1−β
1−α

)
if β > α

central moment

E(Y − µ)r φr

(λ1+λ2)

[
λ
r+1

1
+(−1)rλr+1

2

λr
1
λr
2

]
Γ(r + 1) φr

[
(1−α)r+1+(−1)rαr+1

αr(1−α)r

]
Γ(r + 1)

mean E(Y ) µ+ φ(λ1−λ2)
λ1λ2

µ+ φ(1−2α)
α(1−α)

variance V (Y )
(λ2

1+λ2
2)φ

2

λ2
1
λ2
2

φ2(1−2α+2α2)
(α2(1−α)2)

mode µ µ

skewness γsk
2(λ3

1−λ3
2)

[λ2
1
+λ2

2
]
3
2

2(1−2α)(1−α+α2)

(1−2α+2α)
3
2

kurtosis γku
9λ4

1+6λ2
1λ

2
2+9λ4

2

(λ2
1
+λ2

2
)2

24α4
−48α3+60α2

−36α+9
(2α2

−2α+1)2

characteristic

function ϕ(t) λ1λ2e
itµ

(λ1+λ2)

(
(λ1 + φit)−1 + (λ2 − φit)−1

)
α(1− α)eitµ

(
(1− α+ φit)−1 + (α− φit)−1

)
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4.3 Parameter estimation in asymmetric Laplace densities

Let Y1, . . . , Yn be an i.i.d. sample from Y with density as in (4.2), i.e. Y ∼ ALaD(µ, φ, α).
We apply results from the general setting in Section 3 to this case.

4.3.1 Method-of-moments estimation

As far as we know there are no results available on method-of-moments estimation for
an asymmetric Laplace distribution, and hence we fill in some gap here. In case the
index-parameter is known, the method-of-moments estimators for θ = (µ, φ)T is given in
(3.4), with k1 and k2 as in (3.13), and µ1 and µ2 as listed in Table S.1. Since the fourth
moment of a Laplace distribution is finite, a straightforward application of Theorem 3.1,
using the quantities tabulated in Table S.1 leads to the asymptotic normality result for
the method-of-moments estimator.

Theorem 4.1. The methods-of-moment estimator θ̂
(MoM)
n = (µ̂

(MoM)
n , σ̂

(MoM)
n )T is asymp-

totically normal distributed:

√
n(θ̂(MoM)

n − θ0)
d−→ N2(0,Γ(θ0)) as n→ ∞,

where

Γ(θ) =




(12α6−36α5+57α4−54α3+29α2−8α+1)φ2

α2(1−α)2(2α2−2α+1)2
(6α5−15α4+22α3−18α2+7α−1)φ2

α(1−α) (2α2−2α+1)2

(6α5−15α4+22α3−18α2+7α−1)φ2

α(1−α) (2α2−2α+1)2
(5α4−10α3+13α2−8α+2)φ2

(2α2−2α+1)2


 .

4.3.2 Maximum likelihood estimation

From the general expression for the log-likelihood function in (3.7), the log-likelihood
function of θ = (µ, φ, α)T for the setting of Section 4.1 equals

ln[Ln(α, µ, φ)] = n ln[α(1− α)]− n ln(φ)− 1

φ

n∑

i=1

|Yi − µ|
[
(1− α)I(Yi ≤ µ) + αI(Yi > µ)

]

= n ln[α(1− α)]− n ln(φ)− 1

φ

n∑

i=1

ρα(Yi − µ),

where ρα(u) is the so-called check (or tick) loss function defined by ρα(u) = u(α−I(u < 0))
following Koenker and Bassett (1978). The MLE of θ is a solution to the problem
maxθ∈Θ ln[Ln(α, µ, φ)]. Asymptotic results for the maximum likelihood estimation under
various forms of asymmetric Laplace densities are discussed by several authors included
by Hinkley and Revankar (1977), Kotz et al. (2002), and Yu and Zhang (2005).

The expression for the Fisher information matrix of θ stated in (3.11) in Proposition 3.2,
using the values for the quantities γr, for r = 1, 2, 3 tabulated in Table S.1, leads to the
Fisher information matrix I(θ) for an ALaD(µ, φ, α) density:

I(θ) =




α (1−α)
φ2 0 − 1

φ

0 1
φ2 − 1−2α

α (1−α)φ

− 1
φ

− 1−2α
α (1−α)φ

2α2−2α+1
α2(1−α)2



. (4.4)
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Remark 4.1. For the density with parametrization as in (4.3) Kotz et al. (2002), on page
818 in their paper, provide an expression for the Fisher information matrix. Exploiting
the connections with the reparametrization in (4.3), we can show that the expression of
the Fisher information matrix in (4.4) cöıncides with this in Kotz et al. (2002).

Direct application of Theorem 3.4 leads to the asymptotic normality results for
the MLE for the parameters in density (4.2). One only needs to check the conditions
of the theorem. Assumptions (B2) is satisfied since for a symmetric Laplace density∫∞
0

∣∣ ln f(s)
∣∣f(s)ds ≤ 1/2 + ln(2) which is finite. For checking Assumption (B3), we first

mention that f ′(s) = −1
2
sign(s)e−|s|, for s 6= 0. From this it is easily seen that

γ1 =

∫ ∞

0

(f ′(s))2

f(s)
ds =

1

2
, γ2 =

∫ ∞

0

s
(f ′(s))2

f(s)
ds =

1

2
and γ3 =

∫ ∞

0

s2
(f ′(s))2

f(s)
ds = 1.

These values are included in Table S.1. Further, Assumption (B4) is satisfied since for a
standard Laplace density it is easy to check that lim

s→∞
sf(s) = 0.

Theorem 4.2. If Assumption (B1) holds, then the MLE θ̂
(MLE)
n = (µ̂

(MLE)
n , φ̂

(MLE)
n , α̂

(MLE)
n )T

of θ0 is consistent and asymptotically normally distributed:

√
n(θ̂(MLE)

n − θ0)
d−→ N3(0, I(θ0)

−1) as n→ ∞,

where

I(θ)−1 =




2φ2

α(1−α)
(1−2α)φ2

α(1−α)
φ

(1−2α)φ2

α(1−α)
(3α2−3α+1)φ2

α(1−α)
(1− 2α)φ

φ (1− 2α)φ α(1− α)


 .

If α is known, then the asymptotic variance-covariance matrix is

I(θ)−1 =




φ2

α(1−α)
0

0 φ2


 .

Remark 4.2. This asymptotic normality result (case α known) is also available in Hinkley
and Revankar (1977) and Kotz et al. (2002). In addition, when focusing only on µ, we also
mention the following. For any continuous probability density function gY (y); y ∈ R and

an αth-sample quantile µ̂ = min
µ∈R

n∑
i=1

ρα(yi − µ) of Y , Koenker and Bassett (1978) found

√
n(µ̂n − µ) ≈ N

(
0, α(1−α)

g2
Y
(µ)

)
, for n large. For an asymmetric Laplace density, we have

gY (µ) = fα(µ;µ, φ) = α(1−α)
φ

. Applying this result leads to the asymptotic distribution
√
n(µ̂n − µ) ≈ N

(
0, φ2

α(1−α)

)
which cöıncides with the result indicated in Theorem 4.2.

However, Yu and Zhang (2005) state that
√
n(µ̂n−µ) ≈ N(0, φ2),

√
n(φ̂n−φ) ≈ N(0, φ2)

and
√
n(α̂n − α) ∼ N(0, α

2(1−α)2

(1−2α)2
) for α 6= 1

2
, which appears to be not correct.
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4.3.3 Comparison of asymptotic variances of MoM and MLE estimators

Using the general considerations in Section 3.3.3 we can get an idea about the possi-
ble loss in efficiency when using the computationally very easy method-of-moments es-
timator, instead of the MLE. The graphical presentation of the quantities RAVar(µ̂n) =

AVar(µ̂
(MoM)
n )/AVar(µ̂

(MLE)
n ) and RAVar(φ̂n) = AVar(φ̂

(MoM)
n )/AVar(φ̂

(MLE)
n ), with (limit-

ing) behaviour as can be read from Tables S.2 and S.3, are plotted in Figure 4.1. The
value of RAVar(µ̂n) decreases rather rapidly for increasing values of α, for α < 0.30; and,
due to the symmetry, there is a similar rapid increase for α > 0.70.
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Figure 4.1: Asymmetric Laplace density. The ratio of asymptotic variances of µ̂n (left)

and φ̂n (right) obtained by MoM and MLE as a function of the index-parameter α.

5 Quantile-based asymmetric normal densities

We first briefly review asymmetric normal densities that can be found in the literature.
O’Hagan and Leonard (1976) proposed the following skew normal density

fλ(y) = 2φ(y)Φ(λy) −∞ < y <∞ (5.1)

where λ ∈ R. This density is a special case of the family in (1.1), by taking f(y) = φ(y)
and Π(y) = Φ(y), respectively the standard normal density and cumulative distribution
function. This is the most popular skew normal density and variations of it have been
discussed by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), Arnold
et al. (2002), Branco and Dey (2001), Chiogna (2004), Arellano-Valle and Genton (2005),
among others.

Arellano-Valle et al. (2004) proposed a new class of skew normal densities, so called
skew-generalized normal densities, defined as

fλ,δ(y) = 2φ(y)Φ
( λy√

1 + δy2

)
−∞ < y <∞

where λ ∈ R and δ ≥ 0. Note that (5.1) is a special case of this family, obtained by taking
δ = 0. For δ = λ2, the resulting density is called a skew-curved normal density.

20



Recently, another class of skew normal densities was proposed by Elal-Olivero (2010),
called alpha-skew normal densities, defined by

fα(y) =
(1− αy)2 + 1

2 + α2
φ(y) −∞ < y <∞,

where α ∈ R. Taking α = 0 gives the standard normal symmetric density.
Another popular approach is to consider so-called split-normal densities, which are

obtained by joining at the mode the halves of two normal densities with the same mode but
different variances. For example Gibbons and Mylroie (1973) presented the continuous
two-piece normal distribution and applied a split-normal model to fit impurity profiles
data. Fechner (1897) also studied the continuous two-piece normal distribution. The
split-normal density with parameters µ, σ1 > 0 and σ2 > 0 is as follows (see, Johnson
et al., 2002):

f(y;µ, σ2
1, σ

2
2) =

2√
2π(σ1 + σ2)





e
− 1

2

(
y−µ
σ1

)2

if y ≤ µ

e
− 1

2

(
y−µ
σ2

)2

if y > µ,
(5.2)

where µ ∈ R is the location parameter and σ1 > 0 and σ2 > 0 are the scale parameters.
Several authors (see for example, Runnenburg, 1978) applied and studied the split-normal
density. For example, split-normal models were used in the estimation of production
frontiers in Aigner et al. (1976), and Leffrancois (1989) relied on split-normal models
in forecasting processes in econometric phenomena, argueing that a split-normal model
provides better forecasting value.

Mudholkar and Hutson (2000) proposed the epsilon-skew normal density that is a
special case of the split-normal density, in which σ1 = (1 + ǫ)σ and σ2 = (1 − ǫ)σ, with
−1 < ǫ < 1, and henceforth the difference between the two standard deviations of the
normal densities (i.e. σ1 − σ2 ) equals 2ǫσ. The epsilon-skew normal density is

fǫ(y;µ, σ
2) =

1√
2πσ2





e−
1
2

(
y−µ

(1+ǫ)σ

)2

if y ≤ µ

e−
1
2

(
y−µ

(1−ǫ)σ

)2

if y > µ,
(5.3)

where −1 < ǫ < 1. The limiting cases of (5.3) as ǫ → ±1 are well known half-normal
densities.

Kim (2005) presented a two-piece skew normal density with index-parameter λ ∈ R:

fλ(y) =
2π

π + 2 tan−1(λ)
φ(y)Φ(λ|y|) −∞ < y <∞. (5.4)

If λ = 0, this reduces to the standard normal density. The density in (5.4) is uni/bimodal
and a mixture of two truncated skew normal distributions.

A generalized two-piece skew normal distribution was introduced by Jamalizadeh
et al. (2011), through a standard bivariate normal distribution with correlation ρ. The
density in this case is given by

fδ,λ,ρ(y) =
c∗(δ, λ, ρ)

σ
φ
(y − µ

σ

)
Φ2

(δ(y − µ)

σ
,
λ|y − µ|

σ
, ρ
)
, δ, λ, y ∈ R, (5.5)
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where c∗(δ, λ, ρ) = (4π)
{
cos−1

(
−(ρ+δλ)√
1+δ2

√
1+λ2

)
+ cos−1

(
−(ρ−δλ)√
1+δ2

√
1+λ2

)
+ 2 tan−1(λ)

}−1

and

Φ2(., .; ρ) denotes the cumulative distribution function of N2(0, 0, 1, 1, ρ). In the special
case when ρ = 0, a two-piece skew normal density is obtained:

fδ,λ(y) =
4π

π + 2 tan−1(λ)
φ(y)Φ(δy)Φ(λ|y|), δ, λ, y ∈ R. (5.6)

Note that the density in (5.4) is a special case of this extended class, and is obtained by
taking δ = 0 in (5.6).

The main drawback of all these existing skew normal densities, with exception for
the split-normal one in (5.2), is that there is no explicit form for their quantile functions.
For the asymmetric family of densities considered in Section 2.1 we have the important
advantage that explicit expressions are available, as well as estimators with well-studied
properties. See the next sections.

5.1 Definition of the asymmetric normal densities

Using for the reference symmetric density, a standard normal density, we obtain from
(2.1) the four parameter asymmetric normal density

fλ1,λ2(y;µ, σ) =
λ1λ2

(λ1 + λ2)

√
2

πσ2





e−
λ22
2

(
y−µ
σ

)2

if y > µ

e−
λ21
2

(
µ−y
σ

)2

if y ≤ µ,
(5.7)

and from (2.12) the three parameter asymmetric normal density

fα(y;µ, σ) = α(1− α)

√
2

πσ2





e−
α2

2

(
y−µ
σ

)2

if y > µ

e−
(1−α)2

2

(
µ−y
σ

)2

if y ≤ µ.
(5.8)

For a random variable Y having density (5.7), respectively density (5.8), we denote Y ∼
AND(µ, σ, λ1, λ2), respectively Y ∼ AND(µ, σ, α). Note that we denote φ = σ in this
example.

Remark 5.1. The continuous two-piece normal (split-normal) normal density in (5.2) is
a special case of the asymmetric normal density in (5.7), obtained by taking λ1 =

σ
σ1

and
λ2 = σ

σ2
. Also the epsilon-skew normal density provided in (5.3) is a special case of the

above family, for which λ1 =
1

1+ǫ
and λ2 =

1
1−ǫ

.

Our focus will be on the family of asymmetric normal densities given in (5.8). Some
densities from this family are depicted in Figure S.1 in the Supplemental Material. From
these plots the impact and meaning of the different parameters are clearly visible.

The asymmetric normal densities given in (5.8) are quite different in construction
from the most popular existing skew normal density given in (5.1). To illustrate this we
consider the latter density with some extra location parameter µ and scale parameter σ2

in the reference normal density and cumulative distribution function, leading to the skew
normal density

fλ(y;µ, σ) =
1

σπ
e−

(y−µ)2

2σ2

∫ λ( y−µ
σ

)

−∞
e−

t2

2 dt −∞ < y <∞, (5.9)
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which is symmetric in case λ = 0, and with µ the location parameter. This is in contrast to
the asymmetric normal density in (5.8) for which µ is the αth-quantile of the distribution.
Figure 5.1 depicts several densities from respectively the asymmetric normal density in
(5.8) (left panel), and the skew normal density in (5.9) (right panel) for various values of
the index-parameters (α and λ). From these plots it is clear that density (5.8) retains the
same mode µ, which equals the αth-quantile of fα(·). In contrast, the modes of the skew
normal densities (5.9) are different for different values of the index-parameter λ.
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Figure 5.1: Left: Asymmetric normal densities from (5.8) for different index values α.
Right: Skew normal densities as in (5.9) for different index values λ. Location and scale
parameters are µ = 0 and φ = 1.

Further differences between the skew normal density and the asymmetric normal
density are transparant from Table 5.1 (taking λ1 = 1 − α and λ2 = α) in which we
provide properties for the asymmetric normal density (5.7), as established by the results
in Section 2.2. There is no explicit form of a quantile function for the existing skew normal
distribution. On the other hand, there is an explicit form of the quantile function for the
asymmetric normal density, and the quantile function is a linear function of µ.

5.2 Properties of the asymmetric normal densities

When appyling Theorems 2.1, 2.2 and 2.3, and Corollary 2.1 to the setting of Section 5.1,
we essentially need to evaluate the characteristic quantities of the reference symmetric
density f , as explained in Section 3.4.

We first look into the cumulative distribution function and the quantile function. If
Y ∼ N(0, 1), then F (y) = 1

2
[1 + erf( y√

2
)]; y ≥ 0, where erf(x) is the so-called Gauss error

function, defined as erf(x) = 1√
π

∫ x

−x
e−t2dt = 2√

π

∫ x

0
e−t2dt for non-negative values of x,

and for which erf(−x) = −erf(x). Using Theorem 2.1, we obtain

Fλ1,λ2(y;µ, φ) =





λ2

λ1+λ2
[1− erf

(
λ1√
2
(µ−y

σ
)
)
] if y < µ

λ2−λ1

λ1+λ2
+ λ1

λ1+λ2
[1 + erf

(
λ2√
2
(y−µ

σ
)
)
]) if y ≥ µ.

We next use that erf(x) = 1√
π
γ(1

2
, x2) = 1− 1√

π
Γ(1

2
, x2) for non-negative values of x, where

Γ(s, x) =
∫∞
x
ts−1e−tdt denotes the upper incomplete gamma function and γ(s, x) is the

lower incomplete gamma function, γ(s, x) =
∫ x

0
ts−1e−tdt, for x ≥ 0. This all together

then leads to the expression for the cumulative distribution function in Table 5.1.
In the derivation of the quantile function we need Γ−1(1

2
, y) the inverse of the incom-

plete gamma function, i.e. x = Γ−1(s, y), which is equivalent to y = Γ(s, x).
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Table 5.1: Properties of the four parameter asymmetric normal densities in (5.7).

Property

cumulative

distrib. function Fλ1,λ2(y;µ, σ
2) =





λ2

(λ1+λ2)
1√
π
Γ
(
1
2
,
λ2
1

2
(µ−y

σ
)2
)

if y ≤ µ

λ2

(λ1+λ2)
+ λ1

(λ1+λ2)
1√
π
γ
(
1
2
,
λ2
2

2
(µ−y

σ
)2
)

if y > µ

quantile function F−1
λ1,λ2

(β) =





µ− σ
λ1

√
2Γ−1

(
1
2
,
√
πβ(λ1+λ2)

λ2

)
if β ≤ λ2

(λ1+λ2)

µ+ σ
λ2

√
2γ−1

(
1
2
,
√
πβ(λ1+λ2)−

√
πλ2

λ1

)
if β > λ2

(λ1+λ2)

central moment

E(Y − µ)r (σ
√
2)r√

π(λ1+λ2)

[
λr+1
1 +(−1)rλr+1

2

λr
1λ

r
2

]
Γ
(

r+1
2

)

mean E(Y ) µ+
√
2σ2(λ1−λ2)√

πλ1λ2

variance V (Y ) σ2

πλ2
1λ

2
2

[
(λ1 − λ2)

2(π − 2) + πλ1λ2

]

skewness γsk γsk =
√
2(λ1−λ2)[(λ1−λ2)2(4−π)+πλ1λ2][

(λ1−λ2)2(π−2)+πλ1λ2

] 3
2

kurtosis γku
3π2(λ5

1+λ5
2)−16π(λ1−λ2)(λ4

1−λ4
2)+12π(λ1−λ2)2(λ3

1+λ3
2)−12(λ1+λ2)(λ1−λ2)4

(λ1+λ2)
[
(λ1−λ2)2(π−2)+πλ1λ2

]2

characteristic function

ϕ(t) λ2

(λ1+λ2)
e
itµ− t2σ2

2λ21

[
1− erf

(
itσ√
2λ1

)]
+ λ1

(λ1+λ2)
e
itµ− t2σ2

2λ22

[
1 + erf

(
itσ√
2λ2

)]

Calculation of the quantity µr is also simple. We find

µr = 2

∫ ∞

0

srf(s)ds =
2√
2π

∫ ∞

0

sre−
1
2
s2ds =

(
√
2)r√
π

Γ
(r + 1

2

)
,

leading to the expression for µr, and subsequently for E(Y − µ)r in Table 5.1, and the
specific values for µr, for r = 1, 2, 3, 4, for the standard normal density in Table S.1.

For the function ϕ+(·) we find, putting u = y − it and next u =
√
2s,

ϕ+(t) =

∫ ∞

0

eityf(y)dy =
1√
2π

∫ ∞

0

eitye−
1
2
y2dy =

1√
2π
e−

t2

2

∫ ∞

0

e−
1
2
(y−it)2dy

=
1√
2π
e−

t2

2

∫ ∞

−it

e−
1
2
u2

du

=
1√
2π
e−

t2

2

[√2π

2
−

∫ − it√
2

0

e−s2ds
]

=
1

2
e−

t2

2 [1 + erf(
it√
2
)]

where we used that erf(−x) = −erf(x).
From this we find the characteristic function of the asymmetric normal density (5.7)

ϕ(t) =
2eitµ

(λ1 + λ2)

[
λ2ϕ

+
(
− σt

λ1

)
+ λ1ϕ

+
(σt
λ2

)]

=
λ2

(λ1 + λ2)
e
itµ− t2σ2

2λ21

[
1− erf

( itσ√
2λ1

)]
+

λ1
(λ1 + λ2)

e
itµ− t2σ2

2λ22

[
1 + erf

( itσ√
2λ2

)]
.
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5.3 Parameter estimation in asymmetric normal densities

Let Y1, . . . , Yn be an i.i.d. sample from Y with density (5.8), i.e. Y ∼ AND(µ, σ, α).
We now apply the theoretical results from Section 3 to this setting, and discuss method-
of-moments and maximum likelihood estimation and the asymptotic properties for the
associated estimators.

5.3.1 Method-of-moments estimation

Since the fourth moment of a standard normal distribution is finite, the following result
is a straightforward application of Theorem 3.1, using k1 and k2 as in (3.13), with µ1 and
µ2 as listed in Table S.1.

Theorem 5.1. The methods-of-moment estimator θ̂
(MoM)
n = (µ̂

(MoM)
n , σ̂

(MoM)
n )T is asymp-

totically normal distributed:

√
n(θ̂(MoM)

n − θ0)
d−→ N2(0,Γ(θ0)) as n→ ∞,

where

Γ(θ) =


 Γ(θ)1,1 Γ(θ)1,2

Γ(θ)2,1 Γ(θ)2,2


 ,

Γ(θ)1,1 =
(2.5855α6 − 7.7566α5 + 13.4837α4 − 14.0398α3 + 8.1598α2 − 2.4326α + 0.4448) σ2

α2 (1− α)2 (1.4248α2 − 1.4248α + 1.1416)2

Γ(θ)1,2 = Γ(θ)2,1 = −0.62668 (1− 2α)3 (0.274α2 − 0.274α + 0.566) σ2

α (1− α) (1.4248α2 − 1.4248α + 1.1416)2

Γ(θ)2,2 =
(1.0699α4 − 2.1398α3 + 3.8429α2 − 2.7730α + 0.9349) σ2

(1.4248α2 − 1.4248α + 1.1416)2
.

5.3.2 Maximum likelihood estimation

The general expression for the log-likelihood function of θ = (µ, φ, α)T in (3.7), deduces to
the following expression for the setting of Section 5.1, when f is the standard symmetric
normal density, and we denote φ = σ:

ln[Ln(µ, σ, α)] = n ln[
√
2α(1− α)]− n

2
ln(π)− n

2
ln(σ2)

− 1

2σ2

n∑

i=1

(Yi − µ)2
[
(1− α)2I(Yi ≤ µ) + α2

I(Yi > µ)
]
. (5.10)

The log-likelihood function (5.10) is differentiable with respect to σ and α, but non-
differentiable with respect to µ at the points µ = Yi, and we need to use the algorithm
presented in Section 3.2 for finding the maximum likelihood estimators. We therefore
verify here that all working conditions of the algorithm are fulfilled in this setting. Note
first of all that the function t(µ) = −(Yi − µ)2 is concave and hence −∑n

i=1(Yi − µ)2 is
also concave. Therefore, given σ and α, the function g1(µ) = ln[Ln(µ; σ, α)] is a concave
function of µ ∈ (−∞,∞). The left-hand and right-hand derivatives of g(µ) are:

g′1−(µ) =
(1− α)2

σ2

n∑

i=1

(Yi − µ)I(Yi < µ) +
α2

σ2

n∑

i=1

(Yi − µ)I(Yi ≥ µ)
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g′1+(µ) =
(1− α)2

σ2

n∑

i=1

(Yi − µ)I(Yi ≤ µ) +
α2

σ2

n∑

i=1

(Yi − µ)I(Yi > µ).

It is easily verified that g′1+(Y(1)) > 0 and g′1−(Y(n)) < 0. Hence, there is a point, µ̂,
between Y(1) and Y(n) which maximizes g1(µ) and, therefore, satisfies g′1−(µ̂) = 0 and
g′1+(µ̂) = 0. It is also easily shown that, given σ and α, the log-likelihood function
ln[Ln(µ; σ, α)] is maximized at µ̂ = Y(1) if µ < Y(1) and at µ̂ = Y(n) if µ > Y(n). Therefore,
Y(1) ≤ µ̂ ≤ Y(n). Given µ ∈ (Y(1), Y(n)) and α ∈ (0, 1), let g2(η) = ln[Ln(η;µ, α)] with
η = 1

σ
. The second derivative of g2(η) is non-positive and hence g2(η) is a concave function

of η ∈ (0,∞). We also see that, given µ ∈ (Y(1), Y(n)) and σ ∈ (0,∞), the second derivative
of the function g3(α) = ln[Ln(α;µ, σ)] is non-positive and hence g3(α) is also a concave
function of α ∈ (0, 1). Hence all working conditions described in Section 3.2 are satisfied.
In Section S.4.1 we present further details of the ML estimation for θ = (µ, φ, α)T in (3.7).

Applying Theorem 3.4 leads to the asymptotic normality result for the MLE of the
parameters in the asymmetric normal density (5.8), stated in Theorem 5.2 below. In
order to apply Theorem 3.4 we need to check Assumptions (B2)—(B4). Assumption (B2)
is satisfied because

∫ ∞

0

∣∣ ln f(s)
∣∣f(s)ds =

∫ ∞

0

∣∣∣− 1

2
ln(2π)− s2

2

∣∣∣f(s)ds

≤
∣∣∣1
2
ln(2π)

∣∣∣
∫ ∞

0

f(s)ds+

∫ ∞

0

∣∣∣− s2

2

∣∣∣f(s)ds

=
1

4
(ln(2π) + 1) <∞.

Regarding Assumption (B3), for f the standard normal density, for which f ′(s) =

−
(√

2π
)−1

e−s2/2, we get

γ1 =

∫ ∞

0

(f ′(s))2

f(s)
ds =

1√
2π

∫ ∞

0

s2e−
1
2
s2ds =

1

2

γ2 =

∫ ∞

0

s(f ′(s))2

f(s)
ds =

1√
2π

∫ ∞

0

s3e−
1
2
s2ds =

√
2√
π

γ3 =

∫ ∞

0

s2 · (f
′(s))2

f(s)
ds =

1√
2π

∫ ∞

0

s4e−
1
2
s2ds =

3

2
.

Finally, the first part of Assumption (B4) is obviously satisfied for the standard normal
density.

Theorem 5.2. If Assumption (B1) holds, then the ML estimator θ̂
(MLE)
n = (µ̂

(MLE)
n , σ̂

(MLE)
n , α̂

(MLE)
n )T

of θ0 is consistent and asymptotically normally distributed:

√
n(θ̂n − θ0)

d−→ N3(0, I(θ0)
−1) as n→ ∞,

where

I(θ)−1 =
1

3 π − 8




3π σ2

α (1−α)
2
√
2π(1−2α)σ2

α (1−α)
2
√
2πσ

2
√
2π(1−2α)σ2

α (1−α)

(5α2π+8α2−5π α−8α+2π)σ2

2α (1−α)
(1− 2α) σπ

2
√
2πσ (1− 2α) σπ α (1− α) π



.
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If α is known, then the variance-covariance matrix is

I(θ)−1 =




φ2

α (1−α)
0

0 φ2

2


 .

As before we can access the possible loss in asymptotic efficiency when using the
computationally very easy method-of-moments estimator. A plot similar to Figure 4.1 is
provided in Figure S.2 in the Supplemental Material. All this is of course based on the
study of the asymptotic behaviour of the MoM and ML estimators in case α is known.
In order to evaluate the finite-sample performance of both type of estimators in case α is
known, as well as in case α is unknown (and hence needs to be estimated), we present a
small simulation study in Section S.4.3 in the Supplemental Material. That small simu-
lation study revealed that for small sample sizes the MoM estimator is sometimes better,
and for estimation of the index-parameter α both methods perform very comparable.

6 Real data example

In this section we illustrate the use of the asymmetric densities discussed in previous
sections. We consider a dataset concerning the heights (in centimeters) of 100 Australian
female athletes. These data were collected by the AIS (Australian Institute of Sport).
These data have been used extensively in the literature, e.g. in Cook and Weisberg
(2009). The data are available in the R-software package sn and can be downloaded
from http://azzalini.stat.unipd.it/SN/index.html. Jamalizadeh et al. (2011) used
a generalized two-piece skew normal density (5.5) to model the distribution of these data.

The main question here is which density of a set of (a)symmetric densities provides
the best distributional model for these data. We consider four normal densities, three
Student’s-t densities and three logistic densities. All the densities have location and
scale parameters µ and σ. For the normal densities, we have: (1) a symmetric N(µ, σ2)
density; (2) an asymmetric normal density (5.1) with location and scale parameters and
additional index-parameter λ; (3) an asymmetric normal density (5.5) with location and
scale parameters and additional parameters δ, λ and ρ; (4) an asymmetric normal density
(5.8) with µ, σ, and index-parameter α. All Student’s-t densities have degrees of freedom
ν and scale and location parameters µ and φ, and further; (5) is a symmetric Student’s-
t density with parameters µ, σ and ν; (6) is an asymmetric Student’s-t density (S.5)
with parameters µ, σ and ν and index-parameter λ; and (7) is an asymmetric Student’s-t
density (S.10) with parameters µ, σ, ν and index-parameter α. The three logistic densities
are: (8) a symmetric logistic density with location and scale parameters µ and σ; (9) an
asymmetric logistic density (S.22) with parameters µ and σ, and index-parameter λ; and
(10) an asymmetric logistic density (S.25) with parameters µ, σ, and index-parameter α.

The parameters in all models are estimated by using the maximum likelihood estima-
tion method. In order to judge about the appropriateness of a density model, we calculate
the Akaike’s information number

AIC = −2 ln
(
Ln

(
θ̂(MLE)
n

))
+ 2k,

where k is the number of estimated parameters in the model, and Ln

(
θ̂
(MLE)
n

)
is the

realized maximal likelihood value. The AIC-value should be as small as possible.
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We also conduct for each model a Kolmogorov-Smirnov (KS) goodness-of-fit test, for
testing

H0 : Sample data come from the stated distribution

H1 : Sample data do not come from the stated distribution.

The Kolmogorov-Smirnov test statistic is defined as :

Dn = sup
y

|F0(y)− Fn(y)|, (6.1)

where F0(y) is the cumulative function of the stated distribution (with ML estimated
parameters) and Fn(y) is the empirical distribution function.

The sample mean, variance, skewness and kurtosis are 174.5940, 67.9339, −0.5598
and 4.1967 respectively. Table 6.1 presents the ML estimates (MLE) of the parameters
in all normal models, whereas the results for the Student’s-t and logistic densities are
in Table 6.2. For parameters that are not involved in a model we indicate: NAP = Not
Applicable. For each model we also list the maximum log-likelihood value ln

(
Ln

(
θ̂
(MLE)
n

))
,

the AIC-value, the value of the KS test statistic in (6.1), as well as the associated P -value.

Table 6.1: Normal densities. MLE (with NAP = Not Applicable), maximal log-likelihood
and corresponding AIC-value, value of the Kolmogorov-Smirnov test statistic and corre-
sponding P -value.

Density symmetric normal asymmetric normal densities
(1) (2): in (5.1) (3): in (5.5) (4) in (5.8)

µ̂ 174.594 174.392 165.921 177.02
σ̂ 8.201 8.199 9.131 3.879

δ̂ NAP NAP 0.498 NAP

λ̂ NAP 0.0314 0.539 NAP

α̂ NAP NAP NAP 0.60
ρ̂ NAP NAP −0.965 NAP

Log-Lik. −352.318 −352.318 −347.088 −350.845
AIC 708.636 710.636 704.176 707.689
KS 0.0894 0.0714 0.0389 0.0739
P -value 0.4011 0.6878 0.9981 0.6457

The maximal log-likelihood is almost the same for all skew Student’s-t and logistic
densities. Among all candidate models, the asymmetric logistic density (S.25) has min-
imum AIC-value. For all considered models, the P -values are larger than 0.05 which
indicates that there is no strong evidence against H0, for none of the models. The largest
log-likelihood value is obtained with the asymmetric normal density (5.5). For this model
the KS-statistic has also the smallest value with the largest associated P -value. Conse-
quently, this asymmetric normal density constitutes the best model, but it is an overfitted
model (the AIC-value is not the smallest). The smallest AIC-value is achieved for the
asymmetric logistic density (S.10), which is a more parsimonious, and hence more appro-
priate model for these data.

Figure 6.1 depicts a histogram of the data, together with the three fitted symmetric
densities (with ML estimated parameters), in dashed lines, as well as the three fitted
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Table 6.2: Student-t and logistic densities. MLE (with NAP = Not Applicable), maximal
log-likelihood and corresponding AIC-value, value of the Kolmogorov-Smirnov test statistic
and corresponding P -value.

Student-t densities logistic densities
Densities symmetric asymmetric densities symmetric asymmetric densities

(5) Student-t (6): in (S.5) (7): in (S.10) (8) logistic (9): in (S.22) (10): in (S.25)

µ̂ 175.142 177.267 177.02 174.998 179.419 177.021

φ̂ 6.217 6.446 3.07 4.409 5.15 2.098

λ̂ NAP −0.364 NAP NAP −0.862 NAP

α̂ NAP NAP 0.60 NAP NAP 0.6
v̂ 4.240 4.20 5.00 NAP NAP NAP

LogLik. −349.364 −348.744 −348.465 −349.594 −348.731 −348.488
AIC 704.728 705.488 704.929 703.188 703.462 702.976

KS 0.0841 0.0462 0.0485 0.0440 0.0433 0.0429
P -value 0.4787 0.9727 0.9903 0.9920 0.9920 0.9928
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Figure 6.1: Fitted symmetric densities (1), (5) and (8), and asymmetric densities AND,
ATD and ALD, and the histogram of the data set.

asymmetric densities that are elements of the family (1.4) (with λ1 = 1− α and λ2 = α)
studied in this paper, in solid lines. The three asymmetric densities are clearly a better
fit than the symmetric densities, which already appeared from Tables 6.1 and 6.2. Based
on the MLE of the parameters, and exploiting the established expressions, we plot the
quantile functions of the three asymmetric densities, densities (4), (7) and (10), in the
left panel of Figure 6.2.

Using the estimated quantiles for the selected asymmetric logistic density, as well as
empirical quantiles, we provide a QQ-plot for this density. For convenience a 45-degree
reference line is also plotted. Note that most Q-Q values are reasonably close to the
reference line.
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Figure 6.2: Left: Estimated quantile functions of AND(µ̂, σ̂, α̂), ATD(µ̂, φ̂, α̂) and

ALD(µ̂, φ̂, α̂); Right: Q-Q plot for the asymmetric logistic distribution ALD.

A second real data application is provided in Section S.7 in the Supplemental Mate-
rial.

7 Discussion and Conclusion

In this paper we studied a general family of asymmetric densities, established its proba-
bilistic properties, discussed estimation of the parameters, and obtained asymptotic nor-
mality results for the estimators. The specific merit of studying the general family is that
the results can readily be applied to the many examples of asymmetric densities that
follow from it. As such our general results contribute on the one hand to lacking results
for existing asymmetric densities in the literature, but on the other hand provide a full
study of several new interesting classes of asymmetric densities.

For readability we restricted ourselves in Section 3 to the setting that the reference
standard symmetric density f involves no extra parameters. In case this density comes
with an extra parameter vector, say κ, then it is rather straightforward to extend Theo-
rems 3.2 and 3.4 for estimation of the extended parameter vector θ = (µ, φ, α,κT )T . See
Theorems S.3.1 and S.3.2 in the Supplemental Material, as well as Section S.5.

Although the general family of asymmetric densities involves index-parameters λ1 and
λ2, the reduced family with only one index-parameter α appears to be flexible enough for
statistical modeling. Often a first question to answer is whether the underlying density
is symmetric or not. Since symmetry under this general family of asymmetric densities
is equivalent to having α = 0.5 or not, developing testing procedures for testing for
symmetry would be quite feasible in this framework.

A specific feature of the general family of asymmetric densities is that its location
parameter µ equals the αth-quantile of the density, where α is the index-parameter of the
family. This family of densities thus has an implicit focus on estimation of quantiles. Of
particular interest in future research would be to look into a regression setting in which
one would extend the studied family to a setting of conditional densities, where among
others estimation of the regression quantiles would be of particular interest.
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Appendix: Proofs of Theorems 3.1 and 3.4

A.1 Proof of Theorem 3.1

To prove this theorem, we use results from standard large sample theory (e.g., see, Serfling,
1980). Let Mn = (M1,M2)

T be the vector of the first two sample moments, and denote
by µY = (µ1,Y (θ0), µ2,Y (θ0))

T the corresponding vector of population moments. From

(3.1) we know that the latter vector is given by
(
µ0 + k1φ0, µ

2
0 + 2k1µ0φ0 + k2φ

2
0

)T
.

Applying Theorem 2.2.1B in Serfling (1980, pp. 68) we obtain

√
n(Mn−µY )

d−→ N2(0,Σ(θ0)), where Σ(θ0) =
(
(µi+j,Y (θ0)−µi,Y (θ0)µj,Y (θ0))i,j

)
1≤i,j≤2

.

Since the method-of-moments estimator θ̂
(MoM)
n = (µ̂

(MoM)
n , φ̂

(MoM)
n )T , with compo-

nents as in (3.4), takes the form θ̂
(MoM)
n = (g1(M1,M2), g2(M1,M2))

T we can use Theorem
3.3A and its corollary in (pp. 122-126 Serfling, 1980). This then leads to

√
n(θ̂(MoM)

n − θ0)
d−→ N2(0,Γ(θ0)) as n→ ∞,

where Γ(θ) = D(θ)Σ(θ)D(θ)T , with the matrix Σ(θ) as above and D(θ) is a 2×2 matrix

with as (i, j)th-element ∂gi(M1,M2)
∂Mj

∣∣∣
Mn=µY

(i, j ∈ {1, 2}) . Using (3.1) and Theorem 2.2,

we find that

Σ(θ) =




φ2
(
k2 − k1

2
)

−φ2
(
2µ k1

2 + φ k1k2 − 2 k2µ− φ k3
)

−φ2
(
2µ k1

2 + φ k1k2 − 2 k2µ− φ k3
)

Σ22


 ,

(A.1)

with Σ22 = −4µ2φ2k1
2 − 4µφ3k1k2 − φ4k2

2 + 4µ2φ2k2 + 4µφ3k3 + k4φ
4.
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For finding the elements of D(θ) we get that

∂g1(M1,M2)

∂M1

= 1 +
k1√
k2 − k21

M1√
M2 −M2

1

,

and hence
∂g1(M1,M2)

∂M1

∣∣∣
Mn=µY

= 1 +
k1(µ0 + k1φ0)

(k2 − k21)φ0

=
φ0k2 + µ0k1
φ0(k2 − k21)

. (A.2)

Likewise, we obtain

∂g2(M1,M2)
∂M1

∣∣∣
Mn=µY

= − µ0+k1φ0

φ0(k2−k21)

∂g1(M1,M2)
∂M2

∣∣∣
Mn=µY

= − k1
2φ0(k2−k21)

∂g2(M1,M2)
∂M2

∣∣∣
Mn=µY

= 1
2φ0(k2−k21)

.
(A.3)

Combining (A.1), (A.2) and (A.3) leads to the expression for Γ(θ) = D(θ)Σ(θ)D(θ)T as
in (3.9).

A.2 Proof of Theorem 3.4

Huber (1967) studied asymptotic normality of MLE under nonstandard conditions like
a non-differentiable likelihood function. Since the likelihood function Ln(θ) is non-
differentiable at the points Yi = µ, we will use Theorem 3 and its corollary of Huber
(1967), and start by checking the conditions.

Denote by

Ψ(Yi,θ) =




ψ1(Yi,θ)

ψ2(Yi,θ)

ψ3(Yi,θ)


 =




1
2

(
∂−

∂µ
[ln fα(Yi;µ, φ)] +

∂+

∂µ
[ln fα(Yi;µ, φ)]

)

∂
∂φ
[ln fα(Yi;µ, φ)]

∂
∂α
[ln fα(Yi;µ, φ)]




where ∂−

∂µ
[ln fα(Yi, µ, φ)] and

∂+

∂µ
[ln fα(Yi, µ, φ)] are respectively the left-hand and right-

hand derivatives of ln fα(Yi;µ, φ) with respect to µ. Since

λ(θ) = E[Ψ(Y,θ)]

exists for all θ ∈ ΘR, where expectations are always taken with respect to the true

underlying distribution fα0(Yi;µ0, φ0) with parameter vector θ0 = (µ0, φ0, α0)
T ,θ0 ∈

◦

ΘR.
The first condition (N-1) of Theorem 3 of Huber (1967) states that for each fixed

θ ∈ ΘR, Ψ(Yi,θ) is Ω-measurable, and Ψ(Yi,θ) is separable (see (A-1) of Huber (pp.
222, 1967)). This assumption ensures measurability of the supremum and limits which is
irrelevant to us. However, since Ψ(Yi,θ) is continuous and under assumption (B1), it can
be easily shown that for each fixed θ ∈ ΘR, the function Ψ(Yi,θ) is Ω-measurable and
separable (Billingsley, 1995). The second condition (N-2) is λ(θ0) = 0. The function
Ψ(Y,θ) and its expectation with respect to the underlying true distribution, λ(θ0), are
presented in Proposition 3.1. Using this proposition, we see λ(θ0) = 0 which satisfies the
condition (N-2). The condition (N-4) holds, since from Proposition 3.2, we have

E[|Ψ(Yi,θ0)|2] = E
{
[Ψ(Yi,θ0)][Ψ(Yi,θ0)]

T
}
= TraceI(θ0) <∞.
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Since the MLE θ̂
(MLE)
n = argmaxθ∈ΘR

Ln(θ) of θ0 is consistent, we have
∑n

i=1 ψ(Yi, θ̂
(MLE)
n ) =

0, evidently and equation (27) of Huber (1967) holds. That is, for every sequence θ̂
(MLE)
n

satisfying θ̂
(MLE)
n → θ0, in probability, we have

1√
n

n∑

i=1

Ψ(Yi, θ̂
(MLE)
n ) → 0 in probability.

The remaining condition (N-3) of Theorem 3 of Huber (1967) reads as: there are strictly
positive number a, b, c, d0 such that

(i) ‖λ(θ)‖ ≥ a‖θ − θ0‖, for ‖θ − θ0‖ ≤ d0,

(ii) E[u(Yi,θ, d)] ≤ bd, for ‖θ − θ0‖+ d ≤ d0, d ≥ 0,

(iii) E[u(Yi,θ, d)
2] ≤ cd, for ‖θ − θ0‖+ d ≤ d0, d ≥ 0,

where u(Yi,θ, d) = sup
‖θ∗−θ‖≤d

‖Ψ(Yi,θ
∗) − Ψ(Yi,θ)‖; θ∗ = (µ∗, φ∗, α∗)T ∈ ΘR satisfies

‖θ∗ − θ‖ ≤ d and ‖θ‖ denotes any norm equivalent to the Euclidean norm.
Regarding part (i) above: since λ(θ) is a continuous in the neighborhood of θ0, we

have the Taylor expansion of λ(θ) at the point θ0:

λ(θ) = λ(θ0)− I(θ0)(θ − θ0) + o(‖θ − θ0‖),

since ∂
∂θ
λ(θ)

∣∣∣
θ=θ0

= −I(θ0), and hence

λ(θ) + I(θ0)(θ − θ0) = o(‖θ − θ0‖), (A.4)

since λ(θ0) = 0. Now, using spectral decomposition of I(θ0), we have

I(θ0) =
3∑

i=1

τ 2i eie
T
i ,

where τ1, τ2, τ3 are the eigenvalues of I(θ0) and e1, e2, e3 are the corresponding (orthonor-
mal) eigenvectors. Note that τi > 0, since I(θ0) is positive-definite. Then, putting
a = 0.5×min{τ1, τ2, τ3},

‖I(θ0)(θ − θ0)‖2 =
3∑

i=1

τ 2i [e
T
i (θ − θ0)]

2 ≥ 4a2
3∑

i=1

[eTi (θ − θ0)]
2 = 4a2‖θ − θ0‖2.

Hence,

2a‖θ − θ0‖ ≤ ‖I(θ0)(θ − θ0)‖ ≤ ‖λ(θ)‖+ ‖λ(θ) + I(θ0)(θ − θ0)‖.
But from (A.4), it follows that there exists d0 such that, for any θ with ‖θ − θ0‖ < d0,
we have

λ(θ) + I(θ0)(θ − θ0) ≤ a‖θ − θ0‖.
Therefore,

‖λ(θ)‖ ≥ a‖θ − θ0‖ for ‖θ − θ0‖ < d0,

and part (i) of condition (N-3) holds.
We now check (ii) and (iii) of condition (N-3). The function u(Yi,θ, d) is continuous

on the compact set ΘR. Therefore u(Yi,θ, d) is compact and bounded on ΘR. Hence,
parts (ii) and (iii) of condition (N-3) must hold for strictly positive numbers b and c.

Applying Theorem 3 and its corollary of Huber (1967) which state that
√
n(θ̂n−θ0) is

asymptotically normal with mean 0 and covariance matrix [−I(θ0)]
−1[I(θ0)][−I(θ0)]

−1 =
[I(θ0)]

−1. The elements of [I(θ)]−1 can be calculated using [I(θ)]−1 = 1
det(I(θ))adj(I(θ)).
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