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RESEARCH ARTICLE

Harnessing plant-bacteria-fungi interactions to improve plant growth and
degradation of organic pollutants
Inge Jambon, Sofie Thijs, Nele Weyens and Jaco Vangronsveld

Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium

ABSTRACT
Exploiting the potential of bacteria in phytoremediation for the removal of organic and inorganic
pollutants from soils and (ground)water holds great promise. Besides bacteria, mycorrhizal fungi and
free-living saprotrophs are well known for their strong degradative capacities and plant growth
promotion effects, which makes them of high interest for use in different bioremediation strategies.
To further increase the efficiency and successes of phytoremediation, interactions between plants and
their associated microorganisms, both bacteria and fungi, should be further investigated, in addition
to the close interactions between bacteria and fungi. Benefitting from an increased understanding of
microbial community structure and assembly allows us to better understand how the holobiont can
be modified to improve pollutant degradation and plant growth. In this review, we present an
overview of insights in plant-bacteria-fungi interactions and the opportunities of exploiting these
tripartite interactions to enhance the effectiveness of phytoremediation of organic pollutants.
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1. Introduction

About 20,000 plant species are unable to grow or survive with-
out microbial symbiotic interactions (van der Heijden et al.
2008). Therefore, upon the development of every biotechnolo-
gical application involving plants, plant-associated microbes
should be taken into consideration. Phytoremediation is such
an application where plant-associated microbes play a major
role in defining its efficiency. Bacteria associated with plants
as well as soil bacteria are often exploited to improve phytore-
mediation efficiency of organic pollutants, because of their
plant growth-promoting and pollutant-degrading capacities
(Weyens et al. 2009; Glick 2010; Thijs 2015). Also fungi,
such as mycorrhizal fungi, but also free-living or endophytic
fungi, are known for their beneficial effects on plant growth
and development and their strong degradative capacities and
are therefore also often applied during phytoremediation of
organic pollutants (Thijs 2015; Lenoir et al. 2016; Coninx
et al. 2017; Deng & Cao 2017). However, the combined appli-
cation of both bacteria and fungi is less investigated. Tripartite
interactions between plants, bacteria and fungi are nevertheless
extensive and havemajor implications for the plant host and its
associatedmicrobiome. A better understanding these tripartite
interactions can assist to select for, or even design, optimal
phytoremediation procedures. Therefore, this review aims to
describe the interactions between plants, bacteria and fungi,
the effects of the interactions on themembers of the association
and the possibilities to exploit these tripartite interactions to
improve phytoremediation of organic pollutants.

2. Plant–bacteria–fungi interactions

2.1. Physical interactions and cell-to-cell contact

2.1.1. Interactions between the plant and its microbiome
Plants are well known to associate with a multitude of
microorganisms, providing nutrition and residence for

the microbes, while receiving several benefits like the pro-
motion of their growth or stress reduction in return (Hard-
oim et al. 2008). Complex bacterial and fungal communities
can be found living either on the surface of plants or inside
plants.

Bacteria and fungi on the surface of plants. Most microor-
ganisms living on the surface of plants are residing on the sur-
face of the roots (rhizoplane) and the narrow zone
surrounding the roots (rhizosphere) or on the surface of
leaves (phyllosphere).

The rhizosphere is defined as the narrow zone of nutrient-
rich soil that surrounds the plant roots and is influenced by
root exudates and microbial activity (Venturi & Keel 2016).
The rhizosphere can be extended to the mycorrhizosphere,
which includes the extraradical mycelium of mycorrhiza,
that provides a large zone for interactions with other micro-
organisms (Rambelli 1973). Root exudates comprise sugars,
amino acids, flavonoids, proteins and fatty acids (Badri &
Vivanco 2009) that passively or actively attract microorgan-
isms that can colonize the rhizosphere and rhizoplane,
where they can form microcolonies or biofilms (Compant
et al. 2010). Root exudates, therefore, are the major drivers
in shaping the rhizosphere and rhizoplane microbial commu-
nities. The root exudation pattern is highly dynamic and dif-
fers across space and in time (Compant et al. 2010).
Rhizosphere and rhizoplane colonization might, therefore,
differ across different root regions (Gamalero et al. 2004)
and in function of plant growth stage and season (Musilova
et al. 2016). Even though recruitment of rhizospheric and rhi-
zoplane microbes by plants from the surrounding bulk soil is
strongly dependent on the community structure of the bulk
soil (Bulgarelli et al. 2012), findings of (Lundberg et al.
2012) suggest that different plant genotypes select for differ-
ent rhizospheric communities, implying that genetic vari-
ation across plant species can drive differential recruitment
of beneficial microbes.
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Phyllospheric bacteria and fungi are heterogeneously dis-
tributed across the plant foliage. Elements like climatic con-
ditions, location of the leaves within the vegetation and
chemical composition of the cuticle have effects on the occur-
rence of microorganisms (Bodenhausen et al. 2013). Also on
the microscale, bacteria and fungi are heterogeneously spread
over the leaves surface, where they form aggregates at the
depressions formed at the joints of epidermal cells and sto-
mata, alongside the veins and at the base of trichomes
(Remus-Emsermann et al. 2012; 2014). This is connected to
an increased nutrient availability caused by the presence of
these leaf structures, that facilitate leaching of photoassimi-
lates to the leaf surface (Leveau & Lindow 2001; Vorholt
2012).

Bacteria and fungi inside the plant. From the phyllosphere,
rhizosphere and rhizoplane, microorganisms can colonize the
inside of the plant. Additionally, microorganisms can be ver-
tically transferred from generation to generation via the seeds
(Truyens et al., 2015). Both bacteria and fungi are able to live
inside plants. They either occupy the intercellular spaces or
live intracellularly, resulting from a highly evolved mutualis-
tic plant-microorganism interaction (Reinhold-Hurek &
Hurek 2011).

Microorganisms that occupy the intercellular spaces of
plants are called endophytes. Both bacterial and fungal endo-
phytes reside inside plants. Bacterial endophytes are mostly
derived from the rhizosphere, from where they enter the
root epidermis and cortex through cracks occurring on side
root emergence sites or at the root tip, or created by deleter-
ious microorganisms (Hardoim et al. 2008). Bacterial endo-
phytes can be further subdivided into three classes: (i) the
passenger endophytes that become endophytic by chance
and are restricted to the root cortex, (ii) opportunistic endo-
phytes that are also restricted to specific plant tissues, like the
root cortex, but show particular root colonization character-
istics and (iii) competent endophytes that are able to invade
specific plant tissues, like the vascular system (Hardoim
et al. 2008). When vascular tissue is invaded, systemic spread-
ing to the vegetative plant parts and colonization of flowers,
fruits and seeds can occur (Compant et al. 2010). Seed endo-
phytic bacteria can be selected by the plant for their beneficial
characteristics, providing the next generation with a set of
bacteria that could aid during germination and seedling
establishment (Truyens et al. 2015). Fungal endophytes reside
completely inside the root, leaf or stem tissues and the
relationship with the plant can range frommutualistic to neu-
tral or even antagonistic (Chadha et al. 2014). They can be
subdivided into two main groups: (i) the clavicipitaceous or
class 1 endophytes that reside in the shoots and rhizomes
of grasses and (ii) the non-clavicipitaceous endophytes that
colonize non-vascular plants, ferns, conifers and angios-
perms. This last group is further subdivided into 3 classes:
(i) the class 2 endophytes that colonize shoots, roots and rhi-
zomes; (ii) the class 3 endophytes that colonize shoots and
(iii) the class 4 endophytes that only colonize roots (reviewed
in Rodriguez et al. 2009). Class 3 endophytes colonize the
plant tissue locally, while the other classes colonize the plant
tissue extensively (Rodriguez et al. 2009). Class 4 endophytes
are also known as dark septate endophytes (DSE). Trans-
mission of fungal endophytes mainly occurs horizontally
through airborne spores, however, like with bacterial endo-
phytes, fungal endophytes can also be transmitted vertically
by hyphae growing into the seeds (Saikkonen et al. 1998).

A preference to specific organs and tissues inside the plant
may exist resulting from an adaptation to particular physio-
logical conditions that can be found in different plant tissues
(Aly et al. 2011).

Another group of microorganisms that occupy both
intercellular as well as intracellular spaces inside the plant
are the mycorrhizal fungi. They provide the plants with
nutrients, water and protection against pathogens, and
receive in exchange a fraction of the plant photosynthates
(Smith & Read 2008). For such interaction to take place,
close physical contact is crucial, and therefore all mycorrhiza
develop within the root specialized mycelial structure to
increase the surface exchange with the root cells. Two
main groups of mycorrhizae are recognized: the ectomycor-
rhizae and the endomycorrhizae. The ectomycorrhizae form
a thick mantle and a Hartig net of intercellular hyphae on
the roots. They occur in 3% of all vascular plants, mainly
associated with trees and they belong to the phyla Ascomy-
cota, Basidiomycota and some Zygomycota (Barman et al.
2016). Endomycorrhizae invade the root cells intracellularly
and are associated with tree species and herbaceous species.
They are further subdivided into the arbuscular, ericoid,
arbutoid, and monotropoid mycorrhizae, ectendomycorrhi-
zae and orchid mycorrhizae (reviewed in Peterson et al.
2003). The arbuscular mycorrhizae are the most prevalent
group belonging to the phylum Glomeromycota and form-
ing associations with about 80% of the vascular plants. All
arbuscular mycorrhizae can be recognized by their intra-
cellular formation of finely branched hyphae, called the
arbuscules (Barman et al. 2016). They are often found to
form associations with crops and are therefore of special
interest in applied techniques for improving crop production
and protection (Smith & Read 2008).

A group of plant-associated microorganisms that only
reside intracellularly are the rhizobia (Hardoim et al. 2008).
Legumes harbor these nitrogen-fixing bacteria in special
plant organs, the root nodules (Zgadzaj et al. 2016). The
nodule is formed after rhizobial infection, that is established
by trapping of bacterial cells by a root hair and the following
formation of an infection thread. Through this infection
thread the bacteria penetrate the root cortex cells, which
differentiate into a root nodule, internalizing the rhizobia
(Wang et al. 2012a).

2.1.2. Interactions between plant-associated bacteria
and fungi
A plant does not undergo only one of the above-mentioned
interactions with bacteria or fungi, but forms associations
with several microorganisms (Mendes et al. 2013). These
microorganisms do not form single entities, but undergo
interactions with each other as well. Several physical inter-
actions can exist between bacteria and fungi, including
plant-associated bacteria and fungi.

Fungal hyphae as bacterial highways. Bacteria can use fun-
gal hyphae as a highway to transport themselves to sites that
are otherwise unreachable by the bacterial cells on their own
(van Overbeek & Saikkonen 2016). They can move along the
surface of the fungal hyphae by flagellar motility, for which
they need a continuous liquid film, such as the one that is pre-
sent on fungal hyphae (Kohlmeier et al. 2005). Unlike bac-
teria, fungi can spread easily in water-unsaturated matrices,
facilitating accessibility of pollutant-degrading bacteria to
pollutants (Furuno et al. 2010). In addition, fungal hyphae
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can mobilize bacteria towards plant roots, facilitating their
entry into the rhizosphere or plant tissues (Minerdi et al.
2002).

Bacterial intrahyphal colonization. Bacteria do not only
use the surface of fungal hyphae to move themselves towards
plants, they also colonize the hyphae intracellularly, using
them as a vector for transmission towards plants (van Over-
beek & Saikkonen 2016). Endosymbiotic associations
between bacteria and fungi are common in the Basidiomy-
cota, Glomeromycota and Zygomycota and are also occasion-
ally found in the Ascomycota (Grube & Berg 2010). The
Basidiomycota and Zygomycota undergo endosymbiotic
associations with bacteria that are characterized by a low bac-
terial abundance in the fungal hyphae, while the Glomeromy-
cota can harbor very high numbers of bacteria inside their
spores (Grube & Berg 2010). The bacteria reside in the cyto-
plasm of the fungal cells (Minerdi et al. 2002). Some are even
obligatory endosymbionts, like Candidatus Glomeribacter
gigasporarum, that lives inside the arbuscular mycorrhizal
fungus Gigaspora margarita (Vannini et al. 2016). Others
are not obligate endosymbionts, like members of the genus
Burkholderia that are found in several Gigasporaceae species
(Minerdi et al. 2002).

Mixed fungal-bacterial biofilms. Bacteria and fungi can
form mixed species biofilm on the surface of plants which
provides them protection to unfavorable environments (Noz-
hevnikova et al. 2015). A biofilm is defined as a surface
assemblage of microorganisms and their associated extra-
cellular products that is typically attached to an abiotic or bio-
tic interface (Davey & Toole 2000). Microorganisms in a
biofilm interact physically by co-aggregation, a process in
which the members of the biofilm become attached to one
another by a protein adhesin on one cell and a complemen-
tary receptor on the other cell (Rickard et al. 2003). Adhesins
and receptors are found in both bacteria and fungi mediating
bacteria-fungi interactions, like the bacterial Streptococcus
oralis adhesin that connects with a receptor protein on the
cell wall of the fungal yeast Candida albicans (Yang et al.
2011). Like the preceding example, most cases of mixed bio-
films in literature handle clinically relevant interactions, how-
ever, like Elias & Banin (2012) mention, similar processes
should be expected within biofilms in natural environments.
Recently, Velmourougane et al. (2017) reviewed the impor-
tance of microbial biofilms in agriculture.

2.2. Signalling between plants, bacteria and fungi

In the above section, we described the physical interactions
between plants, bacteria and fungi. Apart from cell-to-cell
contacts, members of an association communicate with
each other via chemical interactions in a process called signal-
ling. Signalling entails the detection and response to low mol-
ecular weight compounds originating from plants or the
microbiome resulting in a cellular response that is not only
restricted to the catabolism, transformation or resistance of
the compound being detected (Venturi & Keel 2016). It
involves a regulatory response which leads to the transcrip-
tion of specific genes in response to the detected compound
(Venturi & Keel 2016). It is not our aim to provide an exhaus-
tive list of all signalling mechanisms between plants, bacteria
and fungi (this has been recently reviewed in Quiza et al.
(2015) and Venturi & Keel (2016), however, in what follows,
we will discuss several important examples.

2.2.1. Quorum sensing
Quorum sensing is a mechanism of microbial communi-
cation and regulation of gene expression mediated by small
diffusible molecules, called auto-inducers or quorum sensing
molecules (QSM) (Barriuso 2015). The concentration of these
molecules accumulates throughout microbial growth and
after reaching a threshold concentration, a response is
initiated regulating gene expression of several cell-density
related processes in the whole population (Albuquerque &
Casadevall 2012). Quorum sensing ensures that energetically
costly activities are only undertaken when the population size
is high enough to successfully accomplish them (Clinton &
Rumbaugh 2016). This strategy, for example, is used by
many pathogenic bacteria to overcome host defences, by syn-
chronizing the expression of virulence factors in function of
their population size (Miller & Bassler 2001). Quorum sen-
sing is well studied in bacteria and is known to regulate var-
ious processes like motility, biofilm formation, sporulation,
antibiotic production and, as mentioned above, the secretion
of virulence factors (Albuquerque & Casadevall 2012). In
Gram-negative bacteria homoserine lactones (HSLs) are
widely present as QSM, while in Gram-positive bacteria,
other compounds, like peptides function as QSM (Hartmann
& Schikora 2012). Extensive research has led to the discovery
of several other QSM in both Gram-positive and Gram-nega-
tive bacteria (Barriuso 2015). Quorum sensing is not
restricted to bacteria. QSM identified from fungi include far-
nesol, tyrosol, dodecanol, γ-butyrolactone and γ-heptalac-
tone (Albuquerque & Casadevall 2012; Barriuso 2015).
Quorum sensing is not confined within species or even within
the same kingdom. Bacteria and fungi interfere with each
other using QSM and even plants have evolved means of per-
ceiving and responding to microbial QSM (Hartmann &
Schikora 2012). Interference of fungi and bacteria with each
other’s QSM may be an evolutionary strategy to out-compete
neighboring microorganisms for space or the ability to infect
hosts (Clinton & Rumbaugh 2016). Plants can both inhibit
microbial quorum sensing by degradation of QSM, a mech-
anism called quorum quenching, but can also induce quorum
sensing by producing QSM resembling compounds (Mah-
moudi et al. 2016). Plant responses to microbial QSM depend
on the QSM structure and concentration and can be defensive
or can stimulate developmental changes (Clinton & Rum-
baugh 2016).

2.2.2. Volatile organic compounds
Bacteria and fungi produce a wide range of volatile organic
compounds (VOCs); small molecules with low molecular
weight that can vaporize at normal atmospheric temperatures
and pressure (Hung et al. 2015; Kanchiswamy et al. 2015).
They are characteristically alkenes, alcohols, benzenoids,
aldehydes, ketones or terpenes (Venturi & Keel 2016).
VOCs play an important role in long distance interactions
between microbes and even between microbes and plants
(Bitas et al. 2013) and regulate symbiotic associations and
the distribution of saprophytic, mycorrhizal and pathogenic
organisms (Hung et al. 2015). VOCs-mediated microbe-
microbe interactions include antimicrobial activity, interfer-
ence with quorum sensing systems, coordinating gene
expression, biofilm formation, virulence and stress tolerance
(Audrain et al. 2015). Microbial VOCs are also known to
impact plant health in several ways (Bitas et al. 2013), for
example some bacterial and fungal VOCs can act as a biocide,
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inhibiting growth of plant-pathogenic bacteria and fungi
(Bennett et al. 2012). Furthermore, bacterial VOCs can pro-
mote plant growth by producing plant growth-promoting
volatiles like acetoin, by increasing photosynthetic capacity,
stimulating synthesis of plant hormone-like compounds,
inducing plant systemic resistance and interfering with
plant gene expression (Bennett et al. 2012). Plants also pro-
duce VOCs themselves, shaping the plant-associated
microbial community by either their antimicrobial effects
or, on the contrary, their potential as a microbial carbon
source (Junker & Tholl 2013; Farré-Armengol et al. 2016).

2.2.3. Phytohormones
Phytohormones, comprising auxins, like indole-3-acetic acid,
gibberellins, ethylene, abscisic acid, brassinosteroids and cyto-
kinins, regulate plant development by affecting many physio-
logical and biochemical processes in plants (Fahad et al. 2015).
Beneficial bacteria and fungi can produce phytohormones
promoting plant growth and development and inducing toler-
ance against environmental stresses (Fahad et al. 2015; Priyad-
harsini & Muthukumar 2017). However, also pathogenic
bacteria and fungi can produce phytohormones, thus interfer-
ing with plant growth, organ development, immune responses
and hormonal signalling (Boivin et al. 2016; Venturi & Keel
2016). Phytohormones have an important role in the for-
mation of symbiotic associations of plants with arbuscular
mycorrhizae and rhizobia. Strigolactones are carotenoid-
derived plant hormones that are exudated from roots under
phosphate or nitrogen limiting conditions, activating growth
of arbuscular mycorrhizae and attracting them towards the
roots (Gutjahr 2014). Additionally, auxins promote formation
of arbuscules, while gibberellins inhibit the formation of arbus-
cular mycorrhizae (Gutjahr 2014). Root nodule formation in
the interaction between plants and rhizobia is controlled by
phytohormones (Ferguson&Mathesius 2014). Rhizobia inter-
fere with phytohormone regulation by producing phytohor-
mones themselves and by inducing changes in host
phytohormone levels as a response to rhizobial nodulation fac-
tors (Ferguson & Mathesius 2014).

2.2.4. Nod and Myc factors
The last group of signalling molecules that will be shortly dis-
cussed here is that of the lipo-chitooligosaccharides (LCOs),
also known as nodulation (Nod) factors of rhizobia and
mycorrhizal (Myc) factors of arbuscular mycorrhizae. They
are produced as a response to the release of respectively fla-
vonoids and strigolactones from plant roots and are recog-
nized by the host plant that then initiates a symbiosis
signalling pathway (Venturi & Keel 2016). Nod factors pro-
duced by different rhizobia vary widely, being important
for the specificity of rhizobial interactions with their host
plant (Oldroyd 2013). In contrast, Myc factors produced by
a specific arbuscular mycorrhizal fungus are recognized by
a wider array of host plants, relating to their broader host
range (Oldroyd 2013).

2.3. New insights into plant-microbe and microbe-
microbe interactions

In recent years, advances in different ‘omics’ techniques pro-
vided us a better understanding of the underlying mechan-
isms in plant-microbe and microbe-microbe interactions.
Kumar et al. (2016) reviewed the use of metabolic engineering

and systems biology tools in understanding plant-microbe
interactions and to improve plant traits. Wintermans et al.
(2016) used a genome-wide association study on A. thaliana
to reveal 10 genetic loci highly associated to the responsive-
ness of A. thaliana to the plant growth-promoting activity
of a rhizobacterium. Their results can be used in designing
plants carrying the correct genes to profit from plant
growth-promoting rhizobacteria. Siebers et al. (2016)
described that lipids play a major role in plant-microbe inter-
actions, being involved in pathogen recognition, signalling,
acquired systemic resistance and in establishing a membrane
interface between the two organisms. These lipidomic studies
can help us to reveal lipid patterns that are common or differ-
ent among interactions between plants and pathogenic, sym-
biotic or beneficial microbes (Siebers et al. 2016). Recently
also the importance of noncoding RNAs in the regulation
of plant-microbe interactions became apparent (Lelandais-
Brière et al. 2016). In a recent review, the role of multi-
omics approaches in understanding abiotic stress responses
in plants and microbe-mediated stress mitigation was
described (Meena et al. 2017).

2.4. Plant-associated microbial networks

The examples above illustrate the wide range of interactions
plants undergo with their microbiome. Additionally, the
members of the microbiome itself don’t live as single enti-
ties, but interact extensively, forming complex microbial
networks (Agler et al. 2016). These microbial networks
can be studied by generating co-occurrence networks, in
which keystone species or hub taxa can be identified.
These keystone species co-occur frequently with other
species and potentially play a major role in the regulation
of the microbiome composition (van der |Heijden & Hart-
mann 2016). Interactions within the microbiome and
between the microbiome and the plants can range from
mutualistic to commensalistic to parasitic and every inter-
action between two members can have its effect on a
third party. In the next section, the effects of these tripartite
interactions between plants, bacteria and fungi on the
members of the association will be discussed.

3. Effect of plant–bacteria–fungi interactions on
members of the association

3.1. Effect on the microbiome

3.1.1. Microbial growth and development
In the rhizosphere, microorganisms interact with each other,
not only yielding positive effects on the plant, but also on each
other (Nadeem et al. 2014). Rhizospheric bacteria can pro-
mote mycorrhization of plants, a concept first described by
Garbaye (1994) who proposed the term ‘mycorrhiza helper
bacteria’ (MHB). MHB can induce mycorrhization by stimu-
lating mycelial growth, by increasing root-fungus recognition
and colonization and by reducing the effects of hostile
environmental factors (Frey-Klett et al. 2007). It can do so
by producing growth factors, by neutralizing antagonistic
substances and by inhibiting growth of competing microor-
ganisms (Frey-Klett et al. 2007). For example, co-inoculation
of Boletus edulis with Pseudomonas fluorescens doubled
within-plant mycorrhization levels in Cistus ladanifer shrubs
(Mediavilla et al. 2016). Zhao et al. (2014) isolated a poplar
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rhizobacterial Bacillus sp. strain that promoted ectomycor-
rhizal colonization of Pisolithus tinctorius and Lactarius
insulsus on Populus deltoids trees. Another example is
that of Navarro-Ródenas et al. (2016) who isolated a Pseu-
domonas mandelii strain that increased mycorrhizal coloni-
zation of Terfezia claveryi on Helianthemum almeriense. In
addition, they also found that bacterial isolates that pro-
duced auxins, significantly increased the root-shoot ratio
and mycorrhizal colonization (Navarro-Ródenas et al.
2016). Also, endobiotic bacteria residing inside fungal
hyphae can have positive effects on mycorrhizal growth.
The endobacterium Candidatus Glomeribacter gigaspor-
arum influenced growth, calcium signalling and metabolism
of the arbuscular mycorrhizal fungus G. margarita (Vannini
et al. 2016). Fungal primary metabolism and respiration
were 50% higher in the strains colonized by the endobacter-
ium, compared to the non-colonized fungi. Furthermore,
the non-colonized fungi showed higher oxidative stress
levels, which, interestingly, were also observed in their
host plants (Vannini et al. 2016). Mycorrhizal fungi can
also improve root nodulation in legumes (Lesueur &
Duponnois 2005; Sakamoto et al. 2013).

However, the interactions between bacteria and fungi in
the rhizosphere can also have negative effects on members
of the association. Bacteria with antifungal characteristics,
like production of siderophores, cyanides and lytic enzymes,
were enriched in the rhizosphere of Carex arenaria that had
increased densities of saprotrophic fungi (de Boer et al. 2008).
Root-associated fungi of forest plants showed the capacity to
degrade HSLs and thus interfere with bacterial quorum sen-
sing (Uroz & Heinonsalo 2008).

3.1.2. Microbiome composition
From the diverse microbial community of the bulk soil, plant
roots select for specific microorganisms that form the rhizo-
spheric microbiome (Berendsen et al. 2012). Plants thus
shape the community composition of the rhizosphere with
different plant species growing on the same soil recruiting
different microbial communities (Garbeva et al. 2008). The
plant also shapes the microbiome associated with plant
parts other than the roots. Agler et al. (2016) studied the phyl-
lospheric microbiome of A. thaliana and suggest that the
plant genotype acts on keystone microbial species, which
then transmits information to the rest of the microbial net-
work, ultimately leading to an altered host fitness. The pres-
ence of the keystone species Albugo, an obligate plant
pathogen, depended on the resistance of the plant genotype
and had a major contribution in shaping the plant micro-
biome. Liu et al. (2016) indicated the pathogenic fungus
Fusarium oxysporum, as a microbial keystone species, that
has a negative effect on root nodulation of Ormosia glaber-
rima seedlings. Furthermore, the presence of pathogenic
fungi around adult trees promoted accumulation of antagon-
istic Burkholderia strains in the rhizosphere of the seedlings.
Next to pathogenic species, also non-pathogenic species can
influence the plant microbiome. Ectomycorrhizal fungi for
example, select for specific bacterial communities (Deveau
2016). Results from a study of Marupakula et al. (2016)
showed that several ectomycorrhizal species colonize a single
root system of Pinus sylvestris, but each species selects for
specific associated bacterial communities. Moreira et al.
(2016) observed an increase in rhizospheric microbial diver-
sity when maize was inoculated with both an arbuscular

mycorrhizal fungus and plant growth-promoting rhizobac-
teria. They proposed that fungal exudates form a source of
nutrients to the bacteria and can, therefore, attract specific
rhizobacterial groups.

3.2. Effect on plants

3.2.1. Plant productivity
Synergistic interactions between different microbial groups
can also lead to positive effects on plant growth (van der Heij-
den & Hartmann 2016). Many legume plants form associ-
ations with arbuscular mycorrhizal fungi that can stimulate
root nodulation and bacterial nitrogen fixation (Nadeem
et al. 2014). An enhanced productivity and a strongly
enhanced seedling establishment in legumes were observed
upon co-inoculation with both rhizobia and arbuscular
mycorrhizal fungi, that was not observed when inoculated
separately (van der Heijden et al. 2016). Bacterial–fungal
interactions can also improve phosphorus solubilization like
reported by Moreira et al. (2016), who found an increased
phosphorus accumulation in roots of maize upon co-inocu-
lation with plant growth-promoting rhizobacteria and arbus-
cular mycorrhizal fungi.

3.2.2. Plant health
As discussed earlier, plants associate with complex microbial
networks containing some keystone species that have a higher
impact on the microbiome composition and functioning than
any other member of the association. These keystone species
might recruit beneficial organisms or prevent invasion of
pathogens for their own benefit hereby benefiting the whole
plant–bacterial–fungal network (van der Heijden & Hart-
mann 2016). Additionally, plants can recruit specific
microbes that can aid in their protection against pathogens
(Berendsen et al. 2012). Several plant-associated bacteria are
shown to be antagonistic towards plant-pathogenic fungi.
Potato tubers treated with Bacillus thuringiensis proved to
suppress rhizoctonia potato disease (Bakhvalov et al. 2015).

Bacteria can induce systemic resistance in plants against
fungal pathogens by production of HSLs. Inoculation of
tomato plants with the HSL-producing bacteria Serratia
liquefaciens increased systemic resistance against the fungal
leaf pathogen Alternaria alternata, by induction of plant
genes involved in systemic pathogen response by the HSL
molecules (Schuhegger et al. 2006). Also Pang et al. (2009)
reported an increased systemic resistance in cucumber plants
against the fungal pathogen Pythium aphanidermatum, the
causal agent of damping-off disease, and in tomato and
bean plants against the gray mold fungus Botrytis cinerea
upon colonization with the HSL-producing rhizobacterium
Serratia plymuthica.

Another mode of action for bacterial control over fungal
plant pathogens is by production of VOCs. Several VOCs iso-
lated from plant-associated bacteria showed antifungal prop-
erties (Kai et al. 2009). Also fungi can inhibit the growth of
plant pathogens by emitting VOCs (Bennett et al. 2012;
Hung et al. 2015). The endophytic fungus Muscodor albus
produces a blend of VOCs with antimicrobial properties
against a wide range of bacterial and fungal plant pathogens
(Hung et al. 2015).

Bacteria can, however, also induce pathogenicity of fungi.
Rhizopus spp. cause rice seedling blight in rice plants via the
phytotoxin rhizoxin. This toxin is not produced by the fungus
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itself, but by its endosymbiotic bacteria belonging to the
genus Burkholderia (Partida-Martinez & Hertweck 2005).

Plants signal information to each other about possible
threats. For this, they make use of the underground network
of mycorrhizal mycelia (Babikova et al. 2013). Via this under-
ground messaging system healthy plants can get early warn-
ings from their neighboring infected plants and prepare
themselves against the oncoming attack (Babikova et al.
2013).

3.2.3. Plant diversity
Soil microorganisms play an important role in plant diversity,
especially the ones that live in symbiosis with plants (van der |
Heijden et al. 2016). The soil microbiota can thus be defined
as belowground drivers of plant diversity (van der Putten
2017). Teste et al. (2017) provided evidence that feedback
between plant and soil microbiota is an important driver of
plant diversity, mediated by interactions between plants
with different nutrient-acquisition strategies and their associ-
ated microbiomes. Additionally, tripartite interactions
between plants, bacteria and fungi can increase plant diver-
sity. Van der |Heijden et al. (2016) observed an increased
plant diversity in model grassland communities in presence
of both arbuscular mycorrhizal fungi and nitrogen-fixing
rhizobia.

3.2.4. Plant survival in hostile environments
As discussed earlier, interactions between mycorrhizal
fungi and rhizobacteria can be beneficial for plant pro-
ductivity under normal conditions. Also in hostile environ-
ments, the tripartite interactions between bacteria, fungi
and plants can assist plants by reducing the negative
impact(s) of the stress factor(s) on plant growth and devel-
opment (Nadeem et al. 2014). Moreira et al. (2016)
observed a decreased accumulation of zinc in shoots and
roots of maize grown on mine land soil upon co-inocu-
lation with the arbuscular mycorrhizal fungus Rhizophagus
irregularis and the plant growth-promoting rhizobacterium
Chryseobacterium humi. Furthermore Lee et al. (2015)
reported that co-inoculation of the arbuscular mycorrhizal
fungus Glomus etunicatum and the plant growth-promot-
ing bacterium Methylobacterium oryzae could alleviate
salt stress in maize and induce plant growth. Co-occur-
rence of arbuscular mycorrhizal fungi with endophytic bac-
teria also is reported to alleviate salt stress in plants.
Hashem et al. (2016) described increased shoot and root
dry weights, nodule numbers and leghemoglobin contents
in Acacia gerrardii under salt stress because of the syner-
gistic associations between arbuscular mycorrhizal fungi
and plant-associated bacteria.

4. Application of bacterial–fungal interactions for
bio- and phytoremediation of organic pollutants

Like described above, there are several beneficial effects
mediated by microorganisms that can help plants to survive
in contaminated environments. These tripartite interactions
can, therefore, be exploited for improving phytoremediation
of organic pollutants. We describe here several research strat-
egies and successful applications for a selection of organic
pollutants.

4.1. Enhanced insights in total plant-associated
bacterial and fungal communities

Exposure to organic pollutants can influence the composition
of microbial communities, since, on the one hand, they can
cause toxicity, suppressing certain soil microorganisms,
meanwhile favoring the more tolerant community members
and on the other hand, the pollutants can serve as an energy
or nutrient source, favoring community members which pos-
sess the appropriate catabolic pathways to metabolize the pre-
sent pollutant (Harms et al. 2017). Additionally, the presence
of pollutants can influence the degree to which plants interact
with their microorganisms. For instance, pollution can select
for tolerant microbial community members over sensitive
plant-specific microbial taxa that may be lost or significantly
reduced (Siciliano et al. 2001; Bell et al. 2014). Pollution can
also have a differential effect on bacterial or fungal members
of the community.

With the emergence of high-throughput sequencing, we
can gain a better understanding in the effects of pollution
on plant-associated bacterial and fungal communities which
allows us to make more elaborate and adequate decisions
when selecting for specific phytoremediation strategies. Bell
et al. (2014) used 454 pyrosequencing to define a higher fun-
gal sensitivity to hydrocarbon pollution in comparison to
bacteria in rhizosphere soils of different willow cultivars.
They described a decline in fungal species in response to
hydrocarbon pollutants and a stronger influence of willow
on the fungal communities. Lladó et al. (2014) observed a
high prevalence of Fusarium and Scedosporium populations
in a PAH-polluted industrial soil and Cupriavidus, Mycobac-
terium and Chithinophagaceae as potential high molecular
weight PAH degraders, based on 454 pyrosequencing data
and Denaturing Gradient Gel Electrophoresis (DGGE).

4.2. Bio-augmentation with mixed bacterial–fungal
consortia

Synergistic interactions between bacteria and fungi cannot
only promote plant growth and development, additionally,
they can stimulate the biodegradation of organic pollutants.
Fungal–bacterial consortia might even perform better than
single strains separately (Mikesková et al. 2012). Bacterial–
fungal interactions can promote phytoremediation of organ-
ics by facilitating the access of degrading microorganisms to
the pollutant. As mentioned earlier, fungal mycelia can
after all serve as a highway for pollutant-degrading bacteria
in water-unsaturated environments, leading to their dispersal
in polluted soil (Kohlmeier et al. 2005; Furuno et al. 2010).
Moreover, bacteria and fungi can complement each other in
the degradation pathway of the pollutant. This co-metabolic
degradation can lead to a full degradation of the pollutant,
where one can further degrade the intermediates formed by
the other. Several studies already investigated co-metabolic
degradation of organic pollutants by bacteria and fungi and
reported an improved degradation compared to the separate
strains (Table 1).

Co-cultures of bacteria and fungi are often explored for the
bioremediation of polycyclic aromatic hydrocarbons (PAHs)
(Boonchan et al. 2000; Chávez-Gómez et al. 2003; Kim & Lee
2007; Machín-Ramírez et al. 2010; Wang et al. 2012a; Zafra
et al. 2014; Ma et al. 2016; Bhattacharya et al. 2017).
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Boonchan et al. (2000) not only observed an increased PAH
degradation in soil inoculated with a bacterial–fungal co-cul-
ture, they also observed a reduction of the mutagenicity of
organic soil extracts, compared with the native microbes
and soil inoculated with only axenic cultures. Similarly,
Kim & Lee (2007) reported a reduced ecotoxicity of soil
after bioremediation with co-cultures of Rhodococcus sp.

and Aspergillus terreus or Penicillium sp., on top of a total bio-
degradation of anthracene, phenanthrene and pyrene.

Bacterial–fungal co-cultures can also enhance bioremedia-
tion of petroleum hydrocarbons (Zanaroli et al. 2010; Li & Li
2011; He et al. 2014; Qiao et al. 2014; Ma et al. 2015). Li & Li
(2011) revealed that co-inoculation of hydrocarbon polluted
mangrove sediment with Cunninghamella echinulate and

Table 1. Bacterial-fungal co-inoculations with the potential to enhance biodegradation of organic pollutants.

Pollutant Bacteria Fungi Reference

PAHs:
Pyrene
Chrysene
Benz[a]anthracene
Benzo[a]pyrene
Dibenz[a,h]anthracene

Stenotrophomonas
maltophilia VUN 10,010

Bacterial consortium VUN
10,009

+

+

Penicillium janthinellum
VUO 10,201

Penicillium janthinellum
VUO 10,201

Boonchan et al. (2000)

PAHs:
Anthracene
Chrysene
Fluoranthene
Phenanthrene
Pyrene

Rhodococcus sp. IC10

Rhodococcus sp. IC10

+

+

A. terreus

Penicillium sp.

|Kim and Lee (2007)

PAHs:
Phenanthrene
Fluoranthene
Pyrene

Pseudomonos sp.,
Labrys portucalensis,
Ralstonia eutropha,

Rhodococcus globerulus

+ Debaryomyces vanrijiae,
Paecilomyces lilacinus,
Fusarium spp.,
Penicillium
simplicissimum,
Trichoderma sp.

Wang et al. (2012b)

PAH:
Benzo[a]pyrene

Pseudomonas aeruginosa
MTCC 1688

+ Pleurotus ostreatus PO-3 Bhattacharya et al. (2017)

PAH:
Fluoranthene

Bacillus subtilis + Acremonium sp. Ma et al. (2016)

PAHs:
Phenanthrene
Pyrene
Benzo[a]pyrene

Klebsiella pneumoniae B1,
Enterobacter sp. B3,
Bacillus cereus B4,

Pseudomas aeruginosa B6,
Streptomyces sp. B8,

Klebsiella sp. B10,
Stenotrophomonas

maltophilia B14

+ Aspergillus flavus H6,
Aspergillus nomius H7,
Rhizomucor variabilis H9,
Trichoderma asperellum H15,
Aspergillus fumigatus H19

Zafra et al. (2014)

PAH:
Phenanthrene

Burkholderia cepacea
Ralstonia picketti

Pseudomas aeruginosa

+
+
+

Penicillium sp.
Penicillium sp.
Penicillium sp.

Chávez-Gómez et al. (2003)

PAHs:
Benzo[a]pyrene

Serratia marcescens + Penicillium sp. Machín-Ramírez et al. (2010)

Petroleum hydrocarbons V. rumoiensis + C. echinulate |Li and Li (2011)
Petroleum hydrocarbons Bacillus subtilis,

P. fluorescens,
Streptococcus faecalis

+ Candida tropicalis Qiao et al. (2014)

Petroleum hydrocarbons Bacillus subtilis,
Bacillus megaterium,

Achromobacter
xylosoxidans,
P. fluorescens

+ Candida tropicalis,
Rhodotorula dairenensis,

He et al. (2014)

Crude oil Bacillus subtilis + Acremonium sp. Ma et al. (2015)
Diesel Chryseobacterium sp.,

Acinetobacter sp.,
Pseudomonas sp.,

Stenotrophomonas sp.,
Alcaligenes sp., Gordonia sp.

+ T. gibbosa Zanaroli et al. (2010)

PCBs Pseudomonas sp. MO2A + Debaryomyces maramus
CW36

Chen et al. (2015)

Chlorpyrifos Serratia sp. + Trichosporon sp. Xu et al. (2007)
β-cypermethrin B. licheniformis B-1 + A. oryzae M-4 Zhao et al. (2016)
Textile dyes:

Reactive navy blue HE2R
Pseudomonas sp. SUK1 + Aspergillus ochraceus

NCIM-1146
Kadam et al. (2011)

Textile dyes:
Reactive red X-3B

Proteobacteria spp.,
Sphingobacteriia spp.,

Flavobacteriia spp.,
Bacteroidia spp.,
Nitrospirales spp.,

Phycisphaerae spp.

+ Geotrichum candidum,
Candida pseudolambica

Zhou et al. (2014)

Textile dyes:
Reactive red X-3B

Exiguobacterium sp. TL + Penicillium sp. QQ Shi et al. (2014)

Textile dyes:
Reactive dark blue K-R

Exiguobacterium sp. TL + Penicillium sp. QQ Qu et al. (2010)
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Vibrio rumoiensis led to a more efficient petroleum hydrocar-
bons bioremediation than the sum of the individual degra-
dations obtained in axenic cultures of the fungus or
bacterium. Bio-augmentation of highly contaminated oilfield
soils with a yeast-bacterium consortium had a minor effect on
the removal of total petroleum hydrocarbons, however, it did
significantly enhance the removal of PAHs, hereby detoxify-
ing the soil (Qiao et al. 2014). A consortium consisting of the
fungus Trametes gibbosa and bacteria belonging to the genera
Chryseobacterium, Acinetobacter, Pseudomonas, Stenotropho-
monas, Alcaligenes and Gordonia removed 90% of diesel fuel
after 10 days in batch culture, a percentage that could not be
reached by either bacteria or fungi alone (Zanaroli et al.
2010).

Chen et al. (2015) studied the potential of a yeast–bacteria
co-culture in cleaning up polychlorinated biphenyl (PCB)
polluted environments. They observed an enhanced PCB
degradation of 69.9% in 14 days in a liquid medium by the
yeast–bacteria co-culture, compared to only 27.8% degra-
dation by the yeast or 57.0% by the bacteria alone.

Promising results were also found in biodegradation of
pesticides with bacterial–fungal co-cultures (Xu et al. 2007;
Zhao et al. 2016). Xu et al. (2007) isolated a chlorpyrifos-
degrading bacterial strain belonging to the genus Serratia
and a chlorpyrifos- and intermediate 3,5,6-trichloro-2-pyridi-
nol-degrading fungal strain belonging to the genus Trichos-
poron from activated sludge by enrichment culture
technique. Together they could completely mineralize chlor-
pyrifos. Likewise, Zhao et al. (2016) observed that the toxic
intermediate of β-cypermethrin, 3-phenoxybenzoic acid,
formed by degradation with Bacillus licheniformis was
degraded by Aspergillus oryzae, thus co-inoculation of both
microbes led to an improved β-cypermethrin degradation.

Lastly, co-metabolism by bacteria and fungi has also been
extensively investigated in the bioremediation of textile dyes
(Qu et al. 2010; Kadam et al. 2011; Shi et al. 2014; Zhou
et al. 2014). Zhou et al. (2014) reported that bacterial con-
tamination during fungal degradation of textile effluents
should not be prevented, since they can stimulate reactive
red dye decolorization. Also Shi et al. (2014) and Qu et al.
(2010) pointed at the positive effects of bacterial-fungal co-
culture in decolorization of textile dyes in wastewater
treatment.

4.3. Biostimulation/biocontrol of specific microbial
taxa

An alternative strategy to bio-augmentation is biostimulation
of indigenous microorganisms, by supplementing growth
limiting nutrients like nitrogen, phosphorous or potassium
and the application of additives to improve soil pH and soil
structure. In addition, biostimulation of specific microbial
taxa can be reached by biocontrol of antagonistic taxa, since
many fungi and bacteria engage in antagonistic interactions,
combating each other by producing antimicrobial com-
pounds (De Boer et al. 2005; Mille-Lindblom et al. 2006; Hib-
bing et al. 2010; Lecomte et al. 2011). A wide range of
microbial taxa can be active in contaminated soil, but the
most effective pollutant degrader(s) might not naturally dom-
inate in the soil. Bell et al. (2013) used gentamicin and vanco-
mycin to inhibit distinct portions of the microbial community
in a hydrocarbon contaminated soil and observed an increase
of the hydrocarbon biodegradation, despite a reduced

bacterial and fungal abundance. Stimulating growth of
specific microbial taxa can thus be an effective strategy to
improve bioremediation of organic pollutants.

4.4. Changing the rhizosphere microbiome by
selection of specific plant species and genetic
engineering

Plant roots select for specific microorganisms from the broad
variety of soil microbes that form the rhizosphere micro-
biome (Berendsen et al. 2012). Plants thus shape the commu-
nity composition of the rhizosphere, with different plant
species growing on the same soil recruiting different
microbial communities (Garbeva et al. 2008). Some plant
species can even create similar microbial communities in
different soils (Miethling et al. 2000). The selected plant
species used for phytoremediation thus affect the plant-
associated microbiomes and their degradative capacities.
Bell et al. (2014) showed that a specific Pezizomycete-domi-
nated community was promoted by phylogenetically similar
willow cultivars in a hydrocarbon contaminated soil, whereas
more distantly related varieties formed non-specific associ-
ations with the fungi. The authors, therefore, suggested that
also the evolutionary relationship between plants and
microbes should be taken into consideration for plant selec-
tion during phytoremediation. Siciliano et al. (2001) found
that plants had the ability to selectively enhance the preva-
lence of endophytes containing pollutant-degrading catabolic
genes.

Rhizodeposits play an important role in selecting the rhizo-
sphere microbiome (Bulgarelli et al. 2013; Jha et al. 2014).
Therefore, there has been a major interest in changing the
quality and/or quantity of root exudates via plant breeding
or genetic engineering to selectively enhance specificmicrobial
colonization (van Aken et al. 2010; Bakker et al. 2012). Fur-
thermore, Wintermans et al. (2016) showed that different
plant genotypes can respond differently to the plant growth-
promoting effects of rhizobacteria. They used a genome-
wide association study on A. thaliana to reveal 10 genetic
loci highly associated with the responsiveness to the plant
growth-promoting activity of a rhizobacterium. Their results
demonstrate that plants possess natural genetic variation for
the capacity to profit from plant growth-promoting rhizobac-
teria and that this knowledge can be used in future sustainable
breeding strategies (Wintermans et al. 2016).

5. Conclusions

Both bacteria and fungi can be important degraders of
organic pollutants in contaminated environments and
both can have beneficial effects on plant growth. Therefore,
a profound knowledge of both, plant–bacteria as well as
plant–fungi interactions, is essential for the development
of novel phytoremediation strategies. Plants, however, do
not only interact with their microbiome but members of
the microbiome also interact with each other. This exten-
sive microbial network receives information from the
plant and its environment, that is spread throughout the
microbial network and responses are perceived again by
the plant. These tripartite interactions thus have an impact
on every single member of the association and should be
taken into account when developing novel phytoremedia-
tion strategies. The possibilities of a combined inoculation
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with both beneficial bacteria and fungi during phytoreme-
diation processes have not been often explored. However,
synergistic interactions between bacteria and fungi were
shown to improve biodegradation of a broad range of
organic pollutants. Moreover, a combined inoculation of
both bacteria and fungi can strengthen plant health and
survival. On the one hand, the presence of certain bacterial
strains can prevent infection of the plant with pathogenic
fungi, and the other way around, the presence of certain
beneficial fungi can avoid infection with pathogenic bac-
teria. On the other hand, certain bacterial or fungal strains
can benefit colonization of the plant by other beneficial
bacteria or fungi. Enrichment with both, bacteria and
fungi, during phytoremediation of organic pollutants, there-
fore, is promising to enhance phytoremediation efficiency.

In future research concerning phytoremediation of
organic pollutants, these tripartite interactions between
plants, bacteria and fungi should be investigated more in
detail. In a next step, the obtained knowledge should be
implemented in new experimental set-ups in which these tri-
partite interactions are taken into account, selecting for the
best plant–bacterial–fungal associations, leading to the most
optimal phytoremediation of the organic pollutant of
concern.
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