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Introduction

This thesis considers singular perturbation problems, which arise in the study of

slow-fast systems. In their standard form, slow-fast systems are represented by#
9X ptq � εF pX,Z, εq
9Z ptq � G pX,Z, εq , (0.0.1)

where pX,Zq P Rn �Rm and the parameter ε is typically thought of as being a very

small positive real number. The presence of ε induces a time scale separation between

the “slow” variables X whose evolution is slow in comparison with that of the “fast”

variables Z.

There are two different manners in which to reduce a slow-fast system in the singular

limit ε � 0. Keeping the formulation of (0.0.1) in fast time t and setting ε � 0

produces the fast subsystem, also called the layer equations,#
9X ptq � 0

9Z ptq � G pX,Z, 0q .

However one can rescale time to the slow time τ � εt in which the system takes the

form #
9X pτq � F pX,Z, εq

ε 9Z pτq � G pX,Z, εq .

Taking the singular limit here gives us the slow subsystem, which is a differential-

algebraic equation, #
9X pτq � F pX,Z, 0q

0 � G pX,Z, 0q .

It is often assumed, as will be throughout this thesis, that the solution set of 0 �
G pX,Z, 0q, which is also the set of equilibria of the layer equations, is given by an n-

dimensional manifold, called the critical manifold. The slow subsystem then generates

a flow on this manifold, called the slow flow.

A large part of this thesis will be dedicated to the persistence of the critical manifold

under small perturbations of ε. Said roughly, we investigate the existence and prop-

erties of an ε-family of locally invariant manifolds, Sε, of the full system, which tend

v



vi INTRODUCTION

to (a part of) the critical manifold for ε Ñ 0. Such a family of manifolds is called a

slow manifold.

There are the classical results by Fenichel in [Fen79] concerning these slow manifolds.

If a compact submanifold of the critical manifold is normally hyperbolic, meaning

that, as equilibria of the fast subsystem/layer equations, all points of the submanifold

are hyperbolic, a slow manifold is guaranteed to perturb from this set. However, much

like center manifolds obtained through the center manifold theorem, the slow manifold

will, in general, not be unique. Moreover, even in the case when the considered slow-

fast system is real analytic, Fenichel’s results can only guarantee the existence of slow

manifolds up to any finite degree of smoothness.

One aim in this thesis is to improve the results of Fenichel in certain areas. We

will achieve this by employing the theory of Gevrey asymptotic expansions. The

basics of this theory were developed by Watson [Wat12a, Wat12b] and Nevanlinna

[Nev18] as a means to associate a unique “sum” to a class of divergent series. The

application of Gevrey expansions in differential equations was pioneered by Ramis,

[Ram78, Ram80].

The approach is to start of from a formal point of view, constructing formal power

series in the singular parameter ε, with as coefficients functions of the slow variables

X, that are formally invariant under the flow of (0.0.1). As a first result we obtain that

these formal manifolds exist, at points of the critical manifold where the differential

DZG is invertible (a fast-slow regular point to follow the terminology in [Kue15]).

These series are, in general, not convergent but divergent of Gevrey type, this is not

surprising as it generalizes a result achieved by Sibuya, [Sib90] for one slow variable,

to an arbitrary amount of slow variables.

Our subsequent course of action depends on the type of point on the critical manifold

around which we wish to perturb a slow manifold. If the point is not a singularity

of the slow flow, we achieve, without imposing extra assumptions, the existence of a

local slow manifold which has a Gevrey expansion. This is an improvement of the

classical Fenichel results in the sense that we do not demand normal hyperbolicity

but only fast-slow regularity. This includes the case where the fast spectrum is purely

imaginary (the slow manifolds are then occasionally referred to as elliptic manifolds

see for example [Van08, LZ11]). In particular we can handle the case where the critical

manifold undergoes a change of stability through an elliptic point. In the terminology

of [CDRSS00], these are overstable solutions. This result is again a generalization of

a result of Sibuya for one slow variable, [Sib58]. Moreover, functions with a Gevrey

expansion are C8 smooth (even a bit stronger) which is also an improvement over the

classical result.

If we are interested in a singularity of the slow flow, we actually achieve stronger
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results, but at the cost of having to impose extra conditions. More specifically we

will assume that the fast variable is one dimensional and the linearisation of the slow

flow around the singularity is either attractive or repelling (for real analytic systems).

Under these conditions we achieve that the formal Gevrey manifold is summable in a

direction. This means that, on top of all the properties that a manifold with Gevrey

expansion has, the manifold is in a sense unique, there is a “best” manifold realizing

the divergent series.

We do need to remark that, contrary to the classical Fenichel theory, our results are

local in nature, except for the study of the formal series which can be conducted on

compact sets.

In a second part of the thesis we present two results in slow-fast systems with one slow

and one fast variable. A first result is on the saturation of summable slow manifolds

along the critical curve while maintaining summability. A second one concerns the

connection of summable slow manifolds over a turning point, where there occurs a

change of stability of the critical curve.

We can apply these results to a system of one slow and one fast variable which

satisfies a particular configuration. The critical curve has an attracting and repelling

part, where the change of stability is through a turning point, and the slow flow is

directed from the attracting to the repelling part. Moreover, on the attracting part

the slow flow has a repelling equilibrium while the repelling part has an attracting

equilibrium, i.e. both parts of the curve have a slow-fast saddle. By our local results,

a summable slow manifold perturbs from each of these saddles. These manifolds

are then saturated towards the turning point and, by introducing a parameter in our

system, can be matched to each other over the turning point creating canard solutions

connecting the two saddles. Moreover, these solutions will still have the summability

property away from the turning point.

In a last part we consider a system of delay differential equations which models neuron

interaction, found in [KT16]. We use this model as an example to corroborate that

Gevrey asymptotic techniques are also viable to construct invariant manifolds in the

more general setting of functional differential equations. We achieve quasi-solutions,

approximating slow manifolds up to an exponentially small error. The step from the

quasi-solutions to actual slow manifolds is not made in this thesis and could be a

possible future topic of research.

The thesis is structured as follows.

In chapter 1 we introduce basic notions and results concerning Gevrey series and

asymptotics.

Chapter 2 concerns the complete Gevrey analysis of slow manifolds. In section 2.1

the formal Gevrey slow manifolds are constructed for a very general class of systems.
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Section 2.2 then details the construction of a Gevrey slow manifold around a regular

point of the slow flow, still for the same class of systems. The construction essentially

entails the application of a Borel-Laplace resummation procedure to the formal solu-

tion which gives a manifold which is invariant “up to an exponentially small error”.

One can then carefully remove this error by a procedure reminiscent of the proof of

the Cauchy-Kowalevski theorem.

In the last section 2.3, summability is proven under extra conditions. This is done

by relating summability of a formal series to the extension of its Borel transform

to infinity. We prove such an extension exists by a fixed point argument. We also

provide examples showing that summability fails when our imposed conditions are

not satisfied.

In chapter 3, we start of by showing that, in a system with one slow and one fast

variable, a summable slow manifold can be saturated along a normally hyperbolic part

of the critical curve by means of the slow flow, while maintaining the summability.

We remark that such a summable manifold does not necessarily need to arise from

one of the cases described in section 2.3, it could for example also arise from another

type of doubly singular equation as in [CDMFS07].

Secondly we show that the summable manifolds can be connected to each other in a

blow up of the turning point. Combining the results of this chapter and section 2.3

gives rise to “canard heteroclinic saddle connections”.

The last chapter 4 concerns delay equations and we employ a toy model to exhibit

Gevrey techniques in these types of equations. An important aspect of this chapter

is dedicated to proving that a “naive” characterization of slow manifolds in delay

equations is actually correct.

The results in this thesis are a collection of those in [Ken16, DMK19, DMK].



Chapter 1

Preliminaries

We state, together with fixing some notation, the Cauchy inequalities for holomorphic

functions of several variables. These inequalities will be used throughout the thesis on

numerous occasions. Next we introduce Gevrey formal series and Gevrey asymptotic

functions together with some basic results.

1.1 The Cauchy inequalities

We will use the following notations.

• For a metric space pX, dq, an x P X and r ¡ 0 we denote the open and closed

balls around x with radius r by

B px, rq , resp. B px, rq .

• Let n P N0, α � pα1, . . . , αnq P Nn a multi-index and X � px1, . . . , xnq P Cn.

We denote

|α| � α1 � . . .� αn

α! � α1! � . . . � αn!

Xα � xα1
1 � . . . � xαnn .

• For r � pr1, . . . , rnq P Rn¡0 and X P Cn we define the open and closed polydisks

centred at X with polyradius r by

Pn pX, rq � B px1, r1q � . . .�B pxn, rnq

resp.

Pn pX, rq � B px1, r1q � . . .�B pxn, rnq .
If the centre is the origin, we denote the polydisks simply by Pn prq.

1
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For R ¡ 0 the notation Pn pX,Rq means that we consider the polyradius

pR, . . . , Rq.

• For r a polyradius and X P Cn, B0Pn pX, rq � BB px1, r1q� . . .�BB pxn, rnq or

equivalently

B0Pn pX, rq � tY P Cn | |yj � xj | � rj ,@j � 1, . . . , nu .

• Let V � Cn, not necessarily open, we say that f P O pV q if there exists an open

W � Cn with V �W such that f : W Ñ C is holomorphic on W . If V is open,

one can of course take W � V .

• Let s P N0 and f � pf1, . . . , fnq : V Ñ C
s. Then f P O pV,Csq if and only if

fj P O pV q for all j � t1, . . . , nu.
We can now state the Cauchy inequalities, for a proof one can consult, for example,

[Hor73].

Lemma 1.1.1. Let r P Rn¡0, α P Nn and X P Cn, suppose that

f P O pPn pX, rq ,Csq X C
�
Pn pX, rq ,Cs

�
.

If we denote by }�}max the maximum norm on Cs,����B|α|fBXα
pXq

����
max

¤ α!

rα
sup

Y PB0Pnpx,rq
}f pY q}max .

1.2 A short introduction to Gevrey asymptotics

We introduce Gevrey asymptotic expansions and present some basic results concern-

ing them. Throughout the literature, the definitions of Gevrey series and expansions

are not uniform, several slight alterations on the definition we give here can be found.

1.2.1 Gevrey formal series

Definition 1.2.1. Let V � C
` be open, ` P N0, and let s P N0, m ¥ 0, B ¡ 0.

Consider a formal series of the form

pfpX, εq � 8̧

k�0

fkpXqεk,

with fk P O pV,Csq, i.e. pf P O pV,Csq JεK. We say that pf is Gevrey-m of type B in

ε, uniformly for X in V , if there exists A ¡ 0 such that

sup
XPV

}fkpXq}max ¤ ABkΓ p1�mkq .

Here }�}max denotes the maximum norm on Cs.

Remark 1.2.2. Notice that a Gevrey-0 series is convergent for pX, εq P V �B �
0, 1

B

�
and thus induces a holomorphic function on this subset.
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1.2.2 Gevrey asymptotic functions

Notation 1.2.3. For θ P r0, 2πr, δ P s0, 2πr and r ¡ 0 we denote the (open) sector

in the direction θ with opening δ and radius r by

Spθ, δ, rq �
!
z P C

��� 0   |z|   r, Argpze�iθq P s � δ
2
, δ

2
r
)
.

The infinite sector
�
r¡0 Spθ, δ, rq in the direction θ is denoted by Spθ, δq.

While we will only concern ourselves with sectors of opening smaller than 2π, as above,

sectors with a larger opening can be considered as subsets of the Riemann surface of

the logarithm.

Definition 1.2.4. Consider some open sector S and a subset V � C
`, `, s P N0

and m ¥ 0. Let pf pX, εq � °8
n�0 fn pXq εn P O pV,Csq JεK. We say that a function

fpX, εq, holomorphic on V �S, is Gevrey-m asymptotic to the formal series pfpX, εq,
with respect to ε, uniformly for X P V , if for every ε P S and every N P N0 we have

sup
XPV

�����fpX, εq � N�1̧

n�0

fn pXq εn
�����
max

¤ CDNΓ p1�mNq |ε|N

for certain C,D ¡ 0. We denote this by

fpX, εq �m pfpX, εq
Remark 1.2.5. It is not demanded, a priori, in the above definition that the formal

series pf is Gevrey-1. However, this series gains the Gevrey property immediately from

the fact that some function is Gevrey-1 asymptotic to it. Indeed, for all X P V ,

}fk pXq}max |ε|k ¤
����� ķ

n�0

fn pXq εn � f pX, εq
�����
max

�
�����f pX, εq � k�1̧

n�0

fn pXq εn
�����
max

¤ CDk�1Γ p1�m pk � 1qq |ε|k�1 � CDkΓ p1�mkq |ε|k .

Dividing both sides of the inequality by |ε|k and then setting ε � 0, shows that the

coefficients all satisfy the Gevrey bounds.

Remark 1.2.6. If fpX, εq �m pfpX, εq one can, for a fixed value ε� P S, approximate

f pX, ε�q up to an exponential accuracy by a well-chosen truncation of the formal

series pf . Indeed, denote

N� �
[
pD |ε�|q�1{m

m

_
.

Clearly

pD |ε�|q�1{m

m
� 1   N� ¤ pD |ε�|q�1{m

m
,

and by Stirling’s formula, see [Sti],

Γ p1� zq �
?

2πzz�
1
2 e�z

�
1� o

�
1
��
, for z Ñ8, |arg pzq|   π.
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By definition of a Gevrey-m asymptotic expansion we then have,

sup
XPV

�����fpX, εq �
N��1¸
n�0

fn pXq εn
�����
max

¤ CDN�Γ p1�mN�q |ε|N�

�
?

2C pD |ε�|qN� pmN�qmN�� 1
2 e�mN�

�
1� o

�
1
��

 
?

2C pD |ε�|qN� pD |ε�|q�N� pD |ε�|q� 1
2m e

m� 1

pD|ε�|q1{m �
1� o

�
1
��

�
?

2Cem pD |ε�|q� 1
2m e

� 1

pD|ε�|q1{m �
1� o

�
1
��
.

Where o
�
1
�

is for N� Ñ8 or equivalently |ε�| Ñ 0.

It is obvious that the class of functions with a Gevrey-m expansion is closed under

addition and scalar multiplication. In the following interpretation it is also closed

under differentiation.

Proposition 1.2.7. Suppose fpX, εq is defined on V � S pθ, 2δ1, r1q with f �m pf .

• Suppose W � V with d
�
W,V C

� � R ¡ 0, where the distance is measured

with the maximum metric. For all α P N` we have B|α|f
BXα �m B|α| pf

BXα w.r.t. ε P
S pθ, 2δ1, r1q, uniformly for X PW .

• If 0   δ2   δ1, there then exists an r2   r1 such that for all k P N, Bkf
Bεk �m Bk pf

Bεk
w.r.t. ε P S pθ, 2δ2, r2q, uniformly for X P V

Proof:

• Due to the Cauchy inequalities, we have for all X P W , ε P S pθ, 2δ1, r1q and

N P N0, �����B|α|fBXα
pX, εq �

N�1̧

n�0

B|α|fn
BXα

pXq εn
�����
max

�
����� B|α|BXα

�
f pX, εq �

N�1̧

n�0

fn pXq εn
������

max

¤ α!

�
2

R


|α|
sup
XPV

�����f pX, εq � N�1̧

n�0

fn pXq εn
�����
max

¤ α!

�
2

R


|α|
CDNΓ p1�mNq |ε|N .

• Denote r2 � r1
1�sinpδ1�δ2q , one can verify that for all ε P S pθ, 2δ2, r2q,

B pε, |ε| sin pδ1 � δ2qq � S pθ, 2δ1, r1q .
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By the Cauchy inequalities and the definition of Gevrey asymptotics, this im-

plies for all X P V , ε P S pθ, 2δ2, r2q and N P N0 that�����BkfBεk pX, εq �
N�1̧

n�0

pn� kq!
n!

fn�kε
n

�����
max�����BkfBεk pX, εq �

N�k�1¸
n�k

n!

pn� kq!fnε
n�k

�����
max

�
����� BkBεk

�
f pX, εq �

N�k�1¸
n�0

fn pXq εn
������

max

¤ k!

|ε|k sink pδ1 � δ2q
max

|w�ε|�|ε| sinpδ1�δ2q

�����f pX,wq � N�k�1¸
n�0

fn pXqwn
�����
max

¤ k!

|ε|k sink pδ1 � δ2q
max

|w�ε|�|ε| sinpδ1�δ2q
CDN�kΓ p1�mk �mNq |w|N�k

¤ k!

�
D

1� sin pδ1 � δ2q
sin pδ1 � δ2q


k
CDNΓ p1�mk �mNq |ε|N .

Since there exists a constant M ¡ 0 such that

Γ p1�mk �mNq ¤MNΓ p1�mNq ,

which can be deduced from the Stirling formula, the result follows.

One can think of Gevrey functions as being C8 smooth at the vertex of the sector,

ε � 0. We specify this a bit more.

Proposition 1.2.8. Suppose fpX, εq is defined on V �S pθ, 2δ1, r1q with f �1
pf and

choose any 0   δ2   δ1, there then exists an 0   r2   r1 such that for all n P N

lim
εÑ0

εPSpθ,2δ2,r2q
sup
XPV

����BnfBεn pX, εq � n!fn pXq
����
max

� 0

and

lim
εÑ0

εPSpθ,2δ2,r2q
sup
XPV

����� B
nf
Bεn pX, εq � n!fn pXq

ε
� pn� 1q!fn�1 pXq

�����
max

� 0.

Proof: This follows from proposition 1.2.7.

In general, a formal Gevrey series can be the Gevrey expansion of multiple functions,

the difference of such functions however, can at most be exponentially small as the

following result clarifies, a proof can be found in, for example [Ram78].

Proposition 1.2.9. Let f P O pV � S,Csq, then f �m 0 if and only if f is exponen-

tially decaying w.r.t. ε P S, uniformly for X P V i.e.

DK,L ¡ 0: sup
XPV

}fpX, εq}max ¤ Ke�L|ε|
�1{m

,@ε P S.
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One can also wonder of every formal Gevrey series is necessarily the Gevrey expansion

of a function. The following theorem, which is a specification of the Borel-Ritt theo-

rem (see for example [Was02]) to Gevrey asymptotics, affirms this but the functions

realizing the series can only be guaranteed to exist on “small” sectors.

Theorem 1.2.10 (Borel-Ritt-Gevrey theorem). Consider V � C
`, m ¡ 0 and

S pθ, δ, rq a sector of opening δ   mπ. If pf pX, εq is a Gevrey-m formal series in

ε, uniformly for X P V there exists an f P O pV � S pθ, δ, rq ,Csq such that f �m pf .

A proof of this theorem can be found in [Bal00].

An essential tool in the study of Gevrey asymptotic functions is the Ramis-Sibuya

theorem. This result gives an equivalence between a function possessing a Gevrey

expansion and it being part of a “function chain” covering a disk around the origin.

This allows us to make statements about a function’s Gevrey asymptotic properties

without explicit calculation of the asymptotic bounds, or even without knowledge of

the asymptotic series. We clarify this further now.

Definition 1.2.11. Given a punctured disk B p0, rq z t0u � C. A good sectorial covering

of the punctured disk is a finite ordered set of sectors Sj � S pθj , δj , rq, 1 ¤ j ¤ n

such that

•
�n
j�1 Sj � B p0, rq z t0u.

• Si X Sj � H if and only if |pj � iq mod n| � 1.

See figure 1.1 for an illustrated example.

Theorem 1.2.12 (Ramis-Sibuya theorem). Let V � C` and m ¡ 0. Suppose that

we have sectors Sj, 1 ¤ j ¤ n, forming a good sectorial covering of the punctured disk

Bp0, rqzt0u. Given bounded functions fj P O pV � Sj ,C
sq satisfying the following.

There exist A,B ¡ 0 such that for every 1 ¤ i, j ¤ n with Si X Sj � H

sup
XPV

}fi pX, εq � fj pX, εq}max ¤ Ae�B|ε|
�1{m

(1.2.1)

for all ε P Si X Sj.

It then follows that all the functions fj are Gevrey-m asymptotic to a common Gevrey-

m formal series.

A proof of this theorem can be found in [FS13, RS89].

The following is an application of the Ramis-Sibuya theorem.

Lemma 1.2.13. Consider open subsets V � C`, U � C
s and an open sector

S pθ, δ, rq. Let F : V � U � Bp0, Rq Ñ C
k be holomorphic for k P N0 and R ¡ 0.
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Figure 1.1: A good sectorial covering of the punctured disk by five sectors. The

sectors are drawn with varying radii to help distinguish them.

Suppose that f �m pf , w.r.t. ε P S pθ, δ, rq, uniformly for X P V , and pfpX, 0q P U .

Then there exists an 0   r1 ¤ r such that

F pX, fpX, εq, εq �m F
�
X, pfpX, εq, ε	

w.r.t. ε P Spθ, δ, r1q, uniformly for X P V .

Proof: By the Borel-Ritt-Gevrey theorem 1.2.10, one can construct a good sectorial

covering S1, . . . , Sn of B p0, rq z t0u with corresponding functions fj �m pf such that

S1 � S pθ, δ, rq and f1 � f . By proposition 1.2.9 these functions satisfy inequalities

(1.2.1).

Since pfpX, 0q P U , one can choose r1 ¤ r and a compact set pfpX, 0q P K � U such

that for all j, fj pV � pSj XB p0, r1qqq � K. One can then apply the mean value

theorem and the Cauchy inequalities to show that there exist rA ¡ 0 such that

sup
XPV

}F pX, fi pX, εq , εq � F pX, fj pX, εq , εq}max ¤ rAe�B|ε|�1{m

for all ε P SiXSjXB p0, r1q. The Ramis-Sibuya theorem then guarantees the existence

of a formal series rG pX, εq such that (in particular) F pX, fpX, εq, εq �m pG pX, εq.
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It remains to show that pG pX, εq � F
�
X, pfpX, εq, ε	. Denote

pf pX, εq � 8̧

n�0

fn pXq εn,

pG pX, εq � 8̧

n�0

gn pXq εn.

Notice that for any N P N0 the coefficients of F
�
X, pfpX, εq, ε	 for ε0, . . . , εN�1

coincide with those in the Taylor expansion of F
�
X,

°N�1
n�0 fn pXq εn, ε

	
. It is thus

sufficient to show that F
�
X,

°N�1
n�0 fn pXq εn, ε

	
�°N�1

n�0 gn pXq εn � O
�
εN

�
for εÑ

0, staying in S pθ, δ, rq. We have that�����F
�
X,

N�1̧

n�0

fn pXq εn, ε
�
�
N�1̧

n�0

gn pXq εn
�����
max

¤
�����F

�
X,

N�1̧

n�0

fn pXq εn, ε
�
� F pX, f pX, εq , εq

�����
max

�
�����F pX, f pX, εq , εq � N�1̧

n�0

gn pXq εn
�����
max

. (1.2.2)

By the Cauchy inequalities and the definition of Gevrey expansions, there exists

C0, C1, D1 such that (1.2.2) is bounded, for all |ε| sufficiently small, by

C0

�����f pX, εq � N�1̧

n�0

fn pXq εn
�����
max

�
�����F pX, f pX, εq , εq � N�1̧

n�0

gn pXq εn
�����
max

¤ C1D
N
1 Γ p1�mNq |ε|N .

Due to the Borel-Ritt-Gevrey theorem, remark 1.2.5 and the above lemma, the fol-

lowing is immediate.

Corollary 1.2.14. Let F and pf be as in lemma 1.2.13 with pf a Gevrey-m formal

series. The formal series F
�
X, pfpX, εq, ε	 is also Gevrey-m.

We now give a version of the implicit function theorem for Gevrey asymptotic func-

tions.

Theorem 1.2.15 (Gevrey implicit function theorem). Let m ¡ 0 and

pfpa, εq � 8̧

n�0

fnpaqεn

be a Gevrey-m series in ε, uniformly for a P A, with A � C open.
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Suppose there are θ P r0, 2πr, λ, r ¡ 0 and f P O pA� Spθ, λ, rqq such that f �m pf .

If moreover there exists an a0 P A with f0pa0q � 0 and f 10pa0q � 0, we can find an

r1 ¡ 0 and a holomorphic function

ra : S pθ, λ, r1q Ñ A

such that rap0q � a0 and

fprapεq, εq � 0

for all ε P S pθ, λ, r1q.
The function ra is also Gevrey-m asymptotic to a formal series

papεq � 8̧

n�0

anε
n.

Proof: Take δ,R ¡ 0 such that B pa0, δ �Rq � A and consider the following map

F : B pa0, δq � pSpθ, λ, rq Y t0uq Ñ C

pa, εq ÞÑ
$&%fpa, εq if ε � 0

f0paq if ε � 0
.

This is clearly a continuous map. The first partial derivative is given by

BF
Ba pa, εq �

$&%
Bf
Ba pa, εq if ε � 0

f 10paq if ε � 0
. (1.2.3)

We claim that the partial derivative is also continuous on B pa0, δq�pSpθ, λ, rq Y t0uq.
For a point pa�, ε�q with ε� � 0 the continuity is obvious since f is holomorphic.

Thus consider a point pa�, 0qand let ρ ¡ 0 be random. Take a neighbourhood,

U � Bpa0, δq, of a� such that ��f 10paq � f 10pa�q
��   ρ

2

for a P U .

For pa, εq P U �
�
S
�
θ, λ,min

!
Rρ

2CDΓp1�sq , r
)	

Y t0u
	

, where C,D ¡ 0 are chosen

such that

sup
aPA

|fpa, εq � f0paq| ¤ CDΓp1� sq |ε| ,

we have the following.

If ε � 0, clearly ����BFBa pa, εq � BF
Ba pa�, 0q

���� � ��f 10paq � f 10pa�q
��   ρ

2
.
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Otherwise, using Cauchy’s inequalities we have����BFBa pa, εq � BF
Ba pa�, 0q

���� � ����BfBa pa, εq � f 10pa�q
����

¤
����Bpf � f0q

Ba pa, εq
����� ��f 10paq � f 10pa�q

��
  1

R
sup

|w�a|�R
|fpw, εq � f0pwq| � ρ

2

¤ 1

R
CDΓp1� sq |ε| � ρ

2

  ρ.

The map F is thus continuous, with continuous first partial derivative and satisfying

F pa0, 0q � 0. This suffices to employ a continuous version of the implicit function

theorem, see for example [LS14]. There thus exists an r0 ¡ 0 and a continuous map

pa : S pθ, λ, r0q Y t0u Ñ B pa0, δq

with pap0q � a0 and F ppapεq, εq � 0, where papεq is the unique element solving this

equation.

Since BF
Ba pa0, 0q � f 10pa0q � 0 we can find an 0   r1 ¤ r0 such that for all ε P

S pθ, λ, r1q Y t0u
BF
Ba ppapεq, εq � 0.

Let ε� P S pθ, λ, r1q, then

fppapε�q, ε�q � F ppapε�q, ε�q � 0

Bf
Ba ppapε�q, ε�q � BF

Ba ppapε�q, ε�q � 0.

By the holomorphic implicit function theorem there exists a holomorphic function

gε� on an environment of ε� for which

f
�
gε�pεq, ε

� � 0.

By uniqueness of pa we must have that papεq � gε�pεq on this environment. Conse-

quently, pa is analytic around ε� and thus it is analytic on S pθ, λ, r1q.
It remains to show that pa is Gevrey-m asymptotic to a formal series.

For this, take a covering of Bp0, rqzt0u by sectors pSiqi�1...l where S1 � S pθ, λ, r1q and

the other sectors have opening smaller than mπ. By the Borel-Ritt-Gevrey theorem

1.2.10 there exist gi P OpA � Siq for i � 1, . . . , l with g1 � f and gi �m pf . There

exist T,Q ¡ 0 such that for i, j with Si X Sj � H we have

sup
aPA

|gipa, εq � gjpa, εq| ¤ Qe
� T

|ε|1{s , @ε P Si X Sj .
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Using our previous assertions we find, for i � 1, . . . , l, maps pai P OpSiq (where the

radius of Si could be diminished), with pa1 � pa, satisfying

gippaipεq, εq � 0.

For i, j with Si X Sj � H and ε P Si X Sj we get

0 �gippaipεq, εq � gjppajpεq, εq
�gippaipεq, εq � gippajpεq, εq � gippajpεq, εq � gjppajpεq, εq
�
» 1

0

Bgi
Ba ppaipεq � v ppajpεq � paipεqq , εqdv ppajpεq � paipεqq

� gippajpεq, εq � gjppajpεq, εq.
(1.2.4)

Since ����» 1

0

Bgi
Ba ppaipεq � v ppajpεq � paipεqq , εq dv � f 10pa0q

����
¤

» 1

0

����BgiBa ppaipεq � v ppajpεq � paipεqq , εq � f 10pa0q
����dv

we can find by continuity of (1.2.3) and using f 10pa0q � 0, a D ¡ 0 such that for |ε|
sufficiently small ����» 1

0

Bgi
Ba ppaipεq � v ppajpεq � paipεqq , εq dv

���� ¥ D.

Combining this with (1.2.4) we find

|pajpεq � paipεq| � ����� gippajpεq, εq � gjppajpεq, εq³1
0
Bgi
Ba ppaipεq � v ppajpεq � paipεqq , εq dv

�����
¤ Q

D
e
� T

|ε|1{s .

The Ramis-Sibuya theorem 1.2.12, thus guarantees that all pai are Gevrey-s asymp-

totic to a common formal series. In particular, pa is Gevrey-s asymptotic to a formal

series on S pθ, λ, r1q, for some r1 ¡ 0.

1.2.3 Summability

The Borel-Ritt-Gevrey theorem 1.2.10, guarantees for any formal Gevrey-m series

the existence of functions having this series as their Gevrey-m expansion. These

functions will however only be defined on “small” sectors, of opening less than mπ

and will certainly not be unique but their difference is at most exponentially small,

see lemma 1.2.9.

On “large” sectors, of opening larger than mπ, the story is quite different. Given a

“large” sector and a formal Gevrey series, there might not be any function defined
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on this sector, admitting the series as its Gevrey expansion. However when such a

function does exist it is necessarily unique, said differently, on large sectors lemma

1.2.9 can be strengthened to what is known as Watson’s lemma.

Lemma 1.2.16 (Watson’s lemma, [Wat12a]). Suppose that S is a sector of opening

larger than mπ and f P V � S such that f �m 0 then f � 0.

The above leads us to the following definition.

Definition 1.2.17. Given a Gevrey-1{k series

f̂ pX, εq �
8̧

n�0

fn pXq εn.

We say that f̂ is Borel k-summable in a direction θ P r0, 2πr if there exist r, τ ¡ 0

and a function f pX, εq analytic on V � S
�
θ, π

k
� τ, r

�
such that f �1{k f̂ .

Definition 1.2.18. A Gevrey-1{k series is called k-summable if it is k-summable in

all but finitely many directions.

In this thesis, we will almost exclusively deal with summability in directions, i.e. only

with definition 1.2.17.

We will state a theorem that gives an equivalent definition for summability in a

direction. For this we first need to introduce the following.

Definition 1.2.19. Let, for k ¡ 0, f̂ pX, εq � °8
n�1 fn pXq εn be a Gevrey- 1

k
se-

ries in ε (without constant coefficient), uniformly for X P V � C`. We define the

formal Borel transform of order k (with respect to ε) of this series to be

Bkpf̂q pX, ηq �
8̧

n�1

fn pXq
Γp1� pn�1q

k
q
ηn�1.

We see that the formal Borel transform of order k of a type B Gevrey- 1
k

series is a

convergent series for pX, ηq P V � Bp0, 1{Bq since, for example, the following bound

can be found (see [Bat08])

Γp1� n
k
q

Γp1� pn�1q
k

q
 

c
π

e

�
n

k
� 1

2


 1
k

.

The following theorem gives an equivalent definition for k-summability in a direction.

Theorem 1.2.20. ([Bal00]) Let f̂ pX, εq � °8
n�1 fn pXq εn be a Gevrey- 1

k
series,

k ¡ 0, uniformly for X P V � C`. For every θ P r0, 2πr, the following two statements

are equivalent

• The series f̂ pX, εq is Borel k-summable in the direction θ with Borel sum

f pX, εq.
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• There exists an infinite sector S pθ, τq for τ ¡ 0 such that Bk
�
f̂
	
pX, ηq admits

a holomorphic continuation to S pθ, τq of exponential growth at most of order k,

i.e. there exist M,ν ¡ 0 such that for all η P S pθ, τq

sup
XPV

���Bkpf̂q pX, ηq��� ¤Meν|η|
k

.

Moreover the function f is unique in the case the statements are true.
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Chapter 2

Local Gevrey analysis of slow manifolds

As a general remark we point out that we work throughout this thesis with complex

slow-fast systems. Our results can be applied to real analytic systems by simply

limiting them to the real numbers. Moreover, the methods described here are robust

enough that one can add parameters without altering the results. We have not added

such parameters, mainly to not further complicate the notation.

In this chapter we study the local Gevrey asymptotic properties of slow manifolds in a

broad class of holomorphic slow-fast systems. We commence this study from a formal

point of view in section 2.1. The existence of power series in the singular parameter

which are formally invariant under the flow of the system is demonstrated. These

power series are then shown to be Gevrey-1. We then make a distinction depending

on the behaviour of the slow flow.

Section 2.2 deals with regular points of the slow flow. In this case one can construct,

by employing the Borel-Ritt-Gevrey theorem 1.2.10, manifolds which are Gevrey

asymptotic to the formal solution but are only nearly invariant. By this we mean

that the error is exponentially decaying w.r.t. the singular parameter. However,

starting from such a manifold one can construct invariant manifolds, which inherit

the Gevrey property. This approach has been already successfully employed in the

case of one slow variable in [CDRSS00].

Afterwards, singular points of the slow flow are considered in section 2.3. Under

certain conditions, a better result can be achieved. Here the formal solution is 1-

summable in a direction.

Concretely, we will consider in this chapter slow-fast systems#
9X � εG1pX,Z, εq
9Z � G2pX,Z, εq

, (2.0.1)

where

X P Cn, Z P Cm, ε P C

15
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and the functions are holomorphic on an open subset of Cn � Cm � C. Suppose

there is a point pX0, Z0, 0q satisfying G2pX0, Z0, 0q � 0 and DZG2pX0, Z0, 0q is an

invertible matrix. Then there exists, by the implicit function theorem, locally around

X0 a holomorphic function Φ0pXq, satisfying

G2 pX,Φ0pXq, 0q � 0

and Φ0 pX0q � Z0 i.e. Z � Φ0 pXq is a critical manifold. Applying the transformation

εZ1 � Z � Φ0 pXq � pDZG2 pX,Φ0 pXq , 0qq�1 ��BG2

Bε pX,Φ0 pXq , 0q �DΦ0 pXqG1 pX,Φ0 pXq , 0q


,

X1 � X �X0,

and dropping the subscripts, brings the system into the form#
9X � εF pX,Z, εq
9Z � ApXqZ � εHpX,Z, εq , (2.0.2)

Where ApXq � DZG2pX �X0,Φ0pX �X0q, 0q, the critical manifold is now given by

Z � 0 and the following assumptions hold

(i) A P O �
PnpRq,Cm�m

�
and ApXq is an invertible matrix for all X P PnpRq,

(ii) F P O pPnpRq �PmpRq �Bp0, Rq,Cnq,

(iii) H P O pPnpRq �PmpRq �Bp0, Rq,Cmq,

for some R ¡ 0.

2.1 Formal slow manifolds

2.1.1 Formal expansions in terms of the singular parameter

The slow manifold equation associated to (2.0.2) is given by

εDXZpX, εqF pX,ZpX, εq, εq � ApXqZpX, εq � εHpX,ZpX, εq, εq. (2.1.1)

We start off by searching for a formal solution to the above equation.

For this we introduce the spaces of formal series O pPnpRq,Csq JεK, where s may de-

note any natural number. These spaces can account for series where the coefficients

are holomorphic functions taking values in the space of linear operators between

products of C. Indeed, for this one simply uses the canonical identifications of lin-

ear operators with complex valued matrices, and matrix spaces with finite product
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spaces. We equip these with the following metric, Let V,W P O pPnpRq,Csq JεK then

dpV,W q � 2�K , where

K � min
!
` P N

��� � coefficient of ε` in V �W
	
� 0

)
.

It is easily seen that O pPnpRq,Csq JεK is a complete metric space. Moreover, the

metric has the following additional properties:

• dpV,W q � dpV �W, 0q.

• dpU,W q ¤ max tdpU, V q, dpV,W qu (so d is an ultrametric).

• dpV �W, 0q ¤ dpV, 0qdpW, 0q whenever the product is defined, as is for example

the case when

V P O �
PnpRq,Cm�n

�
JεK

and

W P O pPnpRq,Cnq JεK.
Combining this with the fact that the metric is bounded by 1, shows that in

particular dpV �W, 0q ¤ dpV, 0q as well as dpV �W, 0q ¤ dpW, 0q.

Proposition 2.1.1. Equation (2.1.1) has a unique formal solution of the form

rZpX, εq � 8̧

k�1

ZkpXqεk,

with Zk P O pPnpRq,Cmq.

Proof: Consider the map

T : Z � ZpX, εq ÞÑ εApXq�1 pDXZF pX,Z, εq �HpX,Z, εqq (2.1.2)

from B
�
0, 1

2

� � O pPnpRq,Cmq JεK to itself. This map is well defined, one can see

easily that T pZq P O pPnpRq,Cmq JεK and d pT pZq, 0q ¤ 1
2

simply due to the multi-

plication with ε.

Moreover, for Z � ZpX, εq,W �W pX, εq P O pPnpRq,Cmq JεK we have

T pZq � T pW q � εApXq�1 pDXpZ �W qF pX,Z, εq
�DXW pF pX,Z, εq � F pX,W, εqq
� HpX,W, εq �HpX,Z, εqq .

Using dpDXpZ �W q, 0q ¤ dpZ �W, 0q and

F pX,Z, εq � F pX,W, εq � rFZ,W pX, εqpZ �W q,
HpX,Z, εq �HpX,W, εq � rHZ,W pX, εqpZ �W q,
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for certain formal series rFZ,W , rHZ,W , and combining this with the properties of the

metric d, one sees that

dpT pZq, T pW qq � dpT pZq � T pW q, 0q ¤ 1

2
dpZ �W, 0q � 1

2
dpZ,W q.

Consequently there exists a fixed point of T in B
�
0, 1

2

�
, which is clearly a (formal)

solution to (2.1.1) and due to the definition of the metric has no constant term.

2.1.2 Gevrey growth of the formal expansion

One can not expect that the formal solution found proposition 2.1.1 is convergent in

in a full neighbourhood of ε � 0. Indeed even for a very simple example,

ε
BZ
Bx px, εq � z � εh pxq ,

the formal solution is calculated to be given by

rZ px, εq � 8̧

n�1

hpn�1q pxq εn.

The coefficients will generally grow like (or are at least always be bounded by) n!Bn

which indicates that the series is of Gevrey-1 type.

In this section we show that the conclusion of the simple example above actually holds

for all formal solutions to the general equation (2.1.1). The formal slow manifolds

of (2.0.2) are Gevrey-1 series. The analysis will be done, locally around X � 0. At

the end of this section, more specifically in corollary 2.1.11 we mention a more global

result. The remainder of the section is devoted to proving

Proposition 2.1.2. Let 0   T   R, the unique formal solution to equation (2.1.1)

is Gevrey-1 w.r.t. ε uniformly for X P PnpT q i.e. DC1, D1 ¡ 0 such that @k P N

sup
XPPnpT q

}ZkpXq}max ¤ C1D
k
1k!.

Our approach is to introduce an auxiliary series whose coefficients are bounds on a

well chosen family of norms of the Zk. By proving convergence of the auxiliary series,

the Gevrey property can be deduced. This approach is also taken in [CDRSS00] for a

single slow variable (i.e. X P C), moreover, the techniques employed in the remainder

of this section are an adaptation of the ones used in this article.

We consider a family of norms on O pPnpRq,Csq which are multi-dimensional variants

of the Nagumo norms, [Nag41].
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Definition 2.1.3. For p P N and ϕ P O pPnpRq,Csq define

}ϕ}p � sup
XPPnpRq

}ϕpXq}max

�
ņ

`�1

1

R� |x`|

��p

.

Here we have denoted X � px1, . . . , xnq.
Notice that such a norm may be unbounded, when this is the case it will be denoted

as being �8.

Proposition 2.1.4. Let ϕ P O pPnpRq,Cmq, ψ P O pPnpRq,Cnq and p, q P N, we

have

}Dϕ � ψ}p�q�1 ¤ epp� 1q }ϕ}p }ψ}q
Proof: The result is trivial when either }ϕ}p � �8 or }ψ}q � �8, we thus

concentrate only on the case where both are finite.

Let Y P PnpRq, then it is easily seen that

}DϕpY qψpY q}max

�
ņ

`�1

1

R� |y`|

��p�q�1

¤ max
jPt1,...,mu

#
ņ

i�1

����BϕjBxi pY q
����
+
}ψpY q}max

�
ņ

`�1

1

R� |y`|

��p�q�1

¤ max
jPt1,...,mu

#
ņ

i�1

����BϕjBxi pY q
����
�

ņ

`�1

1

R� |y`|

��p�1+
}ψ}q . (2.1.3)

We now concentrate on bounding
n°
i�1

��� BϕjBxi pY q
��� �°n

`�1
1

R�|y`|

	�p�1

. By Cauchy’s in-

equalities, ����BϕjBxi pY q
���� ¤ 1

Ri
max

XPB0PnpY,pR1,...,Rnqq
|ϕjpXq|

¤ 1

Ri
max

XPB0PnpY,pR1,...,Rnqq
}ϕpXq}max ,

where R1, . . . , Rn can be any real numbers satisfying 0   Ri   R � |yi| for all

i � 1, . . . , n and

B0Pn pY, pR1, . . . , Rnqq � tpx1, . . . , xnq P Cn | |xi � yi| � Ri,@1 ¤ i ¤ nu .
Consequently we have

ņ

i�1

����BϕjBxi pY q
���� ¤

�
ņ

i�1

1

Ri

�
max

XPB0PnpY,pR1,...,Rnqq
}ϕpXq}max .

Using the definition of }ϕ}p we then get

ņ

i�1

����BϕjBxi pY q
���� ¤

�
ņ

i�1

1

Ri

�
}ϕ}p max

XPB0PnpY,pR1,...,Rnqq

�
ņ

`�1

1

R� |x`|

�p

¤
�

ņ

i�1

1

Ri

�
}ϕ}p

�
ņ

`�1

1

R� |y`| �R`

�p
.
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The last inequality follows from |x`| ¤ |x` � y`| � |y`| � R` � |y`|.
By setting Ri � R�|yi|

p�1
we get

ņ

i�1

����BϕjBxi pY q
���� ¤

�
ņ

i�1

p� 1

R� |yi|

�
}ϕ}p

�� ņ

`�1

1�
1� 1

p�1

	
pR� |y`|q

�
p

� pp� 1q
�

1� 1

p� 1


�p
}ϕ}p

�
ņ

`�1

1

R� |y`|

�p�1

¤ pp� 1qe }ϕ}p
�

ņ

`�1

1

R� |y`|

�p�1

.

We thus have

ņ

i�1

����BϕjBxi pY q
����
�

ņ

`�1

1

R� |y`|

��p�1

¤ pp� 1qe }ϕ}p .

Plugging this into (2.1.3) gives us that

}DϕpY qψpY q}max

�
ņ

`�1

1

R� |y`|

��p�q�1

¤ pp� 1qe }ϕ}p }ψ}q .

Since this holds for all Y P PnpRq it immediately follows that

}Dϕ � ψ}p�q�1 ¤ epp� 1q }ϕ}p }ψ}q .

We now introduce the concept of majorizing series.

Definition 2.1.5. Let rΦpX, εq � °8
n�0 ϕnpXqεn be in O pPnpRq,Csq JεK and rGpvq �°8

n�0 gnv
n a formal series with coefficients gn P R i.e. rG P RJvK.

We say that rΦpX, εq is 1-majorized by rGpvq, uniformly in X, if, for all n P N,

}ϕn}n ¤ n!gn. This is denoted by

rΦ !1
X

rG.
Proposition 2.1.6. Let

rΦ !1
X

rA with rΦpX, εq P O pPnpRq,Cmq JεK, rA P RJvK,rΨ !1
X

rB with rΨpX, εq P O pPnpRq,Cnq JεK, rB P RJvK.

Then εDX rΦ � rΨ !1
X ev rA rB

Proof: We have� 8̧

k�0

DϕkpXqεk�1

�� 8̧

`�0

ψ`pXqε`
�
�

8̧

i�0

�
i̧

j�0

DϕjpXqψi�jpXq
�
εi�1.
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By proposition 2.1.4 and the definition of 1-majorizing series,���°i
j�0 DϕjpXqψi�jpXq

���
i�1

¤ °i
j�0 epj � 1q }ϕj}j }ψi�j}i�j

¤ °i
j�0 epj � 1qj!ajpi� jq!bi�j

� °i
j�0 epj � 1q!ajpi� jq!bi�j

¤ pi� 1q!e°i
j�0 ajbi�j ,

where we have used that the reciprocal of any binomial coefficient is bounded by 1.

Consequently� 8̧

k�0

DϕkpXqεk�1

�� 8̧

`�0

ψ`pXqε`
�
!1
X

8̧

i�0

e

�
i̧

j�0

ajbi�j

�
vi�1

� ev rApvq rBpvq.
The following properties are straightforward to prove.

Properties 2.1.7. Assume that

rΦ !1
X

rA, with rΦ P O pPnpRq,Cmq JεK, rA P RJvK,rΨ1 !1
X

rB1, with rΨ1 P O pPnpRq,Csq JεK, rB1 P RJvK,rΨ2 !1
X

rB2, with rΨ2 P O pPnpRq,Csq JεK, rB2 P RJvK,

and

sup
XPPnpRq

}ΛpXq}op � C, for some Λ P O �
PnpRq,Cm�m

�
(where }�}op denotes the operator norm). Then:

(i)
�rΨ1 � rΨ2

	
!1
X

� rB1 � rB2

	
,

(ii) Λ � rΦ !1
X C rA,

(iii) rΨ1

�rΦ	α
!1
X

rB1
rA|α|, for all α P Nm .

To prove the Gevrey property of the formal solution found in proposition 2.1.1 we

rewrite equation (2.1.1), by expanding the functions F and H in fitting Taylor ex-

pansions, as

ZpX, εq �εApXq�1

�
DXZpX, εq

� ¸
αPNm

� 8̧

q�0

FαqpXqεq
�
ZαpX, εq

�

�
¸

αPNm

� 8̧

q�0

HαqpXqεq
�
ZαpX, εq

�
.

(2.1.4)
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We intend to associate to this equation what we will call a majorant equation. To

that end we introduce the notations fαq � 1
q!
}Fαq}q, hαq � 1

q!
}Hαq}q and

rA � sup
XPPnpRq

��ApXq�1
��
op
, rfαpvq � 8̧

q�0

fαqv
q, rhαpvq � 8̧

q�0

hαqv
q.

Let us hence state the so-called majorant equation

V pvq � v rA�
eV pvq

¸
αPNm

rfαpvqV |α|pvq �
¸

αPNm
rhαpvqV |α|pvq

�
. (2.1.5)

Before relating equation (2.1.5) to (2.1.4), we claim that this equation has a conver-

gent solution.

Proposition 2.1.8. Equation (2.1.5) has a unique formal solution of the form

rV pvq � 8̧

k�1

ckv
k

where ck P R. Moreover, this series is convergent.

Proof: We consider the space CJvK with a formal series metric as in proposition

2.1.1. Completely analogous as in the proof of proposition 2.1.1 one shows that the

map

S : V pvq ÞÑ v rA�
eV pvq

¸
αPNm

rfαpvqV |α|pvq �
¸

αPNm
rhαpvqV |α|pvq

�
(2.1.6)

from B
�
0, 1

2

� � CJvK to itself is well defined and a contraction. Let us now deal with

the convergence. Notice that since

FαqpXq � 1

α!q!

B|α|�qF
BZαBεq pX, 0, 0q,

there exists, due to Cauchy’s inequalities, an M ¡ 0 such that

sup
XPPnpRq

|Fαq| ¤ M

R|α|�q .

This implies that

fαq � 1

q!
}Fαq}q ¤

M

q!R|α|�q

�
R

n


q
� M

q!R|α|nq
.

It explains that �fα is an entire function satisfying��� rfαpvq��� ¤ Me|v|{n

R|α| .

Since the expression
°
αPNm

rfαpvqV |α| can be written as¸
p�0

¸
αPNm
|α|�p

rfαpvqV p
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and since�������
¸

αPNm
|α|�p

rfαpvqV p
������� ¤

¸
αPNm
|α|�p

Me|v|{n

Rp
|V |p �Me|v|{n

�
p�m� 1

p

�� |V |
R


p
,

the expression in (2.1.5) is actually convergent for |V |   R, taking into account that

similar bounds as above also hold for the second term and using that

8̧

p�0

�
p�m� 1

p

�� |V |
R


p
� R

R� |V | .

One can thus apply the analytic implicit function theorem to (2.1.5), and it has a

unique analytic solution which is 0 for v � 0. This implies that the formal series

solution rV pvq is convergent.

The following result shows that the name majorant equation is fitting for (2.1.5).

Proposition 2.1.9. Given two formal series

rζpX, εq � 8̧

n�1

ζnpXqεn P O pPnpRq,Cmq JεK,

rηpvq � 8̧

n�1

ηnv
n P RJvK,

satisfying rζ !1
X rη, then

εApXq�1

�
DX rζpX, εq ¸

αPNm

� 8̧

q�0

FαqpXqεq
� rζαpX, εq

�
¸

αPNm

� 8̧

q�0

HαqpXqεq
� rζαpX, εq�

!1
X v rA�

eV pvq
¸

αPNm
rfαpvqV |α|pvq �

¸
αPNm

rhαpvqV |α|pvq
�
.

Proof: Due to proposition 2.1.6 and the properties in 2.1.7, it suffices to show that

¸
αPNm

� 8̧

q�0

FαqpXqεq
�� 8̧

k�1

ζkpXqεk
�α

!1
X

¸
αPNm

rfαpvqrη|α|pvq,
¸

αPNm

� 8̧

q�0

HαqpXqεq
�� 8̧

k�1

ζkpXqεk
�α

!1
X

¸
αPNm

rhαpvqrη|α|pvq.
Since the proofs of both statements are identical, we concentrate on the first one.

By construction
°8
q�0 FαqpXqεq !1

X
rfαpvq. Let ` ¥ 1 since rζ has 0 as the coefficient

of ε0, the coefficient belonging to ε` in the formal series

¸
αPNm

� 8̧

q�0

FαqpXqεq
�� 8̧

k�1

ζkpXqεk
�α
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is equal to the one of the series

¸
|α|¤`

� 8̧

q�0

FαqpXqεq
�� 8̧

k�1

ζkpXqεk
�α

.

By the properties 2.1.7,

¸
|α|¤`

� 8̧

q�0

FαqpXqεq
�� 8̧

k�1

ζkpXqεk
�α

!1
X

¸
|α|¤`

rfαpvqrη|α|pvq.
Once again, due to the fact that rη has no constant term, the coefficients of v` in the

series
°
|α|¤`

rfαpvqrη|α|pvq and
°
αPNm

rfαpvqrη|α|pvq coincide.

We have thus proven that the `-th Nagumo norm of the coefficient of ε` in the series°
αPNm

�°8
q�0 FαqpXqεq

	 �°8
k�1 ζkpXqεk

�α
is bounded by `! times the coefficient of

v` of the series
°
αPNm

rfαpvqrη|α|pvq, which means that the result holds.

Corollary 2.1.10. The formal solution rZpX, εq to equation (2.1.1) is majorized by

the formal solution rV pvq, to the majorant equation (2.1.5), i.e.

rZ !1
X

rV .
Proof: Restating proposition 2.1.9 in terms of the maps (2.1.2) and (2.1.6) gives that

for rζ P B �
0, 1

2

� � O pPnpRq,Cmq JεK and rη P B �
0, 1

2

� � CJvK with rζ !1
X rη it holds

that T
�rζ	 !1

X S prηq. Since 0 !1
X 0, and rZ � limnÑ8 T np0q, rV � limnÑ8 Snp0q the

result follows.

Corollary 2.1.10 then immediately implies, together with the convergence of rV (yield-

ing c` ¤ CD`), that for 0   T   R,

sup
XPPnpT q

}Z` pXq}max ¤ }Z`}`
�

n

R� T


`
¤ c``!

�
n

R� T


`
¤ C

�
nD

R� T


`
`!.

We have thus proven the proposition 2.1.2.

A more global version of this result can be easily deduced.

Corollary 2.1.11. Let K � Cn be compact and Ω � Cn open with K � Ω. Sup-

pose that the assumptions (i) to (iii) on (2.0.2) hold on Ω instead of locally around

pX0, Z0, 0q.
Then there exists a unique formal solution to (2.0.2), rZpX, εq P O pK,Cmq JεK, which

is Gevrey-1 w.r.t. ε uniformly for X P K.

Proof: By proposition 2.1.2 such a solution exists locally around each point of K,

going to a finite subcover gives the result.
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2.2 Gevrey asymptotic slow manifolds at a regular point of

the slow flow

We once again consider the system (2.0.2),

#
9X � εF pX,Z, εq
9Z � ApXqZ � εHpX,Z, εq , (2.2.1)

Together with assumptions (i)-(iii) on page 16.

In this section we impose the additional condition that the slow flow is nonsingular:

F p0, 0, 0q � 0.

We show that, under this condition, the formal solution obtained in the previous

section can be realized as an actual solution of the slow manifold equation, more

specifically, the following is proven throughout this section.

Lemma 2.2.1. Let θ P r0, 2πr, τ P �
0, π

2

�
, there exists a solution to the slow manifold

equation (2.1.1), defined for X in a neighbourhood, say V, of 0 and ε P Spθ, 2δ, rq, for

a certain r ¡ 0, which is Gevrey-1 asymptotic, w.r.t. ε, uniformly for X P V , to the

unique, Gevrey-1, formal solution to the slow manifold equation, see proposition 2.1.2.

We point out that a Gevrey solution on a small sector is the best one can hope for in

general, i.e. in the absence of a singularity of the slow flow on the critical manifold

there exist equations of the form (2.1.1) which do not admit a solution defined for ε

in an open sector of opening larger than π or in other words, there is no direction in

which a 1-summable solution exists. An example showing this is given in remark 3.1.4,

the example is given in a setting of one slow and one fast variable but can be easily

generalized to an arbitrary amount of slow variables. We have deferred this example

to a later chapter since we have not yet introduced the relevant terminology.

The proof of lemma 2.2.1 consists of the following steps. First we will use the for-

mal expansion of Gevrey type to identify a quasi-invariant manifold, i.e. where the

invariance equation shows an error that is exponentially small in ε. We then rewrite

the equation relative to this quasi-invariant manifold, and try to solve the rewritten

equation. We attempt this by using a formal power series approach w.r.t. x (one of

the slow variables), aiming at proving convergence of this formal series by using a

majorant method again. We will succeed in doing so, defining a majorant equation

of PDE type. The section finishes by proving the presence of a convergent solution

to the majorant equation.
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2.2.1 Preparing the equation

Denote the formal solution to the slow manifold equation (2.1.1) by rZ � rZpX, εq.
By the Borel-Ritt-Gevrey theorem 1.2.10, there exist R, r ¡ 0 and a function pZ �pZpX, εq, holomorphic for pX, εq P PnpRq�S pθ, 2τ, rq, Gevrey-1 asymptotic to rZ. We

define the following error term

RpX, εq � εDX pZF �
X, pZ, ε	�ApXq pZ � εH

�
X, pZ, ε	 . (2.2.2)

Since rZ formally solves the slow manifold equation, we have thatR �1 0 by lemma 1.2.13,

implying there exist K,L ¡ 0 such that for all ε P Spθ, 2τ, rq

sup
XPPnpRq

|RpX, εq| ¤ Ke
� L
|ε| .

If there exists a solution to the equation

εDX∆F pX, pZ �∆, εq �ApXq∆� εDX pZ �
F pX, pZ �∆, εq � F pX, pZ, εq	

� ε
�
HpX,∆� pZ, εq �HpX, pZ, εq	�R pX, εq , (2.2.3)

exponentially small w.r.t. ε on a sector contained in S pθ, 2δ, rq and holomorphic on

a subset of PnpRq � S pθ, 2τ, rq, it induces a solution to (2.1.1) which is Gevrey-1

asymptotic to rZ by setting Z � pZ �∆.

Remark 2.2.2. The exposition that is to follow is primarily aimed at systems with

two or more slow variables, i.e. n ¥ 2. In the case of one slow variable, the

used method is still valid by essentially disregarding all variables Y , as defined be-

low. However the case of one slow variable has already been treated and the result

can be achieved in a slightly easier manner, this is done for example in section 6 of

[CDRSS00].

Let F1, . . . , Fn denote the component functions of F , since we are assuming that

F p0, 0, 0q � 0, there exists k P t1, . . . , nu such that Fk p0, 0, 0q � 0. We now rename

and reorder the variables X � pX1, . . . , Xnq by setting x � Xk and denoting the

remaining variables by Y � pY1, . . . , Yn�1q. With slight abuse of notation we might

replace X with px, Y q, the expression DX∆F
�
X, pZ �∆, ε

	
is then given by

Fkpx, Y, pZ �∆, εqB∆

Bx �DY ∆F�px, Y, pZ �∆, εq,

where F� denotes F with its k-th component function removed.

By noticing that

F
�
x, Y, pZ �∆, ε

	
� F

�
x, Y, pZ, ε	 � » 1

0

DZF
�
x, Y, pZ � u∆, ε

	
∆du
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and similarly for H we can, by denoting

S px, Y,∆, εq∆ � �Dpx,Y q
pZ ³1

0 DZFpx,Y, pZ�u∆,εq∆du�³10 DZHpx,Y, pZ�u∆,εq∆du

Fkpx,Y, pZ�∆,εq ,

Fpx, Y,∆, εq � F�px,Y,∆� pZ,εq
Fkpx,Y,∆� pZ,ε ,

Apx, Y,∆, εq � Apx,Y q
Fkpx,Y,∆� pZ,εq

R1px, Y,∆, εq � Rpx,Y,εq
εFkpx,Y,∆� pZ,εq ,

rewrite (2.2.3) as
B∆

Bx � �DY ∆F � A
ε

∆� S∆�R1. (2.2.4)

2.2.2 Formal expansions in terms of x

Proposition 2.2.3. Consider equation (2.2.4). There exists a unique formal solution

of the form r∆ px, Y, εq �
8̧

k�1

δk pY, εqxk (2.2.5)

with δk P O pPn�1pRq � S pθ, 2τ, rq ,Cmq.
Proof: Analogous as in section 2.1.2 and in particular the proof of proposition 2.1.1,

we consider the formal series spaces O pPn�1pRq � S pθ, 2τ, rq ,Csq JxK, equipped with

the formal series metric. One can then show that the map, given by

V p∆ px, Y, εqq

�
» x

0

�DY ∆ pu, Y, εqF pu, Y,∆ pu, Y, εq , εq

�
�
A pu, Y,∆ pu, Y, εq , εq

ε
� S pu, Y, ε,∆ pu, Y, εqq



∆ pu, Y, εq

�R1 pu, Y,∆ pu, Y, εq , εq du,

(2.2.6)

from O pPn�1pRq � S pθ, 2τ, rq ,Cmq JxK to itself is a contraction on B
�
0, 1

2

�
and the

fixed point of this contraction is the desired formal solution.

We will continue this subsection by setting up a majorant equation for the formal

series.

Definition 2.2.4. Given formal series

G px, Y, εq �
8̧

k�0

Gk pY, εqxk

gpx, y, βq �
8̧

k�0

gk py, βqxk

with Gk P O pPn�1pRq � S pθ, 2τ, rq ,Csq, where s P N0, R, r ¡ 0 and

gk : Ω� s0, rr Ñ C
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with Ω � C an open neighbourhood of 0, such that for all β P s0, rr, gk p�, �, βq P
O pΩ,Cq.
We say that G is differentiably majorized by g, denoted by G !D g, if for all k P N,

q P Nn�1 and all ε P S pθ, 2τ, rq,

}Dq
YGk p0, εq}op ¤

Bqgk
Byq p0, |ε|q.

Property 2.2.5. Using the notations of the above definition, suppose that G !D g

and there exist 0   T   R, 0   r1   r and K,L ¡ 0 such that for all β P s0, r1r we

have g p�, �, βq P O pP2pT q,Cq satisfying

max
|x|,|y|¤T

|g px, y, βq| ¤ Ke
�L
β .

Then, for any 0   c   T , G P O pB p0, T � cq �Pn�1pT � cq � S pθ, 2τ, r1q ,Csq with

sup
|x|,}Y }max T�c

}G px, Y, εq}max ¤ K1e
� L
|ε|

for a certain K1 ¡ 0 (which depends on c).

Proof: Choose any 0   c   T , by the Cauchy inequalities we have that����BqgkByq p0, βq
���� � 1

k!

����Bq�kgBxkyq p0, 0, βq
���� ¤ q!�

T � c
2

�k�qKe�Lβ
and thus

8̧

k�0

}Gk pY, εq}max |x|k ¤
8̧

k�0

8̧

q�0

1

q!
}Dq

YGk p0, εq}op }Y }qmax |x|k

¤
8̧

k�0

8̧

q�0

}Y }qmax |x|k�
T � c

2

�k�qKe� L
|ε|

�
�
T � c

2

�2�
T � c

2
� }Y }max

� �
T � c

2
� |x|�Ke� L

|ε| .

Proposition 2.2.6. Let G,H, g, h be formal series such that

G !D g

H !D h

and DYG px, Y, εqH px, Y, εq is defined, then

DYG �H !D Bg
By � h
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Proof: We have

DYG px, Y, εqH px, Y, εq �
� 8̧

k�0

DYGk pY, εqxk
�� 8̧

k�0

Hk pY qxk
�

�
8̧

k�0

ķ

`�0

DYG` pY, εqHk�` pY qxk.

Fix k, q P N and denote for all j P t1, . . . , qu

T qj � tV � t1, . . . , qu| |V | � ju ,

where we assume that the elements of T qj are ordered sets w.r.t.  . Then

Dq

�
Y ÞÑ

ķ

`�0

DYG` pY, εqHk�` pY, εq
�
pZq

�
ķ

`�0

q̧

j�0

¸
V PTqj

Dq�j�1
Y G` pZ, εqPV cDj

YHk�` pZ, εqPV .

Here, if we denote V � tv1, . . . , vju, V c � tw1, . . . , wq�ju,�
Dq�j�1
Y G` pZ, εqPV cDj

YHk�` pZ, εqPV
	
ph1, . . . , hqq

� Dq�j�1
Y G` pZ, εq

�
hw1 , . . . , hwq�j

�
Dj
YHk�` pZ, εq

�
hv1 , . . . , hvj

�
.

Using that G !D g and H !D h, we then get�����Dq

�
Y ÞÑ

ķ

`�0

DyG`pY, εqHk�`pY, εq
�
p0q

�����
op

¤
ķ

`�0

q̧

j�0

¸
V PTqj

���Dq�j�1
Y G` p0, εq

���
op

���Dj
YHk�` p0, εq

���
op

¤
ķ

`�0

q̧

j�0

¸
V PTqj

Bq�j�1g`
Byq�j�1

p0, |ε|q B
jhk�`
Byj p0, |ε|q

�
ķ

`�0

q̧

j�0

�
q

j

�
Bq�j�1g`
Byq�j�1

p0, |ε|q B
jhk�`
Byj p0, |ε|q

�
ķ

`�0

B
Byq

�Bg`
By � hk�`



p0, |ε|q � B

Byq
�

ķ

`�0

Bg`
By � hk�`

�
p0, |ε|q .

Consequently

DYG px, Y, εqH px, Y, εq !D
8̧

k�0

ķ

`�0

Bg`
By py, βqhk�` py, βqxk

� Bg
By px, y, βqh px, y, βq .

The following properties can be easily derived from the definitions.
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Properties 2.2.7. Let G,H1, H2, g, h1, h2 be formal series such that G !D g, H1,2 !D
h1,2. The following properties hold:

(i) H1 �H2 !D h1 � h2,

(ii) H1 �G !D h1g, when the product is defined,

(iii) H1G
α !D h1g

|α|,

(iv)
³x
0
G pu, Y, εq du !D

³x
0
g pu, y, βqdu.

Consider again equation (2.2.4) in its fixed point form (2.2.6), which we repeat here

for the sake of convenience.

∆ px, Y, εq �
» x

0

�DY ∆ pu, Y, εqF pu, Y,∆ pu, Y, εq , εq

�
�
A pu, Y,∆ pu, Y, εq , εq

ε
� S pu, Y,∆ pu, Y, εq , εq



∆ pu, Y, εq

�
¸

αPNm
R1 pu, Y,∆ pu, Y, εq , εqdu.

(2.2.7)

Expanding the functions in appropriate Taylor series, this can be rewritten as

∆ px, Y, εq �
» x

0

�DY ∆ pu, Y, εq
¸

αPNm
Fα pu, Y, εq∆α pu, Y, εq

�
� ¸
αPNm

�
Aα pu, Y, εq

ε
� Sα pu, Y, εq



∆α pu, Y, εq

�
∆ pu, Y, εq

�
¸

αPNm
R1,α pu, Y, εq∆α pu, Y, εq du.

We may assume, by if necessary reducing R slightly, that the functions F , A, S
and R1 are all holomorphic on B p0, Rq � Pn�1pRq � PmpRq � S pθ, 2τ, rq with a

continuous extension to the closure of this set. Moreover we can assume that F , A,

S are uniformly bounded on this closure by M ¥ 0 and there exist K,L ¥ 0 such

that for all ε P S pθ, 2τ, rq,

max
Bp0,Rq�Pn�1pRq�PmpRq

}R1 px, Y,∆, εq}max ¤ Ke
� L
|ε|

Using this one sees that for

Fα px, Y, εq �
8̧

`�0

Fα` pY, εqx`

we have }Fα` pY, εq} ¤ M

R|α|�`
and from this it follows that

}Dq
Y Fα` p0q}op ¤ q!

M

Rq�|α|�`

�
q � n� 2

q

�
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such that

Fα px, Y, εq !D
8̧

`�0

8̧

q�0

M

Rq�|α|�`

�
q � n� 2

q

�
yqx`

� M

R|α|

8̧

`�0

�
1� y

R

	1�n � x
R

	`
� M

R|α|

�
1� y

R

	1�n �
1� x

R

	�1

and similarly for the other functions.

One then constructs a majorant equation to (2.2.7),

V px, y, βq � ³x
0

�°
αPNm

M

R|α|

�
1� y

R

�1�n �
1� u

R

��1
V |α| pu, yq

	
BV
By pu, yq

�
�°

αPNm
M

�
1
β
�1

	
R|α|

�
1� y

R

�1�n �
1� u

R

��1
V |α| pu, yq



V pu, yq

�
�°

αPNm
Ke

�L
β

R|α|

�
1� y

R

�1�n �
1� u

R

��1
V |α| pu, yq



du,

which is rewritten as

V �
» x

0

M BV
By pu, yq �M

�
1
β
� 1

	
V pu, yq �Ke

�L
β

Qpu, y, V pu, yqq du (2.2.8)

where

Qpu, y, V q :�
�

1� y

R

	n�1 �
1� u

R

	�
1� V

R


m
.

2.2.3 Convergence of the solution to the majorant equation

Lemma 2.2.8. There exists a unique formal solution of the form

V px, y, βq �
8̧

k�1

Vk py, βqxk

to (2.2.8), where the functions Vk are defined on B p0, Rq � s0, rr. Moreover, for the

unique formal solution, r∆, to (2.2.4) in proposition 2.2.3 it holds that r∆ px, Y, εq !D
V px, y, βq

Proof: The proof is analogous to a combination of the proofs of proposition 2.1.9

and corollary 2.1.10.

We now want to employ property 2.2.5, to show that r∆ px, Y, εq is holomorphic and

exponentially decaying w.r.t. ε. The remainder of this section will thus be devoted

to proving the following,

Lemma 2.2.9. There exists an r1 ¡ 0 and 0   T   R such that for all β P s0, r1r,
V p�, �, βq P O pP2pT q,Cq with V the unique formal solution to (2.2.8). Moreover there

exist K,L ¡ 0 such that

sup
px,yqPP2pT q

|V px, y, βq| ¤ Ke
�L
β .
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The system of characteristic equations, with β as a parameter, of the partial differ-

ential equation associated to (2.2.8) is given by$''&''%
9x � �

1� x
R

� �
1� y

R

�n�1 �
1� V

R

�m
9y � �M
9V � M

�
1
β
� 1

	
V �Ke

�L
β

(2.2.9)

xp0, sq � 0; yp0, sq � s;V p0, sq � 0.

We see that the 9V is independent of x and y and by direct calculation

V pt, βq � Ke
�L
β

M
�

1
β
� 1

	 �
e
M

�
1
β
�1

	
t � 1



.

Notice the independence of V on s. The function V is, for each parameter value β,

an entire function and if we fix a 0   c   L
M

it is exponentially decaying w.r.t β,

uniformly for |t| ¤ L
M
� c.

Using this, the p 9x, 9yq equations are uniformly Lipschitz for |t| ¤ L
M
� c and all β. By

Picard’s theorem, the solutions x pt, sq and y pt, sq (depending on β ) are guaranteed

to exist for pt, sq in a neighbourhood of the origin, which is independent of β. Denote

this neighbourhood by A0 and define the map

h : A0 � s0,8r Ñ C
2 � s0,8r

given by

h pt, s, βq � px pt, s, βq , y pt, s, βq , βq
With these notations, lemma 2.2.9 is then equivalent to the following.

Lemma 2.2.10. There exists an r1 ¡ 0, 0   T   R and a neighbourhood A1 � A0

of p0, 0q such that for all β P s0, r1r, h p�, �, βq is a biholomorphism on A1 with inverse

defined on a set containing P2 pT q.

Proof: One can show that h can be extended in a C1 manner to the set A0 �

r0,8r and the differential of this extension in p0, 0, 0q is given by

����
1 0 0

M 1 0

0 0 1

���
. The

inverse function theorem thus guarantees that (the extension of) h is invertible on a

neighbourhood A1 � r0, r1r. Denote this inverse by g

For each β P s0, r1r, h p�, �, βq is a holomorphic map (solutions of a holomorphic ODE

are holomorphic). This automatically implies that its inverse function, g p�, �, βq, is

also holomorphic, see for example [Ros82].

We finish the proof by noticing that h p0, 0, 0q � p0, 0, 0q and g is thus necessarily

defined on a neighbourhood of the origin.
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2.3 Summability of slow manifolds at singular points of slow

flow

We once again consider the system (2.0.2), which we repeat here#
9X � εF pX,Z, εq
9Z � A pXqZ � εH pX,Z, εq ,

again making the assumptions (i)-(iii) on page 16.

Where in section 2.2 the slow manifold was investigated around regular points of the

slow flow, we will now focus on equilibria of the slow flow. We will make two further

restrictions on the class of systems we will treat.

The first one is on the dimensions of the system, we will assume that there is only

one fast variable. Furthermore, at the equilibrium of the slow flow, the eigenvalues

of the linearised slow flow lie in the Poincaré domain, or formulated differently, all

eigenvalues lie in an open sector of opening at most π. Concretely we make the

following additional assumptions.

(i) Z P C (notice that this means A pXq P C and assumption (i) on page 16 just

reads A pXq � 0).

(ii) There exists an X0 for which F pX0, 0, 0q � 0.

(iii) There exists an open sector, S, of opening at most π such that the eigenvalues

of DXF pX0, 0, 0q all lie in this sector.

Under these conditions we prove.

Theorem 2.3.1. There exists a direction β P r0, 2πr and a neighbourhood W of X0

such that (2.0.2) has an invariant manifold z � ΨpX, εq that is Borel-1 summable in

the direction θ (uniformly for X PW ).

There are constraints on the possible directions β, these are elaborated upon in lemma

2.3.9. We specify the directions of summability, that can be obtained from this lemma,

in a few special cases that could be of interest in the setting of real analytic systems

of equations.

Denote the eigenvalues of DXF pX0, 0, 0q by λ1, . . . , λn.

(i) In the case of 1 slow and 1 fast variable, when there is a slow-fast saddle point,

meaning λ1A p0q   0, summability can be obtained in all directions lying in the

strict right half-plane i.e. β P ��π
2
,�π

2

�
.

(ii) In the case of 2 slow and 1 fast variable:
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• The slow dynamics has a unstable hyperbolic node on the normally attract-

ing critical manifold, meaning that we have A p0, 0q   0 and λ1, λ2 P R�.

The summability can be obtained in all directions lying in the strict right

half-plane.

• The slow dynamics has an unstable hyperbolic focus on the normally attract-

ing critical manifold, meaning that we have A p0, 0q   0 and λ1,2 � a� ib

with a, b ¡ 0. Summability can be obtained in directions close to the positive

real axis, where the size of the possible deviation is inversely proportional to

the size b{a i.e. there exists a function γ satisfying γ p0q � π
2

and γpxq Ñ 0

for xÑ8, such that β P ��γ � b
a

�
, γ

�
b
a

��
. In particular, 1-summability in

the positive real direction is guaranteed.

By the following remark, the conditions on the eigenvalues are essential to achieve

summability of the slow manifold, some terminology and properties used in this re-

mark will be introduced later on in sections 2.3.2 and 2.3.3.

Remark 2.3.2. As the following example shows, it is not possible, in general, to find

solutions that are 1-summable (i.e. 1-summable in all but finitely many directions)

when our assumption on the positions of λ1, . . . , λn holds. Moreover when this as-

sumption is violated, thus when no sector of opening less than π contains all λj, there

is not one direction in which 1-summability is guaranteed.

Consider the slow manifold equation

εDXz pX, εqΛX � z pX, εq � ε
n¹
j�1

f pxjq

where Λ is the diagonal matrix with entries λ1, . . . , λn and f is holomorphic on the

unit disc but non-continuable to the boundary of the disc, one can take for example

fpzq �
8̧

n�0

zn!.

Suppose that the above equation has a solution which is 1-summable in a certain

direction. Applying the Borel transform of order 1 and denoting by Z the Borel

transform of the solutions shows that

p1 �DXZq pX, ηqΛX � Z pX, ηq �
n¹
j�1

f pxjq

must hold. One can check that this implies that

Z pX, ηq �
n¹
j�1

f
�
xje

λjη
	
.

Due to the 1-summability in a certain direction, Z is defined, by theorem 1.2.20, for

η in an (open) infinite sector around this direction. We denote this sector by Sη.
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Suppose that our assumptions on Λ hold and that S pθ0, 2δq z t0u, with δ   π
2

, is the

smallest sector which contains all λj. It is clear that all exponentials eλjη should

remain bounded on Sη which is equivalent to

Sη �
n£
j�1

S pπ � arg pλjq , πq � S pπ � θ0, π � 2δq ,

consequently, summability can not be obtained in a direction not contained in

S pπ � θ0, π � 2δq .

Suppose now that the assumption is violated. Let τ be the bisecting direction of Sη,

it must then hold in particular that eiτλj P S pπ, πq or equivalently λj P S pπ � τ, πq
for all j � 1, . . . , n. If λj P S pπ � τ, πq for all j � 1, . . . , n, then Λ does satisfy

our assumption, which is a contradiction. Otherwise there are λj1 and λj2 for which

arg pλj2q � arg pλj1q � π such that it should hold that Sη � S pπ � arg pλj1q , πq X
S p� arg pλj1q , πq which is of course impossible.

Also when there is more than one fast variable, summability can not be guaranteed.

Example 2.3.3. Consider the slow manifold equation

εx
Bz1

Bx � z2 � εf pxq

εx
Bz2

Bx � z1

where f is as in remark 2.3.2. If this equation has a solution that is 1-summable in

a direction, the functions Z1 pX, ηq , Z2 pX, ηq satisfying

1 � xBZ1

Bx � Z2 � f pxq

1 � xBZ2

Bx � Z1

should both be defined on the the same infinite sector Sη. One can check that

Z1 pX, ηq � 1

2

�
f pxeηq � f

�
xe�η

��
, Z2 pX, ηq � 1

2

�
f pxeηq � f

�
xe�η

��
,

implying that Sη � S p0, πq X S pπ, πq which is clearly impossible.

It is plausible that by imposing certain conditions on A pXq in (2.0.2) that summabil-

ity results could be achieved for more than one fasts variable, perhaps even employing

the techniques that we will use in what is to follow. We have not pursued this any

further in this thesis.

We now commence with the proof of theorem 2.3.1.

Using assumptions (i)-(iii) on page i, we will first bring the system into a simpler

form.
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2.3.1 Simplifying the system

Consider a system #
9X � εF pX, z, εq
9z � ϕ pXq z � εH pX, z, εq

where ϕ P O �
Pn pRq

�
, F,H P O �

Pn�2 pRq ,Cn
�

and there exists an X0 such that

F pX0, 0, 0q � 0, ϕ pX0q � 0. Moreover if we denote the eigenvalues of DXF pX0, 0, 0q
by λ1, . . . , λn (repeated by their multiplicity) we assume that there exists an open

sector S, of opening less than π such that λj P S for all j. Since the sector is open

this implies in particular that λj � 0 for all j � 1, . . . , n.

We now make a series of transformations, simplifying the above system. It is impor-

tant that throughout these transformations, whenever we denote λj , these are the

eigenvalues specified above.

Firstly, set X1 � X �X0 and z � ε
�
z1 � HpX,0,0q

ϕpXq

	
, this transforms the system into$'''''&'''''%

9X1 � εF
�
X1 �X0, εz1 � εHpX,0,0q

ϕpXq , ε
	

9z1 � ϕ pX1 �X0q z1 � H
�
X1 �X0, ε

�
z1 � HpX,0,0q

ϕpXq

	
, ε
	

�H pX1 �X0, 0, 0q
�εDX

�
HpX,0,0q
ϕpXq

	
F
�
X1 �X0, εz1 � εHpX,0,0q

ϕpXq , ε
	 .

Which is, by dropping the subscripts, of the form#
9X � εF pX, εz, εq
9z � ϕ pXq z � εH pX, z, εq

where F p0, 0, 0q � 0, ϕ p0q � 0 and the eigenvalues of DXF p0, 0, 0q are given by λj ,

j � 1, . . . , n.

Now

F pX, εz, εq � F pX, 0, 0q � εzF1 pX, εz, εq � εF2 pX, εz, εq ,
for certain functions F1, F2, and

F pX, 0, 0q � DXF p0, 0, 0qX �O
�
X2

�
.

There exists a matrix P such that P�1DXF p0, 0, 0qP is in Jordan normal form,

which we denote by Λ�U , setting X1 � P�1X gives us a system of the form (writing

X1 � X) #
9X � ε pΛ� UqX � εA pXq � ε2V pX, z, εq
9z � ϕ pXq z � εH pX, z, εq , (2.3.1)

such that A P O �
Pn pRq ,Cn

�
, ϕ P O �

Pn pRq
�
, H,V P O �

Pn�2 pRq ,Cn
�
. We

furthermore have that

• ϕ p0q � 0.



2.3. SUMMABILITY OF SLOW MANIFOLDS AT SINGULAR POINTS OF
SLOW FLOW 37

• A � O
�
X2

�
.

• Λ is a diagonal matrix with its diagonal entries given by λ � pλ1, . . . , λnq.

• There exists an open sector S, with vertex at the origin of opening less than π

such that λi P S, @i P t1, . . . , nu .

• The matrix U has only non-zero entries on its superdiagonal and if such an

entry is not zero, it is equal to 1, we denote these entries with ζk,k�1 for k �
1, . . . , n � 1. One can be more stringent in when the ζ are 0 or 1 but we will

not need this. In section 2.3.8 we do use the fact that Λ�U is a Jordan normal

form.

The proof of the theorem 2.3.1 involves solving the slow manifold equation, given in

this simplified system by

εDXz � ΛX � ϕ pXq z �εH pX, z, εq � εDXz � UX
� εDXz �A pXq � ε2DXzV pX, z, εq .

(2.3.2)

By the results in section 2.1.2, we already know that this equation has a Gevrey-1

formal solution, rz pX, εq. Our strategy for improving this result towards summability

is inspired by theorem 1.2.20; we will thus search for a holomorphic continuation to

an infinite sector of the Borel transform of rz. We now introduce the spaces in which

this continuation will be found.

2.3.2 Setting up Banach spaces

Let µ ¡ 0, r̄ � pr1, . . . , rnq P Rn¡0, and S some infinite sector. We define

Gµ �
"
h P OpSq

���� }h}µ,S � sup
ηPS

|hpηq| p1� µ2 |η|2qe�µ|η|   8
*
.

and

Gµr̄ tXu

�

#
F pX, ηq �

¸
γPNn

FγpηqXγ

����� Fγ P Gµ and }F }r̄ µ,S   8
+

with

}F }r̄ µ,S �
¸
γPNn

}Fγ}µ,S r̄γ .

Clearly an element F P Gµr̄ tXu satisfies

F P O pPn pr̄q � Sq

such that F is of exponential growth of order at most 1. The following is obvious.



38 CHAPTER 2. GEVREY ANALYSIS OF SLOW MANIFOLDS

Property 2.3.4. If rµ ¥ µ then }f}rµ,S ¤ }f}µ,S and thus Gµ � G rµ. Consequently

if also si ¤ ri for all i � 1, . . . , n, we have that }F }s̄ rµ,S ¤ }F }r̄ µ,S such that

Gµr̄ tXu � G rµs̄ tXu.
We now show that Gµr̄ tXu is a Banach space, for this we first need that Gµ is one.

Lemma 2.3.5. For all µ ¡ 0, Gµ equipped with the norm }�}µ,S is a Banach space.

Proof: It is a straightforward verification that
�
Gµ, }�}µ,S

	
is a normed vector

space.

Let pgnqnPN be a Cauchy sequence in
�
Gµ, }�}µ,S

	
. Since for all η P S and p, q P N,

|gp pηq � gq pηq| ¤ }gp � gq}µ,S
eµ|η|

1� µ2 |η|2 ,

it is clear that pgnqnPN is a uniform Cauchy sequence on all compact subsets of S.

This implies that there exists a g P O pSq such that gn Ñ g in the standard Fréchet

space topology on O pSq i.e. gn Ñ g uniformly on all compact subsets of S, see for

example [Mos02].

It remains to show that gn Ñ g in Gµ. Let τ ¡ 0 and choose N P N such that

}gm � gN}µ,S   τ
2

for all m ¥ N . Fix any η P S, since in particular gn Ñ g point

wise over S, we can choose an m ¥ N such that

|g pηq � gm pηq|   τeµ|η|

2
�
1� µ2 |η|2�

and thus

|g pηq � gN pηq|
�
1� µ2 |η|2� e�µ|η|

¤ p|g pηq � gm pηq| � |gm pηq � gN pηq|q
�
1� µ2 |η|2� e�µ|η|

  τ

2
� }gm � gN}µ,S

  τ.

Clearly this implies that }g � gN}µ,S   τ , proving that g P Gµ and gn Ñ g in this

space.

Lemma 2.3.6. For every µ ¡ 0 and r̄ P Rn¡0, Gµr̄ tXu, equipped with the norm

}�}r̄ µ,S, is a Banach space.

Proof: Let pFnqnPN be a Cauchy sequence in Gµr̄ tXu, each Fn is of the form

Fn �
¸
γ

fnγ pηqXγ .
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For each τ ¡ 0, there exists an N P N such that for all k, l ¥ N¸
γ

���fkγ � f lγ

���
µ,S

r̄γ   τ.

It is thus clear that for all γ P Nn, pfnγ qnPN is a Cauchy sequence in Gµ. Due to the

completeness of Gµ, there exists an fγ P Gµ with fnγ
nÑ8ÝÝÝÑ fγ .

Put

F pX, ηq �
¸
γ

fγ pηqXγ ,

we show that F P Gµr̄ tXu and Fn
nÑ8ÝÝÝÑ F . Choose a random σ ¡ 0. Take n0 such

that for all n ¥ n0 ¸
γ

��fnγ � fn0
γ

��
µ,S

r̄γ   σ

4

and

}f0 � fn0
0 }µ,S  

σ

4
.

Now pick successively, for each l ¥ 1, an nl ¥ nl�1 such that for all n ¥ nl¸
γ

��fnγ � fnlγ
��
µ,S

r̄γ   σ

2l�1
(2.3.3)

and ¸
|γ|�l

��fγ � fnlγ
��
µ,S

r̄γ   σ

2l�2
. (2.3.4)

We have that¸
γ

��fγ � fn0
γ

��
µ,S

r̄γ �
8̧

l�0

¸
|γ|�l

��fγ � fn0
γ

��
µ,S

r̄γ

¤
8̧

l�0

¸
|γ|�l

��fγ � fnlγ
��
µ,S

r̄γ �
8̧

l�1

¸
|γ|�l

��fnlγ � fn0
γ

��
µ,S

r̄γ

 
8̧

l�0

σ

2l�2
�

8̧

l�1

¸
|γ|�l

��fnlγ � fn0
γ

��
µ,S

r̄γ

where the last inequality is due to (2.3.4). Noticing that f
nl
γ �fn0

γ � °l
k�1 f

nk
γ �fnk�1

γ

we can further estimate the last expression by

8̧

l�0

σ

2l�2
�

8̧

l�1

ļ

k�1

¸
|γ|�l

��fnkγ � f
nk�1
γ

��
µ,S

r̄γ

� σ

2
�

8̧

k�1

8̧

l�k

¸
|γ|�l

��fnkγ � f
nk�1
γ

��
µ,S

r̄γ .
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Because we have chosen nk ¥ nk�1 we get by (2.3.3) that

¸
γ

��fγ � fn0
γ

��
µ,S

r̄γ   σ

2
�

8̧

k�1

σ

2k�1
� σ.

It follows that F P Gµr̄ tXu and because σ was random we also get that Fn
nÑ8ÝÝÝÑ F

in Gµr̄ tXu.
For functions F pX, ηq, GpX, ηq, we define the convolution product as follows

pF �GqpX, ηq �
» η

0

fpX, sqgpX, η � sqds,

at least when this integral is well defined. It is important to notice that the convolu-

tion product satisfies the following properties, all of which are easy to check.

• The convolution product is commutative i.e. F �G � G � F .

• It is associative i.e. pF �Gq �H � F � pG �Hq.

• Convolution is distributive w.r.t. addition i.e. F � pG�Hq � F �G� F �H.

• It is compatible with scalar multiplication, for β P C, pβF q �G � β pF �Gq.

The following property of Gµ and Gµr̄ tXu will be essential in what is to follow. A

proof can be found in [BDM08], in this proof the extra factor 1� µ2 |η|2 of the norm

plays an important role and this is the reason why it is added.

Property 2.3.7. Let }�} denote any of the two norms Gµ, Gµr̄ tXu and f, g functions

in the corresponding space. It holds that

}f � g} ¤ 4π

µ
}f} }g} .

Consequently f � g P Gµ,Gµr̄ tXu.

2.3.3 The equation in the Borel plane

Let rz pX, εq be the formal, Gevrey-1 solution to (2.3.2). We have, as formal series,

that

εDXrz � ΛX � ϕ pXq rz �εH pX, rz, εq � εDXrz � UX
� εDXrz �A pXq � ε2DXrzV pX, rz, εq . (2.3.5)

The summability of rz in a certain direction is by theorem 1.2.20 equivalent to the

existence of a continuation of the formal Borel transform, B1 przq, to an infinite sector

in this direction.

To search for such a continuation we transform (2.3.5) into an equivalent expression

concerning the Borel transform. For this we need the following results.
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Proposition 2.3.8. Let pf pX, εq, pg pX, εq be Gevrey-1 formal series w.r.t. ε, uni-

formly in X, with image in C and both without a constant term.

(i) B1

� pf � pg	 � B1

� pf	� B1 ppgq
(ii) B1

� pf � pg	 � B1

� pf	 � B1 ppgq.
(iii) Let z P C and H pX, z, εq be holomorphic on a neighbourhood of the origin, with

Taylor series given by

H pX, z, εq �
8̧

k�0

Hk pX, εq zk �
8̧

k�0

� 8̧

n�0

Hkn pXq εn
�
zk. (2.3.6)

The formal series H
�
X, pf pX, εq , ε	 is Gevrey-1 and

B1

�
εH

�
X, pf, ε		 � 8̧

k�0

B1 pεHkq � B1

� pf	�k
where we denoted, for k ¥ 1, pf�k � pf � . . . � pfloooomoooon

k times

and for k � 0, pf�0 is the identity

element for the convolution i.e. G � pf�0 � G.

Proof:

(i) Trivial

(ii) This is a straightforward computation involving the Cauchy product of power

series and using the fact that 1�k � ηk�1

pk�1q! .

(iii) From corollary 1.2.14 we already know that H
�
X, pf, ε	 is Gevrey-1.

We can assume, by the Cauchy inequalities, that there exist C,D ¥ 0 such that

supX |Hkn pXq| ¤ CDk�n. Let furthermoreA,B ¥ 0 be such that supX |fn pXq| ¤
ABnn! where pf pX, εq � °8

n�1 fn pXq εn. We may assume that AD   1 by, if

necessary, enlarging B.

For all K P N0 it is an easy calculation that the coefficients of
°K�1
k�0 εHk pfk are

bounded by

C
K�1̧

k�0

pADqk maxtD,Bunloooooomoooooon
Mn

n! � C
1� pADqK

1�AD
Mnn! ¤ C

1�AD
Mnn!.

If we denote the Gevrey bounds of εH
�
X, pf, ε	 by UV nn! we get immediately

that the coefficients of εH
�
X, pf, ε	�°K�1

k�0 εHk pfk are bounded by�
U � C

1�AD



max tM,V un n!.
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Denote E � U � C
1�AD and F � max tM,V u, noticing that

εH
�
X, pf pX, εq , ε	

and
K�1̧

k�0

εHk pX, εq pfk pX, εq
have equal coefficients for at least ε1, . . . , εK , it is an easy calculation that�����B1

�
εH

�
X, pf, ε		� K�1̧

k�0

�
B1 pεHkq � B1p pfq�k	�����

�
�����B1

�
εH

�
X, pf, ε	� K�1̧

k�0

εHk pfk�
�����

¤ EF
pF |η|qKp1�Kp1� F |η|qq

p1� F |η|q2 .

which convergences for K Ñ8 for η in a sufficiently small neighbourhood of 0.

Applying the formal Borel transform of order 1 to (2.3.5) and using the above results

gives us

p1 �DXB1 przqqΛX �ϕ pXqB1 przq � 8̧

k�0

B1 pεHkq � B1 przq�k
� p1 �DXB1 przqqUX � p1 �DXB1 przqqA pXq
� p1 �DXB1 przqq � 8̧

k�0

B1 pεVkq � B1 przq�k .
(2.3.7)

By theorem 1.2.20, we can prove theorem 2.3.1 by showing that B1przq has a holo-

morphic continuation to an infinite sector, which is of exponential growth at most of

order 1.

Our method of showing the existence of such a continuation is twofold. Firstly we

will prove the following lemma.

Lemma 2.3.9. Let θ P r0, 2πr, ρ P �
0, π

2

�
be such that

λj
ϕp0q P S pθ, 2ρq, for all

j � 1, . . . , n, which is possible due to our assumptions. Let α P �
0, π

2
� ρ

�
and denote

S � S p�θ � π, 2αq .

For a suitable choice of

Gµr̄ tXu � O pPn pr̄q � Sq ,
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there exists, in Gµr̄ tXu, a solution to the equation

p1 �DXZqΛX �ϕ pXqZ �
8̧

k�0

B1 pεHkq � Z�k

� p1 �DXZqUX � p1 �DXZqA pXq

� p1 �DXZq �
8̧

k�0

B1 pεVkq � Z�k.

(2.3.8)

However due to functions in Gµr̄ tXu lacking being holomorphic at the origin η � 0,

it is not immediate that a solution of (2.3.8) is indeed a continuation of B1przq and

thus theorem 1.2.20 can not be directly applied. We will actually prove directly that

the Laplace transform, which we define later, of the solution we have found is Gevrey

asymptotic to the formal solution of (2.3.5) on a large sector. This will be done in

section 2.3.8.

Let Z pX, ηq � °
γPNn

ZγpηqXγ , if we denote for k � 1, . . . n� 1,

dk �
�

0, . . . , 0, 1
k�th

,�1, 0, . . . , 0



,

equation (2.3.8) can be written as¸
γPNn

〈λ, γ〉 p1 � ZγqXγ �ϕ p0qZ �
n�1̧

k�1

¸
γPNn
γk�1¥1

ζk,k�1 pγk � 1q p1 � Zγ�dk qXγ

� pϕ pXq � ϕ p0qqZ �
8̧

k�0

B1 pεHkq � Z�k

� p1 �DXZqA pXq

� p1 �DXZq �
8̧

k�0

B1 pεVkq � Z�k.

(2.3.9)

Here 〈λ, γ〉 � °n
j�1 λjγj .

To find a solution of this equation, we will proceed in the following manner.

• Show that there exists solution operators solving, in Gµ, the affine equation

〈λ, γ〉 p1 � Zγq � ϕ p0qZγ � F

for all |γ| ¥ 1.

• Using these operators and an induction argument, prove the existence of a

solution to the “recursive” affine equation¸
γPNn

〈λ, γ〉 p1 � ZγqXγ � ϕ p0qZ�
n�1̧

k�1

¸
γPNn
γk�1¥1

ζk,k�1 pγk � 1q p1 � Zγ�dk qXγ�F.

• Construct a solution in Gµr̄ tXu to (2.3.9) by a fixed point argument.
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2.3.4 Some preparatory results

In this section we collect some results which will be employed in the next section 2.3.5.

We do this to not burden these simple proofs with an overcomplicated notation. We

would like to remind that the spaces Gµ are defined as subsets of O pSq for an infinite

sector S.

Lemma 2.3.10. Let β P C such that there exists b ¡ 0 for which Re pβηq ¤ �b |η|
for all η P S.

(i) eβη P Gµ for all µ ¡ 0 and
��eβη��

µ,S
� 1.

(ii) 1 � eβη � eβη�1
β

.

(iii) If f P Gµ then f � eβη P Gµ and���f � eβη���
µ,S

¤ }f}µ,S
b

.

Proof:

(i) Both the kernel function p1� µ2 |η|2qe�µ|η| that is used in the definition of the

norm and the bounding function |eβη| ¤ e�b|η| are decreasing as |η| is increased.

So the norm is simply the modulus of the function evaluated at the origin η � 0.

(ii) Straightforward since » η
0

eβs � eβη � 1

β
.

(iii) We start off by remarking that property 2.3.7, combined with (i) gives us imme-

diately that
��f � eβη��

µ,S
¤ 4π}f}µ,S

µ
, this however turns out to be an insufficient

bound to prove our later results. We will effectively need this “improved” bound.

We have, for all η P S,����f � eβη	��� � ����» η
0

f psq eβpη�sqds
����

� |η|
����» 1

0

f ptηq ep1�tqβηdt

����
¤ |η|

» 1

0

|f ptηq| e�p1�tqb|η|dt

¤ |η| sup
z
|f pzq|

» 1

0

e�p1�tqb|η|dt

� supz |f pzq|
b

�
1� e�b|η|

	
¤ supz |f pzq|

b

where the sup is taken for z P S, |z| ¤ |η|.
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Because p1� µ2 |η|2qe�µ|η| is decreasing with respect to |η|, we get����f � eβη	��� p1� µ2 |η|2qe�µ|η| ¤ supz |f pzq|
b

p1� µ2 |η|2qe�µ|η|

¤ 1

b
sup
z
|f pzq| p1� µ2 |z|2qe�µ|z|

¤ 1

b
}f}µ,S ,

which gives the requested improved bound on
��f � eβη��

µ,S
after taking the supre-

mum over η.

Lemma 2.3.11. Let β be as in lemma 2.3.10 and consider the map

T : Gµ Ñ Gµ : g ÞÑ pβ � δq � g

where δ denotes the identity element for the convolution. The map T is linear and

continuous with a continuous linear inverse given by

T�1 : Gµ Ñ Gµ : f ÞÑ �
�
δ � βeβη

	
� f.

Moreover
��T�1

�� ¤ 1� |β|
b

.

Proof: The linearity and continuity of both T and T�1 are clear, for the bound on��T�1
�� one uses lemma 2.3.10 (iii). Remains to check that the two maps are indeed

each others inverse. We have

T
�
T�1 pfq� � �pβ � δq �

�
δ � βeβη

	
� f

� �
�
β � β2

�
1 � eβη

	
� δ � βeβη

	
� f

� �
�
β � βeβη � β � δ � βeβη

	
� f

� f,

where we have used lemma 2.3.10 (ii). Due to commutativity of the convolution prod-

uct, also T�1 � T � Id.

2.3.5 The termwise affine equations

By our assumptions on equation (2.3.1) there exist θ P r0, 2πr, ρ P �
0, π

2

�
such that for

all j � 1, . . . , n,
λj
ϕp0q P Spθ, 2ρq. It is easily seen that this implies that 〈λ,γ〉

ϕp0q P Spθ, 2ρq
for all |γ| ¥ 1 and by denoting

|λ| � min
j

!���Re
�
λje

�ipθ�argpϕp0qqq
	���) , (2.3.10)
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which is non zero, we have

|〈λ, γ〉| �
���〈λe�ipθ�argpϕp0qqq, γ

〉��� ¥ ���〈Re
�
λe�ipθ�argpϕp0qqq

	
, γ

〉��� ¥ |γ| |λ| . (2.3.11)

Take care to notice that |�| is here differently defined for respectively γ and λ since

|γ| � γ1 � . . .� γn.

From here on out we will denote

S � S p�θ � π, 2αq (2.3.12)

where α P �
0, π

2
� ρ

�
. This implies for η P S that����Arg

�
〈λ, γ〉
ϕ p0q η



� π

����   ρ� α   π

2
.

Consequently we have that

Re

�
〈λ, γ〉
ϕ p0q η



¤ � cos pρ� αq

���� 〈λ, γ〉ϕ p0q
���� |η| ¤ cos pρ� αq |γ| |λ||ϕ p0q| |η| . (2.3.13)

Let F P Gµ, in this section we are concerned with solving equations of the form

〈λ, γ〉 p1 � Zq � ϕ p0qZ � F (2.3.14)

or written alternatively

Tγ pZq � F, with Tγ pZq :� ϕ p0q
��
〈λ, γ〉
ϕ p0q � δ



� Z



.

Lemma 2.3.12. The linear operator Tγ has a continuous linear inverse given by

T�1
γ : Gµ Ñ Gµ : f ÞÑ � 1

ϕ p0q
��

δ � 〈λ, γ〉
ϕ p0q e

〈λ,γ〉
ϕp0q

η



� f



.

We have that ��T�1
γ

�� ¤ 1

|ϕ p0q|
�

1� 1

cos pρ� αq


.

Moreover for all f P Gµ,��T�1
γ p1 � fq��

µ,S
¤ }f}µ,S
|γ| |λ| cos pρ� αq

where |λ| is as in (2.3.11).

Proof: By lemma 2.3.11 and the estimate (2.3.13) it is immediate that T�1
γ is indeed

the inverse of Tγ and is linear, continuous with the given bound for the operator norm.

For the second part of the lemma, one checks that, by lemma 2.3.10 (ii),

T�1
γ p1 � fq � �1

ϕ p0q
�
e

〈λ,γ〉
ϕp0q

η � f


.

The result then follows by lemma 2.3.10 (iii) and (2.3.13).

We remark that for the above lemma to hold, our choice of bisecting direction and

opening of S in (2.3.12) is essential.
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2.3.6 The recursive affine equation

We now turn our attention to the equation

¸
γPNn

〈λ, γ〉 p1 � ZγqXγ � ϕ p0qZ �
n�1̧

k�1

¸
γPNn
γk�1¥1

ζk,k�1 pγk � 1q p1 � Zγ�dk qXγ � F

(2.3.15)

where F � °
pγqPN2 FγX

γ P GµJXK. We do not demand that F P Gµr̄ tXu since we

will want to solve (2.3.15) for a slightly broader class of functions. We remind that

we denoted dk �
�

0, . . . 0, 1
k�th

,�1, 0, . . . , 0



.

We first need to introduce some definitions

Definition 2.3.13. Denote for k � 1, . . . , n� 1,

uk �
�

0, . . . , 0, �1
k�th

, 1, 0, . . . , 0



.

Let σ, γ P Nn, ` P N0 and k1, . . . , k` P t1, . . . , n� 1u. We call the finite sequence

pk1, . . . , k`q a path from σ to γ if

γ � σ �
`̧

j�1

ukj .

We furthermore denote by c pγq the set of all multi-indices for which there exists a

path towards γ, i.e.

c pγq�
#
σ P Nn

�����D` P N0, Dk1, . . . , k` P t1, . . . , n� 1u , γ � σ �
`̧

j�1

ukj

+
.

Property 2.3.14. If there exists a path from σ to γ it must hold that |γ| � γ1�γ2�
. . .� γn is equal to |σ|.

Proof: Clearly |uk| � 0 from which the result immediately follows.

Remark 2.3.15. It is possible for multiple paths to exist between two points. For

example as a path from p2, 1, 1q to p1, 1, 2q one can take the p1, 2q path given by

p2, 1, 1q Ñ p1, 2, 1q Ñ p1, 1, 2q

or the p2, 1q path given by

p2, 1, 1q Ñ p2, 0, 2q Ñ p1, 1, 2q ,

see figure 2.1. The following proposition however shows that all paths between two

points are closely related.
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Figure 2.1: The paths p1, 2q and p2, 1q in blue resp. red. Both paths lie on the

hyperplane given by |γ| � 4.

Proposition 2.3.16. Given two points σ, γ P Nn and a path pk1, . . . , k`q from σ to

γ. Define for m � 1, . . . , n� 1,

`m � # tj P t1, . . . , `u | kj � mu .

The values `m are invariant amongst all paths from σ to γ, in particular, all paths

have the same length ` � `1 � . . .� `n�1.

Proof: Take any path form σ to γ, by reordering the terms one sees that

`̧

j�1

ukj �
n�1̧

m�1

`mum � p�`1, `1 � `2, . . . , `n�2 � `n�1, `n�1q .

By our definition of a path it must hold that

p�`1, `1 � `2, . . . , `n�2 � `n�1, `n�1q � γ � σ

and it is then easily seen that

`m �
m̧

j�1

σj � γj

which is clearly independent of the specific path.
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Definition 2.3.17. Suppose γ P Nn and σ P c pγq. We call the numbers

`1 pσ, γq , . . . , `n�1 pσ, γq

defined in proposition 2.3.16 the intrinsic steps associated to pσ, γq.
For any σ P Nn we define

v pσq�
#
p`1, . . . , `n�1q P Nn�1

����� `1 � . . .� `n�1 ¥ 1 and σ �
n�1̧

m�1

`mum P Nn
+
.

In other words, the set v pσq consists of all pn�1q-tuples which are the intrinsic steps

of a path starting at σ.

Remark 2.3.18. For any given σ there are many pn � 1q-tuples which are not an

element of v pσq. For example p3, 0q are not intrinsic steps of p1, 1, 1q since p1, 1, 1q�
p�3, 3, 0q � p�2, 4, 1q R N3.

Definition 2.3.19. For σ, γ we denote by ` pσ, γq the length of all paths from σ to γ,

if no paths exists we set it equal to 0. Due to proposition 2.3.16 this is well defined.

We also denote

p pσ, γq�!�
k1, . . . , k`pσ,γq

� P t1, . . . , n� 1u`pσ,γq
��� �k1, . . . , k`pσ,γq

�
is a path from σ to γ

)
(this set can be empty).

Turning our attention back to equation (2.3.15), we see that by denoting for k �
2, . . . , n

χk : Nn Ñ t0, 1u : γ ÞÑ
$&%0 if γk � 0

1 if γk � 0
,

we can equate the coefficients of corresponding powers of X as follows

〈λ, γ〉 p1 � Zγq � ϕ p0qZγ � Fγ �
n�1̧

k�1

χk�1 pγq ζk,k�1 pγk � 1q p1 � Zγ�dk q . (2.3.16)

We will construct a solution to (2.3.16) using the following operators.

Given k P t1, . . . , n� 1u and τ P Nn with |τ | ¥ 1, we define

K pk, τq : Gµ Ñ Gµ : f ÞÑ �ζk,k�1 � pτk � 1qT�1
τ p1 � fq

Property 2.3.20. The maps K pk, τq are all linear and continuous with operator

norm bounded by τk�1
|τ ||λ| cospρ�αq .

Proof: This is immediate by lemma 2.3.12.
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Lemma 2.3.21. The solution to (2.3.16) is given by

Z0̄ � � F0̄

ϕ p0q
and for |γ| ¥ 1,

Zγ � T�1
γ pFγq �

¸
σPcpγq

¸
k̄Pppσ,γq

�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq . (2.3.17)

Proof: Consider any C P N0, we will show that (2.3.17) holds for all |γ| � C and

since C is random, this is sufficient.

We start of by defining a total order on the hyperplane |γ| � C. Given σ, γ, we say

that σ ¤ γ if in the difference γ � σ, the first non zero value, starting from the right,

is positive (or of course of σ � γ). We thus have

pC, 0, . . . , 0q   pC � 1, 1, 0, . . . , 0q   . . .   p1, C � 1, 0, . . . , 0q
  p0, C, 0, . . . , 0q   . . .   p0, 0, . . . , 0, Cq .

We now prove the result by induction on this order.

Due to property 2.3.14, it is clear that c ppC, 0, . . . , 0qq � H and thus (2.3.17) reads

ZpC,0,...,0q � T�1
pC,0,...,0q

�
FpC,0,...,0q

�
. Since the summation disappears in (2.3.16) for

this index, it is clearly a solution by lemma 2.3.12.

Suppose now that γ is such that (2.3.17) holds for all σ   γ. We remark the following

(which is quite obvious), for m � 1, . . . , n� 1 it holds that χm�1 pγq � 1 if and only

if γ � dm P c pγq. This allows us to rewrite (2.3.17) as

Zγ �T�1
γ pFγq �

n�1̧

m�1

χm�1 pγqK pm, γ � dm � umqT�1
γ�dm pFγ�dmq

�
n�1̧

m�1

χm�1 pγqK pm, γ � dm � umq

¸
σPcpγ�dmq

¸
k̄Pppσ,γ�dmq

�
`pσ,γ�dmq¹

j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq .

Directing our attention again to (2.3.16), we notice that for all m P t1, . . . , n� 1u,
γ � dm   γ (at least when γ � dm exists). Consequently, we can apply the induction

hypothesis, giving us that

Zγ �T�1
γ pFγq �

n�1̧

m�1

χm�1 pγq ζm,m�1 pγm � 1qT�1
γ

�
1 � T�1

γ�dm pFγ�dmq
�

�
n�1̧

m�1

χm�1 pγq ζm,m�1 pγm � 1qT�1
γ��1 �

¸
σPcpγ�dmq

¸
k̄Pppσ,γ�dmq

�
`pσ,γ�dmq¹

j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

�
.
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Looking at the definition of the maps K, this expression of Zγ is clearly equal to the

one above, proving the result.

Lemma 2.3.22. As formal power series the equation (2.3.15) is solved by the linear

operator

L : GµJXK Ñ GµJXK

where L pF q is given by,

� F0̄

ϕ p0̄q �
¸
|γ|¥1

T�1
γ pFγqXγ

�
¸
|γ|¥1

¸
σPcpγq

¸
k̄Pppσ,γq

�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσqXγ .

Denote M � 1
|ϕp0̄q|

�
1� 1

cospρ�αq

	
and N � |λ| cos pρ� αq, if for r̄ � pr1, . . . , rnq,°n�1

m�1

rm�1

rm
¤ N

2
we have the following cases.

(i) If F P Gµr̄ tXu then L pF q P Gµr̄ tXu and

}L pF q}r̄ µ,S ¤ 2M }F }r̄ µ,S .

(ii) If F � p1 �DXfq g pXq with g P O �
Pn pr̄q ,Cn

�
and f P Gµr̄ tXu then L pF q P

Gµr̄ tXu and

}L pF q}r̄ µ,S ¤
4

N

�
ņ

m�1

1

rm

�
}f}r̄ µ,S

¸
γ

}gγ}max r̄
γ .

(iii) If F � 1 � DXf � g where f P Gµr̄ tXu and g � pg1, . . . , gnq P Gµr̄ tXun then

L pF q P Gµr̄ tXu and

}L pF q}r̄ µ,S ¤
16π

Nµ

�
ņ

m�1

1

rm

�
}f}r̄ µ,S

ņ

j�1

}gj}r̄ µ,S .

Proof: By lemma 2.3.21 L pF q is formally a solution, it remains to check the

convergence in the three cases.

(i) It is immediate by lemma 2.3.12 that � F0̄
ϕp0̄q �

°
|γ|¥1 T

�1
γ pFγqXγ P Gµ tXu and������� F0̄

ϕ p0̄q �
¸
|γ|¥1

T�1
γ pFγqXγ

������
r̄ µ,S

¤M }F }r̄ µ,S . (2.3.18)
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By property 2.3.20 and lemma 2.3.12�����
�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

�����
µ,S

¤M
±`pσ,γq
j�1

��
σ �°j

i�1 uki

	
kj

� 1



p|σ|N q`pσ,γq

}Fσ}µ,S

�M
±`pσ,γq
j�1

�
σ �°j�1

i�1 uki

	
kj

p|σ|N q`pσ,γq
}Fσ}µ,S .

By property 2.3.14 we have that
���σ �°j�1

i�1 uki

��� � |σ| and thus�
σ �

j�1̧

i�1

uki

�
kj

¤ |σ| ,

implying that we can further estimate�����
�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

�����
µ,S

¤M 1

N `pσ,γq }Fσ}µ,S .

Moreover there is a one-to-one correspondence between p pσ, γq, and strings

of the numbers 1, . . . , n � 1 where each number j � 1, . . . , n � 1 appears ex-

actly lj pσ, γq times. These strings form the set of permutations of the multiset

tl1 pσ, γq � 1, . . . , ln�1 pσ, γq � pn� 1qu and thus

#p pσ, γq � ` pσ, γq!
`1 pσ, , γq!`2 pσ, γq! . . . `n�1 pσ, γq! ,

see [Bru18]. We thus have that������
¸

σPcpγq

¸
k̄Pppσ,γq

�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

������
µ,S

¤M
¸

σPcpγq

` pσ, γq!
`1 pσ, γq!`2 pσ, γq! . . . `n�1 pσ, γq!

}Fσ}µ,S
N `pσ,γq .

Consequently we get that

¸
|γ|¥1

������
¸

σPcpγq

¸
k̄Pppσ,γq

�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

������
µ,S

r̄γ

¤M
¸
|γ|¥1

¸
σPcpγq

` pσ, γq!
`1 pσ, γq!`2 pσ, γq! . . . `n�1 pσ, γq!

}Fσ}µ,S
N `pσ,γq r̄

γ

�M
¸
|γ|¥1

¸
σPcpγq

` pσ, γq!
`1 pσ, γq!`2 pσ, γq! . . . `n�1 pσ, γq!

}Fσ}µ,S
N `pσ,γq r̄

σ r̄
°n�1
m�1 `mpσ,γqum .
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By the proof of proposition 2.3.16

n�1̧

m�1

`m pσ, γqum

� p�`1 pσ, γq , `1 pσ, γq � `2 pσ, γq , . . . , `n�2 pσ, γq � `n�1 pσ, γq , `n�1 pσ, γqq

and thus

r̄
°n�1
m�1 `mpσ,γqum �

n�1¹
m�1

�
rm�1

rm


`mpσ,γq
.

Consequently

¸
|γ|¥1

������
¸

σPcpγq

¸
k̄Pppσ,γq

�
`pσ,γq¹
j�1

K

�
kj , σ �

j̧

i�1

uki

��
T�1
σ pFσq

������
µ,S

r̄γ

¤M
¸
|γ|¥1

¸
σPcpγq

` pσ, γq!
`1 pσ, γq!`2 pσ, γq! . . . `n�1 pσ, γq!

n�1¹
m�1

�
rm�1

N rm


`mpσ,γq
}Fσ}µ,S r̄σ

�M
¸
|σ|¥1

¸
p`1,...,`n�1qPvpσq

p`1 � . . .� `n�1q!
`1! . . . `n�1!

n�1¹
m�1

�
rm�1

N rm


`m
}Fσ}µ,S r̄σ

¤M
¸
|σ|¥1

¸
`1�...�`n�1¥1

p`1 � . . .� `n�1q!
`1! . . . `n�1!

n�1¹
m�1

�
rm�1

N rm


`m
}Fσ}µ,S r̄σ

�M
°n�1
m�1

rm�1

rm

N �°n�1
m�1

rm�1

rm

¸
|σ|¥1

}Fσ}µ,S r̄σ

¤M }F }r̄ µ,S .

Where we used for the last inequality our assumption that
°n�1
m�1

rm�1

rm
¤ N

2
.

Combining this bound with (2.3.18) proves the result.

(ii) Let f � °
γ fγX

γ and g � °
γ gγX

γ where gγ � pgγ,1, . . . , gγ,nq P Cn. If we

denote sm � p0, . . . 0, 1, 0, . . . , 0q with 1 at position m we have that

p1 �DXfq g �
¸
γPNn

¸
α�β�γ

ņ

m�1

pαm � 1q p1 � fα�smq gβ,mXγ .

By lemma 2.3.12 one sees that�����T�1
γ

� ¸
α�β�γ

ņ

m�1

pαm � 1q p1 � fα�smq gβ,m
������

µ,S

¤ 1

N
¸

α�β�γ

ņ

m�1

αm � 1

|γ| }fα�sm}µ,S |gβ,m| .

Since αm ¤ |γ| a further estimate is given by

2

N
¸

α�β�γ

ņ

m�1

}fα�sm}µ,S }gβ}max ¤
2

N

ņ

m�1

¸
α�β�γ�sm

}fα}µ,S }gβ}max .
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By repeating the proof of (i) with the above bound one finds that

}L pp1 �DXfq gq}r̄ µ,S ¤
4

N
¸
γPNn

ņ

m�1

¸
α�β�γ�sm

}fα}µ,S }gβ}max r̄
γ .

Finally we have that

4

N
¸
γPNn

ņ

m�1

¸
α�β�γ�sm

}fα}µ,S }gβ}max r̄
γ

� 4

N

ņ

m�1

1

rm

¸
γPNn

¸
α�β�γ�sm

}fα}µ,S }gβ}max r̄
γ�sm

¤ 4

N

ņ

m�1

1

rm

¸
γPNn

¸
α�β�γ

}fα}µ,S }gβ}max r̄
γ

� 4

N

ņ

m�1

1

rm
}f}r̄ µ,S

¸
γ

}gγ}max r̄
γ .

(iii) Let f � °
γ fγX

γ and g � °
γ gγX

γ where gγ � pgγ,1, . . . , gγ,nq with all gγ,j P
Gµ. We have that

1 �DXf � g �
¸
γPNn

¸
α�β�γ

ņ

m�1

pαm � 1q p1 � fα�sm � gβ,mqXγ .

Using lemma 2.3.12 and property 2.3.7 one can find, similarly as in (ii), that�����T�1
γ

� ¸
α�β�γ

ņ

m�1

pαm � 1q p1 � fα�sm � gβ,mq
������

µ,S

¤ 8π

Nµ

ņ

m�1

¸
α�β�γ�sm

}fα}µ,S max
1¤j¤n

!
}gβ,j}µ,S

)

¤ 8π

Nµ

ņ

m�1

¸
α�β�γ�sm

}fα}µ,S
�

ņ

j�1

}gβ,j}µ,S
�

Repeating then the steps in the proof of (ii) gives the desired estimate.

2.3.7 The complete equation

We will find a solution to equation (2.3.9), as a fixed point of the map

F ÞÑ L
�
pϕ pXq � ϕ p0qqZ �

8̧

k�0

B1 pεHkq � Z�k

�p1 �DXZqA pXq � p1 �DXZq �
8̧

k�0

B1 pεVkq � Z�k
�
.

(2.3.19)
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Here L is the map specified in lemma 2.3.22.

We now collect some results in preparation of proving that the above map has a fixed

point.

Proposition 2.3.23. Let F P Gµr̄ tXu and g pXq P O �
Pn pr̄q

�
, then

}g � F }r̄ µ,S ¤
� ¸
γPNn

|gγ | r̄γ
�

}F }r̄ µ,S .

Proof: This is immediate since

}g � F }r̄ µ,S �
¸
γ

����� ¸
α�β�γ

Fαgβ

�����
µ,S

r̄γ

¤
¸
γ

¸
α�β�γ

}Fα}µ,S |gβ | r̄γ �
� ¸
γPNn

|gγ | r̄γ
�

}F }r̄ µ,S .

Proposition 2.3.24. Given any R ¡ 0, there exists a U pRq ¡ 1{R such that for all

µ ¥ U pRq,
sup
ηPS

�
1� µ2 |η|2� ep 1

R
�µq|η| ¤ 1.

Proof: One can calculate that, as a function of |η|, the derivative of�
1� µ2 |η|2� ep 1

R
�µq|η|

has two zeroes, both of the form 1
µ

�
1� o

�
1
��

, as µÑ8.

This implies that the maximum of the function is of the form
�
2� o

�
1
��
e

�
1
Rµ

�1
	�

1�o
�
1
�


and thus converges to 2e�1   1 for µÑ8. Consequently
�
1� µ2 |η|2� ep 1

R
�µq|η| ¤ 1

for µ greater than a certain value UpRq.

Lemma 2.3.25. Let

g pX, εq �
8̧

n�0

¸
γPNn

gγnX
γεn

be holomorphic on Pn�1pRq. If µ ¥ U pRq, where U is the function from proposition

2.3.24, and rj ¤ R{2 for j � 1, . . . , n. Then B1pεgq P Gµr̄ tXu and

}B1 pεgq}r̄ µ,S ¤ 2n max
pX,εqPPn�1pRq

|g pX, εq| .

Proof: Denote }g} � maxpX,εqPPn�1pRq |g pX, εq|. The Borel transform is given by

B1pεgq �
¸
γ

� 8̧

n�0

gγn
n!

ηn
�
Xγ .
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Using the Cauchy inequalities one sees����� 8̧

n�0

gγn
n!

ηn

�����
µ,S

¤ }g}
R|γ| sup

ηPS

�
1� µ2 |η|2� ep 1

R
�µq|η| ¤ }g}

R|γ| ,

where the last inequality holds since µ ¥ U pRq. Consequently

}B1 pεgq}r̄ µ,S ¤ }g}
¸
γ

r̄γ

R|γ| � }g}
n¹
j�1

R

R� rj
¤ 2n }g} .

Before stating the next result we want to remind that in (2.3.19), the functions Vk

are Cn valued and we can thus consider the component functions Vk,j for 1 ¤ j ¤ n.

Corollary 2.3.26. There exists a C0 ¡ 0 independent of µ, r̄, such that for any

choice of rj ¤ R{2 and any C ¡ 0 there exist large enough µ such that the maps

F ÞÑ
8̧

k�0

B1 pεHkq � F�k, F ÞÑ
8̧

k�0

B1 pεVk,jq � F�k

are all well defined for B p0, Cq � Gµr̄ tXu Ñ B p0, C0q.
Moreover, these maps are then Lipschitz continuous, with a Lipschitz constant that is

O
�
µ�1

�
for µÑ8.

Proof: We give the proof for H, it is identical for the other functions.

Denote

M � max
Pn�2pRq

 |H pX, z, εq| }V pX, z, εq}max

(
.

By the Cauchy inequalities and proposition 2.3.25 we can assume that

}B1 pεHkq}r̄ µ,S ¤ 2nMR�k

and thus for sufficiently large µ,����� 8̧

k�0

B1 pεHkq � F�k
�����

r̄ µ,S

¤ 2nM � 2nM
8̧

k�1

�
4π

Rµ


k
}F } k
r̄ µ,S

� 2nM
Rµ

Rµ� 4π }F }r̄ µ,S

.

This proves the first part of the result by setting C0 � 2n�1M .

Regarding the Lipschitz continuity, we must bound����� 8̧

k�1

B1 pεHkq �
�
F�k

1 � F�k
2

	�����
r̄ µ,S

for F1, F2 P B p0, Cq. A first estimate is given by

2n�2πM

µ

8̧

k�1

R�k
���F�k

1 � F�k
2

���
r̄ µ,S

.
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Since F�k
1 � F�k

2 � pF1 � F2q �
°k
j�1 F

�pk�jq
1 � F�pj�1q

2 we have

���F�k
1 � F�k

2

���
r̄ µ,S

¤
�

4π

µ


k�1 ķ

j�1

Ck�jCj�1 }F1 � F2}r̄ µ,S

� k

�
4πC

µ


k�1

}F1 � F2}r̄ µ,S ,

implying that the Lipschitz constant is bounded by

2n�2πM

Rµ

8̧

k�1

k

�
4πC

Rµ


k�1

� 2n�2πMRµ

pRµ� 4πCq2

which is clearly O
�
µ�1

�
for µÑ8.

Lemma 2.3.27. Denote the map (2.3.19) by V pF q. For sufficiently large µ and

sufficiently small rj, V is well defined as a map from a closed ball around 0 in Gµr̄ tXu
to itself. Moreover this map is a contraction. Consequently there exists a unique

Z P Gµr̄ tXu solving equation (2.3.8).

Proof: By lemma 2.3.22, V is already well defined as a map from Gµr̄ tXu to itself.

Set, for the constants used in lemma 2.3.22, L � max
 
2M, 16π

N

(
and denote C �

2LC0 where C0 is as in corollary 2.3.26. Since ϕ pXq�ϕ p0q � O
�
X
�

and A � O
�
X2

�
we have by lemma 2.3.22 and proposition 2.3.23 that

}L ppϕ pXq � ϕ p0qqF q}r̄ µ,S ¤ L �O�
r̄
� }F }r̄ µ,S

}L pp1 �DXF qA pXqq}r̄ µ,S ¤ L �O�
r̄
� }F }r̄ µ,S

where in both inequalities, O
�
r̄
�

is independent of F , one can thus assume that both

are smaller than 1{ p8Lq by diminishing r̄.

Lastly, we have by lemma 2.3.22 and corollary 2.3.26 that for F P B p0, Cq and

sufficiently large µ, �����L
� 8̧

k�0

B1 pεHkq � F�k
������

r̄ µ,S

¤ LC0,�����L
�

1 �DXF �
� 8̧

k�0

B1 pεVkq � F�k
�������

r̄ µ,S

¤ L

µ

�
ņ

m�1

1

rm

�
nC2

0 .

Consequently

}V pF q}r̄ µ,S ¤ L

�
C

4L
� C0 � 1

µ

�
ņ

m�1

1

rm

�
nC2

0

�

�
�

1

4
� 1

2
� n

2µ

�
ņ

m�1

1

rm

�
C0

�
C.
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This clearly implies that V : B p0, Cq Ñ B p0, Cq for sufficiently large µ.

To prove that V is a contraction we notice the following,

}L ppϕ pXq � ϕ p0qq pF1 � F2qq}r̄ µ,S ¤ L �O�
r̄
� }F1 � F2}r̄ µ,S ,

}L pp1 �DX pF1 � F2qqA pXqq}r̄ µ,S ¤ L �O�
r̄
� }F1 � F2}r̄ µ,S ,

similarly as above, and�����L
� 8̧

k�0

B1 pεHkq �
�
F�k

1 � F�k
2

	������
r̄ µ,S

¤ LO
�
µ�1

� }F1 � F2}r̄ µ,S

by corollary 2.3.26. Finally we have that

L

�
1 �DXF1 �

� 8̧

k�0

B1 pεVkq � F�k
1

�
� 1 �DXF2 �

� 8̧

k�0

B1 pεVkq � F�k
2

��

� L
�

1 �DX pF1 � F2q �
� 8̧

k�0

B1 pεVkq � F�k
1

��

� L
�

1 �DXF2 �
� 8̧

k�0

B1 pεVkq �
�
F�k

1 � F�k
2

	��
.

The norm of which is bounded by

L

µ

�
ņ

m�1

1

rm

��
nC0 � nO

�
µ�1

�� }F1 � F2}r̄ µ,S .

Putting all this together it is clear that V is a contraction by choosing µ sufficiently

large.

2.3.8 Gevrey asymptotics for the Laplace transform

We start of by recollecting results already achieved.

By lemma 2.3.9 there exists a solution, say Z pX, ηq, to (2.3.8) i.e.

p1 �DXZqΛX �ϕ pXqZ �
8̧

k�0

B1 pεHkq � Z�k � p1 �DXZqUX

� p1 �DXZqA pXq � p1 �DXZq �
8̧

k�0

B1 pεVkq � Z�k.
(2.3.20)

where Z is defined and holomorphic for pX, ηq P Pn pr̄q � S p�θ � π, 2αq for certain

r̄ P Rn¡0, 0   α   π
2
� ρ.

Furthermore, by the results of section 2.1.2 there exists a formal, Gevrey-1, se-

ries solution, rz pX, εq, to the slow manifold equation (2.3.2). The Borel transform,

B1 przq pX, ηq, of this formal solution also satisfies equation 2.3.20 but only for η in a
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ball around the origin. It is, a priori, not necessary that Z is a holomorphic contin-

uation of B1 przq. A direct application of theorem 1.2.20 is thus not possible to infer

the 1-summability of rz.
We will not prove directly that Z is a holomorphic continuation of rz. Instead we

construct, from Z, a function that is Gevrey-1 asymptotic to the formal solution of

(2.3.2) on a “large” region. For this construction we use the Laplace transform.

Definition 2.3.28. Let F P O pV � S pσ, 2βqq for V � Cn and β P �
0, π

2

�
such that

there exist K,µ ¡ 0 for which

sup
XPV

|F pX, ηq| ¤ Keµ|η|.

The Laplace transform of order 1 of F is defined as

L1 pF q pX, εq �
» 8pσq

0

F pX, ηq e� ηε dη

where the integration is taken along the ray seiσ, s ¡ 0.

Remark 2.3.29. The Laplace transform of order 1 can be seen as the inverse of the

formal Borel transform of order 1 in the class of formal series that are 1-summable

in a certain direction, see for example [Bal00].

Proposition 2.3.30. • For every 0   rβ   β, there exists R ¡ 0 such that

L1 pF q pX, εq P O
�
V � S

�
σ, π � 2rβ,R		.

• If Fn Ñ F in Gµr̄ tXu (over the sector S pσ, 2βq) then L1 pFnq Ñ L1 pF q in

O
�
Pn pr̄q � S

�
σ, π � 2rβ,R		.

• L1 pF �Gq � L1 pF q � L1 pGq.

Proof:

• Since on the ray seiσ, s ¡ 0,
���e� ηε ��� � e

� |η|
|ε|

cospσ�argpεqq
it is clear that the

Laplace transform is well defined on a bounded sector in the direction σ with

opening slightly less than π.

Due to the integral being invariant under deformations of the path, one can see

that the function is also defined on rotations of this sector. In this manner, the

Laplace transform can be defined on a “large” sector. For a more detailed proof

one can consult for example [Bal00].

• If Fn Ñ F we have by definition that

sup
XPPnpr̄q

|Fn pX, ηq � F pX, ηq| ¤ }Fn � F }r̄ µ,S e
µ|η|,@η.
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From this it follows readily that L1 pFnq Ñ L1 pF q uniformly for X P Pn pr̄q
and ε in a bounded sector in the direction σ with opening slightly less than π.

Once again by the independence of path, this can be extended to the “large”

sector.

• This is a straightforward application of the Fubini theorem.

Denote the Laplace transform of Z by Ψ, since

ņ

k�0

B1 pεHkq � Z�k Ñ
8̧

k�0

B1 pεHkq � Z�k

in Gµr̄ tXu for nÑ8 we have that

εH pX,Ψ, εq � lim
nÑ8

ņ

k�0

εHkΨk

� lim
nÑ8

L1

�
ņ

k�0

B1 pεHkq � Z�k
�
� L1

� 8̧

k�0

B1 pεHkq � Z�k
�
.

Thus applying the Laplace transform to (2.3.20) we have

εDXΨ ppΛ� UqX �A pXq � εV pX,Ψ, εqq � ϕ pXqΨ� εH pX,Ψ, εq .

Moreover Ψ is defined and holomorphic for

pX, εq P Pn pr̄q � S p�θ � π, π � 2α,Rq ,

for a certain R ¡ 0 (and the opening should actually be slightly less than π� 2α but

we do not reflect this in the notation).

By the Borel-Ritt-Gevrey theorem there exists a function γ pX, εq, defined on Pn pr̄q�
S p�θ, π � 2σ,Rq, where we can take 0   σ   α, satisfying

εDXγ ppΛ� UqX �A pXq � εV pX, γ, εqq � ϕ pXq γ � εH pX, γ, εq �R pX, εq .

Here R is defined and holomorphic on the same domain as γ and this function is

exponentially decaying w.r.t. ε, uniformly for X. Moreover γ is Gevrey-1 asymptotic

to the formal solution of (2.3.2).

Since we take σ   α, S p�θ � π, π � 2α,RqXS p�θ, π � 2σ,Rq � H, more specifically,

the intersection is given by

S
�
�θ � π

2
� α� σ

2
,
α� σ

2
, R

	
Y S

�
�θ � π

2
� α� σ

2
,
α� σ

2
, R

	
,

which we will denote by S1 Y S2. On this set we can thus define the difference

∆ � Ψ� γ, which satisfies

εDX∆
�
pΛ� UqX �A pXq � εrV pX, εq

	
�

�
ϕ pXq � ε rH pX, εq

	
∆�R pX, εq .

(2.3.21)
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where we denoted rV pX, εq � V pX,Ψ pX, εq , εq

and

HpX, εq �
» 1

0

BH
Bz pX,uΨ pX, εq � p1� uqγ pX, εq , εq

� εDXγ pX, εq BVBz pX, p1� uqΨpX, εq � uγpX, εq, εq du.

If we can show that ∆ is exponentially decaying w.r.t. ε in S1YS2, the Ramis-Sibuya

theorem 1.2.12, guarantees that Ψ is Gevrey-1 asymptotic to the formal solution, this

in turn proves theorem 2.3.1.

Before continuing we give a few remarks.

• In what follows it will often be necessary to shrink the radii in the X domain

Pn pr̄q or ε domain S1 Y S2. We will not reflect this in the notation.

• It is easily seen that both Ψ and γ tend to 0 for εÑ 0 i.e.

lim
δÑ0

sup
XPPnpr̄q
|ε|¤δ

|Ψ pX, εq| � 0,

lim
δÑ0

sup
XPPnpr̄q
|ε|¤δ

|γ pXεq| � 0,

where ε is to remain in the sector corresponding to the function.

• Using the previous point we may assume, by shrinking the radius of S1 Y S2

and employing the Cauchy inequalities (for H and V ), that

sup
X,ε

|H pX, εq| , sup
X,ε

���rV pX, εq
���
max

 M, (2.3.22)

for a certain M ¡ 0 and where the supremum is taken over Pn pr̄q � pS1 Y S2q.

• Since for all the diagonal elements λj of Λ,

λj P S pθ � arg pϕp0, 0qq , 2ρq

it holds that

ελj P S
�

arg pϕp0, 0qq � π

2
� α� σ

2
, α� σ � 2ρ

	
,

for all ε P S1 and

ελj P S
�

arg pϕp0, 0qq � π

2
� α� σ

2
, α� σ � 2ρ

	
,

for all ε P S2.
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We now show that ∆ is exponentially decaying w.r.t ε P S1, the result for S2 is

completely analogous.

Notice that

S
�
� arg pϕp0, 0qq � π

2
� α� σ

2
, π � α� σ � 2ρ

	
X S p� arg pϕp0, 0qq , πq � H.

Let τ P r0, 2πr be a direction in this intersection, by shrinking the radius of Pn pr̄q
and S1 if necessary, we may assume that there exists a 0   dτ   π

2
such that���arg

�
ελje

iτ
	
� π

��� ¤ π

2
� dτ , (2.3.23)���arg

�
pϕ pXq � εH pX, εqq eiτ

	��� ¤ π

2
� dτ , (2.3.24)

|ϕ pXq � εH pX, εq| ¥ |ϕ p0q|
2

, (2.3.25)

for j � 1, . . . , n and pX, εq P Pn pr̄q � S1 (we use in the second and third inequalities

the continuity of ϕ and that H is bounded by an M).

Due to (2.3.23), there exists an ν ¡ 0 such that for all j � 1, . . . , n, t ¡ 0,���etεeiτλj ��� ¤ e�|ε|tν . (2.3.26)

Fix X0, ε and consider the following ODE

9Xε � eiτε
�
pΛ� UqXε �A pXεq � εrV pXε, εq

	
(2.3.27)

Xε p0q � X0

Proposition 2.3.31. There exists an R ¡ 0 sufficiently small, such that R   rj ,@j �
1, . . . , n, and a sufficiently small radius of S1 such that the solutions of (2.3.27) with

}X0}max ¤ R exist for t P r0,8r and remain in Pn pr̄q.
Proof: We first remark that we may assume, without loss of generality, that Λ�U
is a Jordan matrix.

Let R0 � minj�1,...,n trju. Since A � O
�
X2

�
and V bounded, we can reduce r̄ and

the radius of S1 such that

max
}X}max¤R0

}A pXq � εV pX, εq}max  
ν2R0

2 pν � 1q .

We prove the result if we show that for }X0}max ¤ νR0e
1�ν

2
the solution satisfies for

all t ¥ 0, }Xε ptq}max ¤ R0.

The solution to (2.3.27) satisfies

Xε ptq � etεe
iτ pΛ�UqX0 � εeiτ

» t
0

ept�sqεe
iτ pΛ�Uq

�
A pXε psqq � εrV pXε psq , εq

	
ds.

Since Λ�U is a Jordan matrix one can see rather easily that by (2.3.26) we have for

all t ¥ 0, ���etεeiτ pΛ�Uq��� ¤ p1� t |ε|q e�|ε|tν ¤ eν�1

ν
.
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This last estimate follows easily by inspecting the derivative w.r.t. t.

Suppose now, by contradiction, that there exists a t� P s0,8r such that }Xε pt�q}max �
R0 and }Xε ptq}max   R0 for t P r0, t�r, then

}Xε pt�q}max  
eν�1

ν
}X0}max �

ν2R0

2 pν � 1q |ε|
» t�

0

p1� pt� sq |ε|q e�|ε|pt�sqνds.

A straightforward calculation learns that

|ε|
» t�

0

p1� pt� sq |ε|q e�|ε|pt�sqνds � 1

ν
� 1� t� |ε|

ν
e�|ε|t�ν � 1� e�|ε|t�ν

ν2
¤ ν � 1

ν2

and thus }Xε pt�q}max   R0, giving us the desired contradiction.

Denote

fε ptq � ∆ pXε ptq , εq .
Since ∆ satisfies (2.3.21) it is immediate that

f 1εptq � pϕ pXεptqq � εH pXεptq, εqq fεptq �R pXεptq, εq

and thus

fεptq � fεp0qe
³t
0 ϕpXεpαqq�εHpXεpαq,εqdα

�
» t

0

e
³t
s ϕpXεpαqq�εHpXεpαq,εqdαR pXε psq , εq ds,

implying

fεptqe�
³t
0 ϕpXεpαqq�εHpXεpαq,εqdα

� fεp0q �
» t

0

e�
³s
0 ϕpXεpαqq�εHpXεpαq,εqdαR pXε psq , εq ds.

(2.3.28)

Using (2.3.24) and (2.3.25) we get���e� ³t
0 ϕpXεpαqq�εHpXεpαq,εqdα

��� ¤ e�t
|ϕp0q| sinpdτ q

2 ,

combining this with the exponential decay of R i.e. |R| ¤ Ke
� L
|ε| leads to����» t

0

e�
³s
0 ϕpXεpαqq�εHpXεpαq,εqdαR pXε psq , εq ds

����
¤ 2

|ϕ p0q| sin pdτ q
�

1� e�t
|ϕp0q| sinpdτ q

2

	
Ke

� L
|ε| .

Finally taking the limit tÑ8 in both sides of (2.3.28) and noticing that fεptq remains

bounded for all t P r0,8r shows that

∆ pX0, εq � fεp0q �
» 8

0

e�
³s
0 ϕpXεpαqq�εHpXεpαq,εqdαR pXε psq , εq ds

and thus

|∆ pX0, εq| ¤ 2

|ϕp0q| sin pdτ qKe
� L
|ε| .
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Chapter 3

Canard-heteroclinic saddle connections

In this chapter we focus ourselves on real analytic slow-fast systems with 1 slow and

1 fast variable, with an additional parameter a,#
9x � εf px, y, a, εq
9y � g px, y, a, εq , (3.0.1)

where the following set of assumptions is satisfied.

• There are xa, xr P R with xa   xr such that there is (for a parameter value

a � a0) a real analytic critical curve of the form y � ψ0 pxq present, defined for

x P rxa, xrs. The function ψ0 is thus holomorphic in a complex neighbourhood

of rxa, xrs and satisfies g px, ψ0 pxq , a0, 0q � 0.

• There is a point xt P sxa, xrr splitting the critical curve in a normally attracting

part for x   xt and a normally repelling part for x ¡ xt. By this it is meant

that

Bg
By px, ψ0 pxq , a0, 0q   0,@x P rxa, xtr ,
Bg
By px, ψ0 pxq , a0, 0q ¡ 0,@x P sxt, xrs ,

Bg
By pxt, ψ0 pxtq , a0, 0q � 0.

We call such a point a turning point.

• The points xa and xr are slow-fast saddles with the slow dynamics directed from

the attracting to the repelling part of the critical curve, this is characterized by

f px�, ψ0 px�q , a0, 0q � 0, for x� � xa, xr;

d

dx
rx ÞÑ f px, ψ0 pxq , 0qs px�q BgBy px�, ψ0 px�q , 0q   0, for x� � xa, xr;

f px, ψ0 pxq , a0, 0q ¡ 0,@x P sxa, xrr .

65
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• The last assumption is more technical in nature, saying that locally around the

turning point xt there is a holomorphic transformation bringing the system into

a specific form. We elaborate more on this form later on in section 3.2.

By corollary 2.1.11 there exists, for any compact subinterval of rxa, xtr, a formal slow

manifold of (3.0.1) which is Gevrey-1 w.r.t. ε uniformly for x in (a neighbourhood

of) the compact subinterval and a close to a0. Moreover, by theorem 2.3.1 (i) this

formal slow manifold is 1-summable in the positive real direction, locally around xa.

Concretely there exist r, σ ¡ 0 and a function ψ px, a, εq holomorphic on B pxa, rq �
B pa0, rq�S p0, π � σ, rq and Gevrey-1 asymptotic, w.r.t. ε, uniformly in px, aq to the

formal slow manifold such that y � ψ px, a, εq is an invariant manifold of (3.0.1).

An identical statement holds for xr.

Remark 3.0.1. As was already remarked at the start of chapter 2, this thesis does not

treat the case where parameters are present, when conducting the Gevrey analysis of

slow manifolds. Above, we have used the parameter dependent versions of the results

in chapter 2. A version of the proof of existence of summable slow manifolds where a

parameter is explicitly included can be found in [Ken16], but only the (simpler) case

of one slow variable is studied.

In the remainder of this chapter, two additional results are shown. First, in section 3.1,

we prove that a local, 1-summable, slow manifold can be saturated along normally

hyperbolic parts of the critical curve, retaining the summability.

Next, in section 3.2, the situation is considered where two slow manifolds are present

around points on the normally attracting resp. repelling part of the critical curve,

with a turning point in between them (and the system has a specific form). It is

shown that these two manifolds can be connected across the turning point, forming

what will be called a “canard curve”. For this matching to occur, the presence of

an additional parameter is needed. The matching parameter will retain a form of

summability but the canard curve itself will not exhibit any Gevrey properties at the

turning point. For more details on the, quite delicate, behaviour of the canard curve

at the turning point, we refer to theorem 3.2.1 and the discussion following the proof

of this theorem near the end of section 3.2.

While both results are essentially self-contained, they can be combined and applied

to the setting of system (3.0.1) to give the following, informally formulated, result.

Theorem 3.0.2. A heteroclinic saddle connection between two persistent slow-fast

saddles on a slow manifold of a real analytic planar slow-fast system is summable (in

the positive real direction) w.r.t. (a root of) the singular parameter , uniformly for x

in compact subsets of the domain of the critical curve not including the turning point.
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For a precise statement we refer to theorem 3.2.13. One possible class of systems

where this theorem can be applied is those of the form#
9x � εpx� cqpd� xq
9y � a� xm�1y � εF px, y, ε, aq

where c   0   d and m is even.

Theorem 3.2.13 then shows the existence of a m-summable control curve a � Apε1{mq
along which the equation has a m-summable solution y � ypx, ε1{mq w.r.t. ε1{m,

uniformly on arbitrary compact subsets of rc, ds which do not include the turning

point x � 0.

3.1 Tracing summability along the critical curve

The question that is answered in this section is whether or not the 1-summability

of a formal slow manifold at a given location x � x0 implies the 1-summability of

this formal slow manifold at another location. In other words, is the summability

information carried along the slow curve? The answer is given by the next theorem.

An additional parameter a is added in view of its necessity later on in the matching of

slow manifolds across a turning point, but its inclusion does not influence the results

or proofs in this section.

We remark that the “cause” of summability is irrelevant in this section. It could, for

example, be achieved from slow-fast saddles as in theorem 2.3.1 (i) but at the same

time, we can refer to [CDMFS07] to conclude that equations of the form

εxr�1 dy

dx
� λpxqy �Opy2, εq,

with r ¡ 0, enjoy similar results: when λp0q   0, then it is easily seen from the

monomial summability (w.r.t. the monomial εxr) proved in [CDMFS07] that for a

sufficiently small neighbourhood of a compact interval, lying close to 0, on the strictly

positive real axis, the equation has a solution that is 1-summable w.r.t. ε in directions

close to the real axis.

Theorem 3.1.1. Consider the real analytic slow-fast family of vector fields#
9x � εfpx, y, a, εq
9y � gpx, y, a, εq, (3.1.1)

with a real analytic critical curve given by the graph y � ψ0pxq (for a � a0), x P
rx0, x1s � R. Suppose that the unperturbed vector field is normally hyperbolically

attracting at points of the critical curve, which means

Bg
By px, ψ0pxq, a0, 0q   0, @x P rx0, x1s.
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Assume furthermore that fpx, ψ0pxq, a0, 0q ¡ 0 for all x P rx0, x1s (in other words the

slow dynamics is regular along the critical curve and directed from left to right).

Suppose the formal slow manifold is 1-summable in the real positive direction, w.r.t.

ε, uniformly around px0, a0q, i.e. there exist r, σ ¡ 0 and a holomorphic function

Ψ px, a, εq defined on

B px0, rq �B pa0, rq � S p0, π � σ, rq ,

such that y � Ψ px, a, εq is an invariant manifold of (3.1.1). Then the formal slow

manifold is 1-summable in the real positive direction w.r.t. ε, uniformly around

rx0, x1s�ta0u meaning there exists an open V � C with rx0, x1s � V and 0   σ1 ¤ σ,

0   r1   r such that Ψ px, a, εq can be extended to

V �B pa0, rq � S
�
0, π � σ1, r1

�
.

Remark 3.1.2. Readers who are familiar with the terminology of complex relief

functions (see [Wal91] for example) can see that the normally attracting nature of the

critical curve and the fact that the theorem is stated on a compact real interval means

that the straight path from x0 to x1 is a descending path according to the complex

relief function associated with the slow-fast vector field. It is hence well-known that

points close to x0 and for ε ¡ 0 can be easily integrated towards x1 without straying

from the critical curve. Up to the knowledge of the author, the literature does not

contain a statement that carries summability information along a descending path.

It is not hard (in fact this is the topic of the next subsection) to translate the question

in theorem 3.1.1 to a question regarding analytic differential equations of the form

ε
dy

dx
� y � εHpx, y, a, εq, (3.1.2)

defined for px, y, a, εq in a complex neighbourhood of rx0, x1s�t0u�ta0u�t0u. Using

this reduction, theorem 3.1.1 is a direct consequence of the next theorem. We will

elaborate a bit on this in a minute.

Theorem 3.1.3. Given the analytic equation (3.1.2) defined for px, y, a, εq in a com-

plex neighbourhood of rX1, 0s � t0u � ta0u � t0u, and with X1   0.

Then 1-summability of the formal solution in the direction 0, w.r.t. ε, uniformly

around p0, a0q implies the 1-summability of the formal solution in the direction 0,

w.r.t. ε, uniformly around rX1, 0s � ta0u.
Remark 3.1.4. In general, equations of the form (3.1.2) will not have a 1-summable

solution (not even in isolated directions).

Consider, for example, an entire function h whose set of zeroes is given by

8¤
k�1

k�1¤
j�0

!
kei

2j
k
π
)
.
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Such a function exists by the Weierstrass theorem, see [Kra12].

We claim that the equation

ε
dy

dx
� y � ε

hpxq
has no 1-summable solution in any direction. Indeed, assuming that such a solution

does exist, would imply that the Borel transformed equation

1 � BYBx � Y � 1

hpxq
has a solution, Y px, ηq, which is defined for η in some infinite sector. One can see

easily that the unique solution of the above equation is given by �1
hpx�ηq . This function

is clearly, by construction of h, not defined on any infinite sector.

3.1.1 Theorem 3.1.3 implies Theorem 3.1.1

Under the conditions of Theorem 3.1.1, we can make a time rescaling to reduce (3.1.1)

to #
9x � ε

9y � Gpx, y, a, εq, with Gpx, y, a, εq :� gpx,y,a,εq
fpx,y,a,εq .

From the conditions imposed on Bg
By easily follows λ0pxq :� BG

By px, ψ0pxq, a0, 0q   0 for

all x P rx0, x1s. Let us now extend the critical curve defined for a � a0 to critical

curves for nearby values of a, using the implicit function theorem: there exists a

unique analytic ψpx, aq such that Gpx, ψpx, aq, a, 0q � 0 and ψpx, a0q � ψ0pxq. After

writing y � ỹ � ψpx, aq, we find#
9x � ε

9̃y � λpx, aqỹ �Opỹ2q �Opεq,

where λpx, aq � BG
By px, ψpx, aq, a, 0q. Note that λpx, aq � λ0pxq�Op|a�a0|q, meaning

that we may assume that λpx, aq has a strictly negative real part. Now define

upx, aq �
» x
x0

λps, aqds,

where we limit this function to a sufficiently small (and simply connected) neighbour-

hood of rx0, x1s and a near a0. Writing x̃ � upx, aq, we obtain after yet another time

rescaling and reversal #
9̃x � ε

9̃y � ỹ �Opỹ2q �Opεq,
Denote

X1 :� upx1, a0q �
» x1

x0

λps, a0qds   0.

One can see that the mapping px, aq ÞÑ pupx, aq, aq is analytic with an analytic inverse

on an environment of rx0, x1s � ta0u mapping this last set onto rX1, 0s � ta0u. Since
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the result in theorem 3.1.3 is obtained on an environment of rX1, 0s � ta0u, going

back to the original variables will yield a result on an environment of rx0, x1s � ta0u,
which is indeed the goal in theorem 3.1.1.

Dropping the tildes, invariant manifolds of the above system of differential equations

are solution curves of

ε
dy

dx
� y � y2Cpx, y, a, εq � εDpx, y, a, εq,

for some analytic functions C and D. We can now further reduce to a more elementary

form with C � 0 by applying a singular transformation y � εY :

ε
dY

dx
� Y � εY 2Cpx, y, a, εq �Dpx, εY, a, εq � Y �Dpx, 0, a, 0q �Opεq.

The equation in Theorem 3.1.3 is obtained after a final translation in the Y direction:

Y ÞÑ Y �Dpx, 0, a, 0q.

3.1.2 Proof of Theorem 3.1.3

We may make the following assumptions about equation (3.1.2), which we repeat here

for the sake of convenience:

ε
dy

dx
� y � εHpx, y, a, εq. (3.1.3)

(H1) H is bounded and analytic on U � Bp0, rq � Bpa0, rq � Bp0, rq for some r ¡ 0

and some open complex neighbourhood U of rX1, 0s.

(H2) Equation (3.1.3) has an pa, εq-family of bounded analytic solutions Gpx, a, εq
defined for px, a, εq in Bp0, sq � Bpa0, sq � Sp0, π � σ, sq for some s ¡ 0 and

some σ ¡ 0. This assumption is a consequence of the assumption formulated

in Theorem 3.1.3 regarding the 1-summability w.r.t. ε of a solution of the ODE

near 0.

The proof of Theorem 3.1.3 essentially contains two steps. In a first step, we analyti-

cally continue the initial solution Gpx, a, εq defined near 0 towards X1 (actually a bit

further) by using the ODE. This will provide a solution near rX1, 0s and for ε in some

sector of opening angle a bit larger than π. In the second and final step, we construct

an other solution of the ODE near rX1, 0s but on a complementary complex sector for

ε and describe the relation with the analytically continued solution from step 1. We

finally apply the Ramis-Sibuya theorem 1.2.12 to conclude the 1-summability of the

analytically continued solution. This method has been used before in the literature,

for example in [FS03].

Note that G is a solution to equation (3.1.3) thus Gpx, a, εq � Opεq and we may

assume, by choosing s sufficiently small

pH3q |Gpx, a, εq|   r
2
, for all px, a, εq P Bp0, sq �Bpa0, sq � Sp0, π � σ, sq.
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α

0−Λ

B(0, s)

X1

S (0, 2α,Λ)− Λ

{
Λ
(
eiτ − 1

)
| τ ∈ [−α, α]

}

Figure 3.1: S p0, 2α,Λq � Λ

Analytic continuation of the initial solution

We continue with the notations introduced in hypotheses pH1q and pH2q above and

specify the set on which we want to find a solution to (3.1.3).

Choose some �Λ   X1 (thus �Λ P R) such that r�Λ, 0s � U . There then exists a

small enough half-opening angle α   π
2

such that

S p0, 2α,Λq � Λ � U.

(see figure 3.1.) We furthermore assume that!
Λ
�
eiτ � 1

	
| τ P r�α, αs

)
� Bp0, sq.

(In other words, the terminating arc of the sector S p0, 2α,Λq�Λ with vertex �Λ lies

inside Bp0, sq, again see figure 3.1.) Our aim is to analytically continue the initial

solution provided in pH2q on Bp0, sq to the domain S p0, 2α,Λq � Λ.

Proposition 3.1.5. Let a, z P C. If |a|   |z| then

|Argpz � aq �Argpzq| ¤ sin�1 |a|
|z| .

Lemma 3.1.6. Let pH1q, pH2q and pH3q be satisfied. Let 0   σ1   maxtσ, αu be

fixed. The initial solution y � Gpx, a, εq of (3.1.3) can be analytically continued to a

solution defined on

S p0, 2α,Λq � Λ�Bpa0, sq � S
�
0, π � σ1, s1

�
,

for sufficiently small s1 ¡ 0. Moreover this continued solution is bounded by r{2.

Proof: Define

M � sup
x,y,a,ε

|H px, y, a, εq| ,
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where the supremum is taken for x P Sp0, 2α,Λq � Λ, |y|   r, |a� a0|   r and

ε P Sp0, π � σ, sq. We will define conditions on s1 so that for any given ε P Sp0, π �
σ1, s1q, any given a P Bpa0, sq and any given z P S p0, 2α,Λq � Λ it is possible to

integrate (3.1.3) along a well-chosen path towards z. Independence of path and

analytic dependence on parameters and initial conditions ensures that this method

yields an analytic solution on the required domain.

In the remainder of the proof we hence fix z, a and ε. The integration path is the

linear path from z0 to z, where z0 :� Λpeiβ�1q (β still to be specified, |β| ¤ α, which

is located on the terminating arc of the sector Sp0, 2α,Λq � Λq and which lies inside

the definition domain of the initial solution defined in pH2q. The ODE, restricted to

the path from z0 to z, parametrized by pptq � p1� tqz0 � tz is given by:

dγ

dt
� z � z0

ε
pγ � εHppptq, γ, a, εqq (3.1.4a)

γ p0q � Gpz0, a, εq. (3.1.4b)

It suffices to show that this equation has a maximal solution defined on an interval

st2, t1r with t1 ¡ 1. Suppose by contradiction that t1 ¤ 1. Clearly the right hand

side of (3.1.4a) is defined (for all parameters pa, εq), for pt, γq in the compact set

r0, 1s � Bp0, r{2q. If we prove that |γptq| ¤ r{2 for all t P r0, t1r we thus get a

contradiction, since t1 ¤ 1. Since |γ p0q| � |Gpz0, a, εq|   r
2

by assumption, we prove

this by showing that if there exists an t� Ps0, 1r with |γpt�q| � r{2 we must have

d

dt

�
t ÞÑ |γptq|2� pt�q   0

which implies what we are aiming for. After some calculations one finds that this

derivative is given by

2 Re
�z � z0

ε
γpt�q pγpt�q � εHpppt�q, γpt�q, a, εqq

	
.

Consequently it is sufficient to show that���arg
�z � z0

ε
γpt�q pγpt�q � εHpσpt�q, γpt�q, a, εqq

	
� π

���   π

2
.

Now define ρ � 1
2
pα� σ1q ¡ 0 and choose s1   s such that s1   pr{2Mq sin ρ which

implies that the next inequality is satisfied (remember that ε P Sp0, π � σ1, s1q):

|εHpppt�q, γpt�q, a, εq| ¤ s1M ¤ r

2
sin ρ.

By proposition 3.1.5 we then have, since

arg
�
γ pt�q

	
� � arg pγ pt�qq and |γ pt�q| � r

2
,



3.1. TRACING SUMMABILITY ALONG THE CRITICAL CURVE 73

that ���arg
�z � z0

ε
γpt�q pγpt�q � εHpppt�q, γpt�q, a, εqq

	
� π

���
 

���arg
z � z0

ε
� π

���� ρ �
���arg

z0 � z

ε

���� ρ.

Given that z lies in a sector with opening angle α and that z0 can be chosen freely

on the ending arc, it is easy to see that the argument of z0 � z can be freely chosen

between �α and α.

When the argument of ε is non-negative we choose

α

2
  argpz0 � zq   1

2
pπ � σ1 � αq,

while for argpεq   0 we take

�1

2
pπ � σ1 � αq   argpz0 � zq   �α

2
.

One can see that such a choice can be made by the assumptions α   π
2

, 0   σ1 and

that they guarantee that
��arg z0�z

ε

��   1
2
pπ � σ1 � αq. It follows that we get���arg

�z � z0

ε
γpt�q pγpt�q � εHpppt�q, γpt�q, a, εqq

	
� π

���
  1

2
pπ � σ1 � αq � ρ � π

2

given the definition of ρ in this proof.

Gevrey asymptotics of the extension

We are now quite close to showing Theorem 3.1.3. It remains to show that the analytic

continuation provided in Lemma 3.1.6 is 1-summable w.r.t. ε uniformly for x near

rX1, 0s.
Let y � Gpx, a, εq be the continuation provided by Lemma 3.1.6. We will define a

second solution y � G1px, a, εq defined for x near r�Λ, 0s, but for ε on a different

sector. We will then consider the difference G � G1 for ε in overlapping sectors

and show that it is exponentially small w.r.t. |ε| as ε Ñ 0. By the Ramis-Sibuya

theorem 1.2.12 it can then be concluded that both G and G1 are Gevrey-1 asymptotic

to the same formal power series Ĝpx, a, εq, uniformly for px, aq given near rX1, 0s �
ta0u. Furthermore, since the ε-sector of G has opening angle larger than π, G will be

1-summable w.r.t. ε in the bisecting direction.

Lemma 3.1.7. Assume pH1q, pH2q and pH3q are satisfied. Let 0   τ   π
2

be fixed.

The solution of

ε
dy

dx
� y � εHpx, y, a, εq

yp�Λ, a, εq � 0
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is defined and analytic on V � Bpa0, sq � S
�
π, π � τ, s2

�
for some s2 ¡ 0 and V a

neighbourhood of r�Λ, 0s. We may assume that the solution is bounded by r{2.

Proof: The proof is completely analogous to the proof of Lemma 3.1.6. Note

that when comparing the situation described in Lemma 3.1.6 with the one here, it

is relevant to see that the real part of ε is negative here, and hence exponential

attraction is experienced while continuing the solution at x � �Λ to values of x in

r�Λ, 0s which in essence lie to the right of �Λ in the complex plane.

The following lemma finishes the proof of theorem 3.1.3.

Lemma 3.1.8. Using the notations and assumptions from lemma 3.1.6, lemma 3.1.7,

together with the extra assumption σ1

2
  τ   σ1, we have the following.

Denote ν � min
 
s1, s2

(
. The solution from lemma 3.1.6, limited to

rV �Bpa0, sq � S
�
0, π � σ1, ν

�
,

with rV a neighbourhood of rX1, 0s, is Gevrey-1 asymptotic, in ε, to a formal series,

uniformly for px, aq and thus it is 1-summable.

Remark 3.1.9. It is possible to prove the above result on (almost) the entire domain

of the x variable which was found in lemma 3.1.6, this is however not necessary for

our goal and would make the proof more convoluted.

Proof: [Proof of lemma 3.1.8] Denote Gpx, a, εq the solution found in lemma 3.1.6

and G1px, a, εq the solution from the above lemma. If we put

∆px, a, εq � Gpx, a, εq �G1px, a, εq,

it satisfies the following equation

ε
d∆

dx
� ∆� ε

�
Hpx,Gpx, a, εq, a, εq �Hpx,G1px, a, εq, a, εq�
∆p�Λ, a, εq � G p�Λ, a, εq .

Since

Hpx,Gpx, a, εq, a, εq �Hpx,G1px, a, εq, a, εq

�
» 1

0

BH
By

�
x, p1� sqG1px, a, εq � sGpx, a, εq, a, ε�dslooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

Rpx,a,εq

∆px, a, εq

it must hold that

∆px, a, εq � Gp�Λ, a, εqe
³x
�Λ Rpw,a,εqdwe

x�Λ
ε .

Denote

M̃ � sup
x,y,a,ε

|Hpx, y, a, εq| ,
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where the supremum is taken for x P Sp0, 2α,Λq � Λ, |y|   r, |a� a0|   r, ε P
S
�
0, π � σ1, ν

�
By Cauchy’s inequalities it holds that (remember that both G and G1 are bounded

by r{2)

|Rpx, a, εq| ¤ 3

r
M̃

for all px, a, εq in its domain. It follows that

|∆px, a, εq| ¤ |Gp�Λ, a, εq| e|
³x
�Λ Rpw,a,εqdw|eRep x�Λ

ε q

¤ r

2
e

3M̃|x�Λ|
r e| x�Λ

ε | cospargp x�Λ
ε qq

¤ r

2
e

3M̃Λ
r e| x�Λ

ε | cospargp x�Λ
ε qq.

To make further estimates we will restrict ourselves to the following domain for the

x variable. Define

rV :�
�
V X S p0, σ1 � τ,Λq � Λ

	
zB

�
�Λ,

X1 � Λ

2



.

Notice that for x P rV we have |x� Λ| ¥ X1�Λ
2

. It is furthermore cumbersome but

easy to check that for x P Ṽ and ε P Sp0, π � σ1, νq X Spπ, π � τ, νq,

arg

�
x� Λ

ε



P
�
π

2
� σ1

2
� τ,

3π

2
� σ1

2
� τ

�
.

Consequently we have

|∆px, a, εq| ¤ r

2
e

3M̃Λ
r e

�X1�Λ
2|ε|

cos
�
π
2
�σ1

2
�τ

	

for all px, a, εq P rV �Bpa0, sq � Sp0, π � σ1, νq X Spπ, π � τ, νq.
The Ramis-Sibuya theorem 1.2.12 guarantees the existence of a formal Gevrey-1 series

pGpx, a, εq � 8̧

n�0

gnpx, aqεn,

where the gn are analytic on rV �Bpa0, sq, such that G �1
pG w.r.t ε P Sp0, π � σ1, νq

uniformly for px, aq P rV �Bpa0, sq. Thus G is 1-summable.

3.2 Connection across the turning point

In this section we will limit ourselves to slow-fast systems with a turning point which

can be transformed, locally around the turning point, into a system of the form$''&''%
9x � ε

9y � pxp�1y � εHpx, y, a, εq
9ε � 0.

(3.2.1)
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Where H is analytic and satisfies Hp0, 0, a0, 0q � 0, BH
Ba p0, 0, a0, 0q � 0, notice that p

has to be an even number for x � 0 to be a turning point, i.e. for the stability of the

critical curve, y � 0, to change through x � 0.

It is shown in [FS13] that every system of the form$''&''%
9x � ε

9y � ϕpxqy � εHpx, y, a, εq
9ε � 0,

with ϕpxq a real analytic function with a zero of order p�1 at x � 0 andHp0, 0, a0, 0q �
0, BH

Ba p0, 0, a0, 0q � 0, can be transformed into this form. The authors also give some

conditions on more general systems, such that the necessary transformation exists.

Setting u � ε1{p, using the branch of the p-th root for which 11{p � 1, we prove the

following theorem

Theorem 3.2.1. Suppose Hpx, y, a, εq is a bounded analytic function on

Bp0, rq �Bp0, rq �Bpa0, rq �B p0, rq

with Hp0, 0, a0, 0q � 0, BH
Ba p0, 0, a0, 0q � 0. Moreover let there exist invariant man-

ifolds of system (3.2.1), G1px, a, εq and G2px, a, εq, 1-summable in the real direction

and defined on

Bp	λ, sq �Bpa0, rq � S p0, π � σ, rq
for certain λ, s ¡ 0.

Then there exists a function apuq, p-summable in the real direction, such that the

system $''&''%
9x � up

9y � pxp�1y � upHpx, y, apuq, upq
9u � 0,

(3.2.2)

has an invariant manifold of the form y � Gpx, uq, defined for x P r�λ, λs � s0, r0s
for some r0 ¡ 0 and extending the manifolds G1 and G2.

Remark 3.2.2. Notice that by the results from the previous sections the existence of

such invariant manifolds is guaranteed if there are slow-fast saddles present on both

the attracting and repelling part of the critical curve.

3.2.1 Extension of invariant manifolds to 0

The general idea of the proof is to further extend the invariant manifolds until they

reach x � 0 and then search for conditions on the parameter a guaranteeing that the

two extensions are matched. The continuation of these manifolds will be done under

two transformations which resemble, using the terminology of blow-up maps in real
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variables, the phase-directional rescaling and family rescaling chart, see for example

[DR01]. We note that the transformations used here actually arise as charts from a

blow-up procedure in complex variables, the construction of which is slightly different

than in the real case, see for example [BM88]. It is not necessary to introduce the

complex blow-up procedure as we can work directly with the charts.

Phase-directional rescaling chart

The first chart we concentrate ourselves upon is a phase-directional rescaling chart,

given by

x � v

y � vy

u � vu

which is clearly an analytic map with an analytic inverse between a domain and its

image, provided that the domain does not contain any points where v � 0. Applying

this transformation to the system (3.2.2) gives$''&''%
9v � vpup

9y � vp�1 pp� upq y � vp�1upH pv, vy, a, pvuqpq
9u � �vp�1up�1.

Dividing by the common factor vp�1 we arrive at$''&''%
9v � vup

9y � pp� upq y � upH pv, vy, a, pvuqpq
9u � �up�1.

(3.2.3)

Since invariant manifolds of the second system will also be invariant manifolds of the

first system, we may focus on the second one.

In the following lemma we use the notations, by which we described the domain where

equation (3.2.2) holds.

Proposition 3.2.3. Let p be even, k P t0, . . . , p � 1u, ρ, θ1, θ2,∆ ¡ 0 satisfying

ρ� θ1 � θ2 �∆   π
2

, v0 P Bp0, rqzt0u, 0   R   r and K P C with |K|   R.

There exists a U ¡ 0 such that for

u1 P S
�

2πk

p
,
π

p
� 2

p
pρ� θ1 � θ2 �∆q , p

?
U



v1 P ppvp0 � S pπ � arg pvp0q , 2θ1qq X S parg pvp0q , 2θ2qq

1
p � Ω pv0, θ1, θ2q ,

where the branch of the p-th root is chosen such that pvp0q
1
p � v0 and the branch line

lies opposite to the point vp0 , we have the following. (See figure 3.2 for an example of

an Ω pv0, θ1, θ2q.)
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The solution of the initial value problem given by equation (3.2.3) supplemented with

vp0q � v0 ; yp0q � K

v0
; up0q � v1u1

v0

is defined on
�
0,

v
p
1�v

p
0

ppu1v1qp
�

with the endpoint given by�
v1, y

�
vp1 � vp0
ppu1v1qp



, u1



.

Moreover
���y �a, v

p
1�v

p
0

ppu1v1qp
	��� ¤ R

|v0| .

Proof: Two calculations will be deferred until after the proof, they will be labelled

(C1), (C2).

Let M � sup|x|,|y|,|a�a0|,|ε| r |H px, y, a, εq| and choose 0   U   min
!

r
|v0|p , p sin p∆q

)
sufficiently small such that

U

p� U
  R

M |v0| sin pρq

holds.

We start off by looking at the solutions of$&% 9v � vup

9u � �up�1.

vp0q � v0 ; up0q � v1u1

v0

Clearly these are given by

vptq � v1u1

�
pt�

�
v0

v1u1


p
 1
p

uptq �
�
pt�

�
v0

v1u1


p
� 1
p

where in both expressions the branch of the p-th root given by 1
1
p � e

i 2πk
p (and thus

pup1q
1
p � u1) with branch line the negative real axis.

Notice that vptquptq is a constant function equal to v1u1, which also follows by cal-

culating that the derivative of vptquptq is 0.

By defining

Tv1,u1 �
vp1 � vp0
p pu1v1qp ,

we get

v pTv1,u1q � v1 ; u pTv1,u1q � u1.

One can compute that both solutions are well defined on r0, Tv1,u1 s. We remark that,

due to how we defined Ω pv0, θ1, θ2q,

|arg pTv1,u1q � π � arg pup1q|   θ1 � θ2. (3.2.4)
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We now concentrate on showing that the initial value problem

9y � pp� puptqqpq y � puptqqpH pvptq, vptqy, a, pv1u1qpq

yp0q � K

v0

has a solution on an environment of r0, Tv1,u1 s. By denoting γ psq � y psTv1,u1q it

suffices to show that

dγ

ds
�Tv1,u1

���pp� u psTv1,u1qpq γ

� u psTv1,u1qpH pv psTv1,u1q , v psTv1,u1q γ, a, pv1u1qpqloooooooooooooooooooooooooomoooooooooooooooooooooooooon
Hv1,u1

ps,γ,aq

��

γp0q � K

v0

has a maximal solution on ss2, s1r with s1 ¡ 1.

Assume by contradiction that s1 ¤ 1. Since for all s Ps0, s1r

|v psTv1,u1q|   |v0|   r, (C1)

|u psTv1,u1q|   p
?
U, (C2)

we arrive at a contradiction when we show |γpsq| ¤ R
|v0| .

Thus, suppose that there exists an s� Ps0, s1r with |γps�q| � R
|v0| . We show that

d
ds

�
s ÞÑ |γpsq|2� ps�q   0. Since

d

ds

�
s ÞÑ |γpsq|2� psq � 2 Re

�
γpsqdγ

ds
psq



it suffices to show���� π � arg pTv1,u1 pp� u ps�Tv1,u1qpqq

� arg

�
γps�q

�
γps�q � u ps�Tv1,u1qp

p� u ps�Tv1,u1qp
Hv1,u1ps�, γps�q, aq



����   π

2

(3.2.5)

since this would imply that d
ds

�
s ÞÑ |γpsq|2� ps�q   0.

By proposition 3.1.5����arg

�
γps�q

�
γps�q � u ps�Tv1,u1qp

p� u ps�Tv1,u1qp
Hv1,u1ps�, γps�q, aq



����   ρ

if ���� u ps�Tv1,u1qp
p� u ps�Tv1,u1qp

Hv1,u1ps�, γps�q, aq
����   R

|v0| sinpρq

and this is the case when���� u ps�Tv1,u1qp
p� u ps�Tv1,u1qp

����   R

M |v0| sinpρq.
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By (C2) and using U   p sinp∆q   p, we have���� u ps�Tv1,u1qp
p� u ps�Tv1,u1qp

����   U

p� U
  R

M |v0| sinpρq.

Thus (3.2.5) holds if

|π � arg pTv1,u1 pp� u ps�Tv1,u1qpqq|  
π

2
� ρ.

Now

|π � arg pTv1,u1 pp� u ps�Tv1,u1qpqq |
¤ |π � arg pTv1,u1q � arg pup1q| � |arg pup1q � arg pp� u ps�Tv1,u1qpq|

Such that by (3.2.4)

|π � arg pTv1,u1 pp� u ps�Tv1,u1qpqq |
  θ1 � θ2 � |arg pup1q � arg pp� u ps�Tv1,u1qpq|
¤ θ1 � θ2 � π

2
� pρ� θ1 � θ2 �∆q � |argppq � arg pp� u ps�Tv1,u1qpq|

and this implies by proposition 3.1.5, (C2), and our choice of U that

|π � arg pTv1,u1 pp� u ps�Tv1,u1qpqq |
  π

2
� pρ�∆q �∆ � π

2
� ρ.

We have thus proven that equation (3.2.5) holds.

Proof: [Proof of (C1)] It is easily seen that

|v psTv1,u1q| � |v0|
����s�v1

v0


p
� p1� sq

���� 1
p

.

To prove (C1) it thus suffices to show
���s� v1

v0

	p
� p1� sq

���   1 which follows if
��� v1
v0

���p  
1.

By our choice of Ω pv0, θ1, θ2q we have

vp1 P pvp0 � S pπ � arg pvp0q , 2θ1qq X S parg pvp0q , 2θ2q .

This implies that �
v1

v0


p
P p1� S pπ, 2θ1qq X S p0, 2θ2q .

The boundaries of these sectors intersect in the points tanpθ1q
tanpθ1q�tanpθ2q�i

tanpθ1q tanpθ2q
tanpθ1q�tanpθ2q .

One can check that the modulus of these points is strictly smaller than 1, due to the

convexity of the disk of radius 1, this shows us that
��� v1
v0

���p   1.

Proof: [Proof of (C2)] We have

|u psTv1,u1q| �
|u1|���s� p1� sq

�
v0
v1

	p��� 1
p

.



3.2. CONNECTION ACROSS THE TURNING POINT 81

Figure 3.2: Ωp�1, 0.1, 0.3q

Since
���arg

�
v
p
0�v

p
1

v
p
1

	���   π
2

(by definition of Ω pv0, θ1, θ2q) we have����s� p1� sq
�
v0

v1


p���� ¥ s� p1� sqRe

��
v0

v1


p

� s� p1� sq � p1� sqRe

�
vp0 � vp1
vp1



� 1� p1� sqRe

�
vp0 � vp1
vp1



¡ 1

and consequently

|u psTv1,u1q|   |u1|   p
?
U.

Consider the invariant manifolds y � G1 px, a, upq and y � G2 px, a, upq of system

(3.2.2). By restricting them to

Bp	λq �Bpa0, rq � S

�
0,
π � σ

p
, s



for s ¡ 0 sufficiently small, we may assume that |G1,2px, a, upq|   R (we use the

notations from proposition 3.2.3). Choose furthermore an α ¡ 0 such that 2pα   π

and
 	λeiβ |β P r�α, αs( � Bp	λq

Corollary 3.2.4. We reuse the notations from proposition 3.2.3. The extra demand

0   pα� ρ� θ1 �∆   σ
2

is also needed.

Under these conditions, there exists a U ¡ 0 such that the system

9v � vup

9y � pp� upq y � upH pv, vy, a, pvuqpq
9u � �up�1.
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has two analytic invariant manifolds. The first, pv,Υ1pv, a, uq, uq, is defined for

pv, a, uq in¤
βPr�α,αs

Ω
�
�λeiβ , θ1, θ2

	
�B pa0, rq � S

�
π,
π

p
� 2

p
pρ� θ1 � θ2 �∆q , p

?
U



The second, pv,Υ2pv,A, uq, uq, is defined for pv, a, uq in¤

βPr�α,αs
Ω
�
λeiβ , θ1, θ2

	
�B pa0, rq � S

�
0,
π

p
� 2

p
pρ� θ1 � θ2 �∆q , p

?
U




Moreover, both |Υ1pv, a, uq| and |Υ2pv, a, uq| are bounded by R
λ

Proof: Since the proof is analogous for both invariant manifolds, we prove the

existence of the manifold Υ1.

Let pv1, u1q be elements from the domain specified in the lemma. Consider the fol-

lowing initial value problem$'''&'''%
9v � vup

9y � pp� upq y � upH pv, vy, a, pvuqpq
9u � �up�1.

(3.2.6a)

vp0q � �λ ; yp0q � �G1 p�λ, a, pv1u1qpq
λ

; up0q � �v1u1

λ
. (3.2.6b)

We have that

vptq � v1u1

�
pt�

�
λ

v1u1


p
 1
p

yptq � G1 pvptq, a, pv1u1qpq
vptq

uptq �
�
pt�

�
λ

v1u1


p
� 1
p

is a solution to the above problem and it is defined for t in a neighbourhood of"
λp

ppv1u1qp
�
epiβ � 1

	
|β P r�α, αs

*
.

Using proposition 3.2.3 we also know that the system consisting of (3.2.6a) with initial

values

vp0q � �λeiβ̃ ; yp0q � �
G1

�
�λeiβ̃ , a, pv1u1qp

	
λeiβ̃

; up0q � �v1u1

λeiβ̃
,

with β̃ chosen such that v1 P Ω
�
�λeiβ̃ , θ1, θ2

	
, has a solution defined for t in a

neighbourhood of

�
0,

v
p
1�

�
λeiβ̃

	p
ppv1u1qp

�
.
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Consequently the solution to the problem (3.2.6a) with initial values (3.2.6b) is defined

for t in a neighbourhood of some path between 0 and
v
p
1�λp

ppv1u1qp . By analytic dependence

upon initial values we have that the general solution to (3.2.6a); (3.2.6b),

vpv1u1; tq , ypv1u1; tq , upv1u1; tq,

consists of analytic functions in the variables v1u1 and t. It follows that the map

pv1, u1q ÞÑ
�
v1, y

�
v1u1;

vp1 � λp

ppv1u1qp


, u1



is also analytic. The inequality follows readily from proposition 3.2.3.

Lemma 3.2.5. Take λ̃ ¡ 0 sufficiently small such that S
�
π, 2

�
α� θ2

p

	
, λ̃

	
is con-

tained in
�
βPr�α,αs Ω

��λeiβ , θ1, θ2

�
. The function Υ1pv, a, uq from corollary 3.2.4 is

Gevrey- 1
p

asymptotic to a formal series for v P S
�
π, 2

�
α� θ2

p

	
, λ̃

	
, uniformly for

pa, uq. An analogous statement holds for Υ2pv, a, uq.

Proof: The proof can be given in a nearly identical manner as the proofs of propo-

sition 6.24 and theorem 6.25 in [DM03].

Proposition 3.2.6. Let

f̂1,2pv, a, uq �
8̧

n�0

f1,2
n pa, uqvn

be the formal series associated to Υ1 resp. Υ2 as in lemma 3.2.5. The coefficient of

v0 is given by

�Hp0, 0, a, 0q
p

» 8

1

z
1
p
�1
e

1�z
up dz

for both formal series

Proof: Since the proof is exactly the same for Υ1 and Υ2 we only treat Υ1. Since

pv,Υ1, uq is an invariant manifold of system (3.2.3) it must hold that

vup
BΥ1

Bv pv, a, uq � up�1 BΥ1

Bu pv, a, uq

� pp� upqΥ1pv, a, uq � upH pv, vΥ1pv, a, uq, a, pvuqpq .

Since Υ1pv, a, uq � 1
p
f̂1pv, a, uq w.r.t. v it follows that

Υ1pv, a, uq vÑ0ÝÝÝÑ f1
0 pa, uq

BΥ1

Bv pv, a, uq vÑ0ÝÝÝÑ f1
1 pa, uq

BΥ1

Bu pv, a, uq vÑ0ÝÝÝÑ Bf1
0

Bu pa, uq.
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Consequently we must have

�up�1 Bf1
0

Bu pa, uq � pp� upqf1
0 pa, uq � upH p0, 0, a, 0q ,

moreover by proposition 3.2.3 it must hold that limuÑ0 f
1
0 pa, uq � 0. This implies

that the following identity holds

f1
0 pa, uq � �Hp0, 0, a, 0q

» u
0

t�1e
³u
t
sp�p

sp�1 ds
dt

� uHp0, 0, a, 0q
» 0

u

t�2eu
�p�t�pdt.

Using the path γpzq � uz
� 1
p with z P r1,8r we get

f1
0 pa, uq � �Hp0, 0, a, 0q

p

» 8

1

z
1
p
�1
e

1�z
up dz.

Family rescaling chart

To let our two manifolds actually meet each other we will have to switch to another

chart, which resembles the family rescaling chart, this is given by

x � wX

y � wY

u � w

which is an analytic map with analytic inverse on domains which do not contain

w � 0. Applying this transformation to our system (3.2.2), which we repeat for the

sake of convenience, $''&''%
9x � up

9y � pxp�1y � upHpx, y, a, upq
9u � 0

brings us, after dividing by a common factor wp, to the system$''&''%
9X � 1

9Y � pXp�1Y �HpwX,wY, a, wpq
9w � 0.

(3.2.7)

By corollary 3.2.4 and lemma 3.2.5, there exist two invariant manifolds of this system�
X,XΥ1

�
wX, a,X�1

�
, w

�
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defined and holomorphic on"
pX,wq

���� X P S
�
π,
π

p
� 2

p
pρ� θ1 � θ2 �∆q


J
B

�
0,

1
p
?
U



,

wX P S
�
π, 2

�
α� θ2

p



, λ̃


*
�B pa0, rq

and �
X,XΥ2

�
wX, a,X�1

�
, w

�
defined and holomorphic on"

pX,wq
���� X P S

�
0,
π

p
� 2

p
pρ� θ1 � θ2 �∆q


J
B

�
0,

1
p
?
U



,

wX P S
�

0, 2

�
α� θ2

p



, λ̃


*
�B pa0, rq .

Moreover if we take some X0 P S
�

0, π
p
� 2

p
pρ� θ1 � θ2 �∆q

	
zB

�
0, 1

p?
U

	
, both

�X0Υ1

��wX0, a,�X�1
0

�
and X0Υ2

�
wX0, a,X

�1
0

�
are Gevrey- 1

p
asymptotic to a

formal series for w P S
�
� argpX0q, 2

�
α� θ2

p

	
, λ̃
|X0|

	
.

Proposition 3.2.7. For every

X0 P S
�

0,
π

p
� 2

p
pρ� θ1 � θ2 �∆q


J
B

�
0,

1
p
?
U



there exist δ ¡ 0 such that the solution to

dY

dX
� pXp�1Y �HpwX,wY, a, wpq

Y pX0, a, wq � X0Υ2

�
wX0, a,X

�1
0

�
is defined and analytic on

rX0, 0s �B pa0, rq � S

�
� argpX0q, 2

�
α� θ2

p



, δ



.

Furthermore, for the same X0, the solution to

dY

dX
� pXp�1Y �HpwX,wY, a, wpq

Y p�X0, a, wq � �X0Υ1

��wX0, a,�X�1
0

�
is also defined and analytic on

r�X0, 0s �B pa0, rq � S

�
� argpX0q, 2

�
α� θ2

p



, δ



.

Proof: We prove the result for the first initial value problem

dY

dX
� pXp�1Y �HpwX,wY, a, wpq

Y pX0, a, wq � X0Υ2

�
wX0, a,X

�1
0

�
.
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The argument for the other one is analogous.

Denote

M � max

$'''&'''% sup
vPS

�
0,2

�
α� θ2

p

	
,δ
	

|a| r

��Υ2

�
v, a,X�1

0

��� , sup
|x|,|y|,|a�a0|,|ε|

|H px, y, a, εq|

,///.///-
and set δ � r

8|X0|M .

It suffices, by holomorphic dependence of solutions on parameters, to show that for

fixed values of pa,wq P B pa0, rq � S
�
� argpX0q, 2

�
α� θ2

p

	
, δ
	

the solution to the

initial value problem satisfies |wY pXq| ¤ r
2

for all rX0, 0s. Suppose by contradiction

that there exists an X� for which |wY pX�q| � r
2

and |wY pXq|   r
2

for all rX0, X�s.
Since the solution satisfies

Y pX, a,wq �X0Υ2

�
wX0, a,X

�1
0

�
eX

p�Xp0

�
» X
X0

H pws,wY ps, a, wq , a, wpq eXp�spds

this would imply that, if we denote X� � cX0 with c P s0, 1r,

|Y pX�, a, wq| ¤ |X0|Mepc
p�1qRepXp0 q �M |X0|

» c
0

ep1�tqpc
p�1qRepXp0 qdt.

Noticing that Re pXp
0 q ¡ 0 shows that

|wY pX�q| ¤ δ2M |X0| � r

4
  r

2

which is the contradiction we wanted to achieve.

Remark 3.2.8. It is clear from the above proof that a δ associated to a X0 as in the

proposition, this same δ will also allow us to prove the result for any other

X̃0 P S
�

0,
π

p
� 2

p
pρ� θ1 � θ2 �∆q


J
B

�
0,

1
p
?
U



provided that

���X̃0

��� � |X0|.
We now show that the saturations of the invariant manifolds from proposition 3.2.7

above, can be connected to each other at 0, for a good choice of the parameter a. For

this we will employ the Gevrey implicit function theorem 1.2.15.

Consider some X̃ ¡ 1
p?
U

.

Lemma 3.2.9. Let β Ps � π
2p
� 1

p
pρ� θ1 � θ2 �∆q, π

2p
� 1

p
pρ� θ1 � θ2 �∆qr, there

exists an analytic function aβpwq defined for w P S
�
�β, 2

�
α� θ2

p

	
, ωβ

	
, for some

ωβ ¡ 0, with aβpwq � a0 such that Y β1 p0, aβpwq, wq � Y β2 p0, aβpwq, wq. Here Y β1 and

Y β2 are the solutions associated to X̃eiβ as in proposition 3.2.7.

Moreover aβpwq is a Gevrey- 1
p

function.
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Proof: We have

Y β1 p0, a, wq � � X̃eiβe�pX̃eiβq
p

Υ1

�
�wX̃eiβ , a,�

�
X̃eiβ

	�1



�
» 0

�X̃eiβ
H

�
wz,wY β1 pz, a, wq, a, wp

	
e�z

p

dz

and

Y β2 p0, a, wq �X̃eiβe�pX̃e
iβqpΥ2

�
wX̃eiβ , a,

�
X̃eiβ

	�1



�
» 0

X̃eiβ
H

�
wz,wY β2 pz, a, wq, a, wp

	
e�z

p

dz.

Consider the time-p�X̃eiβq and time-pX̃eiβq mappings associated to the analytic

differential equation

dY

dX
� pXp�1Y �HpwX,wY, a, wpq.

The above expressions are the images of �X̃eiβΥ1p�wX̃eiβ , a,�pX̃eiβq�1q resp.

X̃eiβΥ2pwX̃eiβ , a, pX̃eiβq�1q under these mappings. Theorem 1.2.13 thus shows that

these expressions are Gevrey- 1
p
, uniformly in a, for w P Sp�β, 2pα� θ2

p
q, δ2q.

By proposition 3.2.6 we have

lim
wÑ0

Y β2 p0, a, wq � Y β1 p0, a, wq

� Hp0, 0, a, 0q
�
�2X̃eiβe�pX̃eiβqp

p

» 8

1

z
1
p
�1
ep1�zqpX̃eiβq

p

dz

�
» �X̃eiβ

X̃eiβ
e�z

p

dz

�

� Hp0, 0, a, 0q
�
�2X̃eiβ

p

» 8

1

z
1
p
�1
e�zpX̃eiβq

p

dz �
» �X̃eiβ

X̃eiβ
e�z

p

dz

�
from which it follows that the coefficient of w0 of the formal series associated to the

Gevrey- 1
p

function Y β2 p0, a, wq � Y β1 p0, a, wq is given by the expression above. Using

the Gevrey implicit function theorem 1.2.15, we prove the result if we can show that

Hp0, 0, a0, 0q
�
�2X̃eiβ

p

» 8

1

z
1
p
�1
e�zpX̃eiβq

p

dz �
» �X̃eiβ

X̃eiβ
e�z

p

dz

�
� 0

and

BH
Ba p0, 0, a0, 0q

�
�2X̃eiβ

p

» 8

1

z
1
p
�1
e�zpX̃eiβq

p

dz �
» �X̃eiβ

X̃eiβ
e�z

p

dz

�
� 0.

Using our assumption in theorem 3.2.1 that Hp0, 0, a0, 0q � 0 and BH
Ba p0, 0, a0, 0q � 0,

it clearly suffices to check that

�2X̃eiβ

p

» 8

1

z
1
p
�1
e�zpX̃eiβq

p

dz �
» �X̃eiβ

X̃eiβ
e�z

p

dz � 0.
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One can calculate that

�2X̃eiβ

p

» 8

1

z
1
p
�1
e�zpX̃eiβq

p

dz �
» �X̃eiβ

X̃eiβ
e�z

p

dz

� �2X̃eiβ

p

» 8

0

z
1
p
�1
e�zpX̃eiβq

p

dz

� �2

p

» 8ppβq

0

z
1
p
�1
e�zdz

� �2

p

» 8

0

z
1
p
�1
e�zdz

� �2

p
Γ

�
1

p



� 0.

Corollary 3.2.10. The functions aβ in lemma 3.2.9 are all analytic continuations

of each other. Together they form a p-summable function.

Proof: We first prove that the functions are all continuations of each other. Suppose

that β1 and β2 are such that

S

�
�β1, 2

�
α� θ2

p



, ωβ1



X S

�
�β2, 2

�
α� θ2

p



, ωβ2



� H,

this intersection is then again a sector. By reducing the opening of this sector slightly

one can see that Υ1p�wX, a,�X�1q and Υ2pwX, a,X�1q are defined for w in this

sector and X in some neighbourhood of
!
X̃eiα |α P rβ1, β2s

)
. One then sees, using

the uniqueness of solutions for analytic initial value problems, that both

Y β1
1 p0, aβ1pwq, wq � Y β1

2 p0, aβ1pwq, wq

and

Y β1
1 p0, aβ2pwq, wq � Y β2

1 p0, aβ2pwq, wq
� Y β2

2 p0, aβ2pwq, wq � Y β1
2 p0, aβ2pwq, wq

hold.

Using the uniqueness part in the Gevrey implicit function theorem we get that aβ1

and aβ2 are analytic continuations of each other.

To prove the summability property it suffices to show that a finite union of sec-

tors of the form S
�
�β, 2

�
α� θ2

p

	
, ωβ

	
covers a sector with opening larger than π

p
.

Since β can be any value in
�
� π

2p
� 1

p
pρ� θ1 � θ2 �∆q, π

2p
� 1

p
pρ� θ1 � θ2 �∆q

�
, it

is quickly checked that a finite union of sectors can be found to cover all directions

in any compact subset of
�
�π�2ppα�ρ�θ1�∆q

2p
, π�2ppα�ρ�θ1�∆q

2p

�
. In corollary 3.2.4 it
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x

u

−λ λ

δ

Figure 3.3: The domains of Υ1

�
x, a, u

x

�
(in blue), Υ1

�
x, a, u

x

�
(in green) and

Y
�
x
u
, a puq , u� (in red)

was assumed that pα� ρ� θ1 �∆ ¡ 0 and thus the opening of the union can indeed

be taken larger than π
p

.

Combining the previous results allows us to prove theorem 3.2.1.

Proof: [Proof of theorem 3.2.1] By the assumptions of theorem 3.2.1 there exist

invariant manifolds y � G1 px, a, εq and y � G2 px, a, εq around x � �λ resp. x � λ.

In corollary 3.2.4 it is shown that these manifolds can be extended, in the “phase-

directional” coordinates, to invariant manifolds y � Υ1 pv, a, uq and y � Υ2 pv, a, uq.
One checks that the domain of definition of Υ1 contains the set r�λ, 0r �B pa0, rq ��
� p
?
U, 0

�
where both intervals are part of the real line. Rewriting this in the original

coordinates shows that y � G1 px, a, upq can be extended with the function y �
xΥ1

�
x, a, u

x

�
to the domain where a P B pa0, rq and px, uq satisfy x P r�λ, 0r and

u P
�
0,�x p

?
U
�
.

Similarly y � G2 px, a, upq can be extended by y � xΥ2

�
x, a, u

x

�
to the domain where

a P B pa0, rq and px, uq satisfy x P s0, λs and u P
�
0, x p

?
U
�
.

By proposition 3.2.7, lemma 3.2.9 and corollary 3.2.10 one can choose an X0 P�
1
p?
U
,�8

�
such that in the “family rescaling” coordinates the above extension can

be further extended by a function Y pX, a pwq , wq which is defined for pX,wq P
r�X0, X0s � s0, δr for a certain δ ¡ 0. Rewriting in the original coordinates, this

extension is of the form y � uY
�
x
u
, a puq , u� where px, uq satisfies u P s0, δr and

x P r�uX0, uX0s.
In figure 3.3 the domains of the extensions are depicted.

To further illustrate the result in theorem 3.2.1 we introduce two notions from [FS03].

Definition 3.2.11. A (local) canard solution of (3.2.2) is a function Φ px, uq defined
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and bounded on s�d, dr � s0, u0s for d, u0 ¡ 0 such that for each fixed value of u,

x ÞÑ Φ px, uq is an invariant manifold of (3.2.2).

Definition 3.2.12. Let D � C be a simply connected domain containing 0, and S

an open sector. A function Φ px, uq defined and bounded on D � S is called a (local)

overstable solution if for each fixed value of u, x ÞÑ Φ px, uq is an invariant manifold

of (3.2.2).

In theorem 3.2.1 we only achieve the existence of canard solutions. Our results do

not give overstable solutions, indeed, examining corollary 3.2.4 the extensions given

by y � xΥ1,2

�
x, a puq , u

x

�
are already not defined for x in a complete neighbourhood

of 0 but only on (deformed) sectors around part of the negative real axis (for Υ1) or

a part of the positive real axis (for Υ2). The other possible form of the extensions is

y � uY
�
x
u
, a puq , u� where the domain of definition is described in proposition 3.2.7.

This description is rather convoluted. One does see that to remain in the domain, for

a fixed x P Czt0u, x
u

should be bounded for uÑ 0, which is of course impossible.

The statement regarding the summability in theorem 3.2.1 is limited to the control

curve a puq. A natural question to ask is whether the canard curve itself also has

summability properties. The answer hereto is negative, as the following example

shows. Consider the system#
9x � u4

9y � 4x3y � u4 pa� xq .

Clearly the assumptions of theorem 3.2.1 are satisfied and thus the existence of a

control curve apuq is guaranteed, together with a canard solution y � G px, uq (for

the above system with a replaced by apuq). If G was summable w.r.t. the variable

u, uniformly in a neighbourhood of the turning point x � 0 (or even just Gevrey

asymptotic), the asymptotic expansions pa � °8
n�0 anu

n and pG � °8
n�0 gn pxqun

associated to resp apuq and G px, uq would formally satisfy the equation

u4 B pG
Bx px, uq � 4x3 pG px, uq � u4 ppa puq � xq .

It is then straightforward to calculate that necessarily

4x3g4 pxq � x� a0,

which is impossible without introducing a pole at the origin for g4. This result is con-

sistent with that in [DM07] where a similar study is done but for Gevrey asymptotics

on “narrow” regions instead of summability.

Collecting the results of theorems 2.3.1 (i), 3.1.1 and 3.2.1 we arrive at the following

conclusion.
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Theorem 3.2.13. Consider a real analytic slow-fast family of vector fields#
9x � εfpx, y, a, εq
9y � gpx, y, a, εq,

with points xa, xt, xr P R such that xt, a turning point, lies in between the two other

points, we may assume without loss of generality that xa   xt   xr. We furthermore

make the following assumptions.

• There exists a critical curve given by the graph y � ϕ0pxq (for a � a0), x P
rxa, xrs which is hyperbolically attracting to the left of xt and repelling to the

right of this point i.e.

Bg
By px, ϕ0pxq, a0, 0q   0, x P rxa, xtr,
Bg
By px, ϕ0pxq, a0, 0q ¡ 0, x Psxt, xrs,

Bg
By pxt, ϕ0pxtq, a0, 0q � 0.

• The points xa and xr are slow-fast saddle points with the slow dynamics di-

rected from the attracting to the repelling part of the critical curve, which is

characterized by

fpx�, ϕ0px�q, a0, 0q � 0;x� � xa, xr,� Bg
Bx �

Bf
By �

Bg
By �

Bf
Bx



px�, ϕ0px�q, a0, 0q ¡ 0;x� � xa, xr,

fpx, ϕ0pxq, a0, 0q ¡ 0;x Psxa, xrr.

• Locally around the turning point there exists an analytic transformation which

transforms the system into the form (3.2.1).

Under these assumptions there exists a function apuq, p-summable in the real direction

such that the system #
9x � upfpx, y, apuq, upq
9y � gpx, y, apuq, upq,

has an invariant manifold y � Gpx, uq defined for rxa, xrs which is p-summable in the

real direction in u, uniformly for x in compact sets of rxa, xrs which do not include

the turning point xt.

Let us conclude by remarking that an alternative method of proving this theorem

could have used the technique of combined asymptotic developments, developed in

[FS13].
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Chapter 4

Gevrey series in delay equations

In this chapter we consider the following system of singularly perturbed delay differ-

ential equations,#
9xptq � ε pa� γxptqq
9yptq � p1� Jq yptq � Jypt� τq � xptq � y3ptq

3

, (4.0.1)

with a P R, γ P R0, J, τ P R�
0 . This model can be encountered in mathematical

neuroscience, see [KT16]. This is very much a toy model, allowing us to exhibit the

use of Gevrey expansion techniques in the study of delay equations.

We are interested in slow manifolds of system (4.0.1), or equivalently center manifolds

of the extended system$''&''%
9xptq � εptq pa� γxptqq
9yptq � p1� Jq yptq � Jypt� τq � xptq � y3ptq

3

9εptq � 0

. (4.0.2)

4.1 Setting up a slow manifold equation

We will use the characterization of center manifolds found in [HVL93]. To this end

we rewrite (4.0.2) into a more appropriate form. Let, for α ¡ 0, ϕ P C �r�τ, α, s ,R3
�
,

then we define for for each t P r0, αs,

ϕt : r�τ, 0s Ñ R
3 : θ Ñ ϕ pt� θq .

Clearly ϕt P C
�r�τ, 0s ,R3

�
.

Definition 4.1.1. Given a function F : D � C �r�τ, 0s ,R3
� Ñ R

3. Denoting by

9X ptq the right sided derivative, the relation

9X ptq � F pXtq (4.1.1)

93
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x

y

1

−1

2/3−2/3

Figure 4.1: Equilibria of system (4.0.2) in the plane ε � 0, divided into the curves

f�, f0, f�.

is called an autonomous retarded functional differential equation. A function X is a

solution to (4.1.1) on r�τ, αr if X P C �r�τ, α, s ,R3
�
, Xt P D,@t P r0, αs and X ptq

satisfies (4.1.1) for t P r0, αr.

Using this definition, (4.0.2) can be rewritten as p 9x ptq , 9y ptq , 9ε ptqq � F pxt, yt, εtq
with the function

F : C
�r�τ, 0s ,R3

�Ñ R
3

: pϕ1, ϕ2, ϕ3q ÞÑ

����
ϕ3p0q pa� γϕ1p0qq

p1� Jqϕ2 p0q � Jϕ2 p�τq � ϕ1 p0q � ϕ3
2p0q
3

0

���
.
There is clearly a curve of equilibria of of F given by tpb : b P Ru, with

pb :�
�
�b� b3

3
, b, 0



,

see figure 4.1. One calculates that DF ppbq is given by

DF ppbq : C
�r�τ, 0s ,R3

�Ñ R
3

: pψ1, ψ2, ψ3q ÞÑ

����
ψ3p0q

�
a� γ

�
b� b3

3

		
�
1� b2

�
ψ2 p0q � J pψ2 p0q � ψ2 p�τqq � ψ1 p0q

0

���
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(as a norm on R3 we use the maximum norm and on C
�r�τ, 0s ,R3

�
the supremum

norm).

Similarly as in the ODE case, a value λ P C is a characteristic root of the linear

equation

9X ptq � DF ppbqXt (4.1.2)

if there exists a non-zero vector V P R3 such that V eλt is a solution to (4.1.2). Setting

X ptq � V eλt in (4.1.2) gives us that λ must satisfy����λ Id�

����
0 0 a� γ

�
b� b3

3

	
1 J

�
1� e�λτ

�� �
1� b2

�
0

0 0 0

���

���
V eλt � 0.

From this we see that λ is a solution to the characteristic equation

λ2
�
λ� �

1� b2
�� J

�
1� e�λτ

		
� 0.

In the ODE setting (τ � 0), the curve of singular points is normally hyperbolic almost

at all points pb (except for b � �1) meaning that almost everywhere λ � 0 is a root

of order 2 and there is one nonzero root. Also in the DDE setting, p�1 splits the

curve of equilibria in three parts, each of which is a graph where 0 is a root of order

2. Let us denote these graphs by f�, f0, f� where f�pxq   �1   f0pxq   1   f�pxq,
see figure 4.1. For all points on f0pxq, λ � 0 is the only characteristic root on the

imaginary axis. On f� there is a possibility for an extra pair of complex conjugated

characteristic roots of an equilibrium to lie on the imaginary axis. This, however, can

only happen in a finite number of points and it is not necessary for such points to

even exist. If, for example, Jτ ¤ 1, extra characteristic roots on the imaginary axis

do not appear.

From here on out, we focus on one of the three graphs and denote it for simplicity by

fpxq, we give the important remark that f is a holomorphic function and thus has

an extension to a subset of the complex plane. Choose any x0 in the domain of f for

which λ � 0 is the only root on the imaginary axis. Translating the graph to the x

axis and px0, f px0qq to the origin brings system (4.0.2) in the form$'''''''''&'''''''''%

9xptq � εptq pa� γx0 � γxptqq
9yptq � J pf pxptq � x0q � f pxpt� τq � x0qq

� �
1� J � f2 pxptq � x0q

�
yptq � Jypt� τq

�f pxptq � x0q y2ptq � y3ptq
3

�εptqf 1 pxptq � x0q pa� γx0 � γxptqq
9εptq � 0

. (4.1.3)

One can calculate directly that the solution to the first equation satisfies

xptq � xp0qe�εγt � a� γx0

γ

�
1� e�εγt

�
,
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from which it can be derived that

x pt� τq � xptq �
�
xptq � a� γx0

γ



peεγτ � 1q .

Thinking naively, one could then assume that a solution to the following equation,

εpa� γx0 � γxqBYBx px, εq

� J

�
f px� x0q � f

�
x�

�
x� a� γx0

γ



peεγτ � 1q � x0




� �

1� J � f2 px� x0q
�
Y px, εq � JY

�
x�

�
x� a� γx0

γ



peεγτ � 1q , ε



� f px� x0qY 2px, εq � Y 3px, εq

3
� εf 1 px� x0q pa� γx0 � γxq ,

(4.1.4)

satisfying Y px, 0q � 0,would induce a center manifold of system (4.1.3).

We show that this naive intuition is indeed correct.

4.2 Characterizing a center manifold

We use the following definition of a center manifold due to [HVL93].

Definition 4.2.1. Given an autonomous retarded functional differential equation

9X ptq � F pXtq (4.2.1)

and suppose F is continuously differentiable. If 0 is an equilibrium point of F , there

is a direct sum decomposition

C
�r�τ, 0s ,R3

� � U `N ` S

where U is finite dimensional and corresponds to the span of the generalized eigen-

vectors of the characteristic roots of DF p0q with positive real part and N is finite

dimensional and corresponds to the span of the generalized eigenvectors of the char-

acteristic roots of DF p0q with zero real part.

For a neighbourhood V of 0 P C �r�τ, 0s ,R3
�
, a local center manifold W c

loc p0q is a C1

submanifold that is a graph over V X N in C
�r�τ, 0s ,R3

�
, tangent to N at 0, and

locally invariant under the flow of (4.2.1). Said differently

W c
loc p0q �

 
ψ P C �r�τ, 0s ,R3

� |ψ � ϕ� h pϕq , ϕ P N X V
(

where h : N Ñ U ` S is a C1 mapping with h p0q � 0, Dh p0q � 0. Moreover, every

orbit that starts on W c
loc p0q remains in this set as long as it stays in V .
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Denoting the right hand side of (4.1.3) once again by F pxt, yt, εtq we find that

DF p0, 0, 0q pϕ1, ϕ2, ϕ3q �

���������

ϕ3 p0q pa� γx0q

Jf 1 px0q pϕ1 p0q � ϕ1 p�τqq �
�
1� f2 px0q

�
ϕ2 p0q

� J pϕ2 p0q � ϕ2 p�τqq � ϕ3 p0q f 1 px0q pa� γx0q

0

��������

.

The characteristic equation associated to this linear operator has, with our assump-

tions on x0, 0 as a characteristic root of order 2 and no other characteristic roots on

the imaginary axis.

The generalized eigenspace of the 0 root is two dimensional and given by the null

space of A2 with the linear operator

A : D pAq Ñ C �r�τ, 0s ,R3
�

: ϕ ÞÑ dϕ

dθ

where

D pAq �
"
ϕ P C �r�τ, 0s ,R3

� ���� dϕ

dθ
P C �r�τ, 0s ,R3

�
,

dϕ

dθ
p0q � DF p0, 0, 0q pϕq

*
.

Remark 4.2.2. The operator A is the infinitesimal generator of the semigroup of

solution operators associated to the equation

9X ptq � DF p0, 0, 0q pXtq .

For an elaborate treatment of the theory of these infinitesimal generators, invariant

manifold theory in delay equations and more, one can consult the literature, for ex-

ample [HVL93], [DvGVLW95].

One can check that the generalized eigenspace, when a � γx0 � 0, of the zero char-

acteristic root of the linearisation of system (4.1.3) at p0, 0, 0q is given by$''&''%
����

pa� γx0q pA�Bθq
B pa� γx0q f 1px0q

1�f2px0q p1� Jτq
B

���

��������A,B P R

,//.//- .

For a� γx0 � 0 the generalized eigenspace is given by$''&''%
����
A

0

B

���

��������A,B P R

,//.//- .

This case does not essentially differ from when a�γx0 � 0 and we will thus not detail

it any further.
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We now show that a solution to (4.1.4) induces a center manifold to (4.1.3). Define

h1 : R2 Ñ C pr�τ, 0s ,Rq where h1 pA,Bq pθq is given by

pa� γx0qA
�
e�γBθ � 1

	
� a� γx0

γ

�
e�γBθ � 1� γBθ

	
and rh1 : R2 Ñ C pr�τ, 0s ,Rq where rh1 pA,Bq pθq is given by

pa� γx0qAe�γBθ � a� γx0

γ

�
e�γBθ � 1

	
.

The function is nothing more than a shorthand notation and is given by

rh1 pA,Bq pθq � pa� γx0q pA�Bθq � h1 pA,Bq pθq .

Furthermore define rh2 : G � R2 Ñ C pr�τ, 0s ,Rq as given by

rh2 pA,Bq pθq � Y
�rh1 pA,Bq pθq , B

	
,

where Y is a solution to (4.1.4) and G is a sufficiently small neighbourhood of p0, 0q.
One calculates that

rh1 pA,Bq1 ptq � B
�
a� γx0 � γrh1 pA,Bq ptq

	
rh1 pA,Bq pt� θq � rh1

�
1

γ
�
�
A� 1

γ



e�γBt, B



pθq

rh1 pA,Bq pθq �
�rh1 pA,Bq pθq � a� γx0

γ


�
eγBτ � 1

	
� rh1 pA,Bq pθ � τq .

This implies that supplementing system (4.1.3) with initial conditions

x0 pθq � rh1 pA,Bq pθq
y0 pθq � rh2 pA,Bq pθq
ε0 pθq � B,

has solution given by

xt pθq � rh1

�
1

γ
�
�
A� 1

γ



e�γBt, B



pθq

yt pθq � rh2

�
1

γ
�
�
A� 1

γ



e�γBt, B



pθq

εt pθq � B.

Moreover, if we define

h2 pA,Bq � rh2 pA,Bq �B pa� γx0q f 1 px0q
1� f2 px0q p1� Jτq ,

we have

h1p0, 0q � 0, h2p0, 0q � 0, Dh1p0, 0q � 0, Dh2p0, 0q � 0.

The first two assertions are immediate, we elaborate a bit on the differentials
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• For all θ P r�τ, 0s,

|h1 pA,Bq pθq| ¤
�
|a� γx0| γτ |AB| � |a� γx0|

γ
pγτq2 |B|2



eγτ |B|

and thus h1 pA,Bq � O
�pA,Bq2�, for pA,Bq Ñ 0, from which it follows that

Dh1p0, 0q � 0.

• Using the above we have that

rh2 pA,Bq pθq � BY
Bx p0, 0q pa� γx0q pA�Bθq � BY

Bε p0, 0qB �O
�pA,Bq2�.

Since Y px, 0q � 0, also BY
Bx p0, 0q � 0. By setting x � 0 and taking the derivative

w.r.t. ε in (4.1.4), we find that

pa� γx0q
�
ε
B2Y

BxBε p0, εq �
BY
Bx p0, εq



� Jτ pa� γx0q f 1

�
x0 � pa� γx0q

γ
peεγτ � 1q



� �

1� J � f2 px0q
� BY
Bε p0, εq

� Jτ pa� γx0q BYBx
�
�pa� γx0q

γ
peεγτ � 1q , ε



� J

BY
Bε

�
�pa� γx0q

γ
peεγτ � 1q , ε



� �

2f px0qY p0, εq � Y 2 p0, εq� BYBε p0, εq � f 1 px0q pa� γx0q .

Setting ε � 0, it is seen that BY
Bε p0, 0q � p1� Jτq pa� γx0q f 1px0q

1�f2px0q . By the

definition of h2 this implies that h2 pA,Bq � O
�pA,Bq2�, for pA,Bq Ñ 0.

We have thus proven.

Lemma 4.2.3. If Y px, εq is a C1 solution to (4.1.4) with Y px, 0q � 0, the map

h : G � R2 Ñ C �r�τ, 0s ,R3
�

: pA,Bq ÞÑ ph1pA,Bq, h2pA,Bq, Bq

is a center manifold of (4.1.3) at the equilibrium point p0, 0, 0q. Moreover, it inherits

the smoothness of Y .

4.3 Formal Gevrey analysis of the slow manifold

Now that we know that solutions (4.1.4) give rise to a slow manifold we analyse this

equation further. We will prove the following.

Theorem 4.3.1. There exists a unique formal series of the form

pY px, εq � 8̧

n�1

ynpxqεn,
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where all coefficients yn are holomorphic on a neighbourhood of 0, which formally

solves equation (4.1.4).

Moreover for any open sector S � C of opening less than π, there exists a functionrY px, εq, Gevrey-1 asymptotic to pY w.r.t. ε, uniformly for x in a neighbourhood of

0, which satisfies equation (4.1.4) up to an exponentially small error i.e. there exists

K,L ¡ 0 such that

sup
x

�����εpa� γx0 � γxqB
rY
Bx px, εq

� J

�
f px� x0q � f

�
x�

�
x� a� γx0

γ



peεγτ � 1q � x0




� �

1� J � f2 px� x0q
� rY px, εq � J rY �

x�
�
x� a� γx0

γ



peεγτ � 1q , ε



�f px� x0q rY 2px, εq �

rY 3px, εq
3

� εf 1 px� x0q pa� γx0 � γxq
����� ¤ Ke

� L
|ε| .

Remark 4.3.2. While our results will be local in nature, they can be easily applied

to any compact subset of a normally hyperbolic part of the curve of equilibria.

4.3.1 Formal solution

Since f is a holomorphic function at x0, there exists an R ¡ 0 such that fpx� x0q is

holomorphic on Bp0, Rq.

Proposition 4.3.3. There exists a unique formal series solution to (4.1.4) of the

form pY px, εq � 8°
n�1

ynpxqεn with yn P O pB p0, Rqq.

Proof: Plugging the formal series pY px, εq � 8°
n�1

ynpxqεn into equation (4.1.4),

expanding f
�
x�

�
x� a�γx0

γ

	
peεγτ � 1q � x0

	
in its Taylor series around x � x0

and similarly expanding yn
�
x�

�
x� a�γx0

γ

	
peεγτ � 1q

	
around x we can arrive at

8̧

n�1

�
1� f2px� x0q

�
ynpxqεn

� εf 1 px� x0q pa� γx0 � γxq �
8̧

k�1

J
�
x� a�γx0

γ

	k
k!

f pkqpx� x0q peεγτ � 1qk

�
8̧

n�1

pa� γx0 � γxqy1npxqεn�1 �
8̧

n�1

8̧

k�1

J
�
x� aγx0

γ

	k
k!

ypkqn pxq peεγτ � 1qk εn

� f px� x0q
� 8̧

n�1

ynpxqεn
�2

� 1

3

� 8̧

n�1

ynpxqεn
�3

.

(4.3.1)
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The expansion in ε powers of eεγτ � 1 has no constant term. Thus for n ¥ 1 the

coefficient of εn�1 on the RHS (right hand side) of (4.3.1) only depends on the func-

tions y1, . . . , yn, f and their derivatives. Together with 1 � f2px � x0q � 0, indeed

this follows immediately from fpxq� f3pxq
3

�x � 0, we can thus recursively determine

the coefficients of our formal solution.

Notice that since f px� x0q P O pBp0, Rqq, the same holds for the coefficients yn.

4.3.2 Gevrey property

We aim to prove that the formal solution found in the previous section is Gevrey-1

w.r.t. ε uniformly for x in a neighbourhood of x0 i.e. there exist C,D ¡ 0 such that

sup
|x| S

|ynpxq| ¤ CDnn!

for 0   S   R.

This is achieved analogously as in section 2.1.2, we will repeat some results, in a

slightly different formulation, but only elaborate on results not yet treated in this

previous section. For convenience we repeat,

Definition 4.3.4. Let p P N and g P O pBp0, Rqq, the p-th Nagumo norm of g is

given by

}g}p :� sup
|x| R

pR� |x|qp |gpxq| .

Nagumo norms have the following properties.

• }g1 � g2}p ¤ }g1}p � }g2}p.

• }hg2}p ¤ sup|x| R |hpxq| }g2}q if h is a bounded function on B p0, Rq.

• }g1g2}p�q ¤ }g1}p }g2}q.

•
��g1��

p�1
¤ epp� 1q }g}p.

Definition 4.3.5. For formal series pgpx, εq � °8
n�0 gnpxqεn and phpzq � °8

n�0 hnz
n

we say that pg is majorized by ph, denoted pg ! ph, if and only if

}gn}n ¤ n!hn for all n P N.

The following relations hold.

Proposition 4.3.6. If pg ! ph then

8̧

m�1

g1m�1pxqεm � ε
d

dx
pg ! ezph,

8̧

m�k
g
pkq
m�kpxqεm � εk

dk

dxk
pg ! ekzkph, for all k ¥ 2,
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and if pg1 ! ph1, pg2 ! ph2 then

pg1 � pg2 ! ph1 � ph2,pg1pg2 ! ph1
ph2.

We will need one more relation which has not yet been treated in section 2.1.2.

Proposition 4.3.7. Let pg ! ph and denote

pEpzq � sup
|x| R

����x� a� γx0

γ

���� 8̧

l�0

|γτ |l�1 Rl

pl � 1q!l! z
l,

then

8̧

n�0

8̧

k�1

�
x� a�γx0

γ

	k
k!

gpkqn pxq peεγτ � 1qk εn

!
8̧

k�1

pEkpzqekzk
k!

phpzq � �
e
pEpzqez � 1

	phpzq.
Proof: We start off by rearranging the summation

8̧

n�0

8̧

k�1

�
x� a�γx0

γ

	k
k!

gpkqn pxq peεγτ � 1qk εn

�
8̧

k�1

�
x� a�γx0

γ

	k
k!

�
eεγτ � 1

ε


k 8̧

n�0

gpkqn pxqεn�k

�
8̧

k�1

�
x� a�γx0

γ

	k
k!

�
eεγτ � 1

ε


k 8̧

m�k
g
pkq
m�kpxqεm.

Let p P N, the coefficient belonging to εp for the last series above is equal to the

coefficient of εp in the series

p̧

k�1

�
x� a�γx0

γ

	k
k!

�
eεγτ � 1

ε


k 8̧

m�k
g
pkq
m�kpxqεm.

Using the relations for !, that
�
x� a�γx0

γ

	�
eεγτ�1

ε

	
! pEpzq , and that the above

series is a finite sum of formal series it holds that it is majorized by

p̧

k�1

pEkpzqekzk
k!

phpzq.
The coefficient associated to zp in the above series coincides with the coefficient in

the series
8̧

k�1

pEkpzqekzk
k!

phpzq
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which proves the result.

We are now equipped to show that the formal series solution from proposition 4.3.3

is a Gevrey-1 series. Rewrite equation (4.3.1) as

8̧

n�1

ynpxqεn

� 1

1� f2px� x0q

���pa� γx0 � γxqf 1px� x0qε

�
8̧

k�1

J
�
x� a�γx0

γ

	k
k!

f pkqpx� x0q peεγτ � 1qk

�
8̧

n�1

pa� γx0 � γxqy1npxqεn�1 �
8̧

n�1

8̧

k�1

J
�
x� a�γx0

γ

	k
k!

ypkqn pxq peεγτ � 1qk εn

� fpx� x0q
� 8̧

n�1

ynpxqεn
�2

� 1

3

� 8̧

n�1

ynpxqεn
�3�

.

(4.3.2)

Denote

F0 � sup
|x| R

|fpx� x0q| ,

M1 � sup
|x| R

���� 1

1� f2px� x0q
���� ,

M2 � sup
|x| R

����x� a� γx0

γ

���� ,
we may assume that all the values are finite, by if necessary decreasing R slightly.

We call

vpzq �M1

�
M2eF0z �

�
e
pEpzqez � 1

	
F0

�M2evpzqz � |J |
�
e
pEpzqez � 1

	
vpzq

� F0v
2pzq � 1

3
v3pzq


 (4.3.3)

the majorant equation.

This is a fitting name, after all, given pg ! ph then plugging pg into the RHS of (4.3.2)

and ph into the RHS of (4.3.3) yields two new formal series say rg and rh with rg ! rh,

which follows directly from the relations on !.

In a manner that is very similar to the proof of proposition 4.3.3, equation (4.3.3) has

a unique formal solution of the form pV pzq � °8
n�1 vnz

n, notice that the constant term

is zero. However, (4.3.3) is actually a holomorphic equation in the variables v and
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z and as such we can apply the holomorphic implicit function theorem to find that

there exists (around z � 0) a unique holomorphic solution, V pzq, of (4.3.3), satisfying

V p0q � 0. The Taylor series of this holomorphic solution necessarily coincides with pV
which implies that the coefficients, vn, of pV are bounded by CDn for certain C,D ¡ 0.

We can employ the fact that pV converges to show that pY is a Gevrey-1 formal series.

Put pY0 � 0 and pV0 � 0, clearly pY0 ! ph0 we can recursively define formal series

pYn�1 � RHS(4.3.2)
�pYn	

pVn�1 � RHS(2.1.5)
�pVn	

with pYn ! pVn and pYn has all coefficient up to εn in common with our formal solutionpY found in proposition 4.3.3. Furthermore the sequence pVn converges to the unique

formal solution of (4.3.3), pV , and thus pY ! pV .

Finally, we thus have }yn}n ¤ vnn! ¤ CDnn! which implies for all |x| ¤ R that

|ynpxq| ¤ CDnpR� |x|q�nn!. Consequently for 0   T   R

sup
|x|¤T

|ynpxq| ¤ C

�
D

R� T


n
n!.

To surmise.

Lemma 4.3.8. Given the unique formal solution of the form

pY px, εq �
8̧

n�1

ynpxqε

to equation (4.1.4), with yn P O pB p0, Rqq. For 0   T   R, pY px, εq is a Gevrey-1

series in ε, uniformly for x P B p0, T q. More specifically there exist C1, D1 ¡ 0 such

that

sup
|x|¤T

|ynpxq| ¤ C1D
n
1 n!.

4.4 Constructing quasi-solutions

Given any sector S of opening less than π, we can apply the Borel-Ritt-Gevrey theo-

rem 1.2.10 to the formal series solution pY and find a function rY , Gevrey-1 asymptotic

to it. We prove theorem 4.3.1 if we can show that

εpa� γx0 � γxqB
rY
Bx px, εq

� J

�
f px� x0q � f

�
x�

�
x� a� γx0

γ



peεγτ � 1q � x0




� �

1� J � f2 px� x0q
� rY px, εq � J rY �

x�
�
x� a� γx0

γ



peεγτ � 1q , ε



� f px� x0q rY 2px, εq �

rY 3px, εq
3

� εf 1 px� x0q pa� γx0 � γxq
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is Gevrey-1 asymptotic to the zero series. For this it suffices, by lemma 1.2.13, to prove

that rY �
x�

�
x� a�γx0

γ

	
peεγτ � 1q , ε

	
�1

pY �
x�

�
x� a�γx0

γ

	
peεγτ � 1q , ε

	
. For

this, let T be as in lemma 4.3.8, choose any T1   T and let s ¡ 0 be sufficiently small

such that
�
T1 � |a�γx0|

γ

	
pesγτ � 1q ¤ T�T1

2
. By the Borel-Ritt-Gevrey theorem there

exist functions rY1, . . . , rYm and a good sectorial covering S1, . . . , Sm of B p0, sq z t0u
such that rYj is defined on B p0, T q � Sj and rYj �1

pY . We may assume that rY � rY1

and S � S1. This implies that there exist K,L ¡ 0 such that

sup
|x|¤T

��� rYi px, εq � rYj px, εq��� ¤ Ke
� L
|ε| (4.4.1)

for ε P Si X Sj � H.

Due to our choices of T1 and s the functions rYj �x� �
x� a�γx0

γ

	
peεγτ � 1q , ε

	
are

defined for px, εq P B p0, T1q � Sj . We have that

rYj �x� �
x� a� γx0

γ



peεγτ � 1q , ε



�

8̧

k�0

1

k!

Bk rYj
Bxk px, εq

�
x� a� γx0

γ


k
peεγτ � 1qk

and thus

rYi �x� �
x� a� γx0

γ



peεγτ � 1q , ε



� rYj �x� �

x� a� γx0

γ



peεγτ � 1q , ε



is given by

8̧

k�0

1

k!

�
Bk rYi
Bxk px, εq � Bk rYj

Bxk px, εq
��

x� a� γx0

γ


k
peεγτ � 1qk .

By the Cauchy inequalities and (4.4.1),

sup
|x|¤T1

�����Bk rYiBxk px, εq � Bk rYj
Bxk px, εq

����� ¤ k!

�
1

T � T1


k
Ke

� L
|ε| ,

implying that for all |x| ¤ T1 and ε P Si X Sj ,���� rYi �x� �
x� a� γx0

γ



peεγτ � 1q , ε



� rYj �x� �

x� a� γx0

γ



peεγτ � 1q , ε


����
is bounded by

Ke
� L
|ε|

8̧

k�0

1

2k
� 2Ke

� L
|ε| .

The Ramis-Sibuya theorem 1.2.12 then guarantees that, in particular,

rY �
x�

�
x� a� γx0

γ



peεγτ � 1q , ε



is Gevrey-1 asymptotic to some formal series. The proof that this series is given

by pY �
x�

�
x� a�γx0

γ

	
peεγτ � 1q , ε

	
is analogous to the second part of the proof of

lemma 1.2.13 and we will not detail it further.
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Remark 4.4.1. Now that we have a quasi-solution, a logical next step would be to

construct an actual solution to the slow manifold equation from the quasi-solution,

similarly as was done in section 2.2. This however seems to be quite delicate since

smoothness issues w.r.t. the singular parameter ε arise, similar as what is encountered

in [HT97]. A future topic of research could be to adapt, if possible, the techniques in

[HT97] for the construction of smooth slow manifolds.



Overview

This thesis focuses on Gevrey asymptotic properties of slow manifolds in slow-fast

dynamical systems.

A large part, specifically chapter 2, is dedicated to the existence of formal slow man-

ifolds and the requirements for these manifolds to induce actual slow manifolds.

The formal study is carried out in section 2.1. Here it is shown that general holomor-

phic slow-fast systems, #
9X � εF pX,Z, εq
9Z � G pX,Z, εq ,

under the mild condition of slow-fast regularity at an equilibrium of the fast sub-

system, meaning G pX0, Z0, 0q � 0 and detDZ pX0, Z0, 0q � 0, have a unique formal

solution to the associated slow manifold equation

εDXZ � F pX,Z, εq � G pX,Z, εq .

Moreover this solution is a formal Gevrey-1 series, see proposition 2.1.1 and proposi-

tion 2.1.2. In the case of one slow variable (X P C) this result is already well known,

see for example [Sib90]. The technique we use, i.e. a majorant method employing

the Nagumo norms, is essentially identical to that in [CDRSS00], however they only

treat the case of one slow variable.

The next question is whether there also exists, besides a formal slow manifold, an

actual slow manifold of the slow-fast system. Moreover, if such a slow manifold exists,

what are its asymptotic properties w.r.t. the formal manifold? Our answer depends

on the regularity of the slow flow.

The case of a regular point of the slow flow, F pX0, Z0, 0q � 0, is consider in section 2.2.

We show there, imposing no other conditions on the slow-fast systems besides the

already assumed slow-fast regularity, the existence (locally around the considered

regular point of the slow flow) of slow manifolds which are Gevrey-1 asymptotic to

the formal slow manifold. These manifolds can be defined for any narrow sector, of
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opening less than π, with direction to be chosen freely, see lemma 2.2.1. Once again,

this result is already known for one slow variable, see for example [Sib58].

Our approach in generalizing this result to systems with an arbitrary amount of slow

variables is to realize the formal manifold as a function by the Borel-Ritt-Gevrey

theorem, and search for an actual slow manifold as having an exponentially small

(w.r.t. ε Ñ 0) difference with this realization. This reduces the existence of a slow

manifold to finding a solution to a PDE, (2.2.3). The idea of this approach coincides

with that of [CDRSS00], where the case of one slow variable is treated. A crucial

difference however is that for one slow variable, one does not need to solve a PDE but

an ODE. The ODE can be solved, for example, by employing the Gronwall lemma.

This method can not be used for the PDE, moreover due to the presence of the singular

parameter the classical result on existence of PDE solutions, the Cauchy-Kowalevski

theorem (see for example [Fol95]), is not directly applicable. We construct a solution

be once again a majorant method.

The results in this section can be seen as a generalization and improvement on the

classical results of Fenichel on normally hyperbolic slow manifolds, see [Fen79]. The

generalization is in the sense that our condition of slow-fast regularity is weaker than

that of normal hyperbolicity. The improvements are with respect to the smoothness

(w.r.t. ε) of the manifolds, in the theory of Fenichel only finite smoothness up to any

degree can be guaranteed. Our Gevrey manifolds are in particular C8. We do have

to remark that the results of Fenichel can be global in nature while our results are

only local.

A possible area where our results could find application is in the study of elliptic slow

manifolds ([Van08, LZ11]). As an example, in [Wir04] a system of equations#
9X � εF pX,Zq
9Z � �LZ � εG pX,Zq

is considered. Here L is a real, invertible, skew-symmetric (constant) matrix. Since

all eigenvalues of this matrix are purely imaginary, Fenichel theory can not be applied

but by our results a slow manifold Z pX, εq exists, Gevrey-1 asymptotic to the formal

slow manifold,
°8
n�1 Zn pXq εn, of the above system. In [Wir04] it is shown that for

a fixed ε0 P s0,�8r, there exists an Nε0 P N such that

Zε0 pX, εq �
Nε0̧

n�1

Zn pXq εn

is a slow manifold up to an exponentially small remainder. By this it is meant that

the error

Rε0 pXq� εDXZε0 pX, εqF pX,Zε0 pX, εqq � LZε0 pX, εq � εG pX,Zε0 pX, εqq
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is exponentially decaying of order 1{3 w.r.t. ε (see proposition 1.2.9 for the definition

of exponential decay). Using the actual slow manifold and its Gevrey asymptotic

expansion �����Z pX, εq � k�1̧

n�1

Zn pXq εn
����� ¤ ABkk! |ε|k

this result can easily be replicated. Indeed setting Nε0 �
Y

1
Bε0

]
�1 one can calculate,

as in remark 1.2.6, that������Z pX, εq �
Nε0̧

n�1

Zn pXq εn
������ ¤ Ae2e

� 1
Bε0 pBε0q� 1

2 .

It is then rather easy to show that also Rε0 pXq is exponentially decaying, and even

with order 1.

Where section 2.2 concerned regular points of the slow flow, section 2.3 deals with

equilibria of the slow flow. In this section we narrowed down the class of slow-fast

system under consideration by imposing more stringent conditions. Simply said, apart

from slow-fast regularity, the extra conditions are that only one fast variable is present

and the eigenvalues of the linearisation of the slow flow lie in the Poincaré domain. We

showed in theorem 2.3.1 and lemma 2.3.9 that the formal slow manifold is 1-summable

in a certain set of directions. Furthermore, through examples in remark 2.3.2 and

example 2.3.3 we show that our assumptions are necessary in the sense that there

exist systems, not satisfying the assumptions, whose formal slow manifolds are not

1-summable in any direction.

We would like to note that one particular class of systems (or rather their associated

slow manifold equations) for which our results are applicable are given by

εx
dz

dx
� ϕ pxq z � εf px, y, εq

with ϕ p0q � 0 and x, z P C. In [CDMFS07, BMF02] equations of the form

εxr�1 dz

dx
� ϕ pxq z � εf px, y, εq

with r ¡ 0 are studied. The results in these papers amount to the existence of

monomially summable formal solutions i.e. summable w.r.t. to the monomial εxr.

They do not treat the case where r � 0.

After concluding the local Gevrey analysis of slow manifolds in slow-fast systems of

arbitrary dimension in chapter 2, we turn our attention, in chapter 3, to slow-fast

systems with one slow and one fast variable. We are motivated by considering systems

where the critical curve connect an attracting to a repelling slow-fast saddle, where

along this connection there is a change of stability through a turning point in between

the two saddles.
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By the results in section 2.3 there exist, locally around the slow-fast saddles, slow

manifolds, 1-summable in the positive real direction. The main result in this chapter

is that the two manifolds can be saturated towards the turning point and even be

connected to each other over it, with the help of an additional parameter.

The first step in the proof is to show that any 1-summable, in the positive real

direction, slow manifold can be saturated alongside normally attracting parts of the

critical curve, see theorem 3.1.1, while retaining the summability property. The fact

that the saturation exists is well known, see for example [Wal91], our contribution

lies in the retention of the summability along the saturation.

In the second step we focus ourselves on an environment of the turning point which

we assume can be brought into the form#
9x � ε

9y � pxp�1y � εHpx, y, a, εq . (4.4.2)

When two 1-summable slow manifolds are present to the “left” and “right” of the

turning point, the existence of a control curve a
�
ε1{p

	
such that the two manifolds

can be extended towards the turning point and match each other there forming a

canard solution, see theorem 3.2.1. Moreover the control curve is p-summable w.r.t.

the variable ε1{p, but the canard solution does not enjoy summability properties at

the turning point. The results are consistent with those in [DM07], where a similar

study is done but for Gevrey asymptotics on “narrow” regions and our work can be

seen as an extension of this.

For the concluding chapter 4 we make a short foray into the world of delay differential

equations. Using a model from mathematical neuroscience to experiment on, we show

that the center manifold of this system can be characterized by an equation which

is formally solved by a Gevrey-1 formal series. Moreover a function that is Gevrey-1

asymptotic to this formal solution satisfies the center manifold equation up to an

exponentially small error (in ε), see theorem 4.3.1. Clearly a lot of obvious questions

are still left unanswered. For example, the class of systems for which the result is

formulated is very restrictive and the result should be able to be extended to a much

broader class. A perhaps more difficult problem is the realization of an actual solution

from the formal one, and its related smoothness properties. It would seem that a good

choice of function spaces to work in plays an important role here.



Nederlandstalige samenvatting

In deze thesis worden singulier verstoorde problemen, die voorkomen in de studie van

snel-trage systemen, bestudeerd. In hun standaardvorm zijn deze systemen gegeven

door, #
9X ptq � εF pX,Z, εq
9Z ptq � G pX,Z, εq

De kritieke variëteit van zulk systeem wordt gegeven door (een deel van) de nulpunts-

verzameling van de vergelijking G pX,Z, 0q � 0.

Een eerste groot deel van de thesis besteedt aandacht aan het blijven bestaan van de

kritieke variëteit, als een invariante variëteit, onder kleine verstoringen van de sin-

guliere parameter ε. Meer bepaald onderzoeken we het bestaan en de eigenschappen

van een ε-familie van lokaal invariante variëteiten van een snel-traag systeem, dewelke

naar de kritieke variëteit streven voor εÑ 0. Zulke familie variëteiten wordt een trage

variëteit genoemd.

Het is algemeen bekend dat onder de veronderstelling van het normaal hyperbolisch

zijn van de kritieke variëteit, de trage variëteit bestaat. Echter is deze in het alge-

meen niet uniek en bovendien, zelfs wanneer het snel-trage systeem reëel analytisch

is, kan het enkel gegarandeerd worden dat de trage variëteit een gladheid van een

willekeurige, maar eindige, graad heeft.

Het doel is om deze klassieke resultaten op verschillende punten te verbeteren. We

zullen dit bereiken door het gebruik van de theorie over Gevrey asymptotische func-

ties.

Onze aanpak start vanuit een formeel standpunt. Onder voorwaarde van snel-trage

regulariteit, construeren we formele machtreeksen in de de singuliere parameter die,

formeel gezien, invariant zijn in het snel-trage systeem. We bekomen verder dat deze

reeksen in het algemeen niet convergent zijn maar divergent van Gevrey type.

Afhankelijk van het type punt, van de kritieke variëteit, waarrond we een trage

variëteit willen construeren, onderscheiden we twee gevallen. Wanneer het punt geen

evenwichtspunt van het trage vectorveld is, tonen we aan, zonder het opleggen van
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verdere veronderstellingen, dat er een trage variëteit bestaat dewelke een Gevrey

asymptotische expansie bezit. Dit is een verbetering ten opzichte van het klassieke

resultaat aangezien we enkel snel-trage regulariteit eisen, wat een zwakkere eis is dan

normaal hyperbolisch zijn. Bovendien zijn de trage variëteiten die we bekomen in het

bijzonder C8 glad.

Wanneer we kijken rond een evenwichtspunt van het trage vectorveld, bekomen

we zelfs sterkere resultaten maar hiervoor moeten bijkomende veronderstellingen

gemaakt worden. Meer bepaald zullen we veronderstellen dat er slechts één snelle

variable is en bovendien moet het evenwichtspunt van het trage vectorveld ofwel

aantrekkend ofwel afstotend zijn. Onder deze voorwaarden bekomen we dat de formele

oplossing sommeerbaar is in een richting. Dit betekent dat, bovenop alle eigenschap-

pen die een variëteit met Gevrey expansie heeft, de variëteit in zekere zin uniek is.

Een tweede onderwerp in de thesis betreft globale dynamica in snel-trage syste-

men. We beschouwen een systeem, met één trage en één snelle veranderlijke, dat

voldoet aan een specifieke configuratie waarbij die kritieke kromme opgedeeld is in

een aantrekkend en afstotend deel en op ieder van die delen zich een snel-traag zadel

bevindt. Vanwege onze eerdere, lokale, resultaten bestaan er sommeerbare trage

variëteiten rond deze zadels. We tonen aan dat deze verder gezet kunnen worden

langsheen de kritieke kromme, met behoud van sommeerbaarheid. Vervolgens wordt

nagegaan dat twee sommeerbare variëteiten aaneengesloten kunnen worden, met be-

hulp van een extra parameter, overheen een punt waar de stabiliteit van de kritieke

curve verandert. Op deze manier construeren we canard oplossingen.

Als laatste worden “delay differential equations” onderzocht. Dit doen we aan de

hand van een specifiek model, dat gebruikt wordt bij het modelleren van neuronen

activiteit. Ons hoofddoel is het aantonen dat Gevrey asymptotische technieken ook

hun waarde kunnen hebben binnen het meer algemene gebied van functionele differ-

entiaalvergelijkingen. In onze resultaten tonen we het bestaan van quasi-oplossingen

aan, die een trage variëteit tot op een exponentieel kleine fout na benaderen. De

stap van quasi-oplossing naar echte oplossing wordt niet gemaakt en is een mogelijk

toekomstig onderwerp voor onderzoek.
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