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Introduction

This thesis considers singular perturbation problems, which arise in the study of

slow-fast systems. In their standard form, slow-fast systems are represented by

eF (X, Z,¢)

, (0.0.1)
Z(t) = G(X,Ze)

——
> -
—~
-
N
Il

where (X, Z) € R" x R™ and the parameter ¢ is typically thought of as being a very
small positive real number. The presence of € induces a time scale separation between
the “slow” variables X whose evolution is slow in comparison with that of the “fast”
variables Z.

There are two different manners in which to reduce a slow-fast system in the singular
limit ¢ = 0. Keeping the formulation of in fast time ¢ and setting € = 0

produces the fast subsystem, also called the layer equations,

X(@#) = 0
{ Z@t) = G(X,Z,0)
However one can rescale time to the slow time 7 = et in which the system takes the
form ]
X(r) = F(X,Z¢)
{ eZ(r) = G(X, Ze)
Taking the singular limit here gives us the slow subsystem, which is a differential-
algebraic equation,
X(r) = F(X,Z%,0)
{ 0 = G(X,%,0)
It is often assumed, as will be throughout this thesis, that the solution set of 0 =
G (X, Z,0), which is also the set of equilibria of the layer equations, is given by an n-
dimensional manifold, called the critical manifold. The slow subsystem then generates

a flow on this manifold, called the slow flow.

A large part of this thesis will be dedicated to the persistence of the critical manifold
under small perturbations of €. Said roughly, we investigate the existence and prop-

erties of an e-family of locally invariant manifolds, S., of the full system, which tend
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to (a part of) the critical manifold for ¢ — 0. Such a family of manifolds is called a
slow manifold.

There are the classical results by Fenichel in [Fen79] concerning these slow manifolds.
If a compact submanifold of the critical manifold is normally hyperbolic, meaning
that, as equilibria of the fast subsystem/layer equations, all points of the submanifold
are hyperbolic, a slow manifold is guaranteed to perturb from this set. However, much
like center manifolds obtained through the center manifold theorem, the slow manifold
will, in general, not be unique. Moreover, even in the case when the considered slow-
fast system is real analytic, Fenichel’s results can only guarantee the existence of slow

manifolds up to any finite degree of smoothness.

One aim in this thesis is to improve the results of Fenichel in certain areas. We
will achieve this by employing the theory of Gevrey asymptotic expansions. The
basics of this theory were developed by Watson [Wati2al (Wat12b] and Nevanlinna
[NevI8] as a means to associate a unique “sum” to a class of divergent series. The
application of Gevrey expansions in differential equations was pioneered by Ramis,
[Ram78, [Ram&0].

The approach is to start of from a formal point of view, constructing formal power
series in the singular parameter e, with as coefficients functions of the slow variables
X, that are formally invariant under the flow of . As a first result we obtain that
these formal manifolds exist, at points of the critical manifold where the differential
DzG is invertible (a fast-slow regular point to follow the terminology in [Kuel5]).
These series are, in general, not convergent but divergent of Gevrey type, this is not
surprising as it generalizes a result achieved by Sibuya, [Sib90] for one slow variable,
to an arbitrary amount of slow variables.

Our subsequent course of action depends on the type of point on the critical manifold
around which we wish to perturb a slow manifold. If the point is not a singularity
of the slow flow, we achieve, without imposing extra assumptions, the existence of a
local slow manifold which has a Gevrey expansion. This is an improvement of the
classical Fenichel results in the sense that we do not demand normal hyperbolicity
but only fast-slow regularity. This includes the case where the fast spectrum is purely
imaginary (the slow manifolds are then occasionally referred to as elliptic manifolds
see for example [Van08|[LZ11]). In particular we can handle the case where the critical
manifold undergoes a change of stability through an elliptic point. In the terminology
of [CDRSS00], these are overstable solutions. This result is again a generalization of
a result of Sibuya for one slow variable, [Sib58]. Moreover, functions with a Gevrey
expansion are C* smooth (even a bit stronger) which is also an improvement over the
classical result.

If we are interested in a singularity of the slow flow, we actually achieve stronger
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results, but at the cost of having to impose extra conditions. More specifically we
will assume that the fast variable is one dimensional and the linearisation of the slow
flow around the singularity is either attractive or repelling (for real analytic systems).
Under these conditions we achieve that the formal Gevrey manifold is summable in a
direction. This means that, on top of all the properties that a manifold with Gevrey
expansion has, the manifold is in a sense unique, there is a “best” manifold realizing
the divergent series.

We do need to remark that, contrary to the classical Fenichel theory, our results are
local in nature, except for the study of the formal series which can be conducted on

compact sets.

In a second part of the thesis we present two results in slow-fast systems with one slow
and one fast variable. A first result is on the saturation of summable slow manifolds
along the critical curve while maintaining summability. A second one concerns the
connection of summable slow manifolds over a turning point, where there occurs a
change of stability of the critical curve.

We can apply these results to a system of one slow and one fast variable which
satisfies a particular configuration. The critical curve has an attracting and repelling
part, where the change of stability is through a turning point, and the slow flow is
directed from the attracting to the repelling part. Moreover, on the attracting part
the slow flow has a repelling equilibrium while the repelling part has an attracting
equilibrium, i.e. both parts of the curve have a slow-fast saddle. By our local results,
a summable slow manifold perturbs from each of these saddles. These manifolds
are then saturated towards the turning point and, by introducing a parameter in our
system, can be matched to each other over the turning point creating canard solutions
connecting the two saddles. Moreover, these solutions will still have the summability

property away from the turning point.

In a last part we consider a system of delay differential equations which models neuron
interaction, found in [KT16]. We use this model as an example to corroborate that
Gevrey asymptotic techniques are also viable to construct invariant manifolds in the
more general setting of functional differential equations. We achieve quasi-solutions,
approximating slow manifolds up to an exponentially small error. The step from the
quasi-solutions to actual slow manifolds is not made in this thesis and could be a

possible future topic of research.

The thesis is structured as follows.
In chapter [I] we introduce basic notions and results concerning Gevrey series and

asymptotics.

Chapter [2] concerns the complete Gevrey analysis of slow manifolds. In section 2]

the formal Gevrey slow manifolds are constructed for a very general class of systems.
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Section [2:2] then details the construction of a Gevrey slow manifold around a regular
point of the slow flow, still for the same class of systems. The construction essentially
entails the application of a Borel-Laplace resummation procedure to the formal solu-
tion which gives a manifold which is invariant “up to an exponentially small error”.
One can then carefully remove this error by a procedure reminiscent of the proof of
the Cauchy-Kowalevski theorem.

In the last section [2.3] summability is proven under extra conditions. This is done
by relating summability of a formal series to the extension of its Borel transform
to infinity. We prove such an extension exists by a fixed point argument. We also
provide examples showing that summability fails when our imposed conditions are

not satisfied.

In chapter [3] we start of by showing that, in a system with one slow and one fast
variable, a summable slow manifold can be saturated along a normally hyperbolic part
of the critical curve by means of the slow flow, while maintaining the summability.
We remark that such a summable manifold does not necessarily need to arise from
one of the cases described in section [23] it could for example also arise from another
type of doubly singular equation as in [CDMES07].

Secondly we show that the summable manifolds can be connected to each other in a
blow up of the turning point. Combining the results of this chapter and section [2.3]

gives rise to “canard heteroclinic saddle connections”.

The last chapter [4] concerns delay equations and we employ a toy model to exhibit
Gevrey techniques in these types of equations. An important aspect of this chapter
is dedicated to proving that a “naive” characterization of slow manifolds in delay

equations is actually correct.

The results in this thesis are a collection of those in [Kenl6, [DMKI9, [DMK].



Chapter 1

Preliminaries

We state, together with fixing some notation, the Cauchy inequalities for holomorphic
functions of several variables. These inequalities will be used throughout the thesis on
numerous occasions. Next we introduce Gevrey formal series and Gevrey asymptotic

functions together with some basic results.

1.1 The Cauchy inequalities

We will use the following notations.

e For a metric space (X,d), an x € X and r > 0 we denote the open and closed

balls around x with radius r by
B(xz,7), resp. B(x,7).

e Let n € Ng, a = (a1,...,a,) € N® a multi-index and X = (z1,...,2,) € C".
We denote

o] =a1+...+an
al=ai!l- ... an!
X% =z .. apm.
e Forr = (r1,...,mn) € RY, and X € C" we define the open and closed polydisks
centred at X with polyradius r by
P, (X,r) = B(x1,71) X ... X B(Zn,Tn)

resp.
P, (X,r) = B(z1,71) X ... X B(Tn,7n) -

If the centre is the origin, we denote the polydisks simply by IP,, (7).
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For R > 0 the notation P, (X, R) means that we consider the polyradius
(R,...,R).
e For r a polyradius and X € C", 0ylP,, (X,7) = 0B (z1,71) X ... X 0B (Zn,Tp) Or

equivalently

ooP, (X,r)={Y eC"||y; — x| =r;,Vj=1,...,n}.

e Let V < €7, not necessarily open, we say that f € O (V) if there exists an open
W < C" with V € W such that f: W — C is holomorphic on W. If V is open,

one can of course take W = V.

e Let se€ Ng and f = (f1,...,fn): V — C°. Then f € O(V,C°) if and only if
fieO(V)forall j={1,...,n}.
We can now state the Cauchy inequalities, for a proof one can consult, for example,
[Hor73).

Lemma 1.1.1. Let r € RYy, a € N” and X € C", suppose that
FeO (P, (X,r),C°)nC (P, (X,r),C"%).

If we denote by |- the mazimum norm on C*,

alalf
o0X

al
s T sup ”f (Y)Hmax .

o A
max ™" veogPn(z,r)

1.2 A short introduction to Gevrey asymptotics

We introduce Gevrey asymptotic expansions and present some basic results concern-
ing them. Throughout the literature, the definitions of Gevrey series and expansions

are not uniform, several slight alterations on the definition we give here can be found.

1.2.1 Gevrey formal series

Definition 1.2.1. Let V < C° be open, £ € No, and let s € No, m = 0, B > 0.

Consider a formal series of the form
o
F(X,e) =) fu(X)e",
k=0

with fr € O (V,C?), i.e. fe O (V,C?) [e]. We say that fA is Gevrey-m of type B in
e, uniformly for X in V, if there exists A > 0 such that

SUp [ f5(X) || pax < ABT (1 + mk).
XeVvV

Here |-| denotes the mazimum norm on C*.

max

Remark 1.2.2. Notice that a Gevrey-0 series is convergent for (X,e) € V x B (0, %)

and thus induces a holomorphic function on this subset.
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1.2.2 Gevrey asymptotic functions

Notation 1.2.3. For 6 € [0,2x[, § € ]0,2n[ and r > 0 we denote the (open) sector
in the direction 0 with opening & and radius r by
[}-

The infinite sector |, S(8,9,7) in the direction 6 is denoted by S(6,9).

While we will only concern ourselves with sectors of opening smaller than 2w, as above,

N[>

5(0,6,r) = {z eC ‘0 <z <r, Arg(ze™?) €] = 2,

sectors with a larger opening can be considered as subsetls of the Riemann surface of

the logarithm.

Definition 1.2.4. Consider some open sector S and a subset V. < CF, ¢,s € Ny
and m = 0. Let f(X, g) =20 o fn(X)e" e O(V,C°) [e]. We say that a function

~

f(X,¢e), holomorphic on V x S, is Gevrey-m asymptotic to the formal series f(X,¢),

with respect to e, uniformly for X € V, if for every e € S and every N € Ny we have

<ODNT (1 +mN) gl

max

sup
XeV

FXe) = 3 fa(X) e

for certain C, D > 0. We denote this by

~

f(X,E) ~m f(X,E)

Remark 1.2.5. [t is not demanded, a priori, in the above definition that the formal
series fis Gevrey-1. However, this series gains the Gevrey property immediately from

the fact that some function is Gevrey-1 asymptotic to it. Indeed, for all X € V,

i (X) e el <

D (X" = f(Xoe)

=Y fx)e

max max

SCD*'T (1 4+ m(k+1) |e/"™ + DT (1 + mk) |e|* .

Dividing both sides of the inequality by |E|k and then setting € = 0, shows that the
coefficients all satisfy the Gevrey bounds.

~

Remark 1.2.6. If f(X,e) ~m f(X,€) one can, for a fized value ey € S, approzimate

f(X,ex) up to an exponential accuracy by a well-chosen truncation of the formal

N, — {(D |€*D_WJ'

m

series f Indeed, denote

Clearl
Y D —1/m D —1/m
(Dlea)™™ .~ (Dlea)
m EEN m )

and by Stirling’s formula, see [Sti],

L(1+2)= Vot (1+0(1)), for z— o, |arg (2)| < .
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By definition of a Gevrey-m asymptotic expansion we then have,

Nyg—1

f(X,e) - Z fa (X)e"

sup
XeV

max

< CDY*D (14 mNy) |e|V*
= V20 (D |ea)V* (mNw) ™2 e N (14 0(1))

1
<VBC(D|ea)™ (D)™ (Dlesh) ™ e (1D (140(1)
1
e
= V2Ce™ (D]esl) 7 e (PlxD)™ (140(1)).
Where o(1) is for Ny — o0 or equivalently |es| — 0.

It is obvious that the class of functions with a Gevrey-m expansion is closed under
addition and scalar multiplication. In the following interpretation it is also closed
under differentiation.

Proposition 1.2.7. Suppose f(X,¢) is defined on 'V x S (0,261,71) with f ~m f.

e Suppose W < V with al(W7 VC) = R > 0, where the distance is measured

. A . Al Alal 7
with the mazimum metric. For all a € N¢ we have < ({ ~m 5 C{ w.r.t. € €
oX X

S (0,261,71), uniformly for X € W.

ot}
Eal
>

e If0 < b2 < b1, there then exists an ro < r1 such that for all k € N, Sk?,{ ~m
w.r.t. € € S(0,2d2,r2), uniformly for X eV

23]
@
b

Proof:

e Due to the Cauchy inequalities, we have for all X € W, ¢ € S(0,261,71) and
N e ]No,

max

e Denote 12 = one can verify that for all € € S (0,282, 72),

T1
1+sin(81—82)°

P(E, |€| sin ((51 — (52)) c S (0, 25177“1) .
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By the Cauchy inequalities and the definition of Gevrey asymptotics, this im-
plies for all X € V, e € §(0,202,72) and N € Ny that

o* & (k) "
(’)T{(X’ €) — 2 %fvﬂrka

n=0 ’ max
6’“]’ N+k—1 n! -
ek (X6 = ;k (n—mn/"*

6’“ N+k—1 .
M(f(x,@— Py fn<X)e>

max

k! N+k—1
< —F max X, w) — n (X)w"
le|® sin® (8, — 82) lw—el=lelsin(s1-32) fXw) 7;0 f (X) .
k!

L —FF— max CDVT L (1 + mk + mN) |w|VT*
= |6|k sink (51 — 52) |w—e|=le| sin(81 —52) ( ) | |

1+ sin (61 — 62) \” N N
<kK(D——m—-= DT (1 k N .
( sin (61 — 02) ) c (1 +mk+mN) e

Since there exists a constant M > 0 such that
L (1+mk+mN) < MYT (1+mN),
which can be deduced from the Stirling formula, the result follows.

O
One can think of Gevrey functions as being C* smooth at the vertex of the sector,

e = 0. We specify this a bit more.

Proposition 1.2.8. Suppose f(X,¢) is defined on V x S (0,201,71) with f ~1 f and
choose any 0 < d2 < 01, there then exists an 0 < ro <1y such that for alln e N

n

lirr[l) sup Z—T{(X,E)—n!fn (X)‘ =0
ce5(6.265,m5) XEV I OF max
and ;
oy X,e) —nlfn (X
lir% sup || <= (X,€) Ju (X) —(n+ D! fny1 (X) =0.
555(21_2)5217‘2) Xev ¢ max
Proof: This follows from proposition [1.2. O

In general, a formal Gevrey series can be the Gevrey expansion of multiple functions,
the difference of such functions however, can at most be exponentially small as the

following result clarifies, a proof can be found in, for example [Ram78|.

Proposition 1.2.9. Let f € O (V x S,C?), then f ~m 0 if and only if f is exponen-
tially decaying w.r.t. € € S, uniformly for X e V i.e.

—Lle|~/m
< Ke Ve vees.

max

3K, L > 0: sup |f(X,e)]
XeV
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One can also wonder of every formal Gevrey series is necessarily the Gevrey expansion
of a function. The following theorem, which is a specification of the Borel-Ritt theo-
rem (see for example [Was02]) to Gevrey asymptotics, affirms this but the functions

realizing the series can only be guaranteed to exist on “small” sectors.

Theorem 1.2.10 (Borel-Ritt-Gevrey theorem). Consider V < C*, m > 0 and
S(0,0,7) a sector of opening § < mm. If )?(X7 €) is a Gevrey-m formal series in

~

e, uniformly for X € V there exists an f € O (V x S(6,0,r),C?) such that f ~m f.

A proof of this theorem can be found in [Bal00].

An essential tool in the study of Gevrey asymptotic functions is the Ramis-Sibuya
theorem. This result gives an equivalence between a function possessing a Gevrey
expansion and it being part of a “function chain” covering a disk around the origin.
This allows us to make statements about a function’s Gevrey asymptotic properties
without explicit calculation of the asymptotic bounds, or even without knowledge of

the asymptotic series. We clarify this further now.

Definition 1.2.11. Given a punctured disk B (0,7)\ {0} = C. A good sectorial covering
of the punctured disk is a finite ordered set of sectors S; == S (0;,0;,7), 1 < j<n
such that

o Uj=1 95 = B(0,7)\{0}.
o SinS; # & if and only if |(j — i) mod n| = 1.

See figure for an illustrated example.

Theorem 1.2.12 (Ramis-Sibuya theorem). Let V < C° and m > 0. Suppose that
we have sectors Sj, 1 < j < n, forming a good sectorial covering of the punctured disk
B(0,7)\{0}. Given bounded functions f; € O (V x S;,C?) satisfying the following.
There exist A, B > 0 such that for every 1 <i,7 < n with S; nS; # &

1/m

sup [ fi (X,€) — fi (X, €)] 0 < Ae” Pl (1.2.1)
XeV

forallee Sin S;.
It then follows that all the functions f; are Gevrey-m asymptotic to a common Gevrey-

m formal series.

A proof of this theorem can be found in [FS13] [RS89].

The following is an application of the Ramis-Sibuya theorem.

Lemma 1.2.13. Consider open subsets V. < C°, U c ©° and an open sector
S(6,6,7). Let F: V x U x B(0,R) — C* be holomorphic for k € No and R > 0.
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Figure 1.1: A good sectorial covering of the punctured disk by five sectors. The

sectors are drawn with varying radii to help distinguish them.

Suppose that f ~m, f, w.r.t. € € S(0,0,7), uniformly for X € V, and f(X, 0)eU.

Then there exists an 0 < r1 < r such that
F(X, f(X,2),&) ~m F (X, f(X.2).2)

w.r.t. € € S(0,8,r1), uniformly for X e V.

Proof: By the Borel-Ritt-Gevrey theorem[1.2.10] one can construct a good sectorial
covering S1, ..., S, of B(0,7)\{0} with corresponding functions f; ~m, f such that
S1=5(0,0,r) and fi = f. By proposition these functions satisfy inequalities
([21).

Since f(X, 0) € U, one can choose r1 < r and a compact set fA(X7 0) € K c U such
that for all j, f; (V x (S; n B(0,71))) € K. One can then apply the mean value

theorem and the Cauchy inequalities to show that there exist A > 0 such that
1/m

~ Bl
< Ae Bl

max

sup |F(X, fi (X,€),¢) = F(X, f; (X,¢),9)
XeV

foralle € S;nS;nB(0,71). The Ramis-Sibuya theorem then guarantees the existence
of a formal series G (X, £) such that (in particular) F(X, f(X,),€) ~m G (X,e).
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It remains to show that G (X,e) = F

/N

X,f(X,s),e). Denote
Fxe =3 fu(x)en,
G(X,e) = Z gn (X)e™.

Notice that for any N € Ny the coefficients of F (X F(X, 5),5) for €0,..., N7t
coincide with those in the Taylor expansion of F (X N o fn (X) 5",5). It is thus

sufficient to show that F (X, SN fa (X)em, 5) — YN gn (X)em = O(eN) for e —
0, staying in S (0,5, 7). We have that

n=0 n=0 max
N-1
<|F(x, S f.(X)e ,e> P (X, f(X,e),e)
n=0 max
N-1
+|F (X, f(X,e),6) = D) gn(X)e" (1.2.2)
n=0 max

By the Cauchy inequalities and the definition of Gevrey expansions, there exists
Co, C1, D1 such that (1.2.2) is bounded, for all || sufficiently small, by

N-1 N—
Co |f(X,e) = D) fu(X)e" F(X,f(X,e), Z

max max

<O DNT (1 + mN) eV

O
Due to the Borel-Ritt-Gevrey theorem, remark and the above lemma, the fol-

lowing is immediate.

Corollary 1.2.14. Let F and f be as in lemma with f a Gevrey-m formal
series. The formal series F' (X7 f(X, 5)75) is also Gevrey-m.

We now give a version of the implicit function theorem for Gevrey asymptotic func-

tions.

Theorem 1.2.15 (Gevrey implicit function theorem). Let m > 0 and

=Y fula)e

be a Gevrey-m series in €, uniformly for a € A, with A c C open.
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Suppose there are 6 € [0,2x[, \,7 > 0 and f € O (A x S(0,\,r)) such that f ~m f
If moreover there exists an ap € A with fo(ao) = 0 and fy(ao) # 0, we can find an

r1 > 0 and a holomorphic function
a:S(0,\r1) > A

such that @(0) = ao and
f(@(e),e) =0
for alle € S(0,\,7r1).

The function a is also Gevrey-m asymptotic to a formal series
o0
a(e) = Z ane™.
n=0
Proof: Take 6, R > 0 such that B (ao,d + R) = A and consider the following map

F : B(ao,0) x (S(0,\,7)u {0}) - C

fla,e)ife #0
fola) ife =0

(a,€) =

This is clearly a continuous map. The first partial derivative is given by

oF %(a,s) ife#0

A @e) =" (1.2.3)
a fola) ife=0

We claim that the partial derivative is also continuous on B (ag, §) X (S(6, A, ) U {0}).
For a point (as,es) with e4 # 0 the continuity is obvious since f is holomorphic.
Thus consider a point (ax,0)and let p > 0 be random. Take a neighbourhood,
U < B(ao,d), of ax such that

|fola) = folas)| <

VIR

forae U.
For (a,e) € U x (S (0,/\,min{ﬁ’&+s),r}) U {0}), where C, D > 0 are chosen
such that

sup |f(a,e) = fo(a)| < CDT(1 + 5) [e],

we have the following.

If e =0, clearly

0 0 / /
O (@,9) = G (@, 0)| = Lfo@) — folaw)] < .
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Otherwise, using Cauchy’s inequalities we have

@) = (@0 = | L o) - sites)
< 2 0,0) 4 ) — i)
< g )~ fo(w)| +
< %CDF(1+S)|6| +2
<p

The map F' is thus continuous, with continuous first partial derivative and satisfying
F (ap,0) = 0. This suffices to employ a continuous version of the implicit function

theorem, see for example [LSI4]. There thus exists an ro > 0 and a continuous map
a:S(0,\ro)u {0} - B(ao,0)

with @(0) = ao and F(a(e),e) = 0, where a(e) is the unique element solving this
equation.
Since 2£(ao,0) = fy(ao) # 0 we can find an 0 < 71 < 7o such that for all £ €

S (6,\,m) U {0}
2—5(&(6),5) # 0.

Let €4 € S (6, \,71), then

f(@(ex),e4) = F(a(ex),e4) =0
of oF

0 (a(ex),ex) = %(6(5*)75*) # 0.

By the holomorphic implicit function theorem there exists a holomorphic function

gey ON an environment of €4 for which

[ (gex (e),€) =0.

By uniqueness of @ we must have that a(¢) = g, (¢) on this environment. Conse-
quently, @ is analytic around €4 and thus it is analytic on S (0, A, r1).

It remains to show that a is Gevrey-m asymptotic to a formal series.

For this, take a covering of B(0,7)\{0} by sectors (S;),_, ; where S1 =5 (6,,r1) and
the other sectors have opening smaller than mm. By the Borel-Ritt-Gevrey theorem
there exist g; € O(A x S;) fori =1,...,1 with g1 = f and ¢g; ~m f There
exist T, @Q > 0 such that for i,j with S; N S; # & we have

__T_
sup |gi(a,€) — gj(a,e)] < Qe 1<1'° [ Vee S; n S;.
acA
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Using our previous assertions we find, for ¢ = 1,...,l, maps a; € O(S;) (where the

radius of S; could be diminished), with @1 = @, satisfying
0:(@(0), 2) = 0.
For i,j with S; n S; # J and € € S; N S; we get

0 =gi(ai(e),e) — g;(a;(e), )

=9i(ai(e),€) — 9i(@;(e), ) + gi(@; (e),€) — g;(a;(e), €)
(1.2.4)

_[ 99 (@i () + v (@;(e) — ai(e)) ,e) dv (@;(e) — @i(e))

Since

(@i(e) + v (@;(e) = ai(e)) , &) dv — fo(ao)

(@i(e) + v (@;(e) — i) , €) — folao)| dv

we can find by continuity of (1.2.3) and using fj(ao) # 0, a D > 0 such that for |¢]
sufficiently small

1 agl
o Oa

Combining this with (1.2.4]) we find

=D.

(@i(e) + v (@;(e) —ai(e)),e)dv

~

gi(@;(e),e) — g;(a;(e), )
L% (@(e) + v (@(e) — @e)) &) dv

0 da

< Q 71W/s
< .
D

|a;(e) —ai(e)| =

e lel

The Ramis-Sibuya theorem [I.2.12] thus guarantees that all @; are Gevrey-s asymp-
totic to a common formal series. In particular, @ is Gevrey-s asymptotic to a formal

series on S (0, A, r1), for some r1 > 0. O

1.2.3 Summability

The Borel-Ritt-Gevrey theorem guarantees for any formal Gevrey-m series
the existence of functions having this series as their Gevrey-m expansion. These
functions will however only be defined on “small” sectors, of opening less than mn
and will certainly not be unique but their difference is at most exponentially small,
see lemma [[.2.0

On “large” sectors, of opening larger than m, the story is quite different. Given a

“large” sector and a formal Gevrey series, there might not be any function defined
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on this sector, admitting the series as its Gevrey expansion. However when such a
function does exist it is necessarily unique, said differently, on large sectors lemma

1.2.9| can be strengthened to what is known as Watson’s lemma.

Lemma 1.2.16 (Watson’s lemma, [Wat12a]). Suppose that S is a sector of opening
larger than mm and f € V X S such that f ~p, 0 then f =0.

The above leads us to the following definition.

Definition 1.2.17. Given a Gevrey-1/k series
~ >
F(Xe) =) fa(X)e".
n=0

We say that f is Borel k-summable in a direction 0 € [0, 2x[ if there exist r,7 > 0
and a function f (X,€) analytic on V x S (6, + 7,7) such that f ~1 f.

Definition 1.2.18. A Gevrey-1/k series is called k-summable if it is k-summable in

all but finitely many directions.

In this thesis, we will almost exclusively deal with summability in directions, i.e. only
with definition [[L2.171
We will state a theorem that gives an equivalent definition for summability in a

direction. For this we first need to introduce the following.

Definition 1.2.19. Let, for k > 0, f(X, g) = 27 fa(X)e™ be a Gevrey-% se-
ries in € (without constant coefficient), uniformly for X € V. < Cf. We define the

formal Borel transform of order k (with respect to ) of this series to be

[e0]

Be(f) (X,m) = )

n=1

fn (X) n—1
ra+ =)’

We see that the formal Borel transform of order k£ of a type B Gevrey—% series is a

convergent series for (X,n) € V x B(0,1/B) since, for example, the following bound
can be found (see [Bat08])

1
I(1+2 Ir ®
(1 + ) e\k 2

The following theorem gives an equivalent definition for k-summability in a direction.

Theorem 1.2.20. ([Bal00]) Let f(X,e) = S fa(X)e™ be a Gevrey-1 series,
k> 0, uniformly for X € V.< C*. For every 0 € [0, 27[, the following two statements

are equivalent

e The series f(X7 €) is Borel k-summable in the direction 6 with Borel sum

f(X,e).
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e There exists an infinite sector S (0,7) for 7 > 0 such that By (f) (X,n) admits
a holomorphic continuation to S (0, 7) of exponential growth at most of order k,
i.e. there exist M,v > 0 such that for allm e S (0,7)

sup |Be(f) (X, n)| < Me".
XeV

Moreover the function f is unique in the case the statements are true.
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Chapter 2

Local Gevrey analysis of slow manifolds

As a general remark we point out that we work throughout this thesis with complex
slow-fast systems. Our results can be applied to real analytic systems by simply
limiting them to the real numbers. Moreover, the methods described here are robust
enough that one can add parameters without altering the results. We have not added

such parameters, mainly to not further complicate the notation.

In this chapter we study the local Gevrey asymptotic properties of slow manifolds in a
broad class of holomorphic slow-fast systems. We commence this study from a formal
point of view in section [2.I] The existence of power series in the singular parameter
which are formally invariant under the flow of the system is demonstrated. These
power series are then shown to be Gevrey-1. We then make a distinction depending
on the behaviour of the slow flow.
Section deals with regular points of the slow flow. In this case one can construct,
by employing the Borel-Ritt-Gevrey theorem [1.2.10], manifolds which are Gevrey
asymptotic to the formal solution but are only nearly invariant. By this we mean
that the error is exponentially decaying w.r.t. the singular parameter. However,
starting from such a manifold one can construct invariant manifolds, which inherit
the Gevrey property. This approach has been already successfully employed in the
case of one slow variable in [CDRSS00].
Afterwards, singular points of the slow flow are considered in section Under
certain conditions, a better result can be achieved. Here the formal solution is 1-
summable in a direction.
Concretely, we will consider in this chapter slow-fast systems

{ X = eGlX Ze) (2.0.1)

Z = G2(X,Ze)
where
XeC',ZeCmeeC

15
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and the functions are holomorphic on an open subset of C" x C™ x C. Suppose
there is a point (Xo, Zo, 0) satisfying G2(Xo, Zo,0) = 0 and DzG2(Xo, Zo,0) is an
invertible matrix. Then there exists, by the implicit function theorem, locally around

Xo a holomorphic function ®¢(X), satisfying
G2 (X, P0(X),0) =0
and ®¢ (Xo) = Zop i.e. Z = Pg(X) is a critical manifold. Applying the transformation
€21 =7 — @0 (X) + (DzG2 (X, P (X),0)""-
<% (X, ®0 (X),0) — DPg (X) G1 (X, Do (X) ,0)) ,
X1 =X — X,
and dropping the subscripts, brings the system into the form
X
L
Where A(X) = DzG2(X + Xo, Po(X + Xo),0), the critical manifold is now given by
Z =0 and the following assumptions hold

eF(X,Z,¢)

, (2.0.2)
A(X)Z +eH(X, Z,¢e)

(i) A€ O (P,(R),C™ ™) and A(X) is an invertible matrix for all X € P,,(R),
(i) F e O(Pn(R) x Pn(R) x B(0,R),C™),
(iii) H € O (Pn(R) x Pm(R) x B(0, R),C™),

for some R > 0.

2.1 Formal slow manifolds

2.1.1 Formal expansions in terms of the singular parameter

The slow manifold equation associated to (2.0.2) is given by
eDxZ(X,e)F(X, Z(X,e),e) = A(X)Z(X, ) + eH(X, Z(X, ¢), ). (2.1.1)

We start off by searching for a formal solution to the above equation.

For this we introduce the spaces of formal series O (P, (R), C®) [¢], where s may de-
note any natural number. These spaces can account for series where the coefficients
are holomorphic functions taking values in the space of linear operators between
products of C. Indeed, for this one simply uses the canonical identifications of lin-

ear operators with complex valued matrices, and matrix spaces with finite product
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spaces. We equip these with the following metric, Let V, W € O (P, (R), C®) [¢] then
d(V,W) = 27 where

K:min{ﬁeN‘(coeﬁicient of * inV—W) #0}.

It is easily seen that O (P, (R),C?) [¢] is a complete metric space. Moreover, the
metric has the following additional properties:
o d(V, W) =d(V —W,0).

e d(U,W) < max {d(U,V),d(V,W)} (so d is an ultrametric).

e d(V -W,0) < d(V,0)d(W,0) whenever the product is defined, as is for example
the case when
VeO (Pn(R),C™ ") [e]

and

W e O (P.(R),C") [¢].

Combining this with the fact that the metric is bounded by 1, shows that in
particular d(V - W, 0) < d(V,0) as well as d(V - W, 0) < d(W,0).

Proposition 2.1.1. FEquation has a unique formal solution of the form
~ &
Z(X,é‘) = Z Zk(X)Ekv
k=1

with Z € O (P,(R),C™).
Proof: Consider the map
T:Z=2(X,e) > cAX) " (DxZF (X, Z,e) — H(X, Z,¢)) (2.1.2)

from B (0,3) < O (Pn(R),C™)[e] to itself. This map is well defined, one can see

easily tha1z ?T(Z) € O(Pn(R),C™)[e] and d(T(Z),0) < 3 simply due to the multi-
plication with e.
Moreover, for Z = Z(X,e), W = W (X, ) € O (P, (R),C™) [¢] we have
T(Z) =T (W) = eA(X)" (Dx(Z — W)F(X, Z,¢e)
+ DxW (F(X, Z,¢) — F(X,W,e))
+ H(X,W,e) — H(X, Z,¢)).

Using d(Dx (Z — W),0) < d(Z — W,0) and

F(X,Z,e)— F(X,W,e) = Frw(X,e)(Z — W),
H(X,Z,e)—H(X,W,e) = Hzw(X,e)(Z — W),
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for certain formal series ﬁ’z,w7 INJZMM and combining this with the properties of the

metric d, one sees that

A(T(2), T(W)) = d(T(Z) = T(W),0) < ~d(Z — W,0) = %d(Z, w.

DN =

Consequently there exists a fixed point of 7 in B (0, %)7 which is clearly a (formal)
solution to (2.1.1)) and due to the definition of the metric has no constant term. [

2.1.2 Gevrey growth of the formal expansion

One can not expect that the formal solution found proposition is convergent in
in a full neighbourhood of € = 0. Indeed even for a very simple example,

e— (z,e) = z—¢h(x),

ox

the formal solution is calculated to be given by

Z (z,e) = R (z) ™

1

s

n

The coefficients will generally grow like (or are at least always be bounded by) n!B"

which indicates that the series is of Gevrey-1 type.

In this section we show that the conclusion of the simple example above actually holds
for all formal solutions to the general equation ‘ The formal slow manifolds
of are Gevrey-1 series. The analysis will be done, locally around X = 0. At
the end of this section, more specifically in corollary we mention a more global

result. The remainder of the section is devoted to proving

Proposition 2.1.2. Let 0 < T < R, the unique formal solution to equation (2.1.1)
is Gevrey-1 w.r.t. € uniformly for X € P, (T) i.e. 3C1, D1 > 0 such that Yk € N

sup || Zk(X)]... < C1DFE!

XePy(T)

max

Our approach is to introduce an auxiliary series whose coefficients are bounds on a
well chosen family of norms of the Z,. By proving convergence of the auxiliary series,
the Gevrey property can be deduced. This approach is also taken in [CDRSS00] for a
single slow variable (i.e. X € C), moreover, the techniques employed in the remainder
of this section are an adaptation of the ones used in this article.

We consider a family of norms on O (P, (R), C°®) which are multi-dimensional variants

of the Nagumo norms, [Nag4l].
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Definition 2.1.3. Forpe N and p € O (P,(R),C?®) define

-p
= sup max .
Iell, = sup (X (ZR M)

n

Here we have denoted X = (x1, .. .,xn).

Notice that such a norm may be unbounded, when this is the case it will be denoted
as being +o00.
Proposition 2.1.4. Let p € O (P,(R),C™), ¥ € O (P,(R),C") and p,q € N, we
have

1De -9l iqe1 < elp+ Dol 191,
Proof:  The result is trivial when either ||, = 40 or ¢, = +oo, we thus
concentrate only on the case where both are finite.
Let Y € IP,,(R), then it is easily seen that

N

DAY 00 (Z - )

< max {i 0p; (Y)‘} oy (i )qu
jetl,omy | A | o (- I

=1
0 n 1 —p—1
Pi
S efhax Y Tt : 2.1.3
je{l,...,m} { ox; ( )‘ <£Z]1 R — |y£|> } ”qu ( )
We now concentrate on bounding Z

n —p—l , .
p ( )‘ (22=1 ﬁ) . By Cauchy’s in-

i=1

equalities,
a<pj 1
Y) <+ (X
‘6931-( ) Ry XetoPn(Vy(R1seoes ) s (X0l
1
< = X ,
R; Xe:on)n(rilfl,?l)a(l ..... Rn)) [P lna
where Ry,...,R, can be any real numbers satisfying 0 < R; < R — |y;| for all
i=1,...,n and

0P, (Y, (R1,...,Rn)) ={(z1,...,2,) €C" ||z —yi] = R;,V1 <i<n}.

Consequently we have

= &p] |
o X .
Z 6:82 Z R; Xeoopn(rxrfl,?z}z{l,m,zzn)) [ hmax

i=1
Using the definition of [¢]|, we then get

p
Z &m Z I, XetoPn (M RaveoiFin)) Z Ixel

1=1 =1

(é ) leell, @Ll R_|yt|_R£>p-
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The last inequality follows from |z¢| < |z — ye| + |ye| = Re + |yel-

By setting R; = £ iyll

e, . .
o)< (Z m)'“””p E(l_ 1)1(3

we get
n p
2

i=1

p+1

p+1
~o4n (1- ) WI< R|W>
<@+1|¢|<n ) .

—p—1
o agoj 2 1
<

Plugging this into gives us that

— |yel)

We thus have

—p—g—1
IDe(Y) nm<ZR m) <+ Delel, k-

Since this holds for all Y € IP,,(R) it immediately follows that

1Do -] gin Sele+1) [l ¥, -

We now introduce the concept of majorizing series.

Definition 2.1.5. Let ®(X,¢) = > o en(X)e™ be in O (Pr(R),C") [¢] and Gv) =
> o gn¥™ a formal series with coefficients gn € R i.e. G e R[v].

We say that $(X, €) is 1-majorized by é(v), uniformly in X, if, for all n € N,
lenl, < nlgn. This is denoted by

Proposition 2.1.6. Let

A with ®(X,e) € O (Pn(R),C™) [¢], A € R[v],
B with U(X,e) € O (Pn(R),C") [e], B € R[v].
Then eDXE‘ 0 <<§< evADB

Proof: We have

<Zf: Dwk(X)s’M) ( /

o~
P
s
=
m(\
N——
I
s
T
-
S
hS
=
s
|
=
N——
ms
X
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By proposition and the definition of 1-majorizing series,

< Yool + D llwsll I1bi-ili s
<Y eld + 1)jlay(i — )iy
= Yo + 1)laj (i — j)bi;
< (74 + 1)!622:0 ajbi-j,

|30 Dips (X5 (X)

i+1

where we have used that the reciprocal of any binomial coefficient is bounded by 1.

Consequently
(Z D%(X)€k+l> <Z W(X)Ee) «x Z e (Zl] ajbi—j> vt
k=0 £=0 i=0  \j=0
= evA(v)B(v)

The following properties are straightforward to prove.
Properties 2.1.7. Assume that
d <X A, with®e OPn(R),C™)[e], AeR[v],

U, <X Bi,  with U1 € O (Pn(R),C%) [e], Bi € R[],

(
Uy «& By, with Uy € O (P, (R), C*) [¢], B2 € R[v],

and
sup  [|A(X)],, = C, for some A€ O (Pn(R),C™"™)
X€eP,, (R)
(where ||, denotes the operator norm). Then:
(Z) (\il =+ \1}2) ((%g (El + EQ);
(i) A-® <& CA,
(iii) U, (&>>a «% Bi A for alla e N™ .

To prove the Gevrey property of the formal solution found in proposition [2.1.1| we
rewrite equation (2.1.1), by expanding the functions F' and H in fitting Taylor ex-

pansions, as

Z(X,e) =eA(X)™" [DXZ(X, £) < > (Z Faq(X)5q> Z%(X, 5))

s

q=0

(2.1.4)

Haq(X)st> Z°(X,¢)
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We intend to associate to this equation what we will call a majorant equation. To

that end we introduce the notations faq = 7 [Faql,, b Hagql, and

ol a=l

o0 0
A= sup [A)7TY s fa®) =Y faqv?s  Ra(®) = D) hagv”.
s 400, o o
Let us hence state the so-called majorant equation

V(v)=vﬁ<e ) Y fa@V @)+ )] Ea(v)vlal(v)>. (2.1.5)

agN™ agN™

Before relating equation (2.1.5) to (2.1.4), we claim that this equation has a conver-

gent solution.

Proposition 2.1.8. Equation (2.1.5) has a unique formal solution of the form

0

k

= CrV
k=1

where ci, € R. Moreover, this series is convergent.

Proof: We consider the space C[v] with a formal series metric as in proposition
Completely analogous as in the proof of proposition [2.1.1] one shows that the

map
S:V(U)HM( ) Y fa@V @)+ Y ﬁa(v)va(v)> (2.1.6)

from B (0, 1) c C[v] to itself is well defined and a contraction. Let us now deal with

the convergence. Notice that since

1 oll+ap

Foqg(X) = alql 0Z2oea

(X’ 07 0)7

there exists, due to Cauchy’s inequalities, an M > 0 such that

M
sup |Faq| < .
XePn(R) |Fagl Rlal+a

1 M R\? M
faq = a ”Faq“q < q!R\a\+q (g) = qulalnq

It explains that }: is an entire function satisfying

This implies that

Melvl/n
Rl

Jaw)| <
Since the expression Y] xm fa (U)V‘O“ can be written as

Y fav?

p=0 aeN™
|e]=p
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and since

> [vl/n _ »
> Fwvrs Y MY |v|p_Me|v|/n<p+7Z 1) (%) |

aEN™ a€EN™
la|=p lal=p

the expression in (2.1.5) is actually convergent for |V| < R, taking into account that

similar bounds as above also hold for the second term and using that

i p+m—1 <|V|> R
= P R -V
One can thus apply the analytic implicit function theorem to (2.1.5), and it has a

unique analytic solution which is 0 for v = 0. This implies that the formal series

solution V (v) is convergent. O
The following result shows that the name majorant equation is fitting for ([2.1.5).

Proposition 2.1.9. Given two formal series

3(X,e) = 2 (a(X)e" € O (Pu(R), €™) €],
2 no" € R[],

satisfying Z<<§( 7], then

-y (zﬂaq )zocs)]
<X UZ< Z fa)V" @) + ) ﬁa(v)Vo‘(v)>.

Proof: Due to proposition [2.1.6|and the properties in [2.1.7] it suffices to show that

) (in(X)gq> (i@(X)e’“) <& D) Ja)iw),
aeN™ \g=0 k=1 QEN™

> <Zf] Haq(X)sq> <Zf: cjk(X)sk> <k Y ha(w)i®l(
aelN™ q=0 k=1 aeIN™

Since the proofs of both statements are identical, we concentrate on the first one.
By construction 2;:0 Faq(X)e? «% fo(v). Let £ > 1 since ¢ has 0 as the coefficient

of €°, the coefficient belonging to €’ in the formal series

5 (2 Faq(X)sQ> (Z @(X)s’“)
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is equal to the one of the series

3 (S ) (Seoor)

la|<e

By the properties [2.1.7]

>, (Z Fog(X q) <ki1§k(X)sk> <& Y R

lof<e |a|<e

Once again, due to the fact that 7 has no constant term, the coefficients of v* in the

series 3, <, fa(v)il*l(v) and D eN™ fa ()i (v) coincide.
We have thus proven that the ¢-th Nagumo norm of the coefficient of £° in the series

Zaewm (ZZ o Faq(X)e q) (Z,ﬁ 1 Ck(X)ak)a is bounded by #! times the coefficient of
v* of the series Y nm fa ()71 (v), which means that the result holds. O

Corollary 2.1.10. The formal solution Z(X,¢) to equation (2.1.1) is majorized by
the formal solution ‘7( ), to the majorant equation , i.e.

Z <<§( V.

Proof: Restating propositionln terms of the maps (2.1.2]) and (2.1.6) gives that
for (e B (0,3) € O(Pn(R),C™) [e] and 7€ B(0,%) @[[v]] with C «% 7 it holds
that T (E) % S (7). Since 0 «% 0, and Z = limy, oo 7"(0), V = lim,, .. S*(0) the
result follows. O
Corollarythen immediately implies, together with the convergence of 1% (yield-
ing ¢, < ODY), that for 0 < T < R,

£ £ £
n n nD
Zy (X < |Z —— ) <cl!l| =——= ) £C 2.
XESIII:F(T)H E( )Hmax ” Z“Z <R_T> Ce (R_T> (R—T)

We have thus proven the proposition [2.1.2

A more global version of this result can be easily deduced.

Corollary 2.1.11. Let K < C" be compact and Q < C" open with K < Q. Sup-
pose that the assumptions to on hold on Q instead of locally around
(Xo, Zo,0).

Then there exists a unique formal solution to (2.0.2)), Z(X,e) € O (K,C™)[e], which
is Gevrey-1 w.r.t. € uniformly for X € K.

Proof: By proposition 2.1.2] such a solution exists locally around each point of K,

going to a finite subcover gives the result. O
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2.2 Gevrey asymptotic slow manifolds at a regular point of

the slow flow

We once again consider the system (2.0.2)),

X eF(X, Z,¢)
. , (2.2.1)
Z = AX)Z+eH(X,Ze)
Together with assumptions (ED- on page

In this section we impose the additional condition that the slow flow is nonsingular:
F(0,0,0) # 0.

We show that, under this condition, the formal solution obtained in the previous
section can be realized as an actual solution of the slow manifold equation, more

specifically, the following is proven throughout this section.

Lemma 2.2.1. Let 0 € [0,2n[, T € ]O, 5 [, there exists a solution to the slow manifold
equation (2.1.1), defined for X in a neighbourhood, say V, of 0 and € € S(6,20,r), for
a certain r > 0, which is Gevrey-1 asymptotic, w.r.t. €, uniformly for X € V, to the

unique, Gevrey-1, formal solution to the slow manifold equation, see proposition|[2.1.9

We point out that a Gevrey solution on a small sector is the best one can hope for in
general, i.e. in the absence of a singularity of the slow flow on the critical manifold
there exist equations of the form which do not admit a solution defined for ¢
in an open sector of opening larger than 7 or in other words, there is no direction in
which a 1-summable solution exists. An example showing this is given in remark
the example is given in a setting of one slow and one fast variable but can be easily
generalized to an arbitrary amount of slow variables. We have deferred this example

to a later chapter since we have not yet introduced the relevant terminology.

The proof of lemma [2.2.1] consists of the following steps. First we will use the for-
mal expansion of Gevrey type to identify a quasi-invariant manifold, i.e. where the
invariance equation shows an error that is exponentially small in e. We then rewrite
the equation relative to this quasi-invariant manifold, and try to solve the rewritten
equation. We attempt this by using a formal power series approach w.r.t.  (one of
the slow variables), aiming at proving convergence of this formal series by using a
majorant method again. We will succeed in doing so, defining a majorant equation
of PDE type. The section finishes by proving the presence of a convergent solution

to the majorant equation.
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2.2.1 Preparing the equation

Denote the formal solution to the slow manifold equation (2.1.1) by Z = Z(X7 €).
By the Borel-Ritt-Gevrey theorem [1.2.10} there exist R, > 0 and a function 7=
Z(X, ), holomorphic for (X, ) € P,,(R) x S (6, 27, 7), Gevrey-1 asymptotic to Z. We

define the following error term
R(X,e) = eDx ZF (X, 2, e) —A(X)Z —eH (X, 7, 5) . (2.2.2)

Since Z formally solves the slow manifold equation, we have that R ~; 0 by lemma|l.2.13]
implying there exist K, L > 0 such that for all € € S(0, 27,7)

L

sup  |R(X,e)| < Ke T,
XeP, (R)

If there exists a solution to the equation

eDxAF(X,Z + A,e) =A(X)A —eDx 2 (F(X, Z+Ae)—F(X,Z, 5))
A N (2.2.3)
te (H(X, A+2Ze)—H(X,Z, a)) ~R(X,e),

exponentially small w.r.t. € on a sector contained in S (8,26, r) and holomorphic on
a subset of P, (R) x S(0,27,7), it induces a solution to (2.1.1)) which is Gevrey-1
asymptotic to Z by setting Z = Z+A.

Remark 2.2.2. The exposition that is to follow is primarily aimed at systems with
two or more slow variables, i.e. n = 2. In the case of one slow wvariable, the
used method is still valid by essentially disregarding all variables Y, as defined be-
low. However the case of one slow variable has already been treated and the result
can be achieved in a slightly easier manner, this is done for example in section 6 of
JCDRSS00].

Let Fi,...,F, denote the component functions of F', since we are assuming that
F(0,0,0) # 0, there exists k € {1,...,n} such that Fj (0,0,0) # 0. We now rename
and reorder the variables X = (X1,...,Xy) by setting ¢ = X and denoting the
remaining variables by Y = (Y1,...,Y,—1). With slight abuse of notation we might
replace X with (z,Y), the expression Dx AF (X, 7+ A,s) is then given by

Fu(a,Y, 7 + A,e)% b Dy AFs(n,Y, 7 + A,e),

where Fy denotes F' with its k-th component function removed.

By noticing that

F(z,y,2+A,s) —F(m,xé,s) - leZF (ac,y,2+uA,g) Adu
0
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and similarly for H we can, by denoting

—D2,v) 2§ Dz F(2,Y,Z+ud e)Adut§ Dz H(2,Y,Z+ul ) Adu
Fy (I,Y,Z+A,€) ’

S(z,Y,Aje) A =

Fy(2,Y,A+Z )
Y A — Ed ) )
F(m, ’ ’8) Fp(z,Y,A+Z,e’

A(z,Y,Ae) = %
Ri(z,Y,Ae) = %,
rewrite ([2.2.3]) as
(Z—ﬁ = —-DyAF + ?A—FSA—RI. (2.2.4)

2.2.2 Formal expansions in terms of z

Proposition 2.2.3. Consider equation . There exists a unique formal solution
of the form

A(z,Y,e) = i 5k (Y,e) z* (2.2.5)
k=1

with 0 € O (Pr—-1(R) x S (6,27,7),C™).

Proof: Analogous as in section[2:1.2and in particular the proof of proposition [2.1.1}
we consider the formal series spaces O (P,,_1(R) x S (0,27,r), C®) [z], equipped with

the formal series metric. One can then show that the map, given by
V(A(z,Y,¢))

= Jz —DyA(u,Y,e) F (u,Y,A (u,Y,¢) ,¢)
0 (2.2.6)

_"_ (A(U7Y7A(U7KE)7E

. )+S(u,Y,€,A(u,Y,z—:)))A(u,Y,s)

~ R (0, Y, A (u,Y,¢) &) du,

from O (Pn—1(R) x S (0,27,7),C™) [2] to itself is a contraction on B (0, 3) and the
fixed point of this contraction is the desired formal solution. O
We will continue this subsection by setting up a majorant equation for the formal

series.

Definition 2.2.4. Given formal series

G (z,Y,¢)

(z,y,0) =

"o

with G, € O (Pp_1(R) x S (0, 2T, r)7(DS), where s € No, R,7 > 0 and

gr: 2 x]0,r[ > C
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with © < C an open neighbourhood of 0, such that for all g € 10,7[, gx (-,+,8) €
0(Q,0C).

We say that G is differentiably majorized by g, denoted by G <p g, if for all k € N,
geN""! and alle € S (0,27,7),

g
1D G (0,€)]l, (0, le]).

Property 2.2.5. Using the notations of the above definition, suppose that G <p g
and there exist 0 < T < R, 0 < r1 <r and K,L > 0 such that for all 8 € ]0,71[ we
have g (-, -, 8) € O (P2(T),C) satisfying

L
< Ke 7.
‘z‘rf‘ljéTlg(x,y,ﬁ)l\ e

Then, for any0 <c<T, Ge O(B(0,T —¢c) X Pr_1(T —c) x S(0,27,r1),C?) with

L

B

sup |G (2, Y, 8)] 0 < K1€™

(2], 1Y [ max <T—c

max

max

for a certain K1 > 0 (which depends on c).

Proof: Choose any 0 < ¢ < T, by the Cauchy inequalities we have that

gi 1 |o7tEg q! L
0 0,0, ————Ke B
T 00) = gy Gt 0.0.0) < e
2
and thus
o0 o0 0 1
k
Z 1G (V2 €) | 121° < D7 D EIID%Gk (0,8l IV 12,0 1l
k=0 k=0 q=0
o0 0 k
Y e 12" o — &
< 5 35 Wil
k=0¢=0 ( )

(T-35)°
(=5 = [Vl (T =5 = I2])

Proposition 2.2.6. Let G, H, g, h be formal series such that

G<«pyg
H<ph

and Dy G (z,Y,e) H (z,Y, ) is defined, then

l)y(;- H «p éiz' h
dy
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Proof: We have

DyG (z,Y,e) H (z,Y,¢) <iDkaYs )(Zm )

k=0

x k
Z ZDYGZ YE)Hk Z(Y) k.

=0£=0

Fix k,q € N and denote for all j € {1,...,q}

T! ={V c{l,....q}||V| = j},

=

where we assume that the elements of T;] are ordered sets w.r.t. <. Then
k
D! <Y = 3" Dy G (Y,e) Hee (Y, s)) (2)
£=0

k
=2 i >, DYITGy(Z,e) Pye DY Hy ¢ (Z,€) Py
£=03=0

eTq
Here, if we denote V = {v1,...,v;}, V¢ = {wi, ..., we—;},
(qu‘f“Ge (Z,€) Pye DY Hio—y (Z,¢) PV) (hi,... he)
= DL G (Z,€) (hwys- -y hawy_,) DYy Himt (Z,€) (hoy s - b)) -

Using that G «p g and H «p h, we then get

D1 <Y . i D, Go(Y,e)Hu—s (Y, s)> (0)

£=0

op

(0, ¢ H . HD{,H;C,Z 0,¢)

op

< aqi.gﬂou)“’“ £ 0, Jl)

Consequently

o k
DyG (z,Y,e) H (2,Ye) ZZ(}L Y, 8) e (y, B) @

The following properties can be easily derived from the definitions.
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Properties 2.2.7. Let G, H1, Ha, g, h1, ha be formal series such that G «p g, H1,2 <p
h1,2. The following properties hold:

(i) Hi + H2 <p h1 + ha,

(is) Hy -G <p h1g, when the product is defined,
(iii) HiG* «p hig!®

() §5 G (u,Y,e)du «p §; g (u,y, ) du.

Consider again equation ([2.2.4)) in its fixed point form (2.2.6]), which we repeat here
for the sake of convenience.

A(x,m:j Dy A (u,Ye) F(u, Y, A (u, Y, ) )
[0]

+ (A(“’Y’Aa(“’m)’g) +8(u,Y,A(u,Y,e),e)> Au,Y,e)

D Ri(w,Y, A (u,Y,¢) €) du.

aeIN™

(2.2.7)

Expanding the functions in appropriate Taylor series, this can be rewritten as

A(z,Y,e) = J —Dy A (u,Y,¢) Z Fao (u,Y,e) A% (u,Y,€)

aeN™
+ < 3 <w + S (u,Y, 5)) A® (u,Y,e)) Aw,Y,e)
aeN™
Z Rie (u,Y,e) A% (u, Y, €) du.
aeN™

We may assume, by if necessary reducing R slightly, that the functions F, A, S
and Ri are all holomorphic on B (0,R) x Pp,_1(R) x P, (R) x S(0,27,r) with a
continuous extension to the closure of this set. Moreover we can assume that F, A,
S are uniformly bounded on this closure by M > 0 and there exist K, L = 0 such
that for all € € S (0, 27, 7),

_ L

< Ke Tel

max >

B __max [R1(z,Y, A, e)|
B(0,R)xP,_1(R)xP,(R)

Using this one sees that for

(z,Y,¢) Z Fote (Y,e) T

we have |Far (Y, €)| < % and from this it follows that

M qg+n—2
HD‘{,]—'M (O)Hop < q!Rqu‘M< q >
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such that
E & M q +n—2 q L
.Fa(x,Y,s)«DZZW ¢ yix
£=0qg=0
M * Y\ sz \L M y\1-n -1
TRl & (-%) (&) ~w@=(-%) (-3

and similarly for the other functions.
One then constructs a majorant equation to (2.2.7)),

(z,y,B) = So ( agN™ R\al (1 - 7) - (1 - %)_1 viel (u, y)) (: (u,y)

+ <2ae]N”" % (1 - %)17” (1 - %)71 el (u7 y)) v (u,y)
du

which is rewritten as

du (2.2.8)

s MY (u,y) + M (% +1) V (u,y) + Ke #
V= f
Qu,y, V(u,y))

T e -8 (-5

2.2.3 Convergence of the solution to the majorant equation

Lemma 2.2.8. There exists a unique formal solution of the form

V (x,y,8) =Z

to (2.2.8), where the functions Vi, are defined on B (0, R) 10,7[. Moreover, for the

unique formal solution, A, to [2.2.4) in proposztzon it holds that A (z,Y,€) «<p
Vi(z,y,8)

Proof: The proof is analogous to a combination of the proofs of proposition [2.1.9
and corollary O
We now want to employ property to show that A (z,Y,¢) is holomorphic and
exponentially decaying w.r.t. €. The remainder of this section will thus be devoted

to proving the following,

Lemma 2.2.9. There exists an 1 > 0 and 0 < T < R such that for all 8 € ]0,71][,
V(- B) e O PT),C) with V the unique formal solution to (2.2.8)). Moreover there
exist K, L > 0 such that

sup |V (x,y,8)] < Ke™ 7.
(z,y)eP2(T)
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The system of characteristic equations, with 3 as a parameter, of the partial differ-
ential equation associated to (2.2.8)) is given by

io= (1-f)0-%""0-"

i o= —-M (2.2.9)
. L

vV o= M(%+1)V+Ke7

z(0,s) = 0;y(0,s) = s;V(0,s) = 0.

We see that the V is independent of z and y and by direct calculation

L
v = e (M),
M (4 +1)

Notice the independence of V' on s. The function V is, for each parameter value 3,
an entire function and if we fix a 0 < ¢ < ﬁ it is exponentially decaying w.r.t 3,
uniformly for |¢t| < & —c.

Using this, the (&, ¥) equations are uniformly Lipschitz for [t| < ﬁ —cand all 5. By
Picard’s theorem, the solutions z (¢, s) and y (¢, s) (depending on 8 ) are guaranteed

to exist for (¢,s) in a neighbourhood of the origin, which is independent of 5. Denote

this neighbourhood by A¢ and define the map
h: Ag x ]0,00[ = C? x ]0, 00[

given by
h(t,s,B) = (x(t,s,B),y(ts,B),8)
With these notations, lemma [2:2.9] is then equivalent to the following.

Lemma 2.2.10. There exists an r1 > 0, 0 < T < R and a neighbourhood A1 c Ao
of (0,0) such that for all 8 €10,71[, h(:,-, B) is a biholomorphism on A, with inverse
defined on a set containing Pa (T).

Proof: One can show that h can be extended in a C! manner to the set Ag x

1 0 O
[0, 0] and the differential of this extension in (0,0,0) is given by | M 1 0] The
0 0 1

inverse function theorem thus guarantees that (the extension of) h is invertible on a
neighbourhood A; x [0,71[. Denote this inverse by g

For each 8 €]0,7r1[, h (:,-, B) is a holomorphic map (solutions of a holomorphic ODE
are holomorphic). This automatically implies that its inverse function, g (-,-, ), is
also holomorphic, see for example [Ros&82).

We finish the proof by noticing that h(0,0,0) = (0,0,0) and g is thus necessarily
defined on a neighbourhood of the origin. ]
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2.3 Summability of slow manifolds at singular points of slow

flow

We once again consider the system (2.0.2), which we repeat here

X eF (X, Z,¢)
Z = AX)Z+eH (X, Z,e)

again making the assumptions — on page

Where in section [2.2] the slow manifold was investigated around regular points of the
slow flow, we will now focus on equilibria of the slow flow. We will make two further
restrictions on the class of systems we will treat.

The first one is on the dimensions of the system, we will assume that there is only
one fast variable. Furthermore, at the equilibrium of the slow flow, the eigenvalues
of the linearised slow flow lie in the Poincaré domain, or formulated differently, all
eigenvalues lie in an open sector of opening at most w. Concretely we make the

following additional assumptions.

(i) Z € € (notice that this means A (X) € C and assumption (i) on page [16] just
reads A (X) #0).

(ii) There exists an X for which F' (Xy,0,0) = 0.

(iii) There exists an open sector, S, of opening at most 7 such that the eigenvalues
of Dx F (Xo,0,0) all lie in this sector.

Under these conditions we prove.

Theorem 2.3.1. There exists a direction 3 € [0,2n[ and a neighbourhood W of Xo
such that has an invariant manifold z = ¥(X,€) that is Borel-1 summable in
the direction 0 (uniformly for X € W ).

There are constraints on the possible directions 3, these are elaborated upon in lemma
[Z23°9 We specify the directions of summability, that can be obtained from this lemma,
in a few special cases that could be of interest in the setting of real analytic systems
of equations.

Denote the eigenvalues of Dx F (X0,0,0) by A1,..., An.

(i) In the case of 1 slow and 1 fast variable, when there is a slow-fast saddle point,
meaning M A (0) < 0, summability can be obtained in all directions lying in the

strict right half-plane i.e. 8 € ]—; —g[

(i3) In the case of 2 slow and 1 fast variable:
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e The slow dynamics has a unstable hyperbolic node on the normally attract-
ing critical manifold, meaning that we have A (0,0) < 0 and A1, 2 € Ry.
The summability can be obtained in all directions lying in the strict right

half-plane.

e The slow dynamics has an unstable hyperbolic focus on the normally attract-
ing critical manifold, meaning that we have A(0,0) <0 and A\1,2 = a £ 1ib
with a,b > 0. Summability can be obtained in directions close to the positive
real azis, where the size of the possible deviation is inversely proportional to

s

the size b/a i.e. there exists a function v satisfying v (0) = 5 and y(xz) — 0

b
a

for x — o0, such that B € ]—’y ( ) Y (g) [ In particular, 1-summability in

the positive real direction is guaranteed.

By the following remark, the conditions on the eigenvalues are essential to achieve
summability of the slow manifold, some terminology and properties used in this re-
mark will be introduced later on in sections [2.3.2] and [2.3.3]

Remark 2.3.2. As the following example shows, it is not possible, in general, to find
solutions that are 1-summable (i.e. 1-summable in all but finitely many directions)
when our assumption on the positions of Ai,...,A\n holds. Moreover when this as-
sumption is violated, thus when no sector of opening less than w contains all A;, there
is not one direction in which 1-summability is guaranteed.

Consider the slow manifold equation
eDxz (X,e)AX =2 (X,e) —¢ H f(z5)
j=1
where A is the diagonal matriz with entries A\1,...,\n and f is holomorphic on the

unit disc but non-continuable to the boundary of the disc, one can take for erample

fz) = Z Py

Suppose that the above equation has a solution which is 1-summable in a certain
direction. Applying the Borel transform of order 1 and denoting by Z the Borel

transform of the solutions shows that

(1s Dx2) (X)) AX = Z (X.) — | | / (x)

=1

must hold. One can check that this implies that
zXm) =] (wjekj") :
j=1

Due to the 1-summability in a certain direction, Z is defined, by theorem[1.2.20, for

n in an (open) infinite sector around this direction. We denote this sector by S,,.
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Suppose that our assumptions on A hold and that S (60,26)\ {0}, with § < %, is the
smallest sector which contains all ;. It is clear that all exponentials e*" should

remain bounded on S, which is equivalent to
ﬂ (m —arg (\;),m) = 8 (x — 0o, ™ — 26),

consequently, summability can not be obtained in a direction not contained in
S (m— 60, m —20).

Suppose now that the assumption is violated. Let T be the bisecting direction of Sy,
it must then hold in particular that '™ \; € S (7, ) or equivalently \; € S (7 — T, 7)
forallj =1,...,n. If \j € S(m—7,m) for all j = 1,...,n, then A does satisfy
our assumption, which is a contradiction. Otherwise there are Aj; and \j, for which
arg (\j,) = arg(X\j;) + 7 such that it should hold that S, < S (7 —arg(M\j;),7) N

S (—arg (\j,),m) which is of course impossible.
Also when there is more than one fast variable, summability can not be guaranteed.

Example 2.3.3. Consider the slow manifold equation

0
exﬁzzg—ef(:r)
x%—z
ox

where f is as in remark . If this equation has a solution that is 1-summable in

a direction, the functions Z1 (X, n), Z2 (X,n) satisfying

oz
1*xa—ml=Z2—f(x)

oZ
l*xa—;zZl

should both be defined on the the same infinite sector S,. One can check that

L @eny = f@e™)), 2o (Xom) = 2 (F (we”) + f (we™™)),

Zi(X,n) = 3

N =

implying that S, = S (0,m) N S (m,7) which is clearly impossible.

It is plausible that by imposing certain conditions on A (X) in - ) that summabil-
ity results could be achieved for more than one fasts variable, perhaps even employing
the techniques that we will use in what is to follow. We have not pursued this any
further in this thesis.

We now commence with the proof of theorem [2.3.1
Using assumptions (i)-(iil) on page [} we will first bring the system into a simpler

form.
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2.3.1 Simplifying the system

Consider a system
X = eF(X, ze)
z2 = @(X)z+eH (X, z,¢)

where ¢ € O (P, (R)), F,H € O (Pn42(R),C") and there exists an Xo such that
F (X0,0,0) =0, ¢ (Xo) # 0. Moreover if we denote the eigenvalues of Dx F' (X, 0,0)
by A1,...,An (repeated by their multiplicity) we assume that there exists an open
sector S, of opening less than 7« such that A\; € S for all j. Since the sector is open
this implies in particular that A; #0 for all j =1,...,n.

We now make a series of transformations, simplifying the above system. It is impor-
tant that throughout these transformations, whenever we denote \j;, these are the
eigenvalues specified above.

Firstly, set X1 =X —Xp and z = ¢ (zl — w), this transforms the system into

P (X)
X1 = eF (Xl + Xo,€21 — EHE:E)’?)’O)@)
2 = X1+ Xo)un+ H (X1 + Xo, € (Zl - 7}[55((3?)’0)) ,s)

—H (X1 + Xo,0,0)

+eDx (%) F (Xl + Xo,e21 —EHEP)((;)),O)78)

Which is, by dropping the subscripts, of the form

X = eF(X,eze)
2 = @(X)z+eH (X, 2)

where F'(0,0,0) = 0, ¢ (0) # 0 and the eigenvalues of Dx F (0,0, 0) are given by A;,
7=1...,n.
Now

F(X,ez,e) = F(X,0,0) + ezF1 (X,ez,¢e) + eF> (X, ez,¢€),

for certain functions Fi, F>, and
F(X,0,0) = DxF (0,0,0) X + O(X?).

There exists a matrix P such that P™'DxF (0,0,0) P is in Jordan normal form,
which we denote by A +U, setting X; = P~ X gives us a system of the form (writing

X, = X)
{X

such that 4 € O (P, (R),C"), ¢ € O (Pn(R)), H,V € O(Pns2(R),C"). We

furthermore have that

e(A+ U)X +eA(X) +*V (X, z,¢)

: (2.3.1)
p(X)z+eH (X, z,¢)

e ©(0) #0.
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o A= O(X2).

A is a diagonal matrix with its diagonal entries given by A = (A1,..., ).

e There exists an open sector S, with vertex at the origin of opening less than 7

such that \; € S, Vie {1,...,n} .

e The matrix U has only non-zero entries on its superdiagonal and if such an

entry is not zero, it is equal to 1, we denote these entries with (i k41 for k =

1,...,n — 1. One can be more stringent in when the ¢ are 0 or 1 but we will
not need this. In section we do use the fact that A+ U is a Jordan normal

form.

The proof of the theorem [2:3.1] involves solving the slow manifold equation, given in

this simplified system by

eDxz - AX —p(X)z =eH (X,z,e) —eDxz-UX

(2.3.2)

—eDxz-A(X)—e’DxzV (X, z,¢).

By the results in section [2.1.2] we already know that this equation has a Gevrey-1

formal solution, Z (X, €). Our strategy for improving this result towards summability

is inspired by theorem [[:2:20} we will thus search for a holomorphic continuation to

an infinite sector of the Borel transform of Z. We now introduce the spaces in which

this continuation will be found.

2.3.2 Setting up Banach spaces
Let >0, 7 = (r1,...,7n) € RYp, and S some infinite sector. We define
6" = {1.c 0S) Il 5 = sup ()| (1 + 4 )7 < co |
ne
and
gy {X}

=={F(X,n)= > B mX”

YENT

Fyeg"and |F|, s < oo}

with

A F

|M,s = Z £

YEN™

wsT -
Clearly an element F' € GE {X} satisfies

FeO (P, (7) x S)

such that F' is of exponential growth of order at most 1. The following is obvious.
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Property 2.3.4. If i = p then |fll; s < |fl, s and thus G" < G". Consequently
if also si < ri for all i = 1,...,n, we have that |F|, s < ;[F|,s such that

GE{X} <Gl {X}.

We now show that G& {X} is a Banach space, for this we first need that G* is one.
Lemma 2.3.5. For all p > 0, G" equipped with the norm HHH 5 5 a Banach space.

Proof: It is a straightforward verification that (Q", I, s) is a normed vector
space.

Let (gn),cn be a Cauchy sequence in (g“, ||HHS) Since for all n € S and p,q € N,

et

9p (M) —9q (M| < |9p — 9 T o2
|95 (1) = 94 (M| < llg» ql\u,sl+ug|n|2

it is clear that (gn), .y is a uniform Cauchy sequence on all compact subsets of S.
This implies that there exists a g € O (S) such that g, — g in the standard Fréchet
space topology on O (S) i.e. g, — g uniformly on all compact subsets of S, see for
example [Mos02].

It remains to show that g, — ¢ in G¥. Let 7 > 0 and choose N € N such that

lgm — gN”u,s < g for all m > N. Fix any n € S, since in particular g, — g point

wise over S, we can choose an m = N such that

TebInl

lg (M) — gm (M)] < m

and thus

lg (n) — g ()] (L + 1 [n*) e

< (g () = gm M| + lgm () = gn (D) (14 7 [n]?) 1!
<3 +lgm —gnls

<T.

Clearly this implies that ||g — QNHH,S < 7, proving that g € G* and g, — ¢ in this
space. O

Lemma 2.3.6. For every u > 0 and 7 € Ry, G {X}, equipped with the mnorm

- is a Banach space.
Al s D

Proof: Let (Fn),.n be a Cauchy sequence in G& {X}, each F, is of the form

Fo=)fy () X"
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For each 7 > 0, there exists an N € N such that for all £, > N
¥

It is thus clear that for all v € IN", (f)nen is a Cauchy sequence in G*. Due to the

completeness of G, there exists an f, € G* with f7 EimiN fre

Put
X,m) =1 () X7,

n—o

we show that F' € G {X} and F,, —— F. Choose a random o > 0. Take ng such

IERTANES

<

k l
n=1]

that for all n = no

and
" o
Ifo = f5l,s < 2.

Now pick successively, for each [ > 1, an n; = n;_1 such that for all n = n,

S = s ™ < 5o (2.3.3)
S
and
O = 5™ < g (2.3.4)
[v|=t
We have that
o0

=00, ™ Z Z I = 2°l,s 7
-

QWh—H%£W+Z§HW“#?hJ”

TM% ||Mq H

I=1|y|=l
fm =Y
2 N 7,57
I=1 1=t
where the last inequality is due to (2:3.4). Noticing that f3!—fro = Y | frk— fre=t

we can further estimate the last expression by

[s'o]

w1
TR DIDNDIY VA S R

1=0 I=1k=1||=!

o o0 o0
n n
A YD NI L=t JRS

k=11=Fk |y|=l

fu
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Because we have chosen ny = ni_1 we get by (2.3.3)) that

ZHf“/_f”?O”H,S % Z 9k+1 =
> k=1

It follows that F' € G {X} and because o was random we also get that Fj, F
in GE {X}. O
For functions F(X,n), G(X,n), we define the convolution product as follows

n—ox

n
(F &)X = | (X, 8)9(Xon = 9)ds,
0
at least when this integral is well defined. It is important to notice that the convolu-

tion product satisfies the following properties, all of which are easy to check.

e The convolution product is commutative i.e. F'#+ G = G = F.
e It is associative i.e. (F*G)* H =F = (G = H).
e Convolution is distributive w.r.t. addition i.e. F* (G+ H)=F*G+ F + H.

e It is compatible with scalar multiplication, for 8 € C, (BF) * G = B (F = G).

The following property of G* and GE {X} will be essential in what is to follow. A
proof can be found in [BDMOS], in this proof the extra factor 1 + u? |n|* of the norm

plays an important role and this is the reason why it is added.

Property 2.3.7. Let ||-| denote any of the two norms G*, GE {X} and f, g functions
in the corresponding space. It holds that

47
If =gl < m Il gl -

Consequently f « g€ G, GF {X}.

2.3.3 The equation in the Borel plane

Let Z(X,¢e) be the formal, Gevrey-1 solution to (2.3.2). We have, as formal series,
that

eDxZ-AX —¢p(X)Z=ecH (X,Z,e) —eDxz-UX

(2.3.5)
—eDx%-A(X) —e’Dx2V (X,Z2,¢).

The summability of Z in a certain direction is by theorem equivalent to the
existence of a continuation of the formal Borel transform, Bi1 (Z), to an infinite sector
in this direction.

To search for such a continuation we transform into an equivalent expression

concerning the Borel transform. For this we need the following results.
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Proposition 2.3.8. Let f(X, €), g(X,e) be Gevrey-1 formal series w.r.t. &, uni-

formly in X, with image in C and both without a constant term.
() B (F+3) =B (F) + B @
(i) By (f-g) - B (f) + By (9).

(ii3) Let z € C and H (X, z,£) be holomorphic on a neighbourhood of the origin, with

Taylor series given by

H (X, z,¢) Z:] i <i Hpp (X ) . (2.3.6)

The formal series H (X,fA(X, €) ,E) is Gevrey-1 and

By (ot (x.7.2)) = g (et + B ()

~

where we denoted, for k > 1, f*F = fou f and for k =0, f* is the identity

k tmLes

element for the convolution i.e. G * f*o =G.
Proof:
(i) Trivial

(ii) This is a straightforward computation involving the Cauchy product of power

k
series and using the fact that 1** = (Z 11),

(iii) From corollary [1.2.14| we already know that H (X , f, 5) is Gevrey-1.

We can assume, by the Cauchy inequalities, that there exist C, D = 0 such that
supy |Hen (X)| < CDF*™. Let furthermore A, B = 0 be such that supy | fn (X)| <
AB"n! where f(X, g) =Y. | fn(X)e™. We may assume that AD < 1 by, if

necessary, enlarging B.

For all K € Ny it is an easy calculation that the coefficients of 25;01 Ekak are
bounded by

- 1— (AD)X c
E k "pl=C— 27 Mpl <
c (AD)* max{D,B}"n!l=C 1= 4D M"n <ST=AD

M"n!.

If we denote the Gevrey bounds of e H (X f, 6) by UV"™n! we get immediately
that the coefficients of e H (X7 ﬁs) Zk 0 Eka are bounded by

C
no
<1J +71 D) maX{M,D} n:.
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Denote E = U + =55 and F = max {M, V}, noticing that

eH (X,f(X,E),E)

and
K—1
Z eHy (X7 E) .]?k (X7 E)
k=0
have equal coefficients for at least €!,...,e%, it is an easy calculation that
K-1 R
Bl (E ( )) Z (Bl EHk *Bl( )*k)
k=0

B (sH (X,f, )— leka )‘

(FlnD* 1+ KQ —Flnl))

< EF
(1= Fln[)?

which convergences for K — oo for n in a sufficiently small neighbourhood of 0.

O
Applying the formal Borel transform of order 1 to (2.3.5) and using the above results

gives us

(1% DxBi(2)) AX =p (X Z (eHx) # By (2)**

—(1#DxBiG)UX — (1+ DxBi (3) A(X)  (2.3.7)

By (Vi) * By (2)**

D8

— (1% Dx By (2)) =

k=0

By theorem [1.2.20) m we can prove theorem [2.3.1] “ by showing that B1(Z) has a holo-
morphic continuation to an infinite sector, which is of exponential growth at most of

order 1.

Our method of showing the existence of such a continuation is twofold. Firstly we

will prove the following lemma.

Lemma 2.3.9. Let 0 € [0,27[, p € ] [ be such that ({)) € S(0,2p), for all

j =1,...,n, which is possible due to our assumptions. Let a € ]07 5~ p[ and denote
S=S5(—0+m2a).

For a suitable choice of

Gr{X} c O(Pn (1) x 95),
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there exists, in GE {X}, a solution to the equation

(15 DxZ)AX = (X) Z + Y By (cHy) » 2%
k=0

—(1#*DxZ)UX — (1% DxZ) A(X) (2.3.8)
(1*DXZ Z EVk)*Z*k

However due to functions in G&¥{X} lacking being holomorphic at the origin n = 0,
it is not immediate that a solution of is indeed a continuation of Bi(Z) and
thus theorem [[:2:20] can not be directly applied. We will actually prove directly that
the Laplace transform, which we define later, of the solution we have found is Gevrey
asymptotic to the formal solution of on a large sector. This will be done in

section 2.3.8]
Let Z (X,n) = Y Zy(n)X7, if we denote for k =1,...n—1,

YEN™T
di = (o,...,o, 1 ,—1,0,...,0),
k—th
equation (2.3.8) can be written as

S AN Z) X =00 Z= Y S Gorrt (o + 1) (15 Zysa,) X7

YENT k=1 ~eN"
Vo121

F ) =g ) Z+ Y B (HL) + 27

o (2.3.9)

— (1% DxZ)A(X)
(1% DxZ) « Z (Vi)  Z*F.
Here (A7) = S, Ay
To find a solution of this equation, we will proceed in the following manner.
e Show that there exists solution operators solving, in G*, the affine equation
A7) Q#Zy)=9(0)Zy + F
for all |[y]| =1

e Using these operators and an induction argument, prove the existence of a

solution to the “recursive” affine equation

S AN (s Z) X =00 2= S Gorer (e + 1) (1% Zysa) X7+ F

~EN™ k=1 ~eN"
Ve+121

e Construct a solution in GE {X} to (2.3.9) by a fixed point argument.
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2.3.4 Some preparatory results

In this section we collect some results which will be employed in the next section[2.3.5
We do this to not burden these simple proofs with an overcomplicated notation. We
would like to remind that the spaces G* are defined as subsets of O (S) for an infinite

sector S.

Lemma 2.3.10. Let 8 € C such that there exists b > 0 for which Re (8n) < —b|n|
for allneS.

(i) e’ e G* for all > 0 and Heﬁ"”ms =1.
(ii) 1% e = %
(i5i) If f € G* then f * e’ e G* and

111
< 7“15.

Bn
* e
Hf u,S b

Proof:

(i) Both the kernel function (1 4 z? |n|*)e " that is used in the definition of the
norm and the bounding function |¢?"| < e 78"l are decreasing as |n| is increased.

So the norm is simply the modulus of the function evaluated at the origin n = 0.

n Bn _q
Jeﬁsze .
0 B

(iii) We start off by remarking that property combined with (i) gives us imme-
. 8n ar|f]
diately that ||f ®e H#’S S — =

£S5 this however turns out to be an insufficient
bound to prove our later results. We will effectively need this “improved” bound.

(ii) Straightforward since

We have, for all n € S,

(72e7)

J-n f(s) P94
0

1
) U 7 (i) e“*“""dt\
0
1
< f |F ()] 0071y
0

1
<lalsup|f ()] [ e 0P ay
z 0

_sup, |f (2)] —b|n] sup, | f (2)]
-] )

where the sup is taken for z € S, |z| < |n)|.
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Because (1 + p? |n]?)e™"I" is decreasing with respect to |n|, we get

‘(f " eﬂn)‘ (1+ |n|2)e_“m| < M(l + 12 |77|2)e_“"7‘

[y

5 sup f (2)| (1 + 4 [z?)e

u,S

which gives the requested improved bound on H f el Hu  after taking the supre-

mum over 7).

O

Lemma 2.3.11. Let 3 be as in lemma[2.5.10 and consider the map
T:G" >G*: g (B—0) =

where § denotes the identity element for the convolution. The map T is linear and

continuous with a continuous linear inverse given by
T - g* fo = (54 8e7) x .
Moreover ||T71|| <1+ lT)"

Proof: The linearity and continuity of both 7" and T~ are clear, for the bound on
|T~"| one uses lemma [2.3.10| (iii). Remains to check that the two maps are indeed

each others inverse. We have
T (T (f)) = — (B—6) » (5+ﬂe5”) s f

— (B8 (1ee™) =6 -8e") x f

—(B+Be” —B—6—B"")x f

=/
where we have used lemma/|2.3.10 . Due to commutativity of the convolution prod-
uct, also T~ 1o T = Id. O

2.3.5 The termwise affine equations

By our assumptions on equation (2.3.1)) there exist 6 € [0, 27[, p € |0, 5[ such that for
allj=1,...,n, (0) € 5(0,2p). Tt is easlly seen that this implies that Q(g)) € 5(0,2p)

for all |y| = 1 and by denoting

Al = min {‘Re ( ‘“““gw’(om) ‘} , (2.3.10)



46 CHAPTER 2. GEVREY ANALYSIS OF SLOW MANIFOLDS

which is non zero, we have
|<)\7'Y>| — ‘<Ae—i(9+arg(4’(0)))7,}/>‘ Z ‘<Re ()\e—i(9+arg(9°(0)))) 7,.y>‘ 2 |,Y| |>\| . (2311)

Take care to notice that |-| is here differently defined for respectively v and A since

Y= +...+ 7.
From here on out we will denote

S=5(—0+m,2a) (2.3.12)

where a € ](), 57— p[. This implies for n € S that

(A7) ) ™
Ar —m|<pt+ta<—.
‘ g(@(O)n Prasy
Consequently we have that
A ) ‘Q\ﬁ)‘ R HRY
Re n)<—cos(p+a)|———||n <cos(p+a n|. 2.3.13
(55 Crof s rapgptt G319

Let F' € G*, in this section we are concerned with solving equations of the form
AMNAx2)=¢(0)Z+F (2.3.14)

or written alternatively

T,(Z)=F, with T, (Z):=¢(0) (<<A’7> - 5) " Z) .
¢ (0)
Lemma 2.3.12. The linear operator Ty has a continuous linear inverse given by

“l.or 5 0M f e — L <)\7’Y> %"),k >
r gt =0 s (0 S0 ).

We have that

_1 1 1
1< G (1 apre)

Moreover for all f € G*,

10,

—1
17" % Dls < Hiacos (0 7 0)

where || is as in (2.3.11)).
Proof: By lemmal2.3.11{and the estimate (2.3.13) it is immediate that T{l is indeed

the inverse of T’y and is linear, continuous with the given bound for the operator norm.
For the second part of the lemma, one checks that, by lemma |2.3.10 ,

T (s f) = — (e EOR * f>
! ¢ (0) ’
The result then follows by lemma|2.3.10 and (2.3.13)). O

We remark that for the above lemma to hold, our choice of bisecting direction and

opening of S in (2.3.12)) is essential.
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2.3.6 The recursive affine equation

We now turn our attention to the equation

Y AN Z) X =2 Y Corrs (e 4 ) (10 Zyra) X7 4 F

~eEN™ k=1 ~eN"™
Y4121

(2.3.15)
where F' = ¥\ 2 F, X7 € G"[X]. We do not demand that F' € GF{X} since we
will want to solve (|2.3.15)) for a slightly broader class of functions. We remind that

we denoted d, = (0,...0, 1 ,—1,0,...,0].
k—th

We first need to introduce some definitions

Definition 2.3.13. Denote fork=1,...,n—1,

up = (0,...,0, —1,1,0,...,0>4
k—th

Let 0,7y € N", £ € Ng and k1,...,ke € {1,...,n—1}. We call the finite sequence
(k1,...,ke) a path from o to v if

0
7=0+Zukj.
j=1

We furthermore denote by c () the set of all multi-indices for which there exists a

path towards v, i.e.

c(y) = {UGJN”

4
HKE]NO,Hkl,...,kge{1,...,n—1},'y=a+Zukj}.
j=1

Property 2.3.14. If there exists a path from o to v it must hold that |y| = v1+y2 +

oo+ Yn is equal to |o|.

Proof: Clearly |ux| = 0 from which the result immediately follows. O

Remark 2.3.15. [t is possible for multiple paths to exist between two points. For
example as a path from (2,1,1) to (1,1,2) one can take the (1,2) path given by

(2,1,1) > (1,2,1) > (1,1,2)
or the (2,1) path given by
(2,1,1) > (2,0,2) - (1,1,2),

see figure . The following proposition however shows that all paths between two

points are closely related.
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2,0,2) v

2, 1) (1,2, 1)

\

Figure 2.1: The paths (1,2) and (2,1) in blue resp. red. Both paths lie on the
hyperplane given by |y| = 4.

Proposition 2.3.16. Given two points o,y € N™ and a path (k1,...,ke) from o to
v. Define form=1,...,n—1,

b =#{j€{l,... 0} |kj =m}.

The values £, are invariant amongst all paths from o to v, in particular, all paths

have the same length £ = 01 + ...+ {p_1.

Proof: Take any path form o to -, by reordering the terms one sees that

n—1

Y/ —
Z ukj = Z Emum = (—él,h —[2,. . ,fnfg —anl,fnfl) .
j=1 m=1

By our definition of a path it must hold that
(—f1,£1 — Zz, e ,Kn_z — Zn_l,fn_l) =7 —0

and it is then easily seen that

b =Y 05—
j=1

which is clearly independent of the specific path. (|
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Definition 2.3.17. Suppose vy € N" and o € c (). We call the numbers

141 (0—77) PR 7én—1 (0-77)

defined in proposition the intrinsic steps associated to (o,7).
For any o € N™ we define

n—1
v (o) = {(Zl,... n1) € eN"? £1+...+£n_1>1anda+meume]N”}.

m=1

In other words, the set v (o) consists of all (n —1)-tuples which are the intrinsic steps

of a path starting at o.

Remark 2.3.18. For any given o there are many (n — 1)-tuples which are not an
element of v (o). For example (3,0) are not intrinsic steps of (1,1,1) since (1,1,1) +
(_3a 3, 0) = (_27 47 1) ¢ N3'

Definition 2.3.19. For o,v we denote by £ (o,7) the length of all paths from o to 7,
if no paths exists we set it equal to 0. Due to proposition this is well defined.

We also denote

p(oy) =
{ (kl, . ,kg(a,.y)) € {1, Lo, = I}E(U”Y)

(kl, R kg(aﬁ)) is a path from o to 'y}
(this set can be empty).
Turning our attention back to equation (2.3.15)), we see that by denoting for k =
2,...,n
0ify =0
Xk: N —{0,1} : v — 7 ,
1if v, #0

we can equate the coefficients of corresponding powers of X as follows

A7) (L Zy) —@(0) Zy = Fy Z k1 () Coert (v + 1) (1% Zy1q,) . (2.3.16)

We will construct a solution to (2.3.16)) using the following operators.
Given k€ {1,...,n— 1} and 7 € N™ with |7| > 1, we define

K(k,7):G" > G": fro—Conrr (e + 1) T (1 f)

Property 2.3.20. The maps K (k,7) are all linear and continuous with operator

norm bounded by %‘

Proof: This is immediate by lemma [2:3.12] O
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Lemma 2.3.21. The solution to (2.3.16)) is given by
Fy
¢ (0)

Zo = —

and for |y| = 1

£(c,y)
Zy=T;H(E)+ Y )] (H K<k1,0+2uk>> (F,). (2.3.17)

o€c() kep(a,7)
Proof: Consider any C' € Ny, we will show that holds for all |y| = C' and
since C' is random, this is sufficient.
We start of by defining a total order on the hyperplane |y| = C. Given 0,7, we say
that o <« if in the difference v — o, the first non zero value, starting from the right,

is positive (or of course of o = ). We thus have

(C,0,...,0) < (C=1,1,0,...,0) < ... < (1,C —1,0,...,0)
< (0,C,0,...,0) <...<(0,0,...,0,C).

We now prove the result by induction on this order.

Due to property [2.3.14] it is clear that ¢ ((C,0,...,0)) = & and thus (2.3.17) reads

Z(c,0,...,00 = T(cO o) (F(C,O,.“,O))- Since the summation disappears in (2.3.16|) for

this index, it is clearly a solution by lemma [2.3.12)
Suppose now that - is such that (2.3.17)) holds for all o < v. We remark the following
(which is quite obvious), for m = 1,...,n — 1 it holds that xm+1 () = 1 if and only

if v+ dm € ¢ (7). This allows us to rewrite (2.3.17) as

Zy = Fw Z Xm+1 ( (m,y + dm + um) T«;rldm (Fy+dpm)

+ Z X1 (7) K (1,7 + din + )
m=1

y ooy (“Jﬁd”);c<kj,g+2uk>> (5.

gec(y+dm) kep(o,y+dm)
Directing our attention again to , we notice that for all m € {1,...,n — 1},
v+ dm < 7 (at least when 7 + d,, exists). Consequently, we can apply the induction
hypothesis, giving us that

Z’Y Z X’m+1 Cm m+1 (’Y’m + 1) T (1 * T dim (F’V+dm))

- Z Xm+1 (V) Cmmett (ym + 1) T3

I D <é(gﬁdwlc<kj,a+2uk>> (Fs)

oec(y+dm) kep(o,y+dm)
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Looking at the definition of the maps /C, this expression of Z, is clearly equal to the

one above, proving the result. O

Lemma 2.3.22. As formal power series the equation (2.3.15|) is solved by the linear

operator

£: ¢"[X] - ¢"[X]
where L (F) is given by,

Fy -1
-4 ) T7H(F) XY
(0 53,

£(o,) J
+ Z Z Z (H K<kj7a+2uki>>To'_1 (F,) X7

[71=1 o€c(v) kep(a,y) \ 3=1

Denote M = wlf)‘ <1+ cos(;1)+a)) and N = |Xcos(p+a), if for 7 = (r1,...,7mn),

n—1 Tm+1 M .
> 7ok < 5 we have the following cases.

(i) If F € GE{X} then L (F) € G {X} and

ALEN s < 2MGF] -

(i) If F = (1% Dx f) g(X) with g € O (P, (F),C") and f € G {X} then L(F) €
GE{X} and

4 | _
AL EN s < 37 <Z T) A s D19 s 7
vy

m=1

(is) If F = 1% Dxf = g where f € GE{X} and g = (g1,...,9n) € GE{X}" then
L(F)eGt{X} and

16m [\ 1 S
AL EN,s < 37 (Z Tm) Afls 25 Agsls

m=1 j=1

Proof: By lemma [2.3.21] £ (F) is formally a solution, it remains to check the

convergence in the three cases.

(i) Tt is immediate by lemma [2.3.12[that — & + 3, 75" (F,) X7 € G* {X} and

Fy _
St L T EIX] SMIFlL (2319)

=1
. 7= .S
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By property 2:3:20] and lemma

‘(lﬁ)lc<k],a+2uk>> (Fs)

S
£(o,v) 1
l_[] 1 o+ Zz 1 Uk; ks +
J
=M (o] ) V#el.s
£(o,7)
1_[] 1 (U + Z’L 1 Uk, ) )
— .7
M oy s

By property [2.3.14] we have that ‘O’ + ZZ 1 Uk,

j—1
<U+ Zuh) < o],
1=1 kj

implying that we can further estimate
£(o,7)
H K| ks, o+ Z kg (Fs)

<M
Moreover there is a one-to-one correspondence between p(o,v), and strings

= |o| and thus

n,S

1
e Fols-

of the numbers 1,...,n — 1 where each number j = 1,...,n — 1 appears ex-
actly l; (o,7) times. These strings form the set of permutations of the multiset
{li (o,7)-1,...,ln=1(0,7) - (n— 1)} and thus

_ £(o,7)!
#p(0,7) = 0 (o), MW (0,9)! - o1 (0,7)!

see [Brul8|]. We thus have that

Sy <Zﬁ)n<kba+zuk>> (£)

oec() kep(o,v)

u,S

< M Z £(o,7)! I1F5 ”u,s
b1 (o, )W (0,9 . At (o, 9)! NE@)

Consequently we get that

PR <Z(ﬁ)lc<kj,a+2uk>> (B

[7IZ21 ||oec(y) kep(o,v)

w,S
£(0,7)! IFe s
M Z 2 lo’j" T’y
\’Y|>1aec(fy) N (0, 7)) .. oy (o, 7)! NE@)
o, )! |75 ”NS =0 V” 4 b (o, Num
- Z Z Nz (o, A1 (o, 'y)',/\/'[(v'y)r

\’Y|>1GEC(’Y)
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By the proof of proposition [2:3.16|
n—1

S b (0,7) m

= (_61 (‘777) 761 (07 ’Y) — L2 (07 ’7) PR 7£7L—2 (07 7) —lna (07 7) 7Zn—1 (0'7 7))

and thus

n-1 (o)
e bm (@) um _ H Tm+1 '
Tm

m=1

Consequently

AR (Zﬁ)ﬁ(wm)) e 7

=
[v|=21 ||o€c(v) kep(o,v) 1,8

Vi m Lm (o:7) >
<M 3 3 o e 1 () 1

|
31 otety b (@) (0,71

¢ b)) T (T ) -
=My D (121-” A+ Ln—1) 1—[ (r +1> 1B, o7

1
. 1!
17121 (£1,...080—1 )€v(0) bn- =

¢ b))t T (T o
My oy M b ()

|o|=1 6144, 121

Zn 1 "m41
MN Zn 1T7:m+1 Z ”F H‘u,SFCr

rm |o|=1

/N

SMF],s-

Where we used for the last inequality our assumption that 3" _" T’T’:l < %f
Combining this bound with (2.3.18)) proves the result.

(ii) Let f =3, fyX7 and g = >, g, X7 where gy = (gy,1,...,9y,n) € C". If we
denote sm = (0,...0,1,0,...,0) with 1 at position m we have that

WeDxfg= 3 Y Y (o + 1) (1# faren) gom X",

YEN" a4+ =~y m=1

By lemma [2.3.12] one sees that

T,;l < Z Z (@m +1) (1% fa+5m)gﬁym>

atp=ym=1

N Z Z am+1 ”foz+sm|

a+p=ym=1

n,S

s 198.m] -

Since am < || a further estimate is given by

% > Zl\fwsm\lu,sl\gﬁl\max\ Y Y als 1980 -

a+p=ym=1 m=1a+B=y+sm



54 CHAPTER 2. GEVREY ANALYSIS OF SLOW MANIFOLDS

By repeating the proof of (i) with the above bound one finds that

AL DxN) s < 37 O, DD WEIA

YEN™ m=1 a+B=v+sm

w,S ”gﬂ”max /’7"/

Finally we have that

A5 YD SR YR T N P

’YGN"’m 1TatB=v+sm

S|
i 5 N Mals sl 7

~YENT a+B=~+sm

LYY el 195 ™

YEN™ a+fB=x

o »F”f”M,S Z Hg’YHmax !
Tm >

fu

Y/
Zle e Zls
i i G

S
3

1

(iii) Let f =23 fyX” and g = > g,X" where gy = (g1,1,...,9y,n) With all g, ; €
G*. We have that

n

1#*Dxfsg= Z Z Z(am+1)(1*fa+5m*g5,m)X7.

YEN" a4 =y m=1

Using lemma [2.3.12| and property one can find, similarly as in (i), that

! ( Z i (am + 1) (1 * fa+sm * gBﬂ”))

w,S

s max {951

a+pB=ym=1
Z > el s
Z Z Hfﬂt < uS)

m=1a+B=v+sm

m=1a+B=v+sm
Repeating then the steps in the proof of gives the desired estimate.

O
2.3.7 The complete equation
We will find a solution to equation (2.3.9)), as a fixed point of the map
FH5<(¢( ) — Z (eHy) = Z**
=0 (2.3.19)

o0
—(1%*DxZ)A(X)— (1% DxZ) = Z 5Vk*Z*k>
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Here £ is the map specified in lemma [2:3:22]
We now collect some results in preparation of proving that the above map has a fixed

point.

Proposition 2.3.23. Let F € G{X} and g(X) € O (P, (7)), then

FHQ'F”M,s S ( Z |9’Y|7ﬂ> 7

YENT

Proof: This is immediate since

Adg-Fl,s =X >, Fags| 7
v lla+B8=y u,S
<Y Y IRl slgsl™ = < > L%If”) Al s -
v at+f=y yeN™

Proposition 2.3.24. Given any R > 0, there exists a U (R) > 1/R such that for all
p=U(R),

sup (1 + w? |7]|2) e(Fe=n)ml <1.

nes

Proof: One can calculate that, as a function of |n|, the derivative of
(1 + MZ |77|2) e(%fu)ln\

has two zeroes, both of the form i (1 + 0(1)), as pu — 0.

(#:-1) (1+0(1))

and thus converges to 2e~! < 1 for 4 — o0. Consequently (1 + p? |77|2) e(F=mInl < 1

This implies that the maximum of the function is of the form (2 + 0(1)) e

for p1 greater than a certain value U(R). O

Lemma 2.3.25. Let

9(X,9) =Y Y gaxe"

n=0~yeN"

be holomorphic on Ppi1(R). If = U (R), where U is the function from proposition
2.3.24, and r; < R/2 for j =1,...,n. Then Bi(eg) € GE{X} and

ABi(eg)l, s <27  max  g(X,e)].
(X,e)ePp +1(R)

Proof: Denote |g]| = maxx .\cp, ,,(r) |9 (X,€)|. The Borel transform is given by

=3 (% 50) x
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Using the Cauchy inequalities one sees

yn o n

lgl ~w)nl < gl
< pr S (L w [nl) e Gl < %

S

where the last inequality holds since p = U (R). Consequently

n R n
B el <1l X o =1l [ 725, <" lal.

O
Before stating the next result we want to remind that in (2.3.19)), the functions Vj

are C™ valued and we can thus consider the component functions Vi ; for 1 <j<n

Corollary 2.3.26. There exists a Co > 0 independent of u,7, such that for any
choice of r; < R/2 and any C > 0 there exist large enough p such that the maps

o0 o0

Z (eHy) = F** Z (eVi;) * F**

are all well defined for B (0,C) = G£ {X} — B (0, C)).
Moreover, these maps are then Lipschitz continuous, with a Lipschitz constant that is
O(;fl) for up — oo.

Proof: We give the proof for H, it is identical for the other functions.
Denote
M= _max {|H(X,ze)||[V(X,2,)|mnu} -

Phi2(R)

By the Cauchy inequalities and proposition [2:3.25] we can assume that
B EH), 5 < 2" MR

and thus for sufficiently large p,

o0

Z (eHy) * F**

T

0 A k
n k
<ouera 3] (35) 4,
=1

Ry
Rp—dn |F|, s

w,S

=2"M

This proves the first part of the result by setting Co = 2"+ M.
Regarding the Lipschitz continuity, we must bound

i (cHy) ( 1*Ic 2*k>

T S
for Fi, F» € B(0,C). A first estimate is given by
2 M G
4 T Z R* — FFk .
H k=1 T S
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Since FF — F¥* = (Fy — Fy) = Z§=1 FFE=D 4 01 we have

k k
- R

v

A k-1 k o
<(— cre R~ F
L<(F) X s = B,

4rC\* !
—e(TC) AR - R,
implying that the Lipschitz constant is bounded by

2" T2 M i i (47rC>k_l _ 2" T2 M Ru
Rp = Ru (Rp — 4nC)?

which is clearly O(u_l) for g — o0. ]

Lemma 2.3.27. Denote the map (2.3.19) by V (F). For sufficiently large p and
sufficiently small r;, V is well defined as a map from a closed ball around 0 in GE{X}

to itself. Moreover this map is a contraction. Consequently there exists a unique

Z € GE{X} solving equation (2.3.8).

Proof: By lemmal[2:3.22 V is already well defined as a map from G£{X} to itself.
Set, for the constants used in lemma @ L = max {2/\/17 16—"} and denote C' =
2LCy where Cp is as in corollaryl@ Since ¢ (X) —¢ (0) = O(X) and A = O(X?)
we have by lemma, and proposition that

AL (X) =9 (0)) P, s < L-O(F) A F, s
AL (A DxF) A(X))], s < L-O(7) ;| F

where in both inequalities, O(F) is independent of F', one can thus assume that both

|M,S

are smaller than 1/(8L) by diminishing 7.
Lastly, we have by lemma, [2.3.22| and corollary [2.3.26 that for F' € B (0,C) and
sufficiently large u,

< LCo,
S

L& 1
< — <Z ) nCy.
w,S Bz T

7

L <1 *DxF* (i 81 (&‘Vk) *F*k>>

k=0

L (Zf] By (eHy) * F*’“)

k=0

T

Consequently
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This clearly implies that V: B (0,C) — B (0, C) for sufficiently large .

To prove that V is a contraction we notice the following,

AL (@ (X) =9 (0)) (Fr = B2))ll,, s S L-O(F) ;| i = Bl 5,
AL (1 Dx (F1 = F2)) A(X))l, s S L-O(F) |- = Bl 5,

similarly as above, and
o0
L <Z By (eHy) # (Fl*k - F;"’“))
;. k=0

by corollary 2:3:26] Finally we have that

L(l*DxFl*<ZB1(EVk)*F )—I*DXF2*<281(EVk % By >>
k=0 k=0
=£<1*DX(F1 (Zsl (eVi)  Fy ))

k=0

+£<1*DXF2*<261 (Vi) * (R - F3 )))

The norm of which is bounded by

SLO(u™) IR = F,
w,S

L

L <i 1) (nCo+nO(™ ")) AP —Fol,.-

H m=1 T'm

Putting all this together it is clear that V is a contraction by choosing u sufficiently
large. O

2.3.8 Gevrey asymptotics for the Laplace transform

We start of by recollecting results already achieved.

By lemma there exists a solution, say Z (X,n), to (2.3.8) i.e.

0
(1% DxZ)AX =¢(X) Z + Y. Bi (eHy) * Z** — (1* DxZ) UX

k=0 (2.3.20)

o

—(1#DxZ)A(X) — (1% DxZ)* Y, Bi (Vi) * Z**.
k=0

where Z is defined and holomorphic for (X,n) € P, (F) x S (=0 + 7,2a) for certain

TeERIg, 0<a< g —p.

Furthermore, by the results of section there exists a formal, Gevrey-1, se-

ries solution, Z (X, ¢€), to the slow manifold equation . The Borel transform,

Bi1 (2) (X, n), of this formal solution also satisfies equation but only for n in a
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ball around the origin. It is, a priori, not necessary that Z is a holomorphic contin-
uation of Bi (Z). A direct application of theorem [1.2.20]is thus not possible to infer

the 1-summability of Z.

We will not prove directly that Z is a holomorphic continuation of z. Instead we
construct, from Z, a function that is Gevrey-1 asymptotic to the formal solution of
(2.3.2) on a “large” region. For this construction we use the Laplace transform.

Definition 2.3.28. Let FF € O(V x S (0,28)) for V.c C" and B € ]O, g[ such that

there exist K, u > 0 for which

sup |F (X, n)] < KeMn,
XeV

The Laplace transform of order 1 of F' is defined as

() )
£ (F) (X,e) = j F(X,m)e Ly

where the integration is taken along the ray se'”, s > 0.

Remark 2.3.29. The Laplace transform of order 1 can be seen as the inverse of the
formal Borel transform of order 1 in the class of formal series that are 1-summable

in a certain direction, see for example [Bal00)].

Proposition 2.3.30. e For every 0 < E < B, there exists R > 0 such that
Li(F)(X,e)eO (V x S (J,7T+25,R)).

o If F, > F in GE{X} (over the sector S(o,28)) then L1 (F,) — L1 (F) in
O (ﬁn (F) x S (O’,Tf + 2B,R>).

[ ﬁl(F*G)=£1(F)£1(G)

Proof:

_nl

— ¢ Tl cos(oc—arg(e))

e Since on the ray se’, s > 0, e ¢ it is clear that the

Laplace transform is well defined on a bounded sector in the direction o with

opening slightly less than .

Due to the integral being invariant under deformations of the path, one can see
that the function is also defined on rotations of this sector. In this manner, the
Laplace transform can be defined on a “large” sector. For a more detailed proof

one can consult for example [Bal00].
e If F}, —» F we have by definition that

sup |Fn (X,n) = F (X, n)| < | Fu—F|, g, vn.
X€eP, (7)
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From this it follows readily that L1 (F,) — £1 (F) uniformly for X € P, (7)
and ¢ in a bounded sector in the direction o with opening slightly less than .
Once again by the independence of path, this can be extended to the “large”

sector.

e This is a straightforward application of the Fubini theorem.

Denote the Laplace transform of Z by W, since

n
Z (eHy) w 7% 231 5Hk)*Z*k
k=0 k=0

in GE {X} for n — o we have that

— 1 k
eH (X, V,e) = lim Z eH, ¥

= lim £ <Z Bi (eHy,) * Z*k> = (

k=0

HM\

1 (eHy) Z*’“) .

Thus applying the Laplace transform to we have
eDxUV(A+U)X+A(X)+eV (X,0,e) =p(X)¥ +cH (X,V,e).
Moreover ¥ is defined and holomorphic for
(X,e)eP, (F) x S (=0 + 7,7+ 2a,R),

for a certain R > 0 (and the opening should actually be slightly less than 7 + 2a but
we do not reflect this in the notation).

By the Borel-Ritt-Gevrey theorem there exists a function v (X, ¢), defined on P,, (¥) x
S (—6,7 — 20, R), where we can take 0 < o < «, satisfying

eDxy(A+U) X +A(X)+eV (X,v,8) = (X)y+eH (X,7v,e) + R(X,¢).

Here R is defined and holomorphic on the same domain as « and this function is
exponentially decaying w.r.t. &, uniformly for X. Moreover 7 is Gevrey-1 asymptotic
to the formal solution of .

Since we take 0 < 0, S (=0 + 7, 7 + 2, R)n S (—0, 7 — 20, R) # I, more specifically,
the intersection is given by

which we will denote by S; U S2. On this set we can thus define the difference
A = W — ~, which satisfies

eDxA ((A FU)X +A(X)+eV (X,s)) - ((p (X) + el (X,e)) A—R(X,e).
(2.3.21)
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where we denoted

V(X,e) =V (X,¥(X,e),¢)

and

H(X,e) = L %Ij (X, ul (X,e) + (1 —u)y (X, &), e)

+eDxr (X, 2) %‘: (X, (1 = W) U(X, ) + ur(X, ), ) du.

If we can show that A is exponentially decaying w.r.t. € in S; U S2, the Ramis-Sibuya
theorem [1.2.12] guarantees that ¥ is Gevrey-1 asymptotic to the formal solution, this
in turn proves theorem [2.3.1

Before continuing we give a few remarks.

e In what follows it will often be necessary to shrink the radii in the X domain

P, (7) or € domain S; U S2. We will not reflect this in the notation.
e It is easily seen that both ¥ and v tend to 0 for € — 0 i.e.

lim sup |¥(X,e)| =0,
60 X€ePy (7)

lel<d
lim sup |y (Xe)| =0,

6=0 xeP, ()
le|<s

where € is to remain in the sector corresponding to the function.

e Using the previous point we may assume, by shrinking the radius of S; U Sz

and employing the Cauchy inequalities (for H and V'), that

sup [ (X,¢)|,  sup

X,e X,e

<M, (2.3.22)

max

V (X, e))

for a certain M > 0 and where the supremum is taken over P, (7) x (S1 U S2).
e Since for all the diagonal elements A; of A,
AjES (9 + arg (‘10(07 O)) ) 2p)

it holds that

™ a+to
e\ €S (arg (¢(0,0)) — 51t

,a—a-‘er),

for all e € S7 and

eN;ES (arg (¢(0,0)) + g -2 ; c

,a—o+2p),

for all £ € Ss.
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We now show that A is exponentially decaying w.r.t € € Si, the result for Sy is
completely analogous.
Notice that
T a+o
§ (—ang (p(0,0)) - £ = 25

Let 7 € [0, 27[ be a direction in this intersection, by shrinking the radius of P, (7)

m—ato—2)nS(—arg (9(0,0),7) # 2.

and S if necessary, we may assume that there exists a 0 < d. < 7 such that

‘arg (s/\je”) ‘ (2.3.23)
m
jarg (9 (X) + M (X,e)) €' ) <t -d., (2.3.24)
0
o (X) + <1 (X,0)) > PO (2.3.25)
for j=1,...,n and (X,e) € P, (F) x S1 (we use in the second and third inequalities

the continuity of ¢ and that H is bounded by an M).
Due to (2.3.23)), there exists an v > 0 such that for all j =1,...,n,t > 0,

et | < el (2.3.26)
Fix Xo,e and consider the following ODE

X.=¢e ((A FU) X+ A(X) + eV (Xg,e)) (2.3.27)
X: (0) = Xo

Proposition 2.3.31. There exists an R > 0 sufficiently small, such that R < r;,Vj =
1,...,n, and a sufficiently small radius of S1 such that the solutions of (2.3.27) with
[ Xoll < R exist for t € [0,00[ and remain in P, (7).

max

Proof: We first remark that we may assume, without loss of generality, that A + U
is a Jordan matrix.

,,,,, n{r;}. Since A = O(X2) and V bounded, we can reduce 7 and
the radius of S; such that

Let Ro = minj=1

2
v R
A +eV (X, o), B <-——-—.
P 1A () (X, 8) o 2w+ 1)
We prove the result if we show that for | Xo| .. < % the solution satisfies for

all t 2 0, [Xe (t)] o < Ro-
The solution to ([2.3.27]) satisfies

iT 3 t T ~
X () = et T MU x4 Ee"J e(t=)eeT (A+U) (A (X (s)) + £V (Xe (5) ,a)) ds.
0

Since A + U is a Jordan matrix one can see rather easily that by (2.3.26]) we have for

allt >0,
€V71

etseiT(AwLU)H < 1+t|5|) —leltv <
v
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This last estimate follows easily by inspecting the derivative w.r.t. t.
Suppose now, by contradiction, that there exists a ¢« € ]0, 0o such that | X (t+)| 0 =
Ro and | Xc ()] ,,a0x < Ro for t € [0, t4[, then
v—1 2 t
e v Ro * —lel(t=s)w
1 )l < S X0l + s el | =) e 100

A straightforward calculation learns that

—leltgv
l—1+t*|6|e_‘6|t*”+1_e ety $1/—|—1
14

v v?2

" lel(t—s)
|5|J; (L4 (t—8) |e]) eI g — +

and thus | X. (t«)|

Denote

max < o, giving us the desired contradiction. O

fe ) = A(Xc(1),¢).
Since A satisfies (2.3.21)) it is immediate that

Jo(t) = (¢ (X (1) + eH (X: (1), 0)) fe(t) — R (X<(1),€)

and thus
£t = fE(O)eS‘t’ P(Xe (@) +eH (X (a),e)da
t
_J olE #(Xe(@)+eH(Xe(@) Moy (X (5) ) ds
b )
0
implying

Fo(B)e o PXe(@) +eH(Xe(@) )da

v (2.3.28)
= f.(0) — J e % P(Xe(a))+eH(Xe (a),e)dapy (X (s),¢)ds.
0

Using (2.3.24) and ({2.3.25) we get

Y _, le(0)| sin(dr)
‘e § p(Xe(@)+er(Xe(a)e)da| o —tiellgnidz)

_L
combining this with the exponential decay of R i.e. |R| < Ke™ I¢T leads to

t
J ¢~ T p(Xe(@D+eHXe(@) Mgy (X (0 ) ds
0
2 _¢le(@)] sin(dr) _L
gi.(l_e 2 )K@ el
|» (0)] sin (dr)
Finally taking the limit ¢ — 00 in both sides of (2.3.28)) and noticing that f(t) remains
bounded for all ¢ € [0, 00[ shows that

o0
A (Xo,¢) = £.(0) :f ¢~ T e(Xe(@) HeH(Xe (@) 200 (. (5) o) dis
0

and thus
2 _L
A(Xo,e)| < ——2 _Ke T
14 X0 S CoyTsin @)
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Chapter 3

Canard-heteroclinic saddle connections

In this chapter we focus ourselves on real analytic slow-fast systems with 1 slow and

1 fast variable, with an additional parameter a,

{x = ef(z,y,a,¢) (3.0.1)
Yy = g(%l/va:‘f)

where the following set of assumptions is satisfied.

e There are zq,zr € R with o, < x, such that there is (for a parameter value
a = ap) a real analytic critical curve of the form y = v (z) present, defined for
Z € [Za,Zr]. The function 1o is thus holomorphic in a complex neighbourhood

of [xa,z,] and satisfies g (z, 1o (x) , ao,0) = 0.

e There is a point x¢ € |zq, z,[ splitting the critical curve in a normally attracting
part for x < x; and a normally repelling part for x > x;. By this it is meant
that

Jg

aiy (wio (x) 7a070) < O,V.Z' € [xaaxt[y
dg
A ($,¢0 (x) 7a070) > O,VI € ]xhxr] 5

oy
0
679/ (¢, %0 (w¢) , a0,0) = 0.

We call such a point a turning point.

e The points x, and x, are slow-fast saddles with the slow dynamics directed from

the attracting to the repelling part of the critical curve, this is characterized by
f (x*aw() (.CE*) aa070) = 07 for T = Ta, Tr;
d 0
da [ T (@0 (), 00] () 57 (e o () ,0) < 0, for s =, v

f (z,%0 (z),00,0) > 0,V € Jza, z.[ .

65



66 CHAPTER 3. CANARD-HETEROCLINIC SADDLE CONNECTIONS

e The last assumption is more technical in nature, saying that locally around the
turning point x; there is a holomorphic transformation bringing the system into

a specific form. We elaborate more on this form later on in section [3.2

By corollary there exists, for any compact subinterval of [z4, z:[, a formal slow
manifold of which is Gevrey-1 w.r.t. € uniformly for = in (a neighbourhood
of) the compact subinterval and a close to ag. Moreover, by theorem this
formal slow manifold is 1-summable in the positive real direction, locally around z.
Concretely there exist 7,0 > 0 and a function 1 (z, a, €) holomorphic on B (x4, ) X
B (ag,r) xS (0,7 + o,7) and Gevrey-1 asymptotic, w.r.t. &, uniformly in (z, a) to the
formal slow manifold such that y = ¢ (z, a,€) is an invariant manifold of .

An identical statement holds for z,.

Remark 3.0.1. As was already remarked at the start of chapter[3, this thesis does not
treat the case where parameters are present, when conducting the Gevrey analysis of
slow manifolds. Above, we have used the parameter dependent versions of the results
in chapter[d A version of the proof of ezistence of summable slow manifolds where a
parameter is explicitly included can be found in [Kenl6), but only the (simpler) case

of one slow variable is studied.

In the remainder of this chapter, two additional results are shown. First, in section|3.1]
we prove that a local, 1-summable, slow manifold can be saturated along normally

hyperbolic parts of the critical curve, retaining the summability.

Next, in section the situation is considered where two slow manifolds are present
around points on the normally attracting resp. repelling part of the critical curve,
with a turning point in between them (and the system has a specific form). It is
shown that these two manifolds can be connected across the turning point, forming
what will be called a “canard curve”. For this matching to occur, the presence of
an additional parameter is needed. The matching parameter will retain a form of
summability but the canard curve itself will not exhibit any Gevrey properties at the
turning point. For more details on the, quite delicate, behaviour of the canard curve
at the turning point, we refer to theorem [3.2.1] and the discussion following the proof
of this theorem near the end of section

While both results are essentially self-contained, they can be combined and applied
to the setting of system (3.0.1) to give the following, informally formulated, result.

Theorem 3.0.2. A heteroclinic saddle connection between two persistent slow-fast
saddles on a slow manifold of a real analytic planar slow-fast system is summable (in
the positive real direction) w.r.t. (a root of ) the singular parameter , uniformly for x

in compact subsets of the domain of the critical curve not including the turning point.
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For a precise statement we refer to theorem [3.:2.13] One possible class of systems

where this theorem can be applied is those of the form

{x' = elz—c)(d—x)

gy = a+a™ ty+eF(r,y,¢ a)

where ¢ < 0 < d and m is even.

Theoremthen shows the existence of a m-summable control curve a = A(e¥/™)
along which the equation has a m-summable solution y = y(w,sl/m) w.rt. el/m,
uniformly on arbitrary compact subsets of [c,d]| which do not include the turning

point x = 0.

3.1 Tracing summability along the critical curve

The question that is answered in this section is whether or not the 1-summability
of a formal slow manifold at a given location x = x¢ implies the 1-summability of
this formal slow manifold at another location. In other words, is the summability
information carried along the slow curve? The answer is given by the next theorem.
An additional parameter a is added in view of its necessity later on in the matching of
slow manifolds across a turning point, but its inclusion does not influence the results
or proofs in this section.

We remark that the “cause” of summability is irrelevant in this section. It could, for
example, be achieved from slow-fast saddles as in theorem but at the same
time, we can refer to [CDMFES07] to conclude that equations of the form

d
r+10Y 2
e L =A@y + O 2),

with 7 > 0, enjoy similar results: when A(0) < 0, then it is easily seen from the
monomial summability (w.r.t. the monomial ez”) proved in [CDMFS07| that for a
sufficiently small neighbourhood of a compact interval, lying close to 0, on the strictly
positive real axis, the equation has a solution that is 1-summable w.r.t. € in directions

close to the real axis.

Theorem 3.1.1. Consider the real analytic slow-fast family of vector fields

{a‘c = ef(zy,a,¢) (3.1.1)

y. = g(x7 y7 a’ 5)7
with a real analytic critical curve given by the graph y = vo(x) (for a = aog), = €
[zo,z1] = R. Suppose that the unperturbed vector field is normally hyperbolically

attracting at points of the critical curve, which means

%($7w0(w)7a070) <07 Vz € [370,331].
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Assume furthermore that f(z,vo(z), ao,0) > 0 for all x € [xo,x1] (in other words the
slow dynamics is regular along the critical curve and directed from left to right).
Suppose the formal slow manifold is 1-summable in the real positive direction, w.r.t.
e, uniformly around (xo,ao), i.e. there exist r,o > 0 and a holomorphic function
U (z,a,¢e) defined on

B (xo,7) x B(ag,7) x S(0,7 + o,7),

such that y = ¥ (x,a,¢€) is an invariant manifold of (3.1.1). Then the formal slow
manifold is 1-summable in the real positive direction w.r.t. e, uniformly around
[z0, 1] X {ao} meaning there ezists an open V < C with [zo,z1] € V and 0 < o’ < o,

0 <1’ <r such that ¥ (z,a,€) can be extended to
V x B (aog,r) X S(O,W-{-J’,r') .

Remark 3.1.2. Readers who are familiar with the terminology of complex relief
functions (see [Wal91] for example) can see that the normally attracting nature of the
critical curve and the fact that the theorem is stated on a compact real interval means
that the straight path from xo to x1 is a descending path according to the complex
relief function associated with the slow-fast vector field. It is hence well-known that
points close to xo and for € > 0 can be easily integrated towards x1 without straying
from the critical curve. Up to the knowledge of the author, the literature does not

contain a statement that carries summability information along a descending path.

It is not hard (in fact this is the topic of the next subsection) to translate the question

in theorem [3.1.1] to a question regarding analytic differential equations of the form

5% =y+eH(z,y,a,¢), (3.1.2)

defined for (z,y, a,€) in a complex neighbourhood of [zo, z1] x {0} X {ao} x {0}. Using
this reduction, theorem [3.1.1] is a direct consequence of the next theorem. We will

elaborate a bit on this in a minute.

Theorem 3.1.3. Given the analytic equation defined for (z,y,a,€) in a com-
plex neighbourhood of [X1,0] x {0} x {ao} x {0}, and with X; < 0.

Then 1-summability of the formal solution in the direction 0, w.r.t. €, uniformly
around (0,aq) implies the 1-summability of the formal solution in the direction 0,

w.r.t. €, uniformly around [X1,0] % {ao}.

Remark 3.1.4. In general, equations of the form will not have a 1-summable
solution (not even in isolated directions).

Consider, for example, an entire function h whose set of zeroes is given by

© k-1 2
,CL=JUL;JO {ke 2 }
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Such a function exists by the Weierstrass theorem, see [Kral2].

We clatm that the equation

has no 1-summable solution in any direction. Indeed, assuming that such a solution

does exist, would imply that the Borel transformed equation
oy 1
le — =Y + —
oz T h
has a solution, Y (x,n), which is defined for n in some infinite sector. One can see
easily that the unique solution of the above equation is given by h(;ij-n) This function

is clearly, by construction of h, not defined on any infinite sector.

3.1.1 Theorem [3.1.3|implies Theorem |3.1.1

Under the conditions of Theorem|[3.1.1} we can make a time rescaling to reduce (3.1.1)

to

T = ¢
{y = Glz,y,a,2),  with G(z,y,a,¢) := HE025.
From the conditions imposed on %7 easily follows Ag(z) := ‘;2 (z,vo(x), ao,0) < 0 for

all x € [zo,z1]. Let us now extend the critical curve defined for a = ao to critical
curves for nearby values of a, using the implicit function theorem: there exists a
unique analytic v (z, a) such that G(z,¥(x,a),a,0) = 0 and ¥(x,a0) = Po(x). After
writing y = § + ¥(z, a), we find

r = £
{ﬁ = Mz,a)§ +O(F) + O(e),

where \(z,a) = &€ (x,9%(x, a),a,0). Note that A(z,a) = \o(z) + O(|a — ao|), meaning

Y
that we may assume that A\(z,a) has a strictly negative real part. Now define

u(z,a) = JI A(s, a)ds,

o
where we limit this function to a sufficiently small (and simply connected) neighbour-

hood of [zo,z1] and a near ag. Writing Z = u(x, a), we obtain after yet another time

{

z1
X = u(l’lv ao) = f )\(S, ao)ds < 0.
xo

rescaling and reversal

18
|

3
7+0(7*) +0(e),

<.
I

Denote

One can see that the mapping (z,a) — (u(z, a), a) is analytic with an analytic inverse

on an environment of [zg,z1] X {ao} mapping this last set onto [X1,0] x {ao}. Since
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the result in theorem is obtained on an environment of [X1,0] x {ao}, going
back to the original variables will yield a result on an environment of [zo, z1] % {ao},
which is indeed the goal in theorem |3.1.1

Dropping the tildes, invariant manifolds of the above system of differential equations

are solution curves of

d
Ediy =y+ yQC(m,y,a, E) + €D(l’,y,a,5),
T

for some analytic functions C' and D. We can now further reduce to a more elementary
form with C' = 0 by applying a singular transformation y = eY:
dY
e =Yt eY?C(x,y,a,¢) + D(z,€Y,a,6) = Y + D(x,0,a,0) + O(e).
i
The equation in Theorem [3.1.3]is obtained after a final translation in the Y direction:

Y Y + D(z,0,a,0).

3.1.2 Proof of Theorem [3.1.3]

We may make the following assumptions about equation (3.1.2)), which we repeat here
for the sake of convenience:
d
sd—z =y+ecH(z,y,a,¢). (3.1.3)
(H1) H is bounded and analytic on U x B(0,r) x B(ao,r) x B(0,r) for some r > 0

and some open complex neighbourhood U of [X1,0].

(Hz) Equation has an (a,e)-family of bounded analytic solutions G(z,a,¢)
defined for (x,a,e) in B(0,s) x B(ao,s) x S(0,7 + o,s) for some s > 0 and
some o > 0. This assumption is a consequence of the assumption formulated
in Theorem [3.1.3|regarding the 1-summability w.r.t. € of a solution of the ODE

near 0.

The proof of Theorem [3.1.3] essentially contains two steps. In a first step, we analyti-
cally continue the initial solution G(z, a,¢) defined near 0 towards X (actually a bit
further) by using the ODE. This will provide a solution near [X1, 0] and for € in some
sector of opening angle a bit larger than 7. In the second and final step, we construct
an other solution of the ODE near [ X1, 0] but on a complementary complex sector for
€ and describe the relation with the analytically continued solution from step 1. We
finally apply the Ramis-Sibuya theorem [[:2.12] to conclude the 1-summability of the
analytically continued solution. This method has been used before in the literature,
for example in [FS03].

Note that G is a solution to equation thus G(z,a,e) = O(e) and we may

assume, by choosing s sufficiently small

(H3) |G(z,a,¢)| < 5, for all (z,a,e) € B(0,s) x B(ao,s) x S(0, 7+ 0,s).
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{A(em=1) |7 € [a,al}

Figure 3.1: S(0,2a,A) — A

Analytic continuation of the initial solution

We continue with the notations introduced in hypotheses (H;) and (H3) above and
specify the set on which we want to find a solution to (3.1.3).
Choose some —A < X (thus —A € R) such that [-A,0] < U. There then exists a

small enough half-opening angle oo < 5 such that
S(0,20,A) —Ac U.
(see figure [3.1]) We furthermore assume that

{A (e” — 1) |7 € [—a,a]} c B(0,s).

(In other words, the terminating arc of the sector S (0,2a, A) — A with vertex —A lies
inside B(0, s), again see figure ) Our aim is to analytically continue the initial
solution provided in (Hz) on B(0,s) to the domain S (0,2a, A) — A.

Proposition 3.1.5. Let a,z € C. If |a| < |z| then

1 al

|Arg(z + a) — Arg(z)| < sin” El
z

Lemma 3.1.6. Let (H1), (H2) and (Hs) be satisfied. Let 0 < o' < max{o,a} be
fized. The initial solution y = G(x,a,€) of can be analytically continued to a

solution defined on
S (0,2a,A) — A x B(ag,s) x S (0,7T + 0'75’) ,
for sufficiently small s' > 0. Moreover this continued solution is bounded by r/2.

Proof: Define
M = sup |H (m,y,a,€)|,

z,Y,a,&
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where the supremum is taken for © € S(0,2a,A) — A, |y| < 7, |a —ao| < r and
e € S(0,7m + 0,s). We will define conditions on s’ so that for any given € € S(0, 7 +
o’,s'), any given a € B(ao,s) and any given z € S(0,2a,A) — A it is possible to
integrate along a well-chosen path towards z. Independence of path and
analytic dependence on parameters and initial conditions ensures that this method
yields an analytic solution on the required domain.

In the remainder of the proof we hence fix z, a and €. The integration path is the
linear path from zo to z, where zo := A(e’’ —1) (B still to be specified, |3| < «, which
is located on the terminating arc of the sector S(0,2a, A) — A) and which lies inside
the definition domain of the initial solution defined in (H2). The ODE, restricted to
the path from zy to z, parametrized by p(t) = (1 — t)zo + ¢z is given by:

d;y _Z—20

= o (el p?),7,a.€) (3.1.4a)

7(0) = G(20,a,¢). (3.1.4b)

It suffices to show that this equation has a maximal solution defined on an interval
Jt2, t1| with ¢t1 > 1. Suppose by contradiction that ¢; < 1. Clearly the right hand
side of is defined (for all parameters (a,¢)), for (¢,) in the compact set
[0,1] x B(0,7/2). If we prove that |y(t)] < r/2 for all ¢t € [0,t1] we thus get a
contradiction, since 1 < 1. Since |y (0)| = |G (20, a,€)| < § by assumption, we prove

this by showing that if there exists an ty €]0, 1[ with |y(¢t«)| = 7/2 we must have

S (b= b OF) (1) <0

which implies what we are aiming for. After some calculations one finds that this

derivative is given by

2Re (22098 (1(t) + eH (p(t), ¥(t4), 0,9)) )

Consequently it is sufficient to show that

‘arg (Z —Ezom(ﬁ(t*) +€H(O(t*),’7(t*),a,g))) _W‘ < g

Now define p = 3 (a —¢’) > 0 and choose s’ < s such that s' < (r/2M)sin p which
implies that the next inequality is satisfied (remember that € € S(0, 7 + o', 5')):

€ pPlx),Y(lx),Q,€)| X S \zsinp.
H(p(t t <sSM < 5
By proposition we then have, since

arg (7 (t)) = —arg (7 (t+) and |y (t)] = 2,
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that

2 —
arg(

2 —
< ‘arg

25 ((ts) + eH(p(ts),7(t4), 0,2)) ) =7

—Z
‘—i—p.

il —71‘+p= ‘argz
Given that z lies in a sector with opening angle o and that zo can be chosen freely
on the ending arc, it is easy to see that the argument of zp — z can be freely chosen
between —a and o.

When the argument of ¢ is non-negative we choose

1
Z(r+0 —a),

Y car (20 —2) <
g = M8l 2

while for arg(e) < 0 we take

1
—i(w +0' —a) <arg(z —2) < —%.
One can see that such a choice can be made by the assumptions a < 7, 0 < o' and

that they guarantee that ‘arg ZOE—_Z‘ < 3(m + 0’ — ). It follows that we get

arg (=209 (8) (7(t) + H(p(t), v(ts), 0,€)) ) =7
1 m
5(774—0 —a)+p= 3

given the definition of p in this proof. O

Gevrey asymptotics of the extension

We are now quite close to showing Theorem It remains to show that the analytic
continuation provided in Lemma [3.1.6] is 1-summable w.r.t. € uniformly for x near
[X1,0].

Let y = G(z,a,¢e) be the continuation provided by Lemma We will define a
second solution y = G'(z,a,e) defined for x near [—A, 0], but for € on a different
sector. We will then consider the difference G — G’ for ¢ in overlapping sectors
and show that it is exponentially small w.r.t. |¢| as ¢ — 0. By the Ramis-Sibuya
theorem it can then be concluded that both G and G’ are Gevrey-1 asymptotic
to the same formal power series G(x,a,¢), uniformly for (z,a) given near [Xi,0] x
{ao}. Furthermore, since the e-sector of G has opening angle larger than 7, G will be

1-summable w.r.t. € in the bisecting direction.

Lemma 3.1.7. Assume (Hy), (Hz) and (H3) are satisfied. Let 0 <1 < 5 be fized.
The solution of

d
5% :y+EH(‘r7y7a75)

y(_A7 a, 6) =0
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1s defined and analytic on V x B(ag,s) X S (7r,7r - T, 5") for some s” >0 and V a

neighbourhood of [—A,0]. We may assume that the solution is bounded by r/2.

Proof:  The proof is completely analogous to the proof of Lemma Note
that when comparing the situation described in Lemma with the one here, it
is relevant to see that the real part of € is negative here, and hence exponential
attraction is experienced while continuing the solution at x = —A to values of z in
[—A, 0] which in essence lie to the right of —A in the complex plane. O

The following lemma finishes the proof of theorem [3.1.

Lemma 3.1.8. Using the notations and assumptions from lemmal[3.1.6, lemma[3.1.7,

together with the extra assumption %I <7 < ', we have the following.

Denote v = min {s’, 5"}. The solution from lemma , limited to
V x B(ao, s) x S(O,ﬂ—i—a”,u) ,

with V a neighbourhood of [X1,0], is Gevrey-1 asymptotic, in €, to a formal series,

uniformly for (z,a) and thus it is 1-summable.

Remark 3.1.9. [t is possible to prove the above result on (almost) the entire domain
of the = variable which was found in lemma[3-1.6, this is however not necessary for

our goal and would make the proof more convoluted.

Proof: [Proof of lemma [3.1.8] Denote G(z,a,e) the solution found in lemma

and G'(z,a,€) the solution from the above lemma. If we put
A(z,a,¢) = G(z,a,¢) — G'(z,a,¢),

it satisfies the following equation
dA ’
ga =A+e (H(w7 G(JZ, a, 5)7 a, 5) - H(l’7 G (.T, a, 5)7 a, 8))

A(=A,a,e) = G (—A,a,e).
Since

H(l‘7 G('/L‘7 a? E)7 a’ E) - H(x’ G,(l‘7 a” 5)7 a’ E)

1
= %j (z,(1 = )G (z,a,¢) + sG(z,a,¢),a,¢) ds Az, a, &)
0

R(z,a,)
it must hold that
(T xz+A
Az, a,e) = G(—A, a,£)el=a R(w,a,e)dw g L8
Denote

M= sup |H(z,y,a,¢)],

z,Y,a,€
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where the supremum is taken for z € S(0,2a,A) — A, |y| < 7, la—ao| < 7, € €
S(0,m+0',v)

By Cauchy’s inequalities it holds that (remember that both G and G’ are bounded
by r/2)

|R(z,a,e)| < -M

S |lw

for all (z,a,¢) in its domain. It follows that

IA(z, a,2)| < |G(=A, a,£) | ela Rlwa)du| Re(=55)

I SMIEEAL A cos(arg( ££2))

~

[\]

I o] FENcos(arg(#E1))

<

~

N3

To make further estimates we will restrict ourselves to the following domain for the

x variable. Define

Vi= (VaS0,0 -7 A —A)\B (—A, Xl;").

Notice that for z € V we have |z + A| > XA Tt is furthermore cumbersome but
easy to check that for z € V and e € S(0, 7 + o', v) n S(m, 7 — 7, ),

ar, u € z—U—,-i-TS—ﬂ-+ZI—T
8\ ¢ 2 2Ty T :

Consequently we have

v X A !
3pA _X1t+A cos(%+%—7)

|A(z,a,e)| < ze e 20

N3

for all (z,a,¢) € V x B(ao,s) x S(0,7 + o' ,v) A S(m,m—1,v).
The Ramis-Sibuya theorem [1.2.12|guarantees the existence of a formal Gevrey-1 series

é(w,a,&) = Z gn(m’a)5n7
n=0

where the g, are analytic on V x B(ao, s), such that G ~1 Gwrtee S0, 7+ o',v)
uniformly for (x,a) € V x B(ao, s). Thus G is 1-summable. O

3.2 Connection across the turning point

In this section we will limit ourselves to slow-fast systems with a turning point which

can be transformed, locally around the turning point, into a system of the form
T = €
= paP~ly+eH(z,y,a,¢) (3.2.1)
e = 0.
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Where H is analytic and satisfies H (0,0, ag,0) = 0, %"(07 0,a0,0) # 0, notice that p
has to be an even number for x = 0 to be a turning point, i.e. for the stability of the
critical curve, y = 0, to change through x = 0.

It is shown in [FS13] that every system of the form

T = e
y = ¢@)y+eH(z,y,a,¢)
= 0,

with ¢(x) areal analytic function with a zero of order p—1 at = 0 and H (0, 0, ag,0) =
0, ?—IZ(O, 0, ap,0) # 0, can be transformed into this form. The authors also give some
conditions on more general systems, such that the necessary transformation exists.

Setting u = £'/?, using the branch of the p-th root for which 1/ = 1, we prove the

following theorem

Theorem 3.2.1. Suppose H(z,y,a,c) is a bounded analytic function on
B(0,7) x B(0,7) x B(ag,r) x B(0,7)

with H(0,0,a0,0) = 0, ‘;’Z (0,0,a0,0) # 0. Moreover let there exist invariant man-

ifolds of system m, Gi(z,a,e) and Ga2(z,a,c), 1-summable in the real direction
and defined on

B(FA,s) x Blao, ) x § (0,7 + 0, 7)

for certain A, s > 0.

Then there exists a function a(u), p-summable in the real direction, such that the

system
z = uf
y = pa’ly+uPH(z,y,a(u),uP) (3:2.2)
L o= 0,

has an invariant manifold of the form y = G(x,u), defined for x € [—A, A] x ]0,70]

for some ro > 0 and extending the manifolds G1 and G.

Remark 3.2.2. Notice that by the results from the previous sections the existence of
such invariant manifolds is guaranteed if there are slow-fast saddles present on both

the attracting and repelling part of the critical curve.

3.2.1 Extension of invariant manifolds to 0

The general idea of the proof is to further extend the invariant manifolds until they
reach = 0 and then search for conditions on the parameter a guaranteeing that the
two extensions are matched. The continuation of these manifolds will be done under

two transformations which resemble, using the terminology of blow-up maps in real
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variables, the phase-directional rescaling and family rescaling chart, see for example
[DRO1]. We note that the transformations used here actually arise as charts from a
blow-up procedure in complex variables, the construction of which is slightly different
than in the real case, see for example [BMS&S|. It is not necessary to introduce the

complex blow-up procedure as we can work directly with the charts.

Phase-directional rescaling chart

The first chart we concentrate ourselves upon is a phase-directional rescaling chart,

given by
T=v
Yy =vy
U =vu

which is clearly an analytic map with an analytic inverse between a domain and its
image, provided that the domain does not contain any points where v = 0. Applying
this transformation to the system (3.2.2)) gives

v = oPuP
y = o' (p—u) Y+ "W H (v, 07, a, (vT)")
u o= —vPTlgPtl

Dividing by the common factor vP~! we arrive at

P

U= VU
7 = (p—uP)y+7u"H (v,0v7,a, (vVi)) (3.2.3)
I —artt,

Since invariant manifolds of the second system will also be invariant manifolds of the
first system, we may focus on the second one.

In the following lemma we use the notations, by which we described the domain where
equation (3.2.2)) holds.

Proposition 3.2.3. Let p be even, k € {0,...,p — 1}, p,01,02,A > 0 satisfying
p+01+024+A <%, v0eB0,7)\{0},0<R<r and K € C with |K| <R.
There ezists a U > 0 such that for
aws<ﬁﬂf—2@+m+@+A%mﬂ
p p P
vy € (v + S (7 + arg (v§),261)) N S (arg (v§) , 202))% = Q (vo, 61, 62),

where the branch of the p-th root is chosen such that (vg)% = vo and the branch line
lies opposite to the point v5, we have the following. (See ﬁgurefor an example of
an ) (’Uo, 91, 02))



78 CHAPTER 3. CANARD-HETEROCLINIC SADDLE CONNECTIONS

The solution of the initial value problem given by equation supplemented with

K _
v(0) = vo; H(0) = — 5 W(0) = ==
Vo Vo
is defined on [0, %} with the endpoint given by

p p
— Ul _UO —
(Ul’y (P(ﬂwl)"> ’UI) '
P

.
M 7(a, -2 )| < £,
OTeOver {Y \ % peonr )| S Tool

Proof: Two calculations will be deferred until after the proof, they will be labelled

€. .

Let M = sup|,) |y|.|a—aql,le|<r [H (T, Y, a,€)| and choose 0 < U < min{ﬁ,psin (A)}
sufficiently small such that

v < ———sin(p)
p—U ~ M |uv| P
holds.
We start off by looking at the solutions of
v =vuP
u =t
v(0) = vo; TW(0) = 14
Vo

Clearly these are given by

o= (o (55))
a(t) = <pt+ (Uf;)p)é

1 .
where in both expressions the branch of the p-th root given by 1» =¢" » (and thus

1
(ul)? =) with branch line the negative real axis.
Notice that v(t)u(t) is a constant function equal to v1u1, which also follows by cal-
culating that the derivative of v(¢)u(t) is 0.

By defining
P — P
T =Y 0
v1,U1 P (ﬂlvl)pv
we get

v (Tvlﬂl) =V1; ﬂ(Tvlﬂl) = U1.

One can compute that both solutions are well defined on [0, T, w,]. We remark that,
due to how we defined 2 (vo, 01, 62),

larg (T, @, ) — 7 + arg (u})| < 61 + 2. (3.2.4)
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We now concentrate on showing that the initial value problem
y=(p—@0)") 7+ @)’ H (v(t),v()y, a, (0nw)")

Vo
has a solution on an environment of [0,7%, w,]. By denoting v (s) = vy (sTv, @, ) it
suffices to show that
dy

ds =Toym | 0 =2 (sTv, 3, )p) Y

+ @ (5T )p H (v (8Tvy,m1) v (8Toy 73,) 75 @5 (Ulﬂl)p)

Hyy mq (5,7,a)

7(0) = %

has a maximal solution on ]s2, s1[ with s1 > 1.

Assume by contradiction that s; < 1. Since for all s €]0, s1[

v (sToy )| < |vo| <, (C1)
@ (sTo,.)| < VU, (C2)
we arrive at a contradiction when we show |y(s)| < %.
Thus, suppose that there exists an sy €]0,s1[ with |y(s4)| = %. We show that
L (s y(s)] ) (s%) < 0. Since

& 5 b)) = 2Re (T L)
it suffices to show
7w —arg (To, @ (p — T (54 Tvym, )p))

U (85 Ty ,m1)"
p—u (S*Tvlﬂl )p

(3.2.5)

— arg (367 (0520 + Hom(sen(s2),0)) )| < 5

since this would imply that L (s — |v(s)] ) (s%) <O.
By proposition [3:1.5]

ang (350) (7660 +

u (S*T'Ul U )p
p—u (S*Tvl,ﬂl )p

Hy, @, (s*,w(s*),a)>>‘ <p

sin(p)

(s Tyy a,)"
%H'Uhﬂl(s*’v(s*)7a)
v1,Ul

and this is the case when

[vol

U (84Tvy )"
p—= ﬂ(s*Tv1ﬂ1)

sin(p).

M|’U()|
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By (C2)) and using U < psin(A) < p, we have

U (s4Toy ;)" < U R
p_ﬂ(S*Tv1ﬂ1)p p=U M|U0|

Thus (3.2.5) holds if

— ™
|7 —arg (To, .z (P — @ (54 Tvy 3 )p))| < 9 p-

sin(p).

Now

|7r —arg (Toym, (p— 7T (S*Tvlﬂl)p)) |
< |m —arg (Tv, @, ) — arg (@) | + |arg (@}) — arg (p — @ (s Tv; @,)")]

Such that by (3.2.4)

|7 —arg (Tv, 3 (P — @ (55Tvy 3 )p)) |
<01+ 02 + |arg (@}) — arg (p — U (sxTvyu1)")|

<01+62+ g —(p+ 01+ 02+ A) + |arg(p) —arg (p — U (55 TLvy,a,)")|

and this implies by proposition [3.1.5} (C2|), and our choice of U that

|7 — arg (T, (p — W (84 Tvy 7 ) |
<T _p+a)+a="—_)p

2 2
We have thus proven that equation (3.2.5)) holds. O
Proof: [Proof of (C1)] It is easily seen that

|v (sTwy @,)| = |vol |s ( ) +(1—y9)
To prove (C1)) it thus suffices to show ‘s (Z—é) +(1— 5)‘ < 1 which follows if | 31 P
1.
By our choice of Q (vo, 61, 62) we have
V€ (uF + 5 (m + arg (18) ,2601)) A S (arg (15) ,262)
This implies that
P
<ZJ> € (145 (m,201)) A S(0,26,).
0
tan(61) . tan(61) tan(f3)

The boundaries of these sectors intersect in the points

tan(01)+tan(62) — " tan(61)+tan(02) -
One can check that the modulus of these points is strictly smaller than 1, due to the

P
a4l < 1. O

Proof: [Proof of (C2)] We have

[21 |

- ()

|E (8To1 )| =

1
P
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Figure 3.2: ©(—1,0.1,0.3)

p_,P
Yo~V

arg ( e >‘ < % (by definition of Q (vo,61,62)) we have

s+ (1—s) (%‘;)p >s+(1—s)Re<<Z—T)p)

=s+(1—s)+(1—5)Re <”01;Uf>

1

Since

p

=1+(1—5)Re<”0_”f>

p
it

> 1
and consequently
[@ (sTo, w,)| < [a1] < YU.
O

Consider the invariant manifolds y = G1 (z,a,v?) and y = G2 (z,a,u?) of system
(3.2.2). By restricting them to

B(FA) x Blao,r) x S <0, T : ”,s)

for s > 0 sufficiently small, we may assume that |G1,2(z,a,u?)| < R (we use the
notations from proposition [3.2.3)). Choose furthermore an « > 0 such that 2pa < 7
and {Fe’ | B € [—a, a]} © B(FA)

Corollary 3.2.4. We reuse the notations from proposition[3.2.3 The extra demand
0<pa—p—01—A <3 is also needed.
Under these conditions, there exists a U > 0 such that the system

v = vu’
y=(p—u")y+u H (v,v7,a, (v7)")
_gptl

gl
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has two analytic invariant manifolds. The first, (v, Y1(v,a,n),u), is defined for

(v,a,u) in
Q (—Aeiﬂ,el,og) x B (ao,r) x S (w,ﬁ 2 4040+ A), W)
pel a0l pop
The second, (v, Y2(v, A, ), w), is defined for (v,a,u) in
Q ()\ewﬁl,ﬂg) x B (ao,r) x 8 (o,E 2 40+ 0,4 A), W)
Bel a0l pop
Moreover, both |T1(v,a,u)| and |YT2(v,a,w)| are bounded by %

Proof: Since the proof is analogous for both invariant manifolds, we prove the

existence of the manifold Y.

Let (vi,w1) be elements from the domain specified in the lemma. Consider the fol-

lowing initial value problem

v = vu
7= (p—uP)y+a"H (v,v7,a, (vQ)") (3.2.6a)
U= —gPt!
- 71 )P -
0(0) = —A: g(0) = - SLEAGI) Zp) T (3.2.6b)

We have that

= (25))

is a solution to the above problem and it is defined for ¢ in a neighbourhood of

Using proposition we also know that the system consisting of (3.2.6a]) with initial

values

G (—)\eié, a, (vlﬁl)p)

AeiB

V1U1
AeiB’

v(0) = —xe'’; 5(0) = — ; u(0) =
with B chosen such that v; € Q2 (—)\eié,el,eg), has a solution defined for ¢ in a

p(v1w1)P

vzljf(keié)p
neighbourhood of [07 7]
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Consequently the solution to the problem (3.2.6a]) with mltlal values ([3.2.6Db)) is defined

for t in a neighbourhood of some path between 0 and m By analytlc dependence

upon initial values we have that the general solution to (3.2.6a)); (3.2.6D| ,

v(vits;t) , ylvit;t), w(viv;t),

consists of analytic functions in the variables vi1w; and t. It follows that the map

P _ P
(v1,u1) — | v1,7 12151;1}17, , U1
p(viun)P

is also analytic. The inequality follows readily from proposition [3.2.3 O

Lemma 3.2.5. Take \ > 0 sufficiently small such that S (77, 2 (oz + %2) ,5\) s con-
tained in UBE[_O"&] Q (—/\e’ﬂ, 01, 62). The function Y1(v,a, @) from corollary 18
Gevrey—% asymptotic to a formal series for v € S (7?, 2 (a + %) ,A), uniformly for

(a,u). An analogous statement holds for T2 (v, a, ).

Proof: The proof can be given in a nearly identical manner as the proofs of propo-
sition 6.24 and theorem 6.25 in [DMO03]. O

Proposition 3.2.6. Let

0

flzvau Z

be the formal series associated to Y1 resp. Yo as in lemmal3.2.5. The coefficient of

00 is given by

H L1 1oz

_ (anvaﬂg)f Z;’ 1elip dZ
p 1

for both formal series

Proof: Since the proof is exactly the same for Y1 and Y2 we only treat Y;. Since
(v, T1,w) is an invariant manifold of system ({3.2.3)) it must hold that

b0 N

v %(v,a, u) — — (v,a,u)

= (p - ﬂp)Tl ('U, a, ﬂ) +u”H (U7 vy ('l), avﬂ)v a, (Uﬁ)p) .

Since Y1 (v,a,u) ~1 fi(v,a,@) w.r.t. v it follows that
p

T1(v,a,@) =% f; (a,7)

oY v
a—;(v,a,ﬂ) 220, f1 (a, )

@ — v—0 6f0
6@ (v7a7u) — aa (a‘ 'LL)
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Consequently we must have

1
0 (07 = (p ) fi () + T H (0,0,0,0),
ou
moreover by proposition it must hold that limg_¢ fg(a,@) = 0. This implies
that the following identity holds

“ a sP—
fo (a,u) = —H(0,0,a,0) J R
0
0 _o g P_4—P
=uH(0,0,a,0) J t e dt.

u

Using the path v(z) = T2"v with z € [1,00[ we get

© —Zz
fam=-T20200 [T 5,
p 1

Family rescaling chart

To let our two manifolds actually meet each other we will have to switch to another

chart, which resembles the family rescaling chart, this is given by

r=wX
y=wY
U= w

which is an analytic map with analytic inverse on domains which do not contain
w = 0. Applying this transformation to our system ([3.2.2)), which we repeat for the

sake of convenience,
z = uf
Yy
u = 0

pa? "'y + uPH(z,y, a,u")

brings us, after dividing by a common factor w”, to the system

X =1
Y = pXP7Y + HwX, wY,a,w?) (3.2.7)
w = 0.

By corollary and lemma|3.2.5] there exist two invariant manifolds of this system

(X, X1 (wX,a,X7"),w)
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defined and holomorphic on

{(X,w) ‘ XeS(r,%—%(p—i—@l—i—@g-i—A))\P(O,%)»

wxes (2 (a+2) 3) o Blann

(X, XY (wX,a,X "), w)

and

defined and holomorphic on

{(X,w) ‘ XeS(O,%—}%(p+91+6'2+A)>\E(O,%),

ers<o,2(a+%2> A)} x B (ao,7).

Moreover if we take some Xy € S (O, 5= % (p+61+02+ A)) \B (0, %), both
—XoY1 (—on,a, —Xo_l) and XoY» (wX07a7XO_1) are Gevrey-% asymptotic to a

formal series for w € S (— arg(Xo), 2 (a + %") , ‘X%‘)

Proposition 3.2.7. For every

iy 2 — 1
XoeS (0, —2(p40+0+2)) \B (0, —
° ( p plPTotl )>\ ( €/U>

there exist > 0 such that the solution to
dYy
— =pX?" 'Y + HwX, wY,a, v’
dX p + (w bl w b a7 w )

Y (Xo,a,w) = XoY2 (wXo,a, Xy ")

is defined and analytic on

[Xo,0] x B (a0, r) x S (- arg(Xo), 2 <a + %) ,5) A
Furthermore, for the same Xo, the solution to
dY
= =pX"'Y + H(wX,wY,a,w”
dX p + (w 7w ) a7 w )

Y (—Xo,a,w) = —XoT1 (—wXo,a,—X; ")

is also defined and analytic on

[=Xo,0] x B (ag,r) x S (— arg(Xo), 2 (a + %) ,5) .

Proof: We prove the result for the first initial value problem
dY
— =pX"7'Y + H(wX,wY,a,w’
ax =P + H(wX,wY,a,w")

Y (Xo,a,w) = XoT2 (wXo,a, Xy ).
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The argument for the other one is analogous.

Denote
M = max sup ‘TQ (U,a,Xo_l)‘ , sup |H (z,y,a,¢)|
1/65(0,2(a+%),6) |z],lyl,la—aql,le|
la|<r
and set § = W.

It suffices, by holomorphic dependence of solutions on parameters, to show that for
fixed values of (a,w) € B (ao,7) X S (— arg(Xo), 2 (a + %) ,6) the solution to the
initial value problem satisfies |wY (X)| < % for all [Xo,0]. Suppose by contradiction
that there exists an Xy for which |wY (Xx)| = § and |wY (X)| < 5 for all [Xo, X«].
Since the solution satisfies
Y (X, a,w) =Xo T2 (wXo,a, X)X =0
b's

+ H (ws,wY (s,a,w),a,w")e
Xo

this would imply that, if we denote Xy = ¢Xo with c€]0, 1],

XP_gP
ds

C
Y (X, a,w)| < |X0|Me(°p_1)Re(Xg) + M|Xo|f =0 Re(XE) gy
0
Noticing that Re (X?) > 0 shows that

[wY (Xy)] < 02M | Xo| = = <

3
N3

which is the contradiction we wanted to achieve. O

Remark 3.2.8. [t is clear from the above proof that a ¢ associated to a Xo as in the

proposition, this same § will also allow us to prove the result for any other

. . 9 /1
XoeS(0, 5240 +0:+2)) \B (0, —
° ( p plPTOtE )>\ ( W)

provided that Xo‘ = | Xo|.

We now show that the saturations of the invariant manifolds from proposition [3:2.7]
above, can be connected to each other at 0, for a good choice of the parameter a. For
this we will employ the Gevrey implicit function theorem [1.2.15

. o 1
Consider some X > T

Lemma 3.2.9. Let €] — - + %(p—i— 01+ 02+ A), 5o — %(p—i— 01 + 62 + A)[, there
02

exists an analytic function ag(w) defined for w € S (—ﬂ, 2 (a + ?) ,wg), for some
wp > 0, with ag(w) = ao such that Y, (0, as(w),w) = Y (0,as(w),w). Here Y and

Yf are the solutions associated to Xe'® as in proposition .

Moreover ag(w) is a Gevrey—% function.
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Proof: We have

~ . > i ~ . ~ . —1
Y (0,a,w) = — XeiBe(Xe ﬁ)p’rl (—er’B,a,— (X616> )

0
+ f H (wz,leﬁ(z,a,w),a7 wp) e dz
and

~ . S i ~ . ~ . —1
YL (0, a,w) —XeBe(Xe) y, (erl'B,a, (Xezﬁ) >

0
+ f H (wz,wYQﬁ(z,a,w),a, wp) e " dz.

XetB
Consider the time-(—Xe™®) and time-(Xe*”) mappings associated to the analytic
differential equation

dy p—1 »
ax =pX?"Y + HwX,wY,a,w”).

The above expressions are the images of —Xe’ Y, (—wXe” a,—(Xe)™) resp.
XePYy(wXe®, a,(Xe®)™) under these mappings. Theorem [1.2.13|thus shows that
these expressions are Gevrey—%, uniformly in a, for w e S(—8,2(a + %2), d2).

By proposition [3:2.6] we have

lim0 YL (0,a,w) — Y (0,a,w)

¢ i —(XeP)P oo .
= H(0,0,a,0) <_2X”f L3 L1=a) (X P)”
p 1

_ReiB
—_ P
+J e 7 dz
XeiB

X o8 [P S i —XetP
= H(0,0,a,0) (— 2 J 2r e () g 4 J eZ”dz>
p

1 XeiB
from which it follows that the coefficient of w® of the formal series associated to the
1

Gevrey- function YL (0,a,w) — Y (0,a,w) is given by the expression above. Using

the Gevrey implicit function theorem [[22.15] we prove the result if we can show that

v ,i8 [0 o —Xeih
H (0,0, ao,0) (— 2Xe f 2 o2 (X ) g, +J e‘Z”dz> =0
1

p Xeif

and

Xeib

i3 0 S i —XetP
%(0, 0, ao,0) (—2)26 f ;:%71(37Z(X8 ﬁ)pdz + J ezpdz> # 0.
1

Using our assumption in theorem that H (0,0, ap,0) = 0 and %I(O, 0, ao,0) # 0,
it clearly suffices to check that

v ,i8 o 5 . —Xeih
_2Xe J S lem 2 (Xe)P 4, + J e *'dz £ 0.
p 1

Xeib
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One can calculate that

L B

2Xe® [P 1, (%8P —Xem
_2e J 2 e 2(Xe'?) dz—i—f e dz
p 1

XeiB

v 18 o] -
_2Xe J‘ z%_le_z(xe ﬂ)PdZ
0

hS]

|
|
—
~~
Shis
N
1
©

Corollary 3.2.10. The functions ag in lemma are all analytic continuations

of each other. Together they form a p-summable function.

Proof: We first prove that the functions are all continuations of each other. Suppose
that 81 and (2 are such that

S <_ﬂ152 (CM + %) 7(-‘-)[31) @ S <_ﬂ232 <CM+ %) vw52) # ga

this intersection is then again a sector. By reducing the opening of this sector slightly
one can see that Y1 (—wX,a,—X ') and Y2(wX,a, X ') are defined for w in this
sector and X in some neighbourhood of {Xeio‘ |a e [51762]}. One then sees, using

the uniqueness of solutions for analytic initial value problems, that both
YIBI (03 ag; (w)v w) = Y'2/81 (07 ag; (w)7 w)
and

leﬁ1 (07 By (w)v w) = leﬁ2 (Ov By (w)7 ’LU)
= Y252 (O’ ag, (U)), w) = Yzﬂl (07 ag, (’LU), w)

hold.

Using the uniqueness part in the Gevrey implicit function theorem we get that ag,
and ag, are analytic continuations of each other.

To prove the summability property it suffices to show that a finite union of sec-

us

tors of the form S (—6, 2 (a + %2) ,wg) covers a sector with opening larger than >

Since 8 can be any value in }—% + 2o+ 00402+ A), 5 — L(p+ 01 + 02 + A)[, it

is quickly checked that a finite union of sectors can be found to cover all directions

:|_7r+2(pozfp7917A) 7T+2(pa7p7917A)|:
2p ’ 2p

in any compact subset of

. In corollary |3.2.4| it
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>
—-A A

Figure 3.3: The domains of Y (x,a,%) (in blue), T (m,a
Y (£,a(u),u) (in red)

, %) (in green) and

was assumed that pa — p — 01 — A > 0 and thus the opening of the union can indeed
be taken larger than %. O
Combining the previous results allows us to prove theorem

Proof: [Proof of theorem By the assumptions of theorem there exist

invariant manifolds y = G1 (z,a,¢) and y = G2 (z,a,¢) around x = —\ resp. = = A.

In corollary it is shown that these manifolds can be extended, in the “phase-
directional” coordinates, to invariant manifolds ¥ = Y1 (v,a,w) and 5§ = T (v, a,u).
One checks that the domain of definition of Y1 contains the set [—X, 0[ x B (ao, ) %
}— U, 0[ where both intervals are part of the real line. Rewriting this in the original
coordinates shows that y = G1(x,a,u”) can be extended with the function y =
zY1 (z,a,%) to the domain where a € B (ao,r) and (x,u) satisfy z € [-A,0[ and
u € ]O, —zU [

Similarly y = G2 (z, a,u”) can be extended by y = Y3 (x,a, %) to the domain where
a € B (ao,r) and (z,u) satisfy z € ]0,\] and u € :|07CC<)/(7|:.

By proposition lemma and corollary one can choose an Xy €
}%, +oo[ such that in the “family rescaling” coordinates the above extension can
be further extended by a function Y (X, a(w),w) which is defined for (X,w) €
[—Xo0, X0] x ]0,4[ for a certain 6 > 0. Rewriting in the original coordinates, this
extension is of the form y = uY (£,a(u),u) where (z,u) satisfies u € ]0,6[ and
z € [—uXo,uXo]. O
In figure the domains of the extensions are depicted.

To further illustrate the result in theorem we introduce two notions from [ES03].

Definition 3.2.11. A (local) canard solution of (3.2.2) is a function ® (z,u) defined
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and bounded on |—d,d[ x ]0,uo] for d,uo > 0 such that for each fized value of u,
x — O (x,u) is an invariant manifold of (3.2.2]).

Definition 3.2.12. Let D < C be a simply connected domain containing 0, and S
an open sector. A function ® (x,u) defined and bounded on D x S is called a (local)

overstable solution if for each fized value of u, x +— ® (z,u) is an invariant manifold
of B22).

In theorem we only achieve the existence of canard solutions. Our results do
not give overstable solutions, indeed, examining corollary the extensions given
by y = Y12 (z,a(u), %) are already not defined for z in a complete neighbourhood
of 0 but only on (deformed) sectors around part of the negative real axis (for Y1) or
a part of the positive real axis (for Y2). The other possible form of the extensions is
y=uY (%, a(u) ,u) where the domain of definition is described in proposition
This description is rather convoluted. One does see that to remain in the domain, for
a fixed z € C\{0}, £ should be bounded for v — 0, which is of course impossible.

The statement regarding the summability in theorem is limited to the control
curve a(u). A natural question to ask is whether the canard curve itself also has
summability properties. The answer hereto is negative, as the following example

shows. Consider the system

z u?
{ y = 42y +ut(a—x)
Clearly the assumptions of theorem [3.2.1] are satisfied and thus the existence of a
control curve a(u) is guaranteed, together with a canard solution y = G (z,u) (for
the above system with a replaced by a(u)). If G was summable w.r.t. the variable
u, uniformly in a neighbourhood of the turning point z = 0 (or even just Gevrey
asymptotic), the asymptotic expansions @ = »,”_ anu” and G = S o gn (@) u™

associated to resp a(u) and G (z,u) would formally satisfy the equation

u4g—f (z,u) = 42°G (z,u) + u* (@ (u) — z).

It is then straightforward to calculate that necessarily
42° gy (z) = = — ao,

which is impossible without introducing a pole at the origin for gs4. This result is con-
sistent with that in [DMOT7] where a similar study is done but for Gevrey asymptotics

on “narrow” regions instead of summability.

Collecting the results of theorems [2.3.1] (i), [3.1.1] and [3.2.1] we arrive at the following

conclusion.




3.2. CONNECTION ACROSS THE TURNING POINT 91

Theorem 3.2.13. Consider a real analytic slow-fast family of vector fields

i = ef(z,y,a,¢)

y‘ = g(x7 y7 a7 6)’
with points xq, T, Tr € R such that x¢, a turning point, lies in between the two other
points, we may assume without loss of generality that T, < x¢ < xr.. We furthermore

make the following assumptions.

e There exists a critical curve given by the graph y = po(z) (for a = ag), x €
[Za,zr] which is hyperbolically attracting to the left of xy and repelling to the
right of this point i.e.

%@wwm%®<&wﬂaw%

%(az, wo(x),ao,0) > 0,z €]z, ],

0
%mwmu%m=o

e The points x, and x, are slow-fast saddle points with the slow dynamics di-
rected from the attracting to the repelling part of the critical curve, which is

characterized by

f(l’*:QOO(x*):U«OaO) = 07:1:* = Ta,Tr,

29 of a9 0f .
<am ay ay 6]3' (1’*7@0($*)7a070)>07.’1)* = Ta, Tr,

f(z,po(x),a0,0) > 0;z €]xa, xr|.

e Locally around the turning point there exists an analytic transformation which

transforms the system into the form (3.2.1).

Under these assumptions there exists a function a(u), p-summable in the real direction
such that the system
{ z = uPf(z,y,a(u),uP)
y = g(z,ya(u),u’),
has an invariant manifold y = G(x,u) defined for [xa, x| which is p-summable in the
real direction in u, uniformly for x in compact sets of [za,xr] which do not include

the turning point ;.

Let us conclude by remarking that an alternative method of proving this theorem
could have used the technique of combined asymptotic developments, developed in

[FST3).
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Chapter 4

Gevrey series in delay equations

In this chapter we consider the following system of singularly perturbed delay differ-

ential equations,

{:b(t) = e(a— ()

gty = Q4+ ylt)—Jyt—71) +z(t) — y33<t) ; (4.0.1)

with a € R, v € Ro, J, 7 € ]Ra', This model can be encountered in mathematical
neuroscience, see [KTT16]. This is very much a toy model, allowing us to exhibit the
use of Gevrey expansion techniques in the study of delay equations.

We are interested in slow manifolds of system , or equivalently center manifolds
of the extended system

() = e(t)(a—yz(t)) .
yt) = A+ J)yl)—Jylt—71)+z(t) — yT(t) . (4.0.2)

m.
—~
~
~
(o]

4.1 Setting up a slow manifold equation

We will use the characterization of center manifolds found in [HVL93]. To this end
we rewrite (4.0.2)) into a more appropriate form. Let, for « > 0, p € C ([—T, a,] 7]RS),
then we define for for each ¢ € [0, «],

@i: [-1,0] > R*: 0 > o (t +6).
Clearly ¢ € C ([-7,0] ,R?).

Definition 4.1.1. Given a function F: D < C ([—7,0] ,]RS) — R3. Denoting by
X (t) the right sided derivative, the relation

X (t) = F(Xy) (4.1.1)

93
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—2:/3 2}3

7

Figure 4.1: Equilibria of system (4.0.2) in the plane € = 0, divided into the curves
f*a foa f+‘

is called an autonomous retarded functional differential equation. A function X is a
solution to (1.1) on [-7,af if X € C([-7,a,],R?), X: € D,Vt € [0,0] and X (t)
satisfies (4.1.1)) for t € [0, of.

Using this definition, (4.0.2) can be rewritten as (2 (t),y (¢t),€(t)) = F (z¢, yt,et)

with the function

F:C([-7,0],R’) » R®

©3(0) (a —v1(0)) .
D (1, 02,03) = | (14 J) 2 (0) — J2 (—7) + o1 (0) — %T(O)
0

There is clearly a curve of equilibria of of F' given by {ps : b € R}, with

b3
Py = <—b+ g,b,O) 5

see figure One calculates that DF (p,) is given by

DF (py): C ([-7,0],R?) - R?

0a(0) (a9 (0= %))
(W1, ¥2,93) = | (1= %) 42 (0) + T (82 (0) — w2 (=7)) + ¢1 (0)
0
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(as a norm on R® we use the maximum norm and on C ([—7,0],R?) the supremum
norm).

Similarly as in the ODE case, a value A € C is a characteristic root of the linear
equation

X (t) = DF (pv) Xi (4.1.2)

if there exists a non-zero vector V € R® such that Ve is a solution to (#.1.2)). Setting
X (t) = Vet in [£.1.2) gives us that A must satisfy

0 0 a+'y( —%)
AMd= 11 J(1-e?) +(1-1?) 0 Vet =o.
0 0 0

From this we see that \ is a solution to the characteristic equation

N(A-(-p) =g (1-c7)) =0

In the ODE setting (7 = 0), the curve of singular points is normally hyperbolic almost
at all points py (except for b = +1) meaning that almost everywhere A = 0 is a root
of order 2 and there is one nonzero root. Also in the DDE setting, p+1 splits the
curve of equilibria in three parts, each of which is a graph where 0 is a root of order
2. Let us denote these graphs by f—, fo, f+ where f_(z) < —1 < fo(z) < 1 < fy(x),
see figure For all points on fo(z), A = 0 is the only characteristic root on the
imaginary axis. On f+ there is a possibility for an extra pair of complex conjugated
characteristic roots of an equilibrium to lie on the imaginary axis. This, however, can
only happen in a finite number of points and it is not necessary for such points to
even exist. If, for example, J7 < 1, extra characteristic roots on the imaginary axis
do not appear.

From here on out, we focus on one of the three graphs and denote it for simplicity by
f(x), we give the important remark that f is a holomorphic function and thus has
an extension to a subset of the complex plane. Choose any z¢ in the domain of f for
which A = 0 is the only root on the imaginary axis. Translating the graph to the x
axis and (zo, f (z0)) to the origin brings system in the form

B(t) = e(t)(a—~zo —ya(t))

g(t) = J(f (@(t) +20) — f (2(t —7) + @0))
+ (1 +J—f2(x(t) + ;I:o)) y(t) — Jy(t — 1)
—f (2(t) + 20) y3(t) — £O
—e(O)f (x(t) + z0) (@ — ywo — ya(t))

Eity = 0

(4.1.3)

One can calculate directly that the solution to the first equation satisfies

2(t) = 2(0)e™ " + L (1-e7 ),
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from which it can be derived that

z(t—1) =2(t) + (m(t) - @) (e —1).

Thinking naively, one could then assume that a solution to the following equation,

oY
(0 =m0 — ) S (5,)

:J<f(x+x0)—f(:c+ <x—@> (efw_l)+xo>>

+(1+J—=f2(z+a0))Y(2,e) = JY (a:—i— @-@) (6877—1)@)

Y3(z,¢)

—f(x+m0)Y2(ac,a)— 3

—ef' (z + z0) (a — ywo — ),
(4.1.4)

satisfying Y (z,0) = 0,would induce a center manifold of system (|4.1.3]).

‘We show that this naive intuition is indeed correct.

4.2 Characterizing a center manifold

We use the following definition of a center manifold due to [HVL93].

Definition 4.2.1. Given an autonomous retarded functional differential equation
X (t) = F(Xy) (4.2.1)

and suppose F' is continuously differentiable. If O is an equilibrium point of F, there

is a direct sum decomposition
C([-7.0],R*)=U®N®S

where U is finite dimensional and corresponds to the span of the generalized eigen-
vectors of the characteristic Toots of DF (0) with positive real part and N is finite
dimensional and corresponds to the span of the generalized eigenvectors of the char-
acteristic roots of DF (0) with zero real part.

For a neighbourhood V of 0 € C ([—7,0] ,Rg), a local center manifold W, (0) is a C*
submanifold that is a graph over V.n N in C ([—T, 0] ,]Rg), tangent to N at 0, and
locally invariant under the flow of . Said differently

Wiee (0) = { € C ([-7,0],R?) |[¥ = ¢ + h(p) ,pE NNV}

where h : N - U@ S is a C' mapping with h (0) = 0, Dh(0) = 0. Moreover, every

orbit that starts on Wi, (0) remains in this set as long as it stays in V.
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Denoting the right hand side of (4.1.3)) once again by F (x¢, y:,e:) we find that
3 (0) (@ = o)

Jf' (o) (¢1 (0) — @1 (—=7)) + (1 — f? (x0)) 2 (0)

DF (0,0,0) (01, p2, p3) =
(0,0,0) (1,2, ¢3) T (2 (0) — 2 (—7)) — 93 (0) f (20) (@ — ya0)

0

The characteristic equation associated to this linear operator has, with our assump-
tions on g, 0 as a characteristic root of order 2 and no other characteristic roots on
the imaginary axis.

The generalized eigenspace of the 0 root is two dimensional and given by the null
space of A% with the linear operator

A:D(A) > C([-7,0],R) : “0'_’%

where

D(A) = {@GC([—T,O],]RS) i—z ec([—r,o],m?’),i—‘;(o) = DF(0,0,0) (go)}.

Remark 4.2.2. The operator A is the infinitesimal generator of the semigroup of

solution operators associated to the equation

X (t) = DF(0,0,0) (X;).
For an elaborate treatment of the theory of these infinitesimal generators, invariant
manifold theory in delay equations and more, one can consult the literature, for ex-
ample [HVLI3], [DvGVLWI].

One can check that the generalized eigenspace, when a — yzo # 0, of the zero char-
acteristic root of the linearisation of system (4.1.3) at (0,0, 0) is given by

(a —~vx0) (A + BO)

B(a—7z0) {1525 (1-Jr) || A, BeR

z0)
B
For a — vyxo = 0 the generalized eigenspace is given by

0||A,BeR

This case does not essentially differ from when a —~yzg # 0 and we will thus not detail

it any further.
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We now show that a solution to (4.1.4]) induces a center manifold to (4.1.3]). Define
hi:R? — C([-,0],R) where hi (4, B) (9) is given by

(a — o) A (e_WBG - 1) - # (6_739 -1+ 'yBQ)

and hy: R?2 > C ([-7,0],R) where 11 (A, B) (0) is given by

(a — yxo) Ae™ P — 4= 7% (6_739 - 1) .
Y

The function is nothing more than a shorthand notation and is given by
h1 (A, B) (8) = (a — yzo) (A + BY) + h1 (A, B) () .
Furthermore define hy: G ¢ R? — C ([—-7,0],R) as given by
ha (4,B) (0) = Y (h1 (4,B) (), B) ,

where Y is a solution to and G is a sufficiently small neighbourhood of (0, 0).

One calculates that
hi (A, B) (t) = B(a—7x0—7h1 (A, B) ( )
hi(A,B) (t+6) = hy <1 (A - 7> —7Bt B)
0
R (A, B) (0) + (Tn (A, B) (6) — “_Wﬂ> (7" =1) =i (A, B)(0—-7).
This implies that supplementing system (4.1.3) with initial conditions

€0 (0) = B,
has solution given by
20 (0) = (% 4 (A - %) e*vB’f,B> 0
v (0) = o (% 4 (A - %) 7Bt B) 0
et () =B
Moreover, if we define
h (A, B) = hs (A, B) —B(a—wo)% 1—Jr),

we have

h1(0,0) = 0, h2(0,0) = 0, Dhy(0,0) = 0, Dh(0,0) = 0.

The first two assertions are immediate, we elaborate a bit on the differentials
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e For all 6 € [—7,0],
|hi (A, B) (|a — yao| v |AB| + w (y7)? |B|2> 1Bl

and thus h; (4, B) = O((A, B)?), for (A, B) — 0, from which it follows that
Dh1(0,0) = 0.

e Using the above we have that

oy oy

hs (A, B) (0) = e (0,0) (a — yzo) (A + BO) + e (0,0) B+ O((4, B)Z).

Since Y (z,0) = 0, also (0 0) = 0. By setting = 0 and taking the derivative
w.r.t. ¢in (4.1.4), we ﬁnd that

@=ne0) (<22 0.9+ F 0.9))

— J7 (@ — 7o) ( a‘”‘”(é%—l))+(1+J—f2(x0))%(o,a)
+J7(a—'ymo)a—};< (“_777“)(6”—1),5

—J%—i( %(6577—1),5)

(2 (20) Y (0,6) + Y2 (0,2)) % (0,2) — f (o) (@ — y) -

Setting & = 0, it is seen that Z¥ (0,0) = (1 — J7) (a — vz0) % By the
definition of ho this implies that ha (4, B) = O((4, B)?), for (A, B) — 0.

We have thus proven.
Lemma 4.2.3. IfY (z,¢) is a C* solution to with Y (z,0) = 0, the map
h: GcR® - C ([-7,0],R®) : (A, B) = (h1(A, B), h2(A, B), B)
is a center manifold of at the equilibrium point (0,0,0). Moreover, it inherits
the smoothness of Y.

4.3 Formal Gevrey analysis of the slow manifold

Now that we know that solutions (4.1.4) give rise to a slow manifold we analyse this

equation further. We will prove the following.

Theorem 4.3.1. There exists a unique formal series of the form

=Y mlae

n=1
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where all coefficients y, are holomorphic on a neighbourhood of 0, which formally
solves equation ‘

Moreover for any open sector S < C of opening less than m, there exists a function
?(m,s), Gevrey-1 asymptotic to Y w.r.t. g, uniformly for x in a neighbourhood of
0, which satisfies equation up to an exponentially small error i.e. there exists
K,L > 0 such that

sup
x

oYy
(@ =0 —72) S (,)

_J (f(x—i—xo) —f <x+ (x— “_77"”0> (e — 1) +xo>>

—(1+J =2 (@ +a0)) V(x,e) + IV <a:+ @-@) (6677—1)@)

VP (z,¢)
3

L
< Ke .

+f (z+20) Y2(z,€) + +ef (x + z0) (@ — yxo — V)

Remark 4.3.2. While our results will be local in nature, they can be easily applied

to any compact subset of a normally hyperbolic part of the curve of equilibria.

4.3.1 Formal solution

Since f is a holomorphic function at xo, there exists an R > 0 such that f(z + o) is
holomorphic on B(0, R).
Proposition 4.3.3. There exists a unique formal series solution to (4.1.4) of the
form Y (z,€) = Z yn(z)e™ with y, € O (B (0, R)).

n=1

~ o0
Proof:  Plugging the formal series Y(z,e) = > yn(z)e™ into equation (4.1.4),
n=1

expanding f (x + (x - %) (7" —=1) + x()) in its Taylor series around x + xo
and similarly expanding v, (z + (x — @) (e — 1)) around z we can arrive at

o0

S (1= (@ +0)) ya(@)e"

n=1

2 T (- o

:sf'(w+xo)(a—7wo—7w)+2 k'v
k=1 :
- _ _ ’ n+1 &5 & (lL’ WV&) (k) eyT k _n
+ 3 @ —nmo — ) 4 Y e Ty (77 1t
n=1 ; ) 1 n—lj:l X
+ 1 (@ +0) (;1yn<x)s”> +i (;1yn<x>s”> .

(4.3.1)
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The expansion in & powers of e¥?77 — 1 has no constant term. Thus for n > 1 the
coefficient of ™! on the RHS (right hand side) of only depends on the func-
tions y1,...,%Yn, f and their derivatives. Together with 1 — f2(x 4 x0) # 0, indeed
this follows immediately from f(z)— @ +2 = 0, we can thus recursively determine
the coefficients of our formal solution.

Notice that since f (z + xo) € O (B(0, R)), the same holds for the coefficients y,. O

4.3.2 Gevrey property

We aim to prove that the formal solution found in the previous section is Gevrey-1

w.r.t. € uniformly for  in a neighbourhood of z¢ i.e. there exist C, D > 0 such that

sup |yn(z)| < CD"n!

|z]<S
for 0 < S < R.
This is achieved analogously as in section [2.1.2] we will repeat some results, in a
slightly different formulation, but only elaborate on results not yet treated in this

previous section. For convenience we repeat,
Definition 4.3.4. Let p € N and g € O (B(0, R)), the p-th Nagumo norm of g is
given by
lgll, == sup (R —|z])" |g(x)].
|z]<R
Nagumo norms have the following properties.

e g1+ g2ll, < llgrl, + llg2l,-

e |hgz|, < sup, <g|h(2)]]g2], if b is a bounded function on B (0, R).
° 91924, < lgrl, llgz,-

o |9, <elw+D)]gl,
Definition 4.3.5. For formal series §(z,e) = >, _, gn(z)e" and iAz(z) =27 o hn2"
we say that g is majorized by h, denoted IR h, if and only if
lgnl,, <nlhn for allne N.
The following relations hold.

Proposition 4.3.6. If§ « h then

o0 d N
_ =e—g<«ezh
n;lg (@)™ =e—F < ezh,

o0 dk
ngff)kx —kdkg«ezh for all k =

m=k
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and if ¢1 < ’lil, Jo K ?7,2 then
g1+ g2 < ;\7/1 +ﬁ2,
9102 < haha.
We will need one more relation which has not yet been treated in section [2.1.2]
Proposition 4.3.7. Let § < h and denote

a — YTo

Z |,_Y7_|l+1 Rl .

E(z) = sup |z — l+1'l'z’

|z|<R

then

n=0k=1 k'
E EF(2)eF 2k ~ Hes ~
« ;1 ( k)! he) = (20 1) h(z)

Proof: We start off by rearranging the summation

k
Z_] Z ( B 7) 0" (2) (€77 = 1)F &

k
a—~yxzg
_ i (33 ¥ ) (65"/7‘ _ 1) g(k)( )€n+k:
k=1 k! € n=0
k
o) ey s
= m—k(‘r)am
k=1 k! € m=k

Let p € IN, the coefficient belonging to P for the last series above is equal to the

coefficient of €? in the series
_ a=yzg

$ ) (Y $ e

Using the relations for «, that (:c — %) (%) « E(2) , and that the above

series is a finite sum of formal series it holds that it is majorized by

Ik k

D k
P Bt .

The coefficient associated to zP in the above series coincides with the coefficient in

the series
ek ok A

Z h(2)

k=1
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which proves the result. O
We are now equipped to show that the formal series solution from proposition
is a Gevrey-1 series. Rewrite equation (4.3.1) as

oC

Z Yn ()"

n=1

1

= m (@ —yzo —yx) f (x + m0)e

< J(.T aij{zo) (k) T _ 1)k
+ 3 e ) 7 -

o w o J (w _ m)
n v ENYT n
+ Zl(a—vxo — Y2y (2)e" T + ZMZ ﬁyﬁm(w) (€T —1)"e
n= n= =1
o0 2 1 o0 3
+ f(z + z0) (Z yn(w)s"> +3 ( yn(a:)s"> ) .
n=1 n=1
(4.3.2)
Denote
Fo = sup |f(z + zo)],
le|<R
M; = sup _
! lol<r |1 — f2(z + z0) |’
Ms = sup |z — a =770 ,
lz|<R

we may assume that all the values are finite, by if necessary decreasing R slightly.
We call

v(z) =My (Mze}'oz + (eE(Z)EZ - 1) Fo
+ Maev(z)z + |J| (eé(z)ez - 1) v(2) (4.3.3)

+ .7-'01)2(2) + %1)3(2))

the majorant equation.
This is a fitting name, after all, given g « h then plugging g into the RHS of
and % into the RHS of yields two new formal series say g and h with g < TL,
which follows directly from the relations on «.

In a manner that is very similar to the proof of proposition equation (4.3.3)) has
a unique formal solution of the form V (z) = >

n=1

is zero. However, (4.3.3) is actually a holomorphic equation in the variables v and

v 2", notice that the constant term
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z and as such we can apply the holomorphic implicit function theorem to find that
there exists (around z = 0) a unique holomorphic solution, V(z), of (4.3.3)), satisfying
V(0) = 0. The Taylor series of this holomorphic solution necessarily coincides with 1%
which implies that the coefficients, v,,, of V are bounded by CD" for certain C, D > 0.
We can employ the fact that 1% converges to show that Visa Gevrey-1 formal series.

Put Yo = 0 and Vp = 0, clearly Yo « /I{o we can recursively define formal series
Porr = RESE3D) (V2)
Vo = RES@TE) (77)

with )A’n < ‘7n and lA/n has all coefficient up to €" in common with our formal solution
Y found in proposition m Furthermore the sequence V., converges to the unique
formal solution of (4.3.3)), ‘7, and thus ¥ « V.

Finally, we thus have |yn|,, < van! < CD"n! which implies for all |z] < R that
lyn(z)] < CD™(R — |z|)""nl. Consequently for 0 <T < R

D n
su () <C |l —=—— ] nl.
s (o)l < (27 )

To surmise.

Lemma 4.3.8. Given the unique formal solution of the form

[ee]
Y (z,¢) = Z yn(z)e
n=1
to equation (4.1.4), with y, € O (B (0,R)). For 0 < T < R, }A/(x,s) is a Gevrey-1
series in €, uniformly for x € B (0,T). More specifically there exist Cy, D1 > 0 such
that

sup |yn(z)| < C1DTnl.
|z|<T

4.4 Constructing quasi-solutions

Given any sector S of opening less than 7, we can apply the Borel-Ritt-Gevrey theo-
rem [1.2.10]to the formal series solution ¥ and find a function 17', Gevrey-1 asymptotic
to it. We prove theorem [£:3.1] if we can show that

v
e(a —yxo — ’ym)a—m(ac, €)

—J(f(m+xo)—f<w+<x—a_yﬂ> (65”—1)+a;0>>

—(14+J =2 (z+a0)) V(z,e) + IV (x-i— @-w) (6“7—1),5)

0
Y3 (x,€)

3 +ef' (x + mo) (a — yro —y7)

+ f(z + x0) 372(23,5) +
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is Gevrey-1 asymptotic to the zero series. For this it suffices, by lemma[[.2:13] to prove
that ¥ (m + (m — @) (77 —1) ,5) ~ Y (x + (as — a}ﬂ) (e —1) ,s). For
this, let 7" be as in lemma [4.3.8] choose any 77 < T and let s > 0 be sufficiently small
such that <T1 + Vl_yﬂ) (7" —=1) < % By the Borel-Ritt-Gevrey theorem there
exist functions Y7,...,Y,, and a good sectorial covering Si,...,Sm of B(0,s)\{0}
such that Y is defined on B (0,T) x S; and Y ~1 Y. We may assume that Y = Y1
and S = S;. This implies that there exist K, L > 0 such that

~ L

' (z,¢) — (ac,e)‘ < Ke T (4.4.1)

l2|<T

foree Sin S; # &.
Due to our choices of T3 and s the functions Y; (x + (x — %) (77 —1) ,s) are
defined for (z,¢) € B (0,T1) x Sj. We have that

¥, +(_i) w_l),a)

v
o0 > k
Y a— %o eyt k
e
and thus
¥ (H (x_ m) (" _1)@) _v, (H (m_ m) (€ _1)7(5)
v Y
is given by

s 1 6k Ni 0k17} a — Yo i eyT k
Zk( (x,e) — P (:v,s)) (x—#) (e —1)".

By the Cauchy inequalities and (|4.4.1)),

oY, oY,
e (z,€) — aTkJ (w,€)| <

sup
|z|<Ty

implying that for all |z| < T1 and € € S; n S},

ﬁ<x+ @-@) (ew—l),s> -

is bounded by
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The Ramis-Sibuya theorem [1 m then guarantees that, in particular,

% (a:—i— <a:— @) (e —1),5)

is Gevrey-1 asymptotic to some formal series. The proof that this series is given
by ¥ (oc + (:c — “qﬂ) (e —1) ,5) is analogous to the second part of the proof of
lemma [1.2.13| and we will not detail it further.
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Remark 4.4.1. Now that we have a quasi-solution, a logical next step would be to
construct an actual solution to the slow manifold equation from the quasi-solution,
stmilarly as was done in section . This however seems to be quite delicate since
smoothness issues w.r.t. the singular parameter € arise, similar as what is encountered
i [HT9T]. A future topic of research could be to adapt, if possible, the techniques in

JHTY7] for the construction of smooth slow manifolds.



Overview

This thesis focuses on Gevrey asymptotic properties of slow manifolds in slow-fast

dynamical systems.

A large part, specifically chapter [2] is dedicated to the existence of formal slow man-

ifolds and the requirements for these manifolds to induce actual slow manifolds.

The formal study is carried out in section 2-1] Here it is shown that general holomor-
phic slow-fast systems,
X = eF(X,Ze)
{ Z = G(X,Ze)

under the mild condition of slow-fast regularity at an equilibrium of the fast sub-
system, meaning G (Xo, Zo,0) = 0 and det Dz (Xo, Zo,0) # 0, have a unique formal

solution to the associated slow manifold equation
eDxZ-F(X,Z,e) =G (X, Z,¢).

Moreover this solution is a formal Gevrey-1 series, see proposition and proposi-
tion In the case of one slow variable (X € C) this result is already well known,
see for example [Sib90]. The technique we use, i.e. a majorant method employing
the Nagumo norms, is essentially identical to that in [CDRSS00], however they only

treat the case of one slow variable.

The next question is whether there also exists, besides a formal slow manifold, an
actual slow manifold of the slow-fast system. Moreover, if such a slow manifold exists,
what are its asymptotic properties w.r.t. the formal manifold? Our answer depends

on the regularity of the slow flow.

The case of a regular point of the slow flow, F' (Xo, Zo,0) # 0, is consider in section
We show there, imposing no other conditions on the slow-fast systems besides the
already assumed slow-fast regularity, the existence (locally around the considered
regular point of the slow flow) of slow manifolds which are Gevrey-1 asymptotic to

the formal slow manifold. These manifolds can be defined for any narrow sector, of
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opening less than 7, with direction to be chosen freely, see lemma[2:2.1] Once again,
this result is already known for one slow variable, see for example [Sib58].

Our approach in generalizing this result to systems with an arbitrary amount of slow
variables is to realize the formal manifold as a function by the Borel-Ritt-Gevrey
theorem, and search for an actual slow manifold as having an exponentially small
(w.r.t. e — 0) difference with this realization. This reduces the existence of a slow
manifold to finding a solution to a PDE, . The idea of this approach coincides
with that of [CDRSS00], where the case of one slow variable is treated. A crucial
difference however is that for one slow variable, one does not need to solve a PDE but
an ODE. The ODE can be solved, for example, by employing the Gronwall lemma.
This method can not be used for the PDE, moreover due to the presence of the singular
parameter the classical result on existence of PDE solutions, the Cauchy-Kowalevski
theorem (see for example [Fol95)), is not directly applicable. We construct a solution
be once again a majorant method.

The results in this section can be seen as a generalization and improvement on the
classical results of Fenichel on normally hyperbolic slow manifolds, see [Fen79]. The
generalization is in the sense that our condition of slow-fast regularity is weaker than
that of normal hyperbolicity. The improvements are with respect to the smoothness
(w.r.t. &) of the manifolds, in the theory of Fenichel only finite smoothness up to any
degree can be guaranteed. Our Gevrey manifolds are in particular C*. We do have
to remark that the results of Fenichel can be global in nature while our results are
only local.

A possible area where our results could find application is in the study of elliptic slow

manifolds ([Van08| [LZ11]). As an example, in [Wir04] a system of equations

X eF (X, Z)
Z = —LZ+e¢G(X,2)

is considered. Here L is a real, invertible, skew-symmetric (constant) matrix. Since
all eigenvalues of this matrix are purely imaginary, Fenichel theory can not be applied
but by our results a slow manifold Z (X, €) exists, Gevrey-1 asymptotic to the formal
slow manifold, >_, Z, (X)e", of the above system. In [Wir04] it is shown that for
a fixed gg € ]0, +0[, there exists an N, € N such that

Neo

Zeo (X,6) = ). Zn (X)€"

is a slow manifold up to an exponentially small remainder. By this it is meant that

the error

Rey (X)=eDxZ., (X,e) F (X, Z:, (X,€))+ LZ:y, (X,e) —eG (X, Z, (X, €))
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is exponentially decaying of order 1/3 w.r.t. € (see proposition for the definition
of exponential decay). Using the actual slow manifold and its Gevrey asymptotic

expansion

k—1
Z(X,e) = ), Zn(X)e"| < AB"K!|¢|"
n=1

1

this result can easily be replicated. Indeed setting N, = {B—EO

as in remark that

J —1 one can calculate,

1
Z(X,e) = Y Zn (X)e"| < AcPe” B0 (Beo) 2 .
n=1
It is then rather easy to show that also R, (X) is exponentially decaying, and even
with order 1.

Where section concerned regular points of the slow flow, section deals with
equilibria of the slow flow. In this section we narrowed down the class of slow-fast
system under consideration by imposing more stringent conditions. Simply said, apart
from slow-fast regularity, the extra conditions are that only one fast variable is present
and the eigenvalues of the linearisation of the slow flow lie in the Poincaré domain. We
showed in theorem [2.3.1]and lemma[2.3.9]that the formal slow manifold is 1-summable
in a certain set of directions. Furthermore, through examples in remark and
example [2.3.3] we show that our assumptions are necessary in the sense that there
exist systems, not satisfying the assumptions, whose formal slow manifolds are not
1-summable in any direction.
We would like to note that one particular class of systems (or rather their associated
slow manifold equations) for which our results are applicable are given by

El‘% =p@)z+ef(z,y,¢)
with ¢ (0) # 0 and z, z € C. In [CDMFS07, BMF02] equations of the form

r+1d2
"t 1

with » > 0 are studied. The results in these papers amount to the existence of

=¢(@)z+ef(2,y,¢)

monomially summable formal solutions i.e. summable w.r.t. to the monomial ex".

They do not treat the case where r = 0.

After concluding the local Gevrey analysis of slow manifolds in slow-fast systems of
arbitrary dimension in chapter [2| we turn our attention, in chapter [3| to slow-fast
systems with one slow and one fast variable. We are motivated by considering systems
where the critical curve connect an attracting to a repelling slow-fast saddle, where
along this connection there is a change of stability through a turning point in between
the two saddles.
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By the results in section [2:3] there exist, locally around the slow-fast saddles, slow
manifolds, 1-summable in the positive real direction. The main result in this chapter
is that the two manifolds can be saturated towards the turning point and even be
connected to each other over it, with the help of an additional parameter.

The first step in the proof is to show that any l-summable, in the positive real
direction, slow manifold can be saturated alongside normally attracting parts of the
critical curve, see theorem [3.1.1] while retaining the summability property. The fact
that the saturation exists is well known, see for example [Wal91], our contribution
lies in the retention of the summability along the saturation.

In the second step we focus ourselves on an environment of the turning point which

we assume can be brought into the form

{x - : (4.4.2)

y = pa¥ly+eH(z,y,a,¢)

When two 1-summable slow manifolds are present to the “left” and “right” of the
turning point, the existence of a control curve a (El/p) such that the two manifolds
can be extended towards the turning point and match each other there forming a
canard solution, see theorem Moreover the control curve is p-summable w.r.t.
the variable €7, but the canard solution does not enjoy summability properties at
the turning point. The results are consistent with those in [DMO07|, where a similar
study is done but for Gevrey asymptotics on “narrow” regions and our work can be

seen as an extension of this.

For the concluding chapter @We make a short foray into the world of delay differential
equations. Using a model from mathematical neuroscience to experiment on, we show
that the center manifold of this system can be characterized by an equation which
is formally solved by a Gevrey-1 formal series. Moreover a function that is Gevrey-1
asymptotic to this formal solution satisfies the center manifold equation up to an
exponentially small error (in €), see theorem Clearly a lot of obvious questions
are still left unanswered. For example, the class of systems for which the result is
formulated is very restrictive and the result should be able to be extended to a much
broader class. A perhaps more difficult problem is the realization of an actual solution
from the formal one, and its related smoothness properties. It would seem that a good

choice of function spaces to work in plays an important role here.



Nederlandstalige samenvatting

In deze thesis worden singulier verstoorde problemen, die voorkomen in de studie van
snel-trage systemen, bestudeerd. In hun standaardvorm zijn deze systemen gegeven
door,
X(t) = eF(X, Ze)
{ Z({t) = G(X,Ze)

De kritieke variéteit van zulk systeem wordt gegeven door (een deel van) de nulpunts-

verzameling van de vergelijking G (X, Z,0) = 0.

Een eerste groot deel van de thesis besteedt aandacht aan het blijven bestaan van de
kritieke variéteit, als een invariante variéteit, onder kleine verstoringen van de sin-
guliere parameter €. Meer bepaald onderzoeken we het bestaan en de eigenschappen
van een e-familie van lokaal invariante variéteiten van een snel-traag systeem, dewelke
naar de kritieke variéteit streven voor € — 0. Zulke familie variéteiten wordt een trage
variéteit genoemd.

Het is algemeen bekend dat onder de veronderstelling van het normaal hyperbolisch
zijn van de kritieke variéteit, de trage variéteit bestaat. Echter is deze in het alge-
meen niet uniek en bovendien, zelfs wanneer het snel-trage systeem reéel analytisch
is, kan het enkel gegarandeerd worden dat de trage variéteit een gladheid van een
willekeurige, maar eindige, graad heeft.

Het doel is om deze klassieke resultaten op verschillende punten te verbeteren. We
zullen dit bereiken door het gebruik van de theorie over Gevrey asymptotische func-

ties.

Onze aanpak start vanuit een formeel standpunt. Onder voorwaarde van snel-trage
regulariteit, construeren we formele machtreeksen in de de singuliere parameter die,
formeel gezien, invariant zijn in het snel-trage systeem. We bekomen verder dat deze

reeksen in het algemeen niet convergent zijn maar divergent van Gevrey type.

Afhankelijk van het type punt, van de kritieke variéteit, waarrond we een trage
variéteit willen construeren, onderscheiden we twee gevallen. Wanneer het punt geen

evenwichtspunt van het trage vectorveld is, tonen we aan, zonder het opleggen van
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verdere veronderstellingen, dat er een trage variéteit bestaat dewelke een Gevrey
asymptotische expansie bezit. Dit is een verbetering ten opzichte van het klassieke
resultaat aangezien we enkel snel-trage regulariteit eisen, wat een zwakkere eis is dan
normaal hyperbolisch zijn. Bovendien zijn de trage vari€teiten die we bekomen in het
bijzonder C* glad.

Wanneer we kijken rond een evenwichtspunt van het trage vectorveld, bekomen
we zelfs sterkere resultaten maar hiervoor moeten bijkomende veronderstellingen
gemaakt worden. Meer bepaald zullen we veronderstellen dat er slechts één snelle
variable is en bovendien moet het evenwichtspunt van het trage vectorveld ofwel
aantrekkend ofwel afstotend zijn. Onder deze voorwaarden bekomen we dat de formele
oplossing sommeerbaar is in een richting. Dit betekent dat, bovenop alle eigenschap-

pen die een variéteit met Gevrey expansie heeft, de variéteit in zekere zin uniek is.

Een tweede onderwerp in de thesis betreft globale dynamica in snel-trage syste-
men. We beschouwen een systeem, met één trage en één snelle veranderlijke, dat
voldoet aan een specifieke configuratie waarbij die kritieke kromme opgedeeld is in
een aantrekkend en afstotend deel en op ieder van die delen zich een snel-traag zadel
bevindt. Vanwege onze eerdere, lokale, resultaten bestaan er sommeerbare trage
variéteiten rond deze zadels. We tonen aan dat deze verder gezet kunnen worden
langsheen de kritieke kromme, met behoud van sommeerbaarheid. Vervolgens wordt
nagegaan dat twee sommeerbare variéteiten aaneengesloten kunnen worden, met be-
hulp van een extra parameter, overheen een punt waar de stabiliteit van de kritieke

curve verandert. Op deze manier construeren we canard oplossingen.

Als laatste worden “delay differential equations” onderzocht. Dit doen we aan de
hand van een specifiek model, dat gebruikt wordt bij het modelleren van neuronen
activiteit. Ons hoofddoel is het aantonen dat Gevrey asymptotische technieken ook
hun waarde kunnen hebben binnen het meer algemene gebied van functionele differ-
entiaalvergelijkingen. In onze resultaten tonen we het bestaan van quasi-oplossingen
aan, die een trage variéteit tot op een exponentieel kleine fout na benaderen. De
stap van quasi-oplossing naar echte oplossing wordt niet gemaakt en is een mogelijk

toekomstig onderwerp voor onderzoek.
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