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Abstract

Background: Our work was motivated by the need to, given serum availability and/or financial resources, decide
on which samples to test in a serum bank for different pathogens. Simulation-based sample size calculations were
performed to determine the age-based sampling structures and optimal allocation of a given number of samples
for testing across various age groups best suited to estimate key epidemiological parameters (e.g., seroprevalence
or force of infection) with acceptable precision levels in a cross-sectional seroprevalence survey.

Methods: Statistical and mathematical models and three age-based sampling structures (survey-based structure,
population-based structure, uniform structure) were used. Our calculations are based on Belgian serological survey
data collected in 2001-2003 where testing was done, amongst others, for the presence of Immunoglobulin G
antibodies against measles, mumps, and rubella, for which a national mass immunisation programme was introduced
in 1985 in Belgium, and against varicella-zoster virus and parvovirus B19 for which the endemic equilibrium assumption
is tenable in Belgium.

Results: The optimal age-based sampling structure to use in the sampling of a serological survey as well as the optimal
allocation distribution varied depending on the epidemiological parameter of interest for a given infection and
between infections.

Conclusions: When estimating epidemiological parameters with acceptable levels of precision within the context
of a single cross-sectional serological survey, attention should be given to the age-based sampling structure.

Simulation-based sample size calculations in combination with mathematical modelling can be utilised for
choosing the optimal allocation of a given number of samples over various age groups.
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Background

Several key epidemiological parameters such as the preva-
lence, the force of infection — rate at which susceptible
individuals become infected, or the basic reproduction
number Ry — expected number of secondary cases of an
infected person in a totally susceptible population — can
be computed through the use of mathematical models.
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Mathematical models for infectious diseases often rely
on data from serological surveys. Specifically, in a cross-
sectional serological survey, samples taken from individ-
uals at a certain time point provide information about
whether or not these individuals have been immunised
before that time point (depicting current status data).
Pathogen-specific antibodies following infection or vac-
cination can be identified in the serum. The antibody
levels are typically compared to a predetermined cut-off
level to determine the individuals’ humoral immuno-
logical status. The usefulness of these surveys in
epidemiology has recently been highlighted [1]. Under
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the assumptions of lifelong humoral immunity and an
epidemic in a steady state, the age-specific force of infec-
tion can be estimated from such data [2].

Publications that reported using a dynamic transmis-
sion model to inform the design of studies in infectious
diseases are scarce [3]. Moreover, only a few studies used
mathematical or statistical models to inform the design
of serological surveys. Marschner [4] introduced a
method for determining the sample size of a cross-sec-
tional seroprevalence survey to estimate the age-specific
incidence of an irreversible disease, based on the
illness-death model assuming time homogeneity and
non-differential mortality as described in Keiding’s 1991
paper [5]. More recently, Nishiura et al. [6] proposed a
framework to compute the uncertainty bounds of the
final epidemic size to HIN1-2009 and to determine the
minimum sample size required. Septlveda and Drakeley
[7] proposed two sample size calculators, depending on
whether the seroreversion rate (ie., rate of antibody
decay) is known, for estimating the seroconversion rate
in malaria transmission in low endemicity settings using
a reverse catalytic model. They extended the method to
determine the sample size required to detect a reduction
in the seroconversion rate at a given time point before
survey sampling caused by a field intervention [8].
Lastly, Vinh and Boni [9] assessed the power of serial
serological studies in inferring the basic reproduction
number and other processes of influenza using a
mathematical model.

In this paper, simulation-based sample size calcula-
tions are performed in order to determine the age-based
sampling structures and optimal allocation distributions
best suited to estimate with acceptable precision levels
several epidemiological parameters such as the preva-
lence, force of infection, and basic reproduction number.
Specifically, we use four models and three age-based
sampling structures within the context of a single
cross-sectional seroprevalence survey. We differentiate
between endemic and non-endemic settings. In the latter
case, we limit ourselves to estimating the prevalence and
defer extensions thereof to future work. The objectives
of this paper are i) to give insights into the age structure
best suited to estimate the parameters with acceptable
levels of precision; ii) to provide an order of magnitude
of the sample size required to attain a specified precision
for a particular parameter; and iii) to give insights into
the optimal allocation of a fixed sample size among
age groups.

Our work is motivated by the need to, given serum
availability and/or financial resources, decide on which
samples to test in a serum bank for different pathogens.
In particular, the proportion of the samples to allocate in
different age groups could be investigated to obtain the
highest precision for a given parameter.
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Methods

Data

A serological survey testing for the presence of, amongst
others, measles, mumps, rubella, varicella-zoster virus
(VZV), and parvovirus B19 Immunoglobulin G (IgG)
antibodies was conducted on large representative
national serum banks in Belgium [10]. Serum samples
were collected, between 2001 and 2003, from residual
blood samples used for routine laboratory testing (indi-
viduals aged < 18 years) or from blood donors (18 years
and over). This survey was designed as proposed by the
European Sero-Epidemiology Network (ESEN) which
aimed to standardize the serological surveillance of
immunity to various diseases in European countries [11].
In particular, children and adolescents were oversampled
in the survey. A total of 3378 samples were collected
and the age of the individuals ranged from 0 to 65 years.
The number of samples with immunological status with
regard to measles, mumps, rubella, VZV, and parvovirus
B19 infections were 3190, 3004, 3195, 3256, and 3080,
respectively. Since a national immunisation programme
against measles, mumps, and rubella has been intro-
duced in 1985 in Belgium with gradually increasing
vaccine coverage in the targeted age groups (infants,
adolescents aged 11-13years, and catch-up campaigns
in adults), endemic equilibrium for these infections in
2002 cannot be assumed. In contrast, no immunisation
programme against VZV and parvovirus B19 has been
introduced, making endemic equilibrium a tenable
assumption for both infections.

Models
Here, we briefly present an overview of the methods
used to derive key epidemiological parameters from
serological survey data and we refer to Hens et al. [2] for
a more in-depth explanation of the methodology. We
start from the basic concept of an age-specific preva-
lence and gradually move to the force of infection and
other parameters such as the basic and effective
reproduction numbers in endemic equilibrium.
Age-specific seroprevalence can be modelled in the
framework of generalized linear models (GLMs). For
example, the probability to be infected at (before) a
given age can be modelled through a logistic model,
expressing the dependency on age using a specific func-
tional form (see e.g. Hens et al. [12]). For estimating the
(age-specific) force of infection from seroprevalence
data, various statistical methods have been used in the
literature including linear and non-linear parametric
(e.g., fractional polynomials or catalytic model) and non-
parametric approaches. Complementarily, the flow of
individuals between the mutually exclusive stages of an
infectious disease can be described using compartmental
dynamic transmission models. The simplest such model,
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the Susceptible-Infectious-Recovered (SIR) model, de-
scribes the flow between the susceptible (S), the infected
and infectious (), and the recovered class (R). The fol-
lowing set of partial differential equations in continuous
age and time can be used to describe the SIR dynamics
mathematically:
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with the age- and time-specific population size given
by N(a,t)=S(a,t) + l(a,t) + R(a,t) and with A(a,t) the
force of infection, o(a,t) the recovery rate, and p(a,t)
the all-cause mortality rate.

Assuming a closed population of size N in demo-
graphic and endemic equilibrium, we obtain a set of or-
dinary differential equations (ODEs):
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Solving the above set of ODEs, the following expres-
sion for the seroprevalence of individuals of age a is
obtained:

m(a) = 1- exp (- /0 a/l(u)du).

The above equation can be solved numerically by
using a discrete age class framework, thereby assuming a
constant force of infection A, in each age class [ayy, gy,
1l k=1, ---, J [13]. The seroprevalence at age a in the o
age interval is approximated by:

n(a) = 1- exp( Z)lk Alk+1) ﬂ[k -Aj(a- H)>’
(1)

where aj;) =0 and ayy, 1) = L (the life expectancy).

This model assumes that the infection-related morta-
lity can be neglected, which is tenable for the infections
studied in the present paper, and that the total population
size is constant over time (i.e. the number of births and
deaths are balanced) with a constant age distribution.

From this model, other key epidemiological parame-
ters can be calculated such as the basic and effective
reproduction number (Ry and Ry respectively; Reg
reflects the actual average number of secondary cases
that can be observed in a partially immune population)
or the average age at infection.
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Since seropositive results for measles, mumps, and ru-
bella are a mix of vaccine- and infection-induced im-
munity, implying time-heterogeneity which is beyond
the scope of this paper, only the age-specific seropreva-
lence for these diseases was modelled. We considered a
logistic model with piecewise constant prevalence values
within the following age classes based (partially) on vac-
cination policies: [1,2), [2,11), [11,16), [16,21), [21,31),
and [31,65] years. The estimates of the coefficients using
this model (on the logit scale) are denoted by ﬁ

For VZV and parvovirus B19 infections, for which an
endemic equilibrium is tenable in Belgium, three mathe-
matical models for estimating the force of infection, used
in previous studies [2, 14—16], were considered.

The first model is a Maternally-derived immunity-Sus-
ceptible-Infectious-Recovered (MSIR) model with
piecewise constant force of infection. An MSIR com-
partmental model adds to the basic SIR model a stage
describing newborns and infants protected by maternally
acquired immunity (class M) [17]. This model assumes
that newborns and infants are protected by maternal anti-
bodies and that this immunity is promptly lost at a given
age A. Newborns and infants are then assumed to be sus-
ceptible to infection (class S), they may become infected
and infectious (class I), before recovering from the infec-
tion (class R). The seroprevalence at age a in the /™ age
interval is approximated by, which is a slight adaptation of
the model in (Eq. 1):

n(a) = 1- exp( Z/lk Alhe+1]~ Ak A(“‘“[i]))?

with ap;; = A, where A is the age at which maternal im-
munity is lost. In this paper, we considered an MSIR
model with piecewise constant force of infection within
the following six age classes: [1,2), [2,6), [6,12), [12,19),
[19,31), and [31,65] years. These age groups account for
the Belgian schooling system, the fact that infection
mainly takes place among young age groups, and for
which similar forces of infection are expected between
ages in a given age group. Note that, in general, the
choice of these age categories is often done on an
ad-hoc basis.

The second model considered in this paper is the
exponentially damped model for the force of infection as
described by Farrington [14]. This model is based on the
typical shape of the age-specific force of infection of
childhood infectious diseases: low at birth because of the
presence of maternal antibodies, then increasing linearly
with age, and finally declining from a certain age on-
wards by an exponential decrease. The force of infection
can be formulated as follows:



Blaizot et al. BMC Medical Research Methodology (2019) 19:51
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with a;, a, and a3 the model parameters to be esti-
mated from the data. Integrating A(a) results in a non-
linear model for the seroprevalence, i.e.,

a 1 |a
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We considered a third model for parvovirus B19 infec-
tion, a mathematical model allowing for boosting and
waning immunity, since lifelong protection against infec-
tion upon recovery from parvovirus B19 is questionable
[18-22], which would limit the use of the two previous
models. Goeyvaerts et al. [16] investigated several exten-
sions of the MSIR model to determine whether waning
of disease-acquired antibodies and/or boosting of low
immunity by exposure to infectious individuals should
be accounted for. Here, we used the model with the best
Akaike information criterion (AIC) value which was the
compartmental model allowing for age-specific waning
of disease-acquired antibodies and boosting of low
immunity, denoted by “MSIRWb-ext AW” (see
Additional file 1). More specifically, waning was mo-
delled using an additional state (W) with age-specific
rates: individuals moved from the high immunity state R
to the low immunity state W at a rate €; and &, for age
group < 35 and > 35 years respectively. The boosting rate
was assumed to be proportional to the force of infection
by a factor of ¢. The transmission rates were assumed
to be directly proportional to age-specific rates of mak-
ing social contact with a proportionality factor ¢.

Samples from children aged less than 1 year (6 months
in the MSIRWb-ext AW model to be consistent with
the original article) were omitted in our analyses because
of distortions expected from the presence of maternal
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antibodies against the various pathogens and low
number of samples of that age (n = 13).

The first two columns of Table 1 show a summary of
the models used for each of the pathogens studied.
Formulas to calculate the various epidemiological pa-
rameters (i.e., age-standardized seroprevalence and force
of infection, Ry, Reg, and the average age of infection)
can be found in Additional file 1. The age-specific sero-
prevalence and force of infection were calculated in the
following age groups: [1,2), [2,6), [6,12), [12,19), [19,31),
and [31,65] years for each pathogen (including measles,
mumps, and rubella for easier reading).

Estimating the model parameters

Maximum likelihood estimates were obtained for each
model and pathogen assuming that the observed pre-
valence follows a binomial distribution. Using the
estimated values of the parameters for each model
and pathogen (with age values rounded down to inte-
ger values), age-specific “true” prevalence values were
calculated which were used in the simulations (see
next section).

Simulations

Three age structures were compared: the age structure
derived from the pathogen-specific data of the sero-
logical survey in which children and adolescents were
oversampled (survey-based), the age structure of the
Belgian population in 2003 (population-based) [23], and
a uniform age structure (see Additional file 1: Figure S1
and Table S1).

To compare the age-based sampling structures and
determine the optimal allocation of samples over age
groups, 500 (new) datasets were generated using a bino-
mial distribution and the age-specific “true” prevalence
values obtained for each model. We used several values

Table 1 Summary of the models considered for each of the pathogens and the corresponding model parameter estimates using

the observed serological survey data

Serological data Models

Estimates

Measles Logistic model with piecewise constant prevalence
Mumps Logistic model with piecewise constant prevalence
Rubella Logistic model with piecewise constant prevalence
VzV MSIR piecewise constant force of infection

Parvovirus B19

Exponentially damped model for force of infection

MSIR piecewise constant force of infection

Exponentially damped model for force of infection

MSIR model with boosting and waning (MSIRWb-ext AW)

Bueoses = (0.108,1.733,1.412,1.819,2.479, 3.863)
Buumps = (~0.575,1.317,1.990,1.950,2.145,2.112)
Bauy = (0.050,1.912,2.356,2.419,3.099, 3.339)

Avzv = (0.330,0.301,0.245,0,0.071,0.116)
ayzy = (0.476,0.468,0.071)

As1o = (0.065,0.086,0.114,0.036, 0, 0.014)
ag10 = (0.076,0.241,0.006)

§=0.085 & =0.012,& =0, and = 0.334.

VZV varicella-zoster virus, MSIR model Maternally-derived immunity-Susceptible-Infectious-Recovered model. B coefficient estimates (logit scale) within the age
classes [1,2), [2,11), [11,16), [16,21), [21,31), and [31,65] years. A: estimates of the force of infection within the age classes [1,2), [2,6), [6,12), [12,19), [19,31), and
[31,65] years. a: estimates of the three parameters describing the exponentially damped model. g: estimated proportionality factor between the transmission and
contact rates; & and &: estimated rates at which individuals moved from the high immunity state R to the low immunity state W for age group < 35 and > 35
years respectively; ¢: estimated proportionality factor between the boosting rate and the force of infection. See the Models section for more details
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of the total sample size (N=1650, 3300, 6600, 9900,
13,200, or 19,800) and the number of samples across age
depended on the age-based sampling structure or allo-
cation distribution used. Each dataset was then fitted
with the corresponding model to obtain a distribution of
the parameters values and the precision. Here, the opti-
mal allocation was determined by calculating the preci-
sions obtained using different distributions. To restrict
the number of distributions to compare, we varied the
proportions among the six age groups ([1,2), [2,6),
[6,12), [12,19), [19,31), and [31,65] years) from 10 to
50% (leading to 126 distributions) and assuming a
uniform distribution within each age group. Figure 1
gives a schematic representation of the approach used in
this paper. The precision was defined to be half the
length of the 95% percentile-based confidence interval
(CI) calculated over the 500 simulations. For the sero-
prevalence and force of infection by age group, the age
distribution providing the best joint precision, defined as
the sum of the precisions in each age group, is reported.

In the MSIR model with piecewise constant force of
infection for the VZV infection, simulations with
biologically implausible estimated values (>10) were
excluded; such values were obtained in the age group
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>30years due to a simulated prevalence of 100% in
this age group. These simulations were replaced.

All analyses were performed using R software
(version 3.3.1) [24].

Results

Estimates of the model parameters obtained using the
observed serological survey data

The model estimates for each of the different pathogens
are given in Table 1. Additional file 1: Figure S3 shows
the estimated prevalence and force of infection for each
model and disease. The models provided overall good
fits and the results were close between the models. How-
ever, for parvovirus B19, the exponentially damped
model was not able to capture the decrease in seropreva-
lence around age 30. In contrast, as expected, the
MSIRWb-ext AW model was able to capture this
decrease, albeit only partly. In this model, the force of
infection had a bimodal shape (with modes around ages
7 and 35 years; Additional file 1: Figure S3).

Since our simulations were based on integer age
values, the MSIR and MSIRWb-ext AW models were
re-run after rounding continuous age values down to
integers; however, the estimates were close when using

Original data
age and
serostatus
Parameters
estimates
New data New data
setl set 2 vee
Parameters Parameters
estimates estimates e
Distribution
Precision

Fig. 1 Schematic representation of the approach used in this paper

Model

Generation new data sets with specific:
- Total sample size
- Age structure

/

New data
set K

l Model

Parameters
estimates
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continuous or integer values. The estimates obtained
using the MSIR model with piecewise constant force of
infection within the age classes [1,2), [2,6), [6,12),
[12,19), [19,31), and [31,65] years were: Ago = (0.077,0.
104,0.100,0.035,0,0.014), Ay, = (0.404,0.337,0.200, 0
,0.076,0.113) . The following estimates were obtained
using the MSIRWb-ext AW model for parvovirus B19: ¢
=0.089, & = 0.014, & = 0, and $ = 0.359. Estimates
of the prevalence and force of infection (overall and by
age groups), Ry, average age at infection, and R.g are
provided in Additional file 1: Tables S2-S4.

Comparisons of the three age-based sampling structures
Because similar results were obtained when generating
1000 or 1500 datasets, only the results based on 500
simulations are presented. For the overall seroprevalence
of measles and VZV, in both models used, the
survey-based age structure led to the best precision
(Figs. 2 and 3, Additional file 1: Table S5, Tables S8-S9).
However, when modelling mumps and parvovirus B19,
in the three models used, the precision of the overall
seroprevalence was found to be better using a uniform
or population-based age structure (Figs. 2 and 4,
Additional file 1: Table S6, Tables S10-S12). Finally, the
precision for the estimated overall rubella seropreva-
lence was similar for the three different age structures
(Fig. 2, Additional file 1: Table S7).

The precision of the estimated overall force of infec-
tion was better when using the survey-based age struc-
ture for VZV infection, in both models used (Fig. 3,
Additional file 1: Tables S8-S9), and for parvovirus B19
infection under the MSIRWb-ext AW model, and using
a uniform or population-based age structure for parvo-
virus B19 infection in the two other models used (Fig. 4,
Additional file 1: Tables S10-S12).

For all the pathogens, as could be expected given the
oversampling in children and adolescents in the survey-
based age structure, the precision of the estimated
seroprevalence by age group was better when using the
survey-based age structure in the young age groups and
the uniform or population-based age structure for the
oldest age groups (Additional file 1: Tables S5-S12).
The same pattern was observed for the force of in-
fection of VZV and parvovirus B19 by age group
(Additional file 1: Tables S8-S12).

In the exponentially damped model, the precision of R,
and the average age at infection was slightly better using
the uniform or population-based age structure for parvo-
virus B19 while it was better using the survey-based age
structure for VZV (Additional file 1: Tables S8 and S10).
In the MSIRWb-ext AW model, the precision of Ry, Reg
and the average age at infection of parvovirus B19 was
slightly better using the survey-based age structure while
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that of the relative boosting factor (¢) was better
using the uniform or population-based age structure
(Additional file 1: Figure S4 and Table S12). However, the
precision of this factor was poor, with large confidence
intervals, and the average age at infection should be inter-
preted with caution given the bimodal force of infection.

Sample size needed

To obtain a 2% precision around the overall seropreva-
lence estimate, the sample size needed would be around
1650 for mumps and parvovirus B19, while a lower
number of samples would be sufficient for measles,
VZV, and rubella; to obtain a 1% precision the sample
size needed would be around 6600 for mumps and
parvovirus B19, and 1650 for measles, VZV, and rubella
(Figs. 2, 3, and 4; Additional file 1: Tables §5-S12). These
results were quite consistent across age structures.

Optimal allocation of a fixed sample size among age
groups

For the overall seroprevalence of measles, mumps, or
rubella, the optimal allocation (distribution over age
groups) of a fixed number of samples would be a distri-
bution with a high percentage of the data among age
groups [19,31) and [31,65] years, for each sample size
used (Additional file 1: Table S13-S15). Regarding the
seroprevalence by age group, for measles, mumps and
rubella, we have noticed some variations across the
sample sizes; the optimal allocations were broadly
uniform across the age groups.

The optimal allocation for the overall VZV seropreva-
lence or force of infection estimates varied with sample
size; the oldest two age groups would rather be favoured
(Fig. 5 and Additional file 1: Tables S16-S17). The optimal
allocation for the overall parvovirus B19 seroprevalence
estimate would be a distribution with a high percentage of
data in the oldest age group, for each model and sample
size used (Fig. 5 and Additional file 1: Tables S18-S20).
Regarding the overall force of infection of parvovirus
B19, the optimal allocation would entail a distribution
with high percentage among the oldest age group in the
MSIR model with piecewise constant force of infection
and exponentially damped model, while more equally dis-
tributed over the various age groups for the MSIRWb-ext
AW model.

Regarding the seroprevalence or force of infection by
age group for VZV and parvovirus B19, some variations
between models and sizes were observed; the optimal
allocations were broadly uniform across the age groups.

Discussion

Considering sample size and optimal allocation is essen-
tial since efficient usage of resources is needed in the
context of limited human or financial resources and/or
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time constraints for performing a serological survey.
Since analytical formulas for complex models are not
available, simulation-based analyses are a flexible alter-
native to address these considerations. In this paper, we
proposed a simulation-based approach for sample size
and age structure considerations, and optimal allocation
of resources, in order to estimate key epidemiological
parameters with acceptable levels of precision within the
context of a single cross-sectional serological survey.
Our results showed that the best age structure to use
in the sampling of a serological study as well as the opti-
mal allocation distribution varied with the epidemio-
logical parameters of interest. To our knowledge, only a

few studies investigated, using mathematical or statistical
models, the optimal allocation of a given number of
samples over age groups to obtain good precision.
Marschner [4] showed, using an example of measles
infection, that a uniform age distribution should not be
optimal to obtain a good joint precision of the force of
infection.

For all the infections investigated, due to the oversam-
pling of individuals under 20 years old in the serological
survey purposefully, the precision of the estimated sero-
prevalence by age group was better with the survey-
based age structure in the young age groups and the
uniform or population age structure for the oldest age
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infection (right) over 500 simulations as a function of the total number of sampled individuals (N) for the Maternally-derived immunity-
Susceptible-Infectious-Recovered (MSIR) model with piecewise constant force of infection (top) and the exponentially damped model (bottom).
“True” overall seroprevalence is the estimated overall seroprevalence using the models on the observed serological survey data (with integer
age values)

groups. Moreover, because of the formulas used to com-
pute the basic or effective reproduction number and the
average age at infection, the age structure best suited to
estimate these parameters was related to that of the
prevalence in the exponentially damped model and of
the force of infection in the MSIRWb-ext AW model. In
case the boosting rate is of interest, sufficiently sampling
adults is essential. Anyway, the precision of this rate was
poor as was also observed in previous analyses [16]. This
could be explained by the complexity of the model used.

Our results showed that, to reach a given precision
level around the overall seroprevalence estimate, the
sample size needed would be higher for mumps and
parvovirus B19 infections, compared to measles, VZV,
and rubella infections. This may be explained by the fact
that the prevalence levels across age groups were less

variable for measles, VZV, and rubella, with a prevalence
reaching relatively high values at young ages, compared
to mumps and parvovirus B19.

An important finding was that the age-specific
prevalence profile, and thus the age-specific force of
infection profile, had an effect on the optimal age
structure to use in a serological survey or the optimal
allocation for estimating the overall seroprevalence.
Indeed, the optimal age structure varied between VZV
and parvovirus B19 infections, the seroprevalence
increasing more sharply between ages 1 and 10 for
VZV compared to parvovirus B19.

A main assumption was the existence of an endemic
equilibrium for VZV and parvovirus B19 infections (i.e.
the epidemic in a steady state). Under this assumption,
the incidence might go through cyclical epidemics over
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Fig. 4 (See legend on next page.)
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Fig. 4 Parvovirus B19 serological data: mean, median, and 95% confidence interval for the overall seroprevalence (left) and overall force of
infection (right) over 500 simulations as a function of the total number of sampled individuals (N) for the Maternally-derived immunity-
Susceptible-Infectious-Recovered (MSIR) model with piecewise constant force of infection (top), the exponentially damped model (middle), and
the MSIR model allowing for age-specific waning of disease-acquired antibodies and boosting of low immunity (MSIRWb-ext AW) model
(bottom). “True” overall seroprevalence is the estimated overall seroprevalence using the models on the observed serological data (with integer
age values)

Foirgegop [N | I |
©
g |Prevagesows [ [ [ |
8| ovearor [T ] | |
S
| overarprev [T ] [ |
Foirgegour  [INNNNNNNNNN] | | |
(8]
& |Pevagesor [ [ [ |
g| owaro [T | |
overatprev [N ] | |
I T T T T I
0 20 40 60 80 100
Cumulative distribution
among the six age groups (%)
Z | FoiAge group I I |
§ |Prev Age group || |
Ke)
z| ovearor [T I |
2| ovearpev [T T |
5 [Foingegoup [N || |
[}
£ (Prevagegoup [N [ | |
©
S| owmier NN T ] |
! Overall prev i I | | |
Foiagegour [N [ |
[&]
&lpevagegoy [N [ I |
o
g Overall f.0.i _‘ | | |
overatprey [N | |

20 40 60 80 100
Cumulative distribution
among the six age groups (%)
Fig. 5 Optimal allocation (N =3300) for various epidemiological parameters and by model (y-axis) among the six age groups (with lighter shades
with increasing age group): [1,2), [2,6), [6,12), [12,19), [19,31), and [31,65] years, varicella-zoster virus (top) and parvovirus B19 (bottom) serological
data. MSIR pcw: MSIR model with piecewise constant force of infection; Exp. damped: exponentially damped model; MSIRWb-ext AW: Maternally-

derived immunity-Susceptible-Infectious-Recovered model allowing for age-specific waning of disease-acquired antibodies and boosting of low
immunity; f.o.i: force of infection; Prev: prevalence

o




Blaizot et al. BMC Medical Research Methodology (2019) 19:51

time but oscillates around a stationary average value.
However, although VZV or parvovirus B19 infections
may undergo regular epidemic cycles, the serological
survey took place on a relatively long time period
(around 17 months), which would average these poten-
tial cycles. Moreover, this would have a limited impact on
our results [25]. For parvovirus B19, although lifelong pro-
tection against infection upon recovery is questionable,
this does not seem to be due to time heterogeneity since
similar patterns were seen in other countries at different
time points [18, 20, 21].

Our analyses could be extended to power analyses in
the context of hypothesis testing. Indeed, data sets could
be simulated assuming that an alternative hypothesis is
true, then tested against the null hypothesis to calculate
the proportion of simulated data sets in which the null
hypothesis is rejected, thereby providing an estimate of
the statistical power. Other possible extensions are
related to non-endemic settings. An endemic equilib-
rium cannot be assumed for vaccine-preventable infec-
tions such as measles, mumps, and rubella for which a
national immunisation programme is in place. In such
settings, dynamical mathematical models allowing time
considerations could be used to calculate the sample size
needed for estimating time-varying parameters with
acceptable precision levels or to perform power calcu-
lations to detect changes in parameter values over time,
but this needs to be investigated. In particular, these ana-
lyses could make use of serial seroprevalence surveys
(i.e., repeated collections of cross-sectional population-
representative serological samples) [9]. Finally, our ana-
lyses could also be extended to more complex models,
for example transmission models including maternal
antibody waning in newborns or incorporating the pres-
ence of individual heterogeneities [26, 27].

Our analyses had some limitations. First, the number
of age groups to optimally allocate a given number of
samples had to be limited to avoid a huge number of
combinations. Here, six age groups were used leading to
126 distributions. Alternative age groups of interest or a
predetermined age distribution (e.g., derived from pre-
vious surveys or population-based) can be used. More-
over, the optimal allocation will depend on the rule used
to calculate the joint precision. Here, we used the sum
of the age-specific precisions. Alternative rules could be
considered such as the sum of the relative precisions.
However, favouring very small values could result in a
very large sample size or be of less interest (e.g., if force
of infection in older age groups is known to be small).

Second, the use of measurements of antibody levels
based on diagnostic tests relies on the assumption of a
perfect test (i.e., both sensitive and specific). In lack of
which, discrepancies between the seroprevalence and the
disease prevalence are observed in the presence of
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misclassification, which would alter the estimates of the
overall and age-specific prevalence, even more if sensi-
tivity and specificity vary with age [28]. The estimate of
the seroprevalence can be corrected if estimates of the
sensitivity and specificity of the test(s) applied are avail-
able [29]. Alternatively, mixture modelling of continuous
antibody titres can be used; however the combination of
this technique with mathematical models needs further
investigations [2, 30-32]. In the current work, conside-
ring misclassifications negligible appeared reasonable.

Finally, like other standard methods, the approach
presented here would require prior knowledge about
parameter values: e.g., (sero)prevalence or force of infec-
tion by age (group) to simulate data. However, sensitivity
analyses may be performed to assess how this prior
knowledge affects the sample size needed or optimal
allocation and would inform about the minimum sample
size needed. Here, data from 2002 were used to illustrate
our approach but, although the endemic equilibrium
assumption for parvovirus B19 and VZV is believed to
be reasonable, more recent estimates should be used to
plan future studies.

In any case, the choice of sampling design or model-
ling approach should be adapted to prior knowledge
about the infection and the precision of estimates (over-
all or age-specific) should be considered in the context of
the study goals and the anticipated implications for infec-
tion control measures or vaccine programs.

Conclusions

The main conclusions from the presented analyses are
that attention should be given to the age-based sampling
structure when estimating key epidemiological parame-
ters with acceptable levels of precision within the con-
text of a single cross-sectional serological survey, and
that simulation-based sample size calculations in com-
bination with mathematical modelling can be utilised for
choosing the optimal allocation of a given number of
samples over various age groups.
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