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Abstract

In the context of omics disciplines and especially proteomics and biomarker discovery, the

analysis of a clinical sample using label-based tandemmass spectrometry (MS) can be af-

1

dirk.valkenborg@uhasselt.be


fected by sample preparation effects or by the measurement process itself, resulting in an

incorrect outcome. Detection and correction of thesemistakes using state-of-the-art meth-

ods based on, f.i., mixed models can take a lot of (computing) time. MS-based proteomics

labs are high-throughput and need to avoid a bottleneck in their quantitative pipeline by

quickly discriminating between high- and low-quality data. To this end we developed an

easy-to-use web-tool called QCQuan (available at qcquan.net) which is built around the

CONSTANd normalization algorithm. It automatically provides the user with exploratory

and quality control information as well as a differential expression analysis based on con-

servative, simple statistics. In this document we describe in detail the scientifically relevant

steps that constitute the workflow, and assess its qualitative and quantitative performance

on three reference data sets. We find that QCQuan provides clear and accurate indica-

tions about the scientific value of both a high- and a low-quality data set. Moreover, it

performed quantitatively better on a third data set than a comparable workflow assembled

using established, reliable software.

Keywords: label-based, tandem mass spectrometry, quantitative proteomics, data-

driven, normalization, workflow, quality control

Introduction

In MS-based proteomics, labeled tandem-MS with multiplexing capabilities is chosen over

label-free methods whenever accuracy, precision and instrument time are more important

than proteome coverage1. As proteomics labs that use multiplexing/labeling have a high

data throughput, their subsequent normalization and data analysis can become a bottle-

neck, especially when doing larger experiments possibly covering multiple tandem-MS

runs.

On one hand it is time-consuming for a researcher to do the non-automated parts of

the analysis, like verifying that the experiment was successfully conducted. This includes
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doing exploratory analyses to verify that the data are consistent and suffice to answer

the putative research question. There are some software packages available like Scaf-

fold2, Proteome Discoverer3 (PD) and MaxQuant4 which may alleviate this task, but none

of them provide a single report file that summarizes both the outcome and quality of an

experiment. Moreover, they each have their own drawbacks (f.i., the former being non-

free, the middle using a time-consuming normalization procedure, and the latter lacking

statistical support for combining samples from multiple MS runs), which leaves room for

improvement.

On the other hand, even some automated steps can take up a lot of computing time, like

the (accurate) normalization of quantification data. There aremany normalizationmethods

available, either data-driven or based on more complex statistical models as f.i. proposed

by Oberg5 and Hill6 et al. The latter are in theory able to accurately normalize large

multi-run experiments but in practice become computationally infeasible as the number of

peptides or proteins exceeds about 2500 or 1000, respectively5. Hence, when aiming for

a higher number of identifications one has to resort to data-driven methods, but most of

these methods are limited in accuracy and become unsuitable when processing data from

multiple runs.

These two bottleneck issues are important, because in a high data throughput envi-

ronment there is a great opportunity cost coupled to spending too much time on one data

set, or even worse, spending any time at all on less useful data or on false discoveries.

Therefore, the proteomics community needs a workflow/tool that can rapidly determine

the scientific value of large amounts of data in a short period of time. Such a tool should

automate the bridging of the gap between data on the level of annotated PSMs (peptide-

spectrum matches) and the enrichment analysis, as depicted in Figure 1. The tool would

thus provide a reasonable part of the quality control (QC) and provide a fast but reliable

quantification and differential expression analysis (DEA), also for large experiments with

data across multiple tandem-MS runs.
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Figure 1: QCQuan bridges the automation gap in the enrichment analysis pipeline.

To this end, we built a web tool for quick assessment of labeled MS-based proteomics

experiments called QCQuan (Quality Controlled Quantification) and present it in this pa-

per. It is a workflow which takes PSM-level input data (in PD these are the _PSMs.txt files)

and returns output on the protein level - in data files and an automated report - as well as

a normalization result on the level of non-redundant peptides (i.e., aggregated across all

retention times, charges and modifications). We designed QCQuan to be flexible, easy

to use and transparent, so that it may be used by anyone, with any experimental setup

(including not only TMT labeling, but also i-TRAQ, ICAT, SILAC and others), and could

become a benchmark for future innovations in MS data analysis. The normalization is-

sue is addressed by employing the data-driven CONSTANd algorithm, which has shown

promising results7, especially when handling multi-run experiments. Furthermore, QC-

Quan automatically generates a report containing a variety of QC plots and statistics, as

well as crude differential expression results. The latter includes conservative estimates

of fold changes and p-values, based on well-established, simple statistical practices. The

report is intended to provide researchers with a quick test to triage their data sets: to check

for each one whether it is a priority for further investigation, and whether or not something

went obviously wrong in the corresponding experimental procedure, like the use of im-

proper instrument settings or pipetting errors during sample preparation. After a positive

assessment using QCQuan, one can subject the data set to a more thorough analysis, for

example by using the statistical methods by Oberg5 and Hill6.
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Experimental section

QCQuan workflow

Figure 2: Simplified schematic of the QCQuan workflow. The three main steps are shown

in red. The processing step is performed separately for each tandem-MS run. Graphics

are shown in green.

The scientific workflow consists of three distinct steps, schematically shown in red in

Figure 2 and summarized as follows:

A. Processing: clean the input data while gathering some QC information, and aggre-

gate the PSMs (possibly frommultiple search engines) to the non-redundant peptide

level, then perform the CONSTANd normalization.

B. Analysis: while gathering additional QC information, transform the data from the

peptide to the protein level and perform a differential expression analysis (DEA).

Also perform an exploratory analysis (EA) for QC purposes, including a principal

component analysis (PCA) and hierarchical clustering (HC) on the peptide-level data

matrix.

C. Report: produce a PCAplot (first 2 components), HC dendrogram and for each non-

reference condition a volcano plot with a list of the top differential proteins. From

the gathered QC info, produce some relevant statistics as well as MS-1 calibration

and intensity plots. Lastly, summarize all visualizations, statistics and other relevant

information (including meta-data) into a PDF report.

5

s:processing
s:constand
s:analysis
s:report


Each step is further detailed in the sections below, and additional user experience de-

tails like the input and output file descriptions are outlined in the user experience section.

Note that the variable names used in this paper correspond to those used in the PD soft-

ware, but are user-specifiable.

A. Processing

Each tandem-MS run corresponds to one PSM file which is processed as follows:

1. Filter. Remove information from unnecessary columns/variables. Only keep infor-

mation about the most likely associated proteins, namely the ‘Master’ Protein Acces-

sions and corresponding Descriptions, and remove information about the others.

Remove PSMs that have missing values for columns/variables that the workflow

strictly requires, which are: Sequence, Master Protein Accessions, and First Scan.

If a PSM has only missing values for all samples of any one experimental condition,

it is also removed. Next, remove PSMs with Confidence level (if available) worse

than ‘Medium’, or with Isolation Interference [%] level (if available) higher than 30.

Lastly, for each PSM we remove the labels (if present) from its list of modifications,

and keep only information about the identity of modifications, not their location.

2. Aggregate. Remove redundancy due to the possible use of multiple search engines,

which are specifiable by the user. Only the PSM of the engine/algorithm with the

highest priority is kept and the others are removed. Then, aggregate on retention

time RT [min] (RT) and on Charge (see aggregation section). At this point, the only

possible leftover redundancy is due to modifications.

3. Normalize. Perform CONSTANd normalization7 (see CONSTANd section).

The data is now normalized and on the level of non-redundant peptides, but still sep-

arated into one data frame per tandem-MS run.
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B. Analysis

After the processing steps have been performed for each MS run individually, the data is

ready for a collective analysis, which consists of two sub-procedures:

I. The exploratory analysis assesses the (dis)similarity between samples, conditions

and MS runs, and consists of a PCA and a HC (with Euclidian distance metric and

UPGMAmean linkage criterium). Both are performed on the data frame that results

from an inner join (see Figure S1) on the peptide sequences of all processing step

output data frames (amount equal to the number of different MS runs). This way, only

peptides observed in at least one sample of each condition and in each MS run will

be present, and each peptide occurs only once. The data matrix is then transposed

so the samples take on the role of observations, and the peptides take on the role

of variables or dimensions.

Missing values are imputed to be zero. The missing values from peptides not de-

tected at all in a certain MS run or condition had already been removed. However,

multiple samples can belong to the same condition or MS run (f.i. see Table S1), so

a peptide may have been detected in one or more of those samples but not in the

other(s). We need to impute or remove those remaining missing values, because

PCA and HC cannot handle them. They are very probably missing not at random,

because we know that the same corresponding peptide with only a different label

was detected in that same MS run. We therefore reason that these quantification

values are missing because they are in fact zero – or at least lower than the detection

threshold – and thus impute them to be zero. A better strategy would be to consider

more advanced imputation models for left-censored data, but this is out of the scope

of this research.

II. The differential expression analysis consists of a log2 fold change calculation and

t-test of protein quantifications between the different biological conditions and the
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reference condition. The protein quantifications used to compute the fold changes,

are the averages of the corresponding peptide quantifications, which are pooled to-

gether per condition from all corresponding samples and all tandem-MS runs. In

contrast, the t-test for each protein is performed on the same corresponding pep-

tide quantifications but after averaging them within each sample (effect on statistics

shown in Figure S3, Figure S5 and Figure S6). The latter is necessary because

some peptide quantifications of the same protein within the same sample can be

considered as repeated measurements of this protein and we cannot treat them as

independent observations. Due to this reduction of information the statistical test is

not as powerful as it could be, but that is justified since the idea behind QCQuan is

to be simple and conservative. Together with the Benjamini-Hochberg correction we

apply to the protein-level data, this will further keep the FDR under control.

Shared peptides are excluded by default. We calculate from the processed data

frames the mapping between peptides and proteins, which is not a bijection since

some ‘shared’ peptides correspond to multiple proteins. By default, the DEA ex-

cludes shared peptides and presents this as the ‘minimal calculation’, but the user

may also instruct QCQuan via the web interface to do a second calculation which in-

cludes shared peptides. In this case, each protein gets the full contribution of each

associated peptide. Enabling this ‘full calculation’ option hence provides a crude

sensitivity analysis through comparison with the minimal calculation results.

C. Report

The report addresses what we assert to be the three aspects that determine the scientific

value of a data set: experimental quality, biological quality, and added value.

The experimental quality of the data can be assessed by looking for anomalies in a

variety of basic statistics. During the processing and analysis step, many useful quantities

(e.g. the amount of isolation interference in each tandem-MS run, or the MS2 intensity
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mean, maximum and standard deviation per reporter) are calculated which allow for the

detection and pinpointing of anomalies in the data. Two figures may also be produced: the

MS1 calibration plot showing the search engine score against the mass offset of each PSM

in each tandem-MS run, and the MS1 intensity histogram showing how many PSMs are

observed at which intensity, and how many of them were actually used (i.e. not discarded

before the aggregation steps).

The biological quality of the data can be assessed using a PCA plot and HC dendro-

gram of the samples. Using the PCA and HC results from the analysis step, a PCA plot

(scatter plot of the two first principal components for each sample) and a HC dendrogram

are produced. Identical colors are used for samples belonging to the same biological con-

dition, and identical markers are used for samples from the same tandem-MS run. With

this exploratory information, one can easily assess the (dis)similarity between samples

and/or conditions and/or experiments, in order to draw conclusions about the biological

quality of the data.

The added value of the data can be assessed using a volcano plot and summary of

top differential proteins. The protein-level data frames with differential expression results

are now used to generate for each condition-reference pair a volcano plot, which colors

the protein data points according to whether they exceed a log2 fold change of 1, and

whether their (adjusted) t-test p-values fall below 0.05 or not. The top 10 (by default, but

this number is specifiable by the end-user) differential proteins ranked according to p-value

are summarized in a table, along with their log2 fold change, description, and total amount

(before averaging repeated measurements) of supporting peptides observed. Although

QCQuan should not be used for making high-precision estimates, this information allows

the researcher to assess whether the data set may contain valuable results or not.
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Reference data sets and methodology

Qualitative performance

To check whether QCQuan can properly aid in distinguishing data sets with regard to their

biological quality and/or added value, we have two data sets (‘Organs’ and ’Failed’) at our

disposal.

The Organs data set (size: 99515 PSMs) is used by Bailey8 et al., where biological

samples were gathered from 8 organs of each 4 mice in TMT 8-plex experiments. This

translates to 32 samples spread across 8 biological conditions in 4 tandem-MS runs, as

can be inferred from the experimental design in Figure S2.

The Failed data set (size: 8446 PSMs) corresponds to an in-house experiment con-

cerning three couples of biological conditions, evenly represented in 24 samples across

four TMT 6-plex tandem-MS runs. As can be seen from Table S1, this means that for each

combination of conditions there are 3 replicates.

Both of these data sets had their PSM files generated by PD2.1 using both Mascot

and Sequest as search engines. The PSM files were then analyzed by QCQuan using

the default settings, as well as the following specifiable parameters: Mascot as the Master

PSM algorithm; only compute the minimal DEA (thus excluding shared peptides); ‘muscle’

and ‘b’ as the reference conditions for the Organs and Failed data sets, respectively.

Quantitative performance

Figure 3: Main differences between the three workflows which are compared by their

performance on the Spike-in data set.
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To verify whether QCQuan’s quantification values used in the DEA adequately rep-

resent reality, we use a technical data set which we call ’Spike-in’ (size: 2382 PSMs).

It was made available by Gatto et al.9 via ProteomeXchange (ID PXD000001) and is

used in their accompanying RforProteomics (RfP) R package10. Its mzML and mzID files

contain data from one 6-plex tandem-MS experiment, where “four exogenous proteins

were spiked into an equimolar Erwinia carotovora lysate with varying proportions in each

channel of quantitation; yeast enolase (ENO) at 10:5:2.5:1:2.5:10, bovine serum albumin

(BSA) at 1:2.5:5:10:5:1, rabbit glycogen phosphorylase (PHO) at 2:2:2:2:1:1 and bovine

cytochrome C (CYT) at 1:1:1:1:1:2”. Entries were filtered out from the mzID file, which

either corresponded to decoys, were not ranked first by the MS-GF+ search engine, or

corresponded to shared peptides. The remaining entries were then combined with their

corresponding mzID quantification and feature data and then saved as text files, which

served as our PSM input files.

We treated each sample as a separate biological condition and ran QCQuan with the

default settings, Mascot as the search engine, the sample of TMT reporter 129 as the

reference condition. To assess the added value of QCQuan we also re-ran the analysis

using two additional workflows we call ’SASQN’and ’QCQuan-SQN’. They are described

below, and summarized in Figure 3.

SASQN was chosen as a transparent and trustworthy reference workflow, built us-

ing the functionalities provided by the RfP package to filter, aggregate and normalize the

data in a way alternative to QCQuan’s (see supplementary information). We first filtered

out NA values and then used ‘sum-wise’ aggregation (i.e. summing quantification values

whenever combining observations) to obtain quantifications on both the peptide and pro-

tein levels, after applying both a ‘sum’ (In RfP, sum normalization consists of re-scaling

each observation’s quantification values so that their sum is equal to one) and a quantile

normalization, in that order, on the peptide level. This way, we can compare the spike-in

protein and peptide fold changes ultimately obtained from both workflows, as well as the
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theoretically expected fold changes.

QCQuan-SQN is a hybrid betweenQCQuan and SASQN, where only QCQuan’s CON-

STANd normalization has been replaced by the sum and quantile normalization from

SASQN. This way, one can assess the relative contributions of the normalization and the

other parts of the workflow to the total of differences between the QCQuan and SASQN

results.

Results and Discussion

Qualitative

For the Organs data set (runtime: 146s), as we had anticipated, both the PCA and HC

plots in Figure 4 suggest that there are clear proteomic differences between samples from

different types of organs, but not so much between samples from the same type of organ.

The CONSTANd algorithm successfully normalizes the data from multiple independent

runs, highlighting biological rather than experimental differences.

For the Failed data set (runtime: 25s), we anticipated to also see significant proteomic

differences between the conditions A and a, but the PCA and HC plots in Figure 5 suggest

the opposite. This is also confirmed by the volcano plot in Figure S7, which shows only 5

significant differential proteins (using a 0.05 significance level) and still those have log2 fold

changes with absolute values smaller than 0.5. Surprised by this result, we inquired about

the experimental procedures and discovered a human mistake was made in the wet lab.

In this case, one could immediately infer from QCQuan’s QC plots that something was

awry.
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(a) PCA plot. Most of the organs seem to

have their corresponding samples form a clus-

ter. Note: labels have been adapted to avoid

cluttering.

(b) HC dendrogram. Samples corresponding to

identical organs are always clustered with each

other before they are clustered with samples

from other tandem-MS runs.

Figure 4: QCQuan uncovers biological similarities and dissimilarities between samples

(color corresponds to organ type) in the Organs data set.

(a) PCA plot. The samples seem randomly

scattered across the plane, regardless of the

biological condition they represent.

(b) HC dendrogram. The samples seem ran-

domly clustered together, regardless of the bi-

ological condition they represent.

Figure 5: QCQuan suggests there is no distinction between the biological conditions in

the Failed data set.
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Quantitative

The results of the three DEAapproaches involving the Spike-in data set (QCQuan runtime:

31s) are summarized in Figure 6.

Figure 6: Boxplots of the Spike-in peptide (red line is the median) estimates and corre-

sponding protein estimates (pink diamond) of the fold change, obtained using three dif-

ferent workflows. Estimates of QCQuan with CONSTANd normalization are consistently

closer to the expected values (blue lines) than the other two methods, except when the

expected fold changes are zero.

Firstly, they show that fold change estimates by QCQuan (using either normalization

method) on both the peptide and protein level are in agreement with those provided by

the SASQN workflow. All three approaches clearly exhibit the ratio compression phe-

nomenon11, but the QCQuan (with CONSTANd) approach is in most cases (except for

very small fold changes) better at estimating the expected fold changes. However, one
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has to keep in mind that the SASQN workflow was not chosen for its high accuracy, but

rather for its reliability and transparency.

Secondly, the strong similarity between the QCQuan-SQN and SASQN estimates con-

firm that the difference in normalization method accounts for practically all of the difference

with respect to the QCQuan estimates. Combined with the first finding, this clearly indi-

cates that CONSTANd performed better at normalizing the data than did quantile normal-

ization, and that the aggregation methods - although quite dissimilar - have but a relatively

small effect on the results.

Another remarkable observation is that the protein estimates are usually less close to

the expected values than the peptide (median) estimates. This is an artifact due to the

negative skewness of the absolute fold changes of these particular peptide data. That

skewness may in turn be a manifestation of the limits of the linear dynamic range12 of the

mass spectrometer, but this requires further investigation.

Conclusions

We find that the proposed workflow provided us with helpful indications about the scientific

value of both a high- and a low-quality data set. Also, it performed quantitatively better on

the Spike-in data set than a comparable workflow assembled using functionality from the

RforProteomics R-package.

QCQuan is relatively fast, as it produces a QC and DEA report for a commonly sized

(105 PSMs) tandem-MS experiment in under 3 minutes. It can handle data from multiple

tandem-MS runs, a feat which is otherwise only possible through a computationally costly

statistical approach like using mixed models.

One can useQCQuan either solely for normalization and data preprocessing purposes,

or also for its built-in QC and DEA capabilities. One can do both a minimal and full pro-

tein inference, which also makes for a simplistic sensitivity analysis. There is built-in
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compatibility for the use of multiple and custom PSM algorithms, as well as alternative

kinds of quantification values like PD’s S/N-ratio. Whenever information required by any

non-essential sub-step like filtering or gathering of QC info is unavailable, the sub-step is

skipped without error and the occurrence is logged in the report.

QCQuan does not require the user to have programming skills or other specific train-

ing, and a more extensive documentation is available at https://qcquan.net. Being a

version-controlled web tool, it requires no installations or updates. The only steps to be

taken are the collection of PSM files (optionally creating a simple variable name wrapper

text file), selecting the desired settings on the website and uploading the data.

The drawbacks of the workflow are for instance a possible lack of statistical power due

to the (intentionally) conservative nature of the approach, and the fact that it is currently

only available via a web server. A possible risk is that due to the data-driven nature of the

CONSTANd algorithm, poor experimental designmay lead to unintended biases in the nor-

malization step (see CONSTANd section in Supporting Information). All in all though, we

believe that these are not drawbacks which would amplify any existing problems with the

data, and they can be easily and naturally avoided by the everyday, informed researcher.

In summary, the proposed workflow allows researchers to quickly assess the scientific

value (i.e. experimental and biological quality as well as added value) of a data set through

its quality control (QC) and differential expression analysis (DEA) report, and this with

reasonable and justifiable drawbacks. QCQuan thus constitutes a solution to the data

analysis bottleneck issues mentioned in the introduction.

We hope that due to its transparency, simplicity in design and compatibility with any

label-based tandem-MS technique, QCQuan may evolve to be a standardized proteomics

DEA workflow for comparison with other, more specialized tools.
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Supporting Information

The following supporting information is available free of charge at ACS website http:

//pubs.acs.org

1. Figure S1. Inner join result when combining two data frames.

2. Figure S2. Experimental design corresponding to the Organs data set.

3. Table S1. Experimental design corresponding to the Failed data set.

4. Figure S3. Comparison of DEA statistics for the Organs data set when treating re-

peated measurements as independent, and when averaging them.

5. Section User experience. Notes on user experience.

6. Section Aggregation. Notes on aggregation.

7. Figure S4. Elution profile of a peptide.

8. Section CONSTANd. Notes on CONSTANd normalization.

9. Figure S5. Comparison of p-values from the Organs data set when treating repeated

measurements as independent, and when averaging them.

10. Figure S6. MAplots of the p-values from the Organs data set when treating repeated

measurements as independent, and when averaging them.

11. Figure S7. Volcano plot of the Failed data set for condition b versus B.

12. Figure S8. Detailed schematic of the QCQuan workflow.

13. R_scripts.zip. R-code for generating PSMs (generate_PSMs.R) and R-code for

SASQN workflow (SASQN_workflow.R).

14. Organs_input.zip. Example input data of the Organs data set: Organs_input.zip
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15. Organs_full_output.zip. Example output data of theminimal and full expression anal-

ysis of the Organs data set: Organs_full_output.zip

16. Organs_full_Report.pdf Example report file of the minimal and full expression anal-

ysis of the Organs data set.
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