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The top deadlayer of three HPGe-detectors were investigated

One detector had been kept at room temperature for about 15 years

The top deadlayer of this detector exhibited a heterogeneous structure

The strange structure is presumably due to diffusion of Li-atoms
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15 ABSTRACT
A collimated source of 241Am was scanned over the endcap of a 21 year old coaxial HPGe-
detector that had spent about 75% of its life at room temperature (and the remaining time at 
77 K). The detector response was recorded and used as a measure of the relative thickness of 
the top deadlayer. This thickness was not homogeneous and was thicker near to the outer 

20 surface of the crystal compared to the centre, which could be a result of increased diffusion of 
Li atoms during times the detector was kept at room temperature. The results were compared 
with two newer HPGe-detectors that proved to have homogeneous top deadlayers.
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1. INTRODUCTION
In recent years it has become increasingly important to better understand the shape and 

35 thickness of deadlayers in HPGe-detectors, see e.g. Huy et al. (2007) and Aguayo et al. 
(2013). One reason is that Monte Carlo simulations using computer models of detectors are 
today often used for calculating efficiency transfer factors, coincidence summing correction 
and even absolute full energy peak efficiencies. The thicknesses of deadlayers in germanium 
detectors are necessary to know quite well to be able to create good computer models. It is 

40 therefore a topic that has given rise to much discussion. At e.g. conferences organized by the 
ICRM (International Committee for Radionuclide Metrology) it has been discussed that a 
better name for deadlayer could be zombielayer as it is not excluded that for certain energies, 
an interaction of a gamma-ray inside a deadlayer can result in a pulse. Manufacturers have 
generally a good understanding of the thickness of the contact structures they produce, but 

45 this is not necessarily exactly the same as the thickness of the deadlayer. Furthermore, one 
cannot assume (like is done in most computer models) that deadlayers are perfectly straight 
and parallel with crystal surfaces. To make things more complicated one has to take into 
account that the Li-atoms that are introduced for creating an n+ contact structure can migrate 
by interstitial diffusion. This process will be enhanced drastically if the Ge-crystal is not 

50 constantly kept cold at liquid nitrogen temperature (77 K). 

This paper describes the analyses of surface scans of the top deadlayer of a 21 year old HPGe-
detector (Detector-1), that was kept cold only 25% of its life-time. The same instrumentation 
as was used by Andreotti et al. (2014) for another HPGe-detector was employed for the 

55 scanning. The paper also describes a measurement of a 13 year old detector (DET28) that has 
been kept cold for 98.7% of its life-time as well as a detector (Ge-8) with thin deadlayer that 
was also kept cold more or less all the time.  

60 2. MATERIALS AND METHODS

2.1 The HPGe-detectors
Three detectors were used in this study. The first detector, which was the main detector under 

65 investigation, is operated by University of Hasselt and will be referred to as Detector-1. The 
second detector was also used by Andreotti at al. (2014) and is used here as reference to check 
the scanning system but also in order to provide information on the evolution of deadlayer 
characteristics with time for this detector, which has the name Ge-8 and is operated by JRC-
Geel. The third detector is named DET28 and is operated by SCK•CEN in Mol, Belgium. It is 

70 a standard coaxial HPGe-detector with a deadlayer thickness somewhat below 1 mm. The 
characteristics of the three detectors are given in Table 1.

Table 1. Characteristics of the two detectors used in this study.
Detector-1 Ge-8 DET28

Crystal type coaxial Planar coaxial
Manufacturer 
and model

Oxford, 
Tennelex/Nucleus, 
CPVDS30-20190

Canberra BE2825 
(BEGe)

Canberra GC4018

Nominal top 
deadlayer 
thickness

0.6 mm 0.0003 mm 0.45 mm

Nominal side 0.6 mm 0.6 mm 0.45 mm
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deadlayer 
thickness
Relative 
efficiency

22.6% 19% 40.4%

FWHM at 
1332 keV

1.74 keV at 
delivery

1.72 keV 1.78 keV

Crystal height 49.6 mm 26 mm 61.5 mm
Crystal 
diameter

51.7 mm 60 mm 61 mm

Endcap 1.0 mm aluminium 1.5 mm aluminium 1.5 mm aluminium
Endcap 
diameter

76.2 mm 82.5 mm 76.2 mm

Age at the 
time of the 
scanning

21 years 10 years 13 years

Time kept at 
room 
temperature

~15 years ~1 month 2 months 

Operated by Hasselt University JRC-Geel SCK•CEN
n+ contact 
(top 
deadlayer)

Li-diffused Not known but 
probably not Li-
diffused

Li-diffused

75

2.2 The scanning system
The scanning system, named Brady, was developed for the GERDA project (The GERDA 

80 Collaboration, 2017) and was used for scanning the specially designed Ge-crystals used in the 
GERDA Phase II experiment. It is described in detail by Andreotti et al. (2013 and 2014) and 
is now available for scanning other Ge-detectors. It is especially important to study the 
deadlayer variation of older detectors. A point source of 241Am (5 MBq) was inserted in a 
30 mm thick copper-collimator, which has a 1 mm diameter hole. It was carefully positioned 

85 2 mm above the endcap of each HPGe-detector in the study. The source was moved in steps 
of 0.1 mm (0.2 mm for DET28) in an almost straight line across the endcap surface. Due to 
small imperfections in the mechanics, the line was somewhat bent and resulted in an 8% 
offset (i.e. bending-radius of 42 cm) compared to a perfectly straight line. Three line-scans 
covering 76.1 mm each (the endcap diameter), and oriented in three different directions, each 

90 rotated by 60, were performed on Detector-1. Two line-scans covering 77 mm each (slightly 
less than the endcap diameter of 82.5 mm), oriented in two directions differing by 20, were 
performed on Ge-8. Two line-scans covering 76.1 mm each (the endcap diameter), separated 
by 60 were performed on DET28. At each step, data was collected for 3 minutes resulting in 
a 38 hour acquisition time for each line-scan (19 hours for DET28). A fourth measurement 

95 was performed by scanning DET28 with a 0.4 mm (28 mm diameter) tantalum-disc placed at 
the centre of the detector window. The aim was to determine the lateral resolution of the 
scanning system. The measurement set-up is located in the underground laboratory HADES 
(Andreotti et al., 2011). The main reason for this was to minimise the exposure to cosmic rays 
for the GERDA crystals but it is also advantageous when detectors from HADES and other 

100 underground laboratories need to be scanned. 
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2.3 Monte Carlo simulations
The Monte Carlo simulations of Detector-1 and Ge-8 were performed using the EGSnrc code 

105 with the add-on code "hpge3" (Lutter et al., 2017) for simulating HPGe-detectors and gamma-
ray emitting radionuclides. The EGS package (and formerly EGS4) has been used at JRC-
Geel since 1998 to simulate the response of HPGe-detectors (Gasparro et al., 2008). The 
Monte Carlo simulations of DET28 were performed using the EFFTRAN software (Vidmar, 
2005). A crucial parameter when setting up computer models of detectors is the deadlayer 

110 thickness. In the present work the thickness of the top deadlayer as a function of radial 
position was tested (for Detector-1) for a number of different configurations to see which 
configuration best replicated the scanning-results. For DET28 the simulation was solely used 
to determine the relative thickness variations of the deadlayer.

115
3. MEASUREMENTS AND RESULTS

3.1 The line scans of the three detectors
Figure 1 shows the results of the three line-scans performed on Detector-1. The y-axis shows 

120 the raw-data, which is reported in counts per 3 minutes (the acquisition time per data point). 
Figure 2 shows the same as Figure 1 but for Ge-8. Figure 3 shows the same as Figure 1 but for 
DET28. The rising and tailing slopes of the scans provide some information. The lateral 
distance of the 12%-88% count-rate at the rising and tailing slopes, was 3.05 ± 0.16 mm for 
the three line-scans of Detector-1. The uncertainty is the standard-deviation of the six slopes 

125 in the three plots in Figure 1. This value is a convolution of (i) the resolving power of the 
system, (ii) the side deadlayer thickness including imperfections and variations (iii) charge 
collection inefficiencies in the corner and (iv) the possible small tilting of the crystal. The 
same value for Ge-8 was 1.01±0.03 mm and for DET28 1.23±0.03 mm. 

130 The flat profile of the scan of Ge-8 indicates that very change of the deadlayer has taken place 
and as the scan-result agrees with the previous scan made 2 years earlier (Andreotti et al., 
2014), we conclude that the scanning system is giving the same response as during this 
previous study. Since the n+ contact of Ge-8, presumably, does not contain Li-atoms one can 
assume that t should remain stable and is therefore useful as reference.

135

3.2 Lateral resolution of the scanning system
Figure 4 shows a scan (using DET28) over an edge of a 0.4 mm thick piece of tantalum. The 
slopes (12%-88%) at the edges of the Ta are 0.78±0.01 mm. The same result exactly was 

140 obtained by fitting a cumulative distribution function. This value is a direct measure of the 
resolving power (FWHM) of the system1. Subtracting in quadrature the FWHM of the 
system-resolution (0.78 mm) results in side edges of 2.95 mm, 0.64 mm and 0.95 mm, 
respectively for Detector-1, Ge-8 and DET28. This value is a convolution of the effects of the 
thickness of the side deadlayer, the alignment of the crystal and charge collection 

145 inefficiencies in the corner. 

A radiograph of Ge-8 reveals that there is no discernible tilting of the crystal so she sharp 
slopes of Ge-8 are indicative of a side deadlayer (at least the top 10 mm of the crystal) very 
close to the nominal value of 0.6 mm.

1 After finalising the scanning of the detectors described in this paper, the lateral resolution of the scanning 
system was improved to 0.706±0.015 mm by using a slightly smaller aperture.
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150

3.3 Computer models based on the scans
The obtained line scans can be used to build good computer models of the detectors. The top 
deadlayer is one of the most important parameters in a computer model of a HPGe-detector. 

155 As the line-scans of detector Ge-8 and DET28 were perfectly straight it was trivial to 
introduce straight top deadlayers in the computer models. Also in the corners, a straight top 
deadlayer combined with a straight side deadlayer gave a good result. For Detector-1 the 
situation was completely different. An iterative procedure (mainly trial and error) was used to 
find a model of the deadlayer that well replicated the experimental results. The resulting 

160 model of the top deadlayer of Detector-1 is shown in Figure 5. The simulation results that this 
model generates (for 241Am) are shown in Figure 6 together with the absolute and relative 
difference between the model and the measurements results. It was not possible to generate a 
good response unless making the model quite detailed towards the corner with steps of 
uneven lengths. 

165

4. DISCUSSION AND CONCLUSIONS
The "reference-detector" (Ge-8) has a micro-metre-sized top deadlayer which is probably not 
created using Li-diffusion. Therefore is the scan of DET28 important as it proves that a 

170 detector with a thick, i.e. mm-sized, deadlayer can have a flat profile when kept cold. 

The general feature of the top deadlayer profile of Detector-1 is that the top deadlayer is about 
a factor 1.5 thicker at the rim compared to near the centre. Furthermore, there is a clear "dip" 
in the response at the centre, which indicates a slightly thicker deadlayer at the centre of the 

175 crystal compared to 5 mm away from the centre. A tentative explanation of the shape is that 
Li-diffusion follows the crystal orientation and that diffusion from the side deadlayers 
contribute to the top deadlayer thickness near the rim. The model in Fig. 5 can generate 
results that replicate the scanning results very well. It is, however, possible to continue to 
adjust the model so that the difference between the model and the measurement is further 

180 minimised but this makes little sense as it is still a model and not exactly reality. The impact 
of introducing the inhomogeneous deadlayer of Detector-1 compared to using a model with a 
straight deadlayer profile can be exemplified by a few cases of common types of samples and 
radionuclides given in Table 2. 

185 One must bear in mind that although a Monte Carlo simulation using an advanced computer 
model can replicate the obtained measurement results rather well, it is still only a model. 
Reality can be different and one will have to study many different geometrical configurations 
of sources and at a wide range of energies before making strong claims about the true 
configuration. Still, for calculating correction factors for efficiency transfer and true summing 

190 a computer model (even a crude one) is very useful. Future studies should focus on the effect 
of different energies on deadlayer structure. As the interaction probabilities of photoelectric 
effect, Compton scattering and pair-production changes with gamma-ray energy, it is likely 
that they also affect the response of the detector.

195 HPGe-detectors that are well taken care of can operate nicely for several decades also if kept 
uncooled from time to time. Therefore it is important to understand and study the extent by 
which deadlayers in Li-diffused contacts change and how it affects the quantitative results 
obtained by a specific detector. 
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200 The resolving power of the scanning system can be slightly increased by reducing the 
diameter of the hole in the collimator (possibly to 0.8 mm) and by making the collimator 
thicker. Using a smaller collimator aperture would reduce the count rate, but that can be 
compensated by using a source of higher activity to obtain good line-scan data within a 
reasonable time. A lateral resolution of a few hundred m seems realistic to achieve.

205

Table 2. The relative difference in FEP peak efficiency, , of Detector-1 using a flat top 
deadlayer of 0.6 mm compared to a deadlayer with the structure given in Fig. 5. The data is 
given for common types of samples placed directly on the endcap. The data is obtained from 

210 simulations using EGSnrc.
Sample type

46.5 keV 59 keV 92.5 186 keV 662 keV
Filter ( 50 mm, t=2 mm) 73% 43% 20% 8.9 2.7
Soil (50 g,  50 mm, t=40 
mm)

67% 40% 19% 8.1 1.7

Steel (304 g,  50 mm, 
t=20 mm)

72% 41% 19% 7.7 1.6

Maize-powder (50 g,  50 
mm, t=40 mm)

67% 40% 20% 8.0 1.8
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Figure captions

FIG. 1. Top scan results for Detector-1 at three orientations  (0, 60, 120): the total counts 
265 in the 59.5 keV peak are plotted as a function of the collimated source position along the 

detector diameter. 

FIG. 2. Top scan results for Detector Ge-8 at two orientations (0, 20): the total counts in the 
59.5 keV peak are plotted as a function of the collimated source position along the detector 

270 diameter. 

FIG. 3. Top scan results for Detector DET28 at two orientations  (0, 45): the total counts in 
the 59.5 keV peak are plotted as a function of the collimated source position along the 
detector diameter. 

275
FIG. 4. A scan using DET28 over a piece of tantalum that is 0.4 mm thick and 30 mm in 
diameter. The red line is a fit using the cumulative normal distribution function with a 
different width for the different edges. 

280 FIG. 5. The computer model of the Ge-crystal of Detector-1 that best reproduced the 
experimental results. The orange (hatched) is the modelled deadlayer. The grey is the bore-
hole. All numbers are given in mm but note that the sketch is not to scale. The deadlayer 
structures have been enlarged to facilitate visibility.

285 FIG. 6. The normalized count-rate for the scan of Detecor-1 at 0 for both the experimental 
results and the Monte Carlo simulation with the most successful detector model. The 
difference and relative difference between the model and the experimental results are shown 
below.
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FIGURE 1 
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FIGURE 2
295
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FIGURE 3
300
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FIGURE 4
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FIGURE 5
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FIGURE 6  
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