

## **Evaluation and Optimization of seal behavior through solid contamination of heat sealed films**

Ing. Bram Bamps, Dr. Ir. Karlien D'huys, Dipl.-Ing. Ina Schreib, Dipl.-Ing. Benjamin Stephan, Dr. Ir. Bart De Ketelaere, Prof. Dr. Roos Peeters

imec

▶ UHASSELT

## Packaging Technology and Science

An International Journal

PAPER SUBMITTED TO IAPRI PEER REVIEW STREAM

🔂 Open Access 🛛 💿 🚺

# Evaluation and optimization of seal behaviour through solid contamination of heat-sealed films

Bram Bamps 🐹, Karlien D'huys, Ina Schreib, Benjamin Stephan, Bart De Ketelaere, Roos Peeters

First published: 20 May 2019 | https://doi.org/10.1002/pts.2442

SECTIONS



#### Abstract

A method is presented to apply solid powder/granulate contamination (ground coffee and blood powder) in between the heat conductive seals of flexible packaging materials. A response surface method is tested and validated to optimize seal strength of heat conductive sealing with and without solid contamination. In this study, a maximal seal

➔ Performed within the CORNET project 'EVOCOSEAL: Evaluation and Optimization of Contaminated Seal Performance for Food Packaging', funded by the Flemish (Agentschap Innoveren & Ondernemen (VLAIO-TETRA nr. 150817)) and German government (German Federal Ministry for Economic Affairs and Energy (BMWi, IGF project no. 172 EBR)).

#### IMO-IMOMEC



#### **Introduction and objectives**

Materials and methods Results Conclusions



### Introduction

- 1/3 sealed packages are of insufficient quality<sup>[1]</sup>
- In 65% of seal defects: Contamination is major cause<sup>[2]</sup>
- Prevention seal defects
  - Avoid contamination

unec

- Seal technology
  - Parameters
- Seal materials



 [1] Tauschitz B, Washüttl M, Wepner B, Tacker M. MAP-Verpackungen: ein Drittel nicht optimal. PACKaktuell, DE 2003; 04, pp. 6–8.
[2] Dudbridge M, Turner R. Seal integrity and the impact on food waste. <u>http://www.wrap.org.uk/sites/files/wrap/Household food and drink waste in the UK - report.pdf</u>, date of access:22/11/2018. WRAP 2009. ISBN: 1-84405-430-6.



UHASSELT

### Objectives

- Optimization granular contaminated seal strength of packaging films
  - Protocol to apply solid contamination
  - Optimization with response surface methodology
- Evaluation of variation in seal layer composition
  - Evaluation of hot tack test as predictive test for seal through contamination performance



Introduction and objectives **Materials and methods** Results Conclusions



#### Materials

- Laminated films
  - 12µm PET + 50 µm seal layer
  - Seal layer: 3-layer blown film
    - Films differ mainly in lower 15  $\mu m$
    - 2% processing aid with films 1+2



#### Contamination

- Sieved ground coffee (particle size: 500-630 µm)
- Dried blood powder (particle size: < 100 µm)</li>



### Methods

- Application of solid contamination\*
  - 25 g.m<sup>-2</sup> manually spread in marked area

### Seal technology

- Heat conduction
- Parameters
  - Temperature (2 flat hot jaws)
  - Time
  - Pressure

unec





#### Labthink HST-H3



\*IVLV Technical Bulletin No. 114/2019 "Method for analyzing the influence of contamination on seal properties of films for packaging applications"

#### IMO-IMOMEC

▶▶ UHASSELT

#### Methods: Film characterization

- Differential scanning calorimetry (DSC)
  - Within  $10 \rightarrow 200^{\circ}$ C with a heating/cooling speed of  $10^{\circ}$ C.min<sup>-1</sup>
  - Second heating cycle is used to obtain melting onset and peak temperature
- Hot tack
  - ASTM F1921
  - Width: 25 mm

unec

- Tensile speed: 200 mm.s<sup>-1</sup>
- Seal time: 1.0 s seal pressure: 0.3 N.mm<sup>-2</sup> cooling time: 0.1 s
- Variation of seal temperature
- Hot tack strength = max. strength / width





UHASSEL1

### Methods: Seal characterization

- Seal strength
  - ASTM F88
  - Width: 15 mm
  - Tensile speed: 300 mm.min<sup>-1</sup>
  - Unsupported T-peel test
  - Seal strength = max. strength / width



### IMO-IMOMEC



### Methods: Seal strength optimization $\rightarrow$ maximization

## Define design space

- Temperature: 105-120 (seal initiation)  $\rightarrow$  180°C (high maximum)
- Time:  $0.4 \rightarrow 1.0$  s (relevant time range for seal process of flowpack films)
- Pressure:  $1.0 \rightarrow 4.0 \text{ N.mm}^{-2}$  (full working range lab sealer)
- Set up experimental design: I-optimal design
- Fit a response surface model with three parameters (T, t, p) to seal strength values, obtained at 20 experimental runs
  - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{23} x_2 x_3 + \beta_{13} x_1 x_3 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \beta_{333} x_3^3 + \varepsilon$
  - x<sub>1,2,3</sub>: seal parameters y: seal strength ε: error term
- Optimize seal parameters
  - A process window was generated by excluding seal strengths below 90% of the maximum
- Validation of maximum seal strength (n=10)



Introduction and objectives Materials and methods **Results** Conclusions



#### Results: Film characterization: DSC

| Film                    | 1     | Film                       | 2     | Film 3                                 | Film 3        |  |  |
|-------------------------|-------|----------------------------|-------|----------------------------------------|---------------|--|--|
| PET                     | 12 μm | рет                        | 12 µm | PET                                    | 12 µm         |  |  |
| 80% LDPE/<br>20% mLLDPE | 15 µm | 80% LDPE/<br>20% mLLDPE    | 15 µm | 909/ J DDE/                            |               |  |  |
| 80% LDPE/<br>20% mLLDPE | 20 µm | 80% LDPE/<br>20% mLLDPE    | 20 µm | 20% mLLDPE                             | 35 µm         |  |  |
| 68% LDPE/<br>30% mLLDPE | 15 μm | 68% LDPE/<br>30% plastomer | 15 µm | acid copolymer resin<br>sodium ionomer | 5 μm<br>10 μm |  |  |

|                              |     | Film |     | Granulate of film component |        |           |                |                |  |  |  |
|------------------------------|-----|------|-----|-----------------------------|--------|-----------|----------------|----------------|--|--|--|
|                              | 1   | 2    | 3   | LDPE                        | mLLDPE | plastomer | Acid copolymer | Sodium ionomer |  |  |  |
| T <sub>melt onset</sub> (°C) | 100 | 95   | 98  | 102                         | 95     | 87        | 77             | 70             |  |  |  |
| T <sub>melt peak</sub> (°C)  | 112 | 113  | 112 | 112                         | 111    | 102       | 98             | 90             |  |  |  |

- Values film 1: in between main components LDPE and mLLDPE in granulate form
- Values film 2: melting onset temperature 5°C lower as film 1 → possible explanation: presence of plastomer in lower 15 µm
- Values film 3: no decrease in melting onset temperature → possible explanation: melting temperatures of acid copolymer and sodium ionomer are too low to influence the tangent line, used to obtain the onset temperature



### Results: Film characterization: hot tack Film 1



| K Film                  | 1     | Film                       | 2     | Film 3                                 |                      |  |  |
|-------------------------|-------|----------------------------|-------|----------------------------------------|----------------------|--|--|
| PET                     | 12 μm | PET                        | 12 µm | PET                                    | 12 µm                |  |  |
| 80% LDPE/<br>20% mLLDPE | 15 µm | 80% LDPE/<br>20% mLLDPE    | 15 µm | 909/ I DDE/                            |                      |  |  |
| 80% LDPE/<br>20% mLLDPE | 20 µm | 80% LDPE/<br>20% mLLDPE    | 20 µm | 20% nLLDPE                             | 35 µm                |  |  |
| 68% LDPE/<br>30% mLLDPE | 15 µm | 68% LDPE/<br>30% plastomer | 15 µm | acid copolymer resin<br>sodium ionomer | <u>5 µm</u><br>10 µm |  |  |

→ Films 2 and 3 have good hot tack performance (low initiation temperature, high peak value and wide window)

#### Results: Seal strength maximization

|     |                       |                       |                       |                   |                       | Response: Seal strength (N.mm <sup>-1</sup> ) |       |     |      |              |                 |      |              |                 |
|-----|-----------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------------------------------|-------|-----|------|--------------|-----------------|------|--------------|-----------------|
|     |                       |                       |                       |                   |                       |                                               | Clean |     | Gro  | und co       | offee           | Bloo | od pov       | vder            |
|     |                       |                       |                       |                   |                       |                                               |       |     | Cont | tamina       | ation           | cont | amina        | ation           |
|     |                       |                       | -                     |                   |                       |                                               |       |     | (2   | <u>5 g.m</u> | <sup>-2</sup> ) | (2   | <u>5 g.m</u> | <sup>-2</sup> ) |
| Pup | T <sub>jaw</sub> (°C) | T <sub>jaw</sub> (°C) | T <sub>jaw</sub> (°C) | t <sub>seal</sub> | $p_{seal}$            | F1                                            | F2    | F3  | F1   | F2           | F3              | F1   | F2           | F3              |
| Kun | F1                    | F2                    | F3                    | (s)               | (N.mm <sup>-2</sup> ) |                                               |       |     |      |              |                 |      |              |                 |
| 1   | 149.3                 | 141.2                 | 143.9                 | 0.7               | 1.9                   | 2.4                                           | 3.0   | 1.4 | 1.4  | 2.3          | 0.6             | 0.7  | 1.4          | 0.3             |
| 2   | 181.5                 | 181.5                 | 181.5                 | 0.4               | 3.2                   | 2.3                                           | 3.1   | 1.8 | 1.9  | 2.0          | 0.3             | 0.3  | 0.4          | 0.3             |
| 3   | 119.6                 | 104.1                 | 109.2                 | 0.5               | 1.6                   | 0.6                                           | 1.9   | 0.1 | 0.0  | 0.0          | 0.0             | 0.0  | 0.0          | 0.0             |
| 4   | 150.5                 | 142.7                 | 145.3                 | 0.7               | 3.3                   | 2.6                                           | 2.8   | 1.7 | 1.4  | 1.9          | 0.6             | 0.7  | 1.7          | 0.3             |
| 5   | 150.5                 | 142.8                 | 145.4                 | 0.7               | 3.2                   | 2.5                                           | 3.1   | 1.8 | 1.5  | 2.1          | 0.5             | 0.7  | 1.5          | 0.6             |
| 6   | 162.6                 | 157.8                 | 159.4                 | 1.0               | 3.4                   | 2.2                                           | 2.6   | 1.3 | 2.2  | 2.3          | 0.8             | 0.4  | 0.8          | 0.5             |
| 7   | 144.1                 | 134.7                 | 137.9                 | 1.0               | 1.9                   | 2.5                                           | 3.0   | 1.5 | 1.4  | 2.6          | 0.6             | 1.1  | 1.4          | 0.5             |
| 8   | 119.6                 | 104.1                 | 109.2                 | 0.7               | 3.1                   | 2.3                                           | 2.9   | 0.4 | 0.6  | 0.9          | 0.0             | 0.5  | 0.1          | 0.0             |
| 9   | 181.5                 | 181.5                 | 181.5                 | 0.7               | 1.0                   | 2.2                                           | 2.9   | 1.8 | 1.9  | 2.9          | 0.5             | 0.9  | 0.6          | 0.2             |
| 10  | 148.8                 | 140.6                 | 143.3                 | 0.7               | 1.8                   | 2.4                                           | 2.9   | 1.7 | 2.0  | 2.9          | 0.6             | 0.7  | 0.9          | 0.3             |
| 11  | 144.3                 | 135.0                 | 138.1                 | 0.4               | 4.0                   | 2.3                                           | 3.2   | 0.5 | 1.2  | 1.7          | 0.1             | 0.7  | 1.0          | 0.2             |
| 12  | 119.6                 | 104.1                 | 109.2                 | 1.0               | 4.0                   | 2.2                                           | 2.9   | 0.4 | 1.4  | 1.5          | 0.1             | 1.1  | 0.6          | 0.3             |
| 13  | 181.5                 | 181.5                 | 181.5                 | 0.4               | 1.9                   | 2.3                                           | 2.9   | 1.7 | 1.1  | 1.4          | 0.5             | 0.3  | 0.3          | 0.4             |
| 14  | 181.5                 | 181.5                 | 181.5                 | 1.0               | 1.0                   | 2.2                                           | 2.9   | 1.7 | 1.3  | 3.0          | 0.5             | 0.6  | 0.5          | 0.4             |
| 15  | 150.5                 | 142.8                 | 145.4                 | 0.4               | 1.0                   | 2.4                                           | 3.1   | 0.7 | 1.0  | 2.1          | 0.3             | 0.4  | 1.4          | 0.2             |
| 16  | 119.6                 | 104.1                 | 109.2                 | 1.0               | 1.0                   | 2.1                                           | 3.0   | 0.3 | 1.6  | 1.1          | 0.0             | 0.8  | 0.3          | 0.1             |
| 17  | 181.5                 | 181.5                 | 181.5                 | 1.0               | 2.4                   | 2.2                                           | 3.6   | 1.8 | 2.0  | 3.2          | 0.5             | 0.4  | 1.6          | 0.4             |
| 18  | 181.5                 | 181.5                 | 181.5                 | 0.7               | 4.0                   | 3.1                                           | 2.6   | 2.2 | 2.0  | 2.9          | 0.7             | 0.3  | 0.3          | 0.4             |
| 19  | 119.6                 | 104.1                 | 109.2                 | 0.4               | 3.3                   | 0.7                                           | 1.1   | 0.1 | 0.0  | 0.0          | 0.0             | 0.0  | 0.0          | 0.0             |
| 20  | 150.8                 | 143.1                 | 145.6                 | 0.7               | 1.8                   | 2.3                                           | 2.9   | 1.5 | 1.2  | 2.5          | 0.5             | 0.6  | 2.0          | 0.3             |

= Input to build a model that predicts the clean and contaminated seal strength at all possible parameter settings within the defined design space

• Coefficients of terms included in the selected model: not shown

#### IMO-IMOMEC

▶ UHASSELT

#### unec

Results: Seal strength maximization: validation of maxima (n=10)

|        | Clean                            | Ground coffee contamination (25 g.m <sup>-2</sup> ) | Blood powder contamination (25 g.m <sup>-2</sup> ) |
|--------|----------------------------------|-----------------------------------------------------|----------------------------------------------------|
|        |                                  | Optimal settings                                    |                                                    |
| Film 1 | 165°C_0.7s_4.0N.mm <sup>-2</sup> | 151°C_1.0s_1.0N.mm <sup>-2</sup>                    | 150°C_1.0s_1.0N.mm <sup>-2</sup>                   |
| Film 2 | 144°C_1.0s_1.0N.mm <sup>-2</sup> | 161°C_1.0s_4.0N.mm <sup>-2</sup>                    | 147°C_1.0s_2.0N.mm <sup>-2</sup>                   |
| Film 3 | 182°C_0.7s_2.7N.mm <sup>-2</sup> | 182°C_0.4s_1.2N.mm <sup>-2</sup>                    | 157°C_1.0s_3.4N.mm <sup>-2</sup>                   |



4

IMO-IMOMEC

nec

UHASSEL1



- Contamination decreases seal strength, even when maximized
  - Rate of decrease is dependent on seal material and applied contamination
    - Based on measured average values: degree of decrease for film 1, 2 and 3 are respectively 25, 16 and 63 % for ground coffee and 71, 45 and 79% for blood powder contamination compared to the clean seal strength.

#### Result: Seal strength maximization: process windows



#### Film 1 vs. Film 2

- Process window
  - Wide for clean seals, narrowed down with contamination - overlap
  - Clean and coffee: wider for film 2
- Process window + validation results
  - Film 1 less tolerant for solid contamination
  - Results are in line with hot tack performance: lower initiation, wider window

#### Film 1

UHASSELT

IMO-IMOMEC

#### Film 2

PET PET 12 µm PET 12 µm 12 µm 80% LDPE/ 80% LDPE/ 15 um 15 µm 20% mLLDPE 20% mLLDPE 80% LDPE/ 35 µm 20% mLLDPE 80% LDPE/ 80% LDPE/ 20 µm 20 µm 20% mLLDPE 20% mLLDPE acid copolymer resin 68% LDPE/ 68% LDPE/ 15 µm 15 µm sodium ionomer 10 µm 30% mLLDPE 30% plastomer

unec

#### Film 3 Film 3

5 µm

- Process window
  - Narrow compared to films 1 and 2 almost no overlap
- Process window + validation results
  - Worst tolerance for solid contamination
  - Results are inconsistent with good hot tack performance

Introduction and objectives Materials and methods Results Conclusions



#### Conclusions

- Method to optimize granular contaminated seal strength is presented
  - Predicted values are good indication of clean and contaminated seal strength
  - Process windows for clean and contaminated seal strength can be obtained
- Film with plastomer based seal layer outperformed other films
  - Higher seal strength
  - Wider process windows
- Hot tack test not predictive for contaminated seal strength
  - Similarities in comparison of films with metallocene and plastomer based seal layer, results with film with sodium ionomer were not predictive



## **Questions?**

Ing. Bram Bamps Wetenschapspark 27 3590 Diepenbeek +32(0)11292164 bram.bamps@uhasselt.be



VerpakkingsCentrum

IMO-IMOMEC