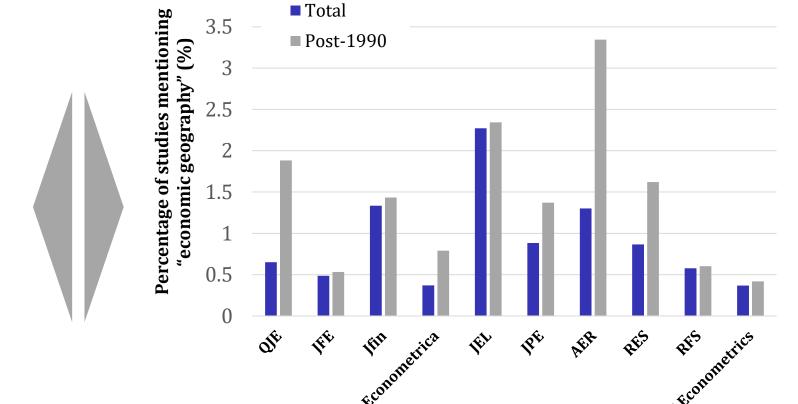
MEASURING THE QUALITY OF AIR TRANSPORT NETWORKS

Bert Lenaerts (UHasselt)

presenting joined work with

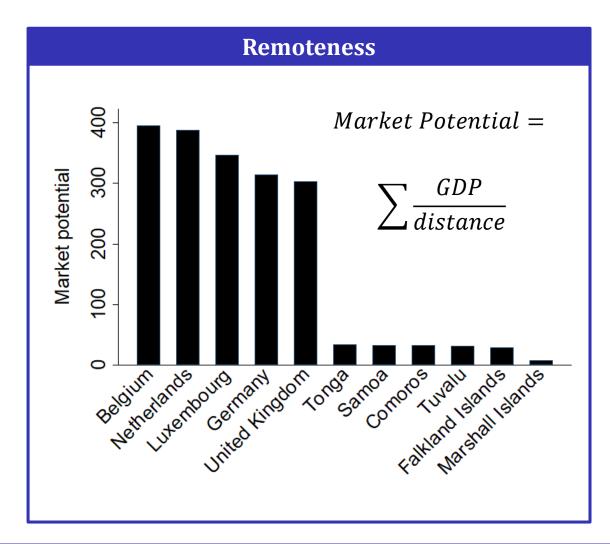
Dr. Florian Allroggen (MIT) & Prof. Robert Malina (UHasselt)

UHASSELT


Aims

- 1. Discuss relationship between transport and geography
- 2. Definition and operationalisation of relevant metrics
- 3. Comparison with typical impact metrics

Economic Geography


New Economic Geography

- Started in 1991 by P. Krugman
- Introduction of space and geography to economics and economic modelling
- 2008 Noble Prize on "location of economic activity"
- Empirical counterpart:
 Spatial Econometrics

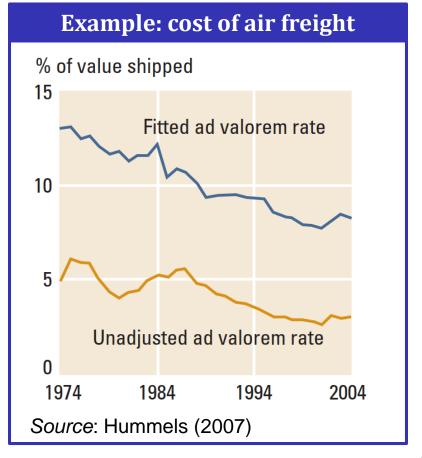


Source: Google Scholar

Remoteness and Transportation

Transportation

Source: abcblogs.abc.es


- Transportation is a means for overcoming distances
- Transportation can compensate geographic disadvantage (remoteness)

Different types of transfer cost

Type of interaction cost	Cost determinants (physical and economic distance)
	Institutional and policy barriers
Trade and investment cost	Borders
	Geographic contiguity
	Time differences
Transaction and supply	Information and communication infrastructure and services
chain cost	Technological barriers
	Cultural barriers (especially language)
T	Distance
Transport, travel and commuting cost	Transportation infrastructure and services

Transportation cost

Direct (monetary) costs Ticket fare **Opportunity costs** Travel and waiting time **Disutility costs** Risk premiums, Level of comfort, Option values, Travel adjustment

Interaction potential: a simplified framework

Value created through

interaction

Pull mark

Pull by opportunities at remote markets

Remote Markets

Consumers, Producers, Suppliers, Workers

Home region

Consumers, Producers, Suppliers, Workers

2

Push by cost of overcoming frictions (distance and geography)

Interaction potential: a simplified framework

Pull by opportunities at remote markets

Remote Markets

Consumers, Producers, Suppliers, Workers

Home region

Consumers, Producers, Suppliers, Workers

Value created through

interaction

Push by cost of overcoming frictions (distance and geography)

Transport Component

Accessibility

Definition

Negative function of transfer cost to, and a positive function of the market value of all destinations

Source: Geurs and van Wee (2004)

travel demand **Transport component Destination component** Generalized travel cost available travel time, Locations and opportunities costs, effort Geography characteristics of Services and infrastructure opportunities (supply) Passenger and freight travel Demand for opportunities feedback effect **Accessibility to** opportunities

Connectivity

Definition

Negative function of transfer cost *between nodes in an aspatial network*, and a positive function of the market value of all destinations *excluding* the home market

travel demand **Transport component Destination component** Distance-independent cost available relative travel Locations and opportunities time Services offerings and characteristics of quality opportunities (supply) Passenger and freight travel Demand for opportunities feedback effect

Connectivity to

opportunities

Source: Geurs and van Wee (2004)

Summary: Decomposition of transport concepts

		Weighting of links		
		Weighted (destination quality)	Invariant (no destination quality)	
Spa	Spatial (generalized transportation costs)	Accessibility	Destination-invariant Accessibility	
Spatial coverage	Aspatial (service and infrastructure quality)	Market Connectivity	Connectivity	

B. Lenaerts 11

Accessibility and Connectivity metrics

Operationalizing air transport metrics

Metric type	Subfamily	Definition	
Connectivity-	Centrality- type	Number of connected airports, counted as the airports themselves or the steps on best routings only	
type (Aspatial)	Feasible links	Number of feasible connections for all routings	
	Link quality	Number of weighted connections for all routings	
Accessibility-type (Spatial)		Measures capturing generalized air transportation costs	

Metric type	Subfamily	Definition	Examples	
			Market	Non-market
Centrality- tl type tl	Number of connected airports, counted as the airports themselves or the steps on best routings only	Cristea and Danila	Closeness, degreeness, gross vertex	
type (Aspatial)	Feasible links	Number of feasible connections for all routings		Doganis, Seredyński
	Link quality Number of weighted connections for all routings	ACQI, GCI	Bootsma, Danesi, WNX, Netscan, CCI, Jenkins	
Accessibility-type (Spatial)		Measures capturing generalized air transportation costs	ACI, PATH theorem	Quickest path length

Airport Connectivity Quality Index (ACQI)

- Wittman and Swelbar (2013)
- Market connectivity link quality-type
- $CON = \sum_{r} \delta_r \cdot w_{d_r} + \alpha \sum_{r'} \delta_{r'} \cdot w_{d_{r'}}$ with $\delta_r = \begin{cases} 1 \text{ if direct flight} \\ 0 \text{ else} \end{cases}$ and analogue for onestop connections (r')
- Destination weighting based on socioeconomic importance of each destination proxied by hub status.

Metric type	Subfamily	Definition	Examples	
			Market	Non-market
Connectivity- type (Aspatial)	Centrality- type	Number of connected airports, counted as the airports themselves or the steps on best routings only	Cristea and Danila	Closeness, degreeness, gross vertex
	Feasible links	Number of feasible connections for all routings		Doganis, Seredyński
	Link quality	Number of weighted connections for all routings	ACQI, GCI	Bootsma, Danesi, WNX, Netscan CCI, Jenkins
Accessibility-type (Spatial)		Measures capturing generalized air transportation costs	ACI, PATH theorem	Quickest path length

Netscan

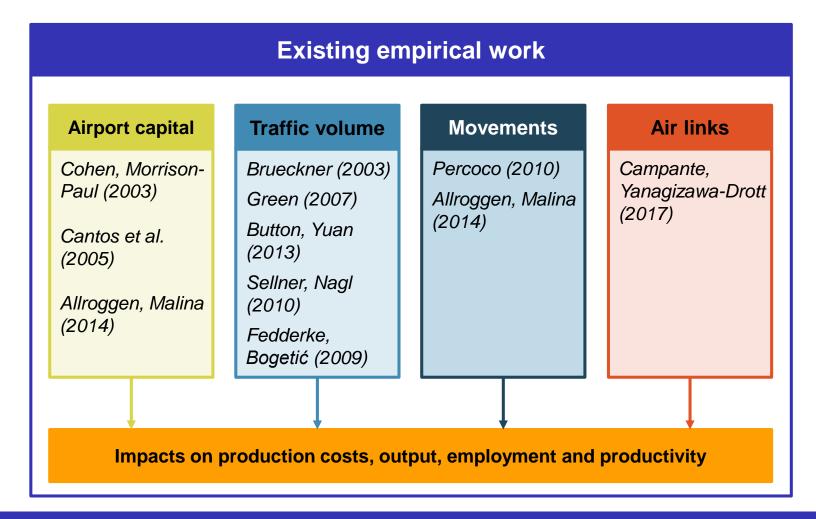
- Veldhuis (1997) & De Wit et al. (2009)
- Non-market connectivity link quality-type
- Perceived travel time
- Excess travel time
- $CON = \sum_{r} \alpha_r \cdot f_r$
 - $\sim \alpha_r$: $f(\text{Excess travel time}) \rightarrow [0,1]$
 - \rightarrow f_r : frequency

Metric type	Subfamily	Definition	Examples	
			Market	Non-market
Connectivity-	Number of connected airports, counted as the airports type themselves or the steps on best routings only	Cristea and Danila	Closeness, degreeness, gross vertex	
type (Aspatial)	Feasible links	Number of feasible connections for all routings		Doganis, Seredyński
Link quality Number of weighted connections for all routings	ACQI, GCI	Bootsma, Danesi, WNX, Netscan, CCI, Jenkins		
Accessibility-type (Spatial)		Measures capturing generalized air transportation costs	ACI, PATH theorem	Quickest path length

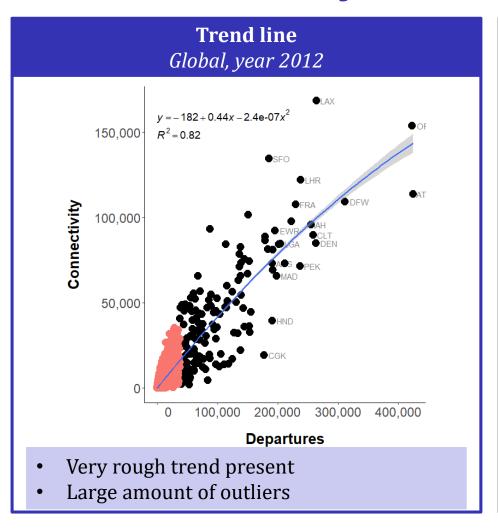
Global Connectivity Index (GCI)

- Allroggen et al. (2015)
- Market connectivity link quality-type
- Perceived travel time
- Detour factor
- $CON = \sum_{r} \alpha_r \cdot f_r \cdot w_{d_r}$

 - α_r: f(Detour factor) → [0,1]
 f_r: frequency
 w_{d_r}: Destination weighing based on population and income

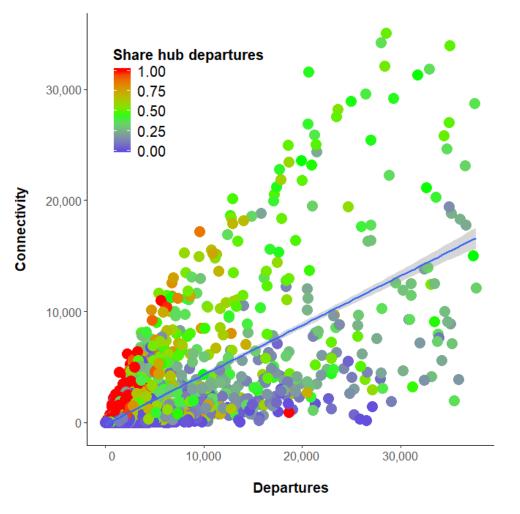

Metric type	Subfamily	Definition	Examples	
			Market	Non-market
Connectivity- type (Aspatial)	Centrality- type	Number of connected airports, counted as the airports themselves or the steps on best routings only	Cristea and Danila	Closeness, degreeness, gross vertex
	Feasible links	Number of feasible connections for all routings		Doganis, Seredyński
	Link quality	Number of weighted connections for all routings	ACQI, GCI	Bootsma, Danesi, WNX, Netscan, CCI, Jenkins
Accessibility-type (Spatial)		Measures capturing generalized air transportation costs	A(I, PATH theorem	Quickest path length

Path aggregation theorem (PATH)


- Mandel et al. (2017)
- Extension of Bootsma connectivity
- Additional weights based on OD path utilities (path choice model)
- No a priori quality weights assumptions but passenger preferences, incl. ticket prices

Implications for impact assessment

Empirical evidence on the economic impacts of aviation



Connectivity vs Departures

Correlation, Global, year 2012 Legend Cumulative centiles 0.75 Correlation 0.50 0.00 0.00 0.25 0.75 1.00 **Quantiles** Local correlation weak, overall correlation driven by outliers

Connectivity vs Departures (2)

Network structure

- Traffic statistics do not capture network structure
- Importance of indirect connections: many small airports rely on onward connectivity
- Connectivity metrics needed to value access through network

B. Lenaerts 21

Conclusions

- Connectivity and accessibility are essential for **measuring** and understanding the **benefits** of air transport
- Connectivity: aspatial cost
 - Measures level of services offerings and quality
 - Determines transportation's ability to **overcome distance**
- Market potential: (purely) spatial cost
 - Measures remoteness/centrality
- Accessibility: overall cost
 - Measures (net) interaction cost, but no separation between transport and space
 - Determines geographical distribution of economic activity
- **Dilemma** between accessibility and connectivity/market potential

B. Lenaerts 23

Centre for Environmental Sciences

UHasselt

Bert Lenaerts
bert.lenaerts@uhasselt.be

Florian Allroggen fallrogg@mit.edu

Robert Malina robert.malina@uhasselt.be

UHASSELT