
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Large-deviation theory for a Brownian particle on a ring: a WKB approach

Peer-reviewed author version

PROESMANS, Karel & Derrida, Bernard (2019) Large-deviation theory for a

Brownian particle on a ring: a WKB approach. In: JOURNAL OF STATISTICAL

MECHANICS-THEORY AND EXPERIMENT, (Art N° 023201).

DOI: 10.1088/1742-5468/aafa7e

Handle: http://hdl.handle.net/1942/28556



Large-deviation theory for a Brownian particle on a

ring: a WKB approach

Karel Proesmans

E-mail: Karel.Proesmans@uhasselt.be

Hasselt University, B-3590 Diepenbeek, Belgium.
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Abstract. We study the large deviation function of the displacement of a Brownian
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1. Introduction

Large deviations have a long history in the mathematical literature [1, 2, 3]. Over

the last decades, they have also become a central part of non-equilibrium statistical

mechanics [4, 5, 6], in particular in the context of the fluctuation theorem [7].

One of the simplest models one can consider in the context of large-deviation theory

is the Brownian particle dragged through a periodic potential [8, 9, 10, 11, 12, 13]. In

the long-time limit, the empirical velocity, v, of the Brownian particle satisfies a large-

deviation principle:

I(v) = − lim
t→∞

1

t
lnPt(xt = vt), (1)

where Pt(xt) is the probability distribution associated with the displacement xt after

a time t. A general, exact expression for this large-deviation function does not exist,

but several approximations have been derived to get to a solution [14, 15, 16, 17, 18].

Furthermore, related studies have been done in the context of e.g. first-passage time

distributions [19] and underdamped dynamics [20]. In the low-noise limit, one can

tackle the problem using the Freidlin-Wentzell theory [21, 22, 23, 24, 25]. This method is

based on the fact that, in the aforementioned limit, one can calculate the large deviation

function associated with trajectories. One can subsequently contract this large-deviation

function of trajectories to obtain I(v). [26]
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Near v = 0, something odd happens; a ’kink’ appears in the Freidlin-Wentzell large-

deviation function [7, 14, 18, 22, 27]. Therefore, to get a precise value of I(v) in this

neighbourhood, we need to look at higher order contributions of the noise. To do this, we

use a tilted generator method [5]. This method focuses on finding the largest eigenvalue

of a Schrödinger-like equation, which is generally hard to solve, but there exist methods

known from quantum mechanics, such as diffusive Monte-Carlo methods [28, 29] and

Rayleigh-Schrödinger perturbation theory [30], to obtain the lowest eigenvalue. Here,

we will solve the equation in the low-but-finite-noise limit using a WKB approach. This

approach allows us to understand how the kink of I(v) is rounded in a weak-noise

expansion.

We will start in section 2, by introducing the model and discussing some basic

concepts of large-deviation theory. In section 3, we will review the Freidlin-Wentzell

approach to derive I(v) and discuss its limitations. We reproduce a number of existing

results [18, 22], in order to connect them with our results of section 4. In particular, we

will see that the large-deviation function of the velocity generally exhibits a cusp at zero

velocity. In the main part of this paper (section 4) we use a WKB approach to calculate

I(v) or rather its Legendre transform µ(λ) in the case where the force vanishes nowhere

i.e., the case where there is no metastable state. This will allow to analyse how the

cusp in the large-deviation function is rounded by a small but finite noise. This analytic

result is the main contribution of the present work. Finally, we end with conclusions

and perspectives in section 5.

2. Model

0 x0 x1 1 x

U(x)

0 x0 1 x

U(x)

Figure 1. One period of U(x). On the left hand side, a case with a single metastable

state. On the right hand side, a case without metastable state.

The focus in this paper will be on a Brownian particle dragged through a periodic

potential V (x) (period 1) with a force f . For notational simplicity, we shall assume that

f ≥ 0 throughout this text. The particle ’feels’ an effective force equal to

F (x) = f − V ′(x), V (x+ 1) = V (x) (2)
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and an associated effective potential

U(x) = V (x)− fx, (3)

cf. Fig. 1. In this section, we shall construct the steady state associated with the position

of the particle, and discuss how one can derive the large-deviation function associated

with the displacement of the particle. Throughout this paper, we will mainly focus on

periodic potentials with no extrema such as the one drawn on the left panel of Fig. 1.

2.1. Steady-state distribution

The position x(t) of the Brownian particle evolves on the infinite line according to an

overdamped Langevin equation

ẋ(t) = −U ′(x) + η(t), (4)

where η(t) is a Brownian motion,

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = εδ(t− t′), (5)

and ε is a measure for the strength of the noise. Associated with this Langevin equation,

one can write a Fokker-Planck equation, describing the time-evolution of the probability

distribution, pt(x) associated with x(t):

d

dt
pt(x) = − d

dx
(F (x)pt(x)) +

ε

2

d2

dx2
pt(x). (6)

Although the distribution pt(x) broadens and spreads out over the whole real axis, the

distribution Pt(x), projected on the ring,

Pt(x) =
∑
n∈Z

pt(x+ n), (7)

has a steady-state solution, pss(x), that satisfies

− d

dx
(F (x)pss(x)) +

ε

2

d2

dx2
pss(x) = 0. (8)

Due to the periodicity, one has pss(x) = pss(x + 1). This boundary condition fixes the

solution of Eq. (8) [31]:

pss(x) = C exp

(
−2

ε
U(x)

)
×
(∫ x

0

dy exp

(
2

ε
U(y)

)
+ e

2f
ε

∫ 1

x

dy exp

(
2

ε
U(y)

))
, (9)

where C is a normalization constant. The average velocity of the particle is given by

〈v〉 =
Cε

2

(
e

2f
ε − 1

)
. (10)

In the weak noise limit (ε small), the behaviour of the velocity depends on the

strength of the external force and can be separated in two classes:
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• If f < maxV ′(x), the effective potential U(x) exhibits a local minimum and

maximum, at x = x0 and x = x1 respectively (see the left panel of Fig. 1), leading

to a meta-stable state for the particle at x = x0. The particle generally spends

most of its time in this metastable state and the average velocity is exponentially

small [31],

〈v〉 '
√
−U ′′(x0)U ′′(x1)

2π
e

2(U(x0)−U(x1))
ε . (11)

Analysing the whole x range in Eq. (9), one can also see that pss(x) is exponentially

peaked at x = x0, and exhibits a large-deviation principle in terms of ε, with non-

analytic points at the values of x where the two terms in Eq. (9) have the same

magnitude [32, 23, 27].

• If f > maxV ′(x), there are no local minima in the effective potential. Therefore,

the probability distribution associated with the position of the particle is much

more spread out over the ring and the average velocity of the particle stays finite

for arbitrary small noise:

〈v〉 ' 1∫ 1

0
dyF (y)−1

. (12)

As f > 0, the second term in Eq. (9) is dominant, leading to

pss(x) ' C ′

F (x)
, (13)

where C ′ again is a normalisation constant.

2.2. Large-deviation theory

In the long-time limit, the measured velocity of the Brownian particle will always

converge to the average velocity, Eq. (11)-(12). All other velocities become exponentially

unlikely. This behaviour is described by the associated large-deviation function:

I(v) = − lim
t→∞

1

t
lnPt(xt = vt), (14)

where xt is the total displacement of the Brownian particle after time t.

In the following it will be more convenient to work with the cumulant-generating

function µ(λ) defined by

µ(λ) = lim
t→∞

1

t
ln
〈
etλv
〉
. (15)

From µ(λ), one can uncover all cumulants associated with the displacement, as the n-th

derivative of µ(λ) evaluated at λ = 0 is equal to the n-th cumulant. The convexity of

the large-deviation function allows one to extract it via a Legendre transform [5],

I(v) = max
λ

(λv − µ(λ)) ; µ(λ) = max
v

(λv − I(v))). (16)

Therefore, one can determine the large-deviation function by first calculating the

cumulant-generating function, µ(λ), and then doing a Legendre transform.
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The cumulant-generating function can be found as the largest eigenvalue of a ’tilted’

Fokker-Planck operator [33, 34], see also Appendix A,

µ(λ)r(x) = λF (x)r(x)− d

dx
(F (x)r(x))

+
ε

2

(
λ2r(x)− 2λ

d

dx
r(x) +

d2

dx2
r(x)

)
, (17)

where r(x) is the associated eigenvector, which satisfies the periodic boundary condition

r(x+ 1) = r(x). This equation can be simplified by introducing

s(x) = exp (−λx) r(x), (18)

leading to

µ(λ)s(x) = − d

dx
(F (x)s(x)) +

ε

2

d2

dx2
s(x), (19)

with boundary condition

s(x+ 1) = e−λs(x). (20)

In this way, the eigenvalue equation, Eq. (19), does no longer explicitly depend on

λ, which only appears via the boundary condition, Eq. (20). As µ(λ) is the largest

eigenvalue of a tilted Fokker-Planck operator, it is also the largest eigenvalue of the

adjoint operator,

µ(λ)`(x) = λF (x)`(x) + F (x)
d`(x)

dx

+
ε

2

(
λ2`(x) + 2λ

d`(x)

dx
+
d2`(x)

dx2

)
, (21)

which can also be simplified by defining m(x) = exp (λx) `(x):

µ(λ)m(x) = F (x)
d

dx
m(x) +

ε

2

d2

dx2
m(x). (22)

Interestingly, the left and right eigenvector have a physical interpretation [35, 36, 33, 34]:

`(x)r(x) = m(x)s(x) ∼ P (x|v = µ′(λ)). (23)

In words, this means that, up to a normalisation constant, the product of the left and

right eigenvector is equal to the probability distribution associated with the position of

the particle, conditioned to the average velocity v = µ′(λ).

3. Freidlin-Wentzell theory

One way to try to obtain the large-deviation function, I(v), is via a Freidlin-Wentzell

approach [21], where one determines the most likely trajectory leading to the average

velocity v. In this section, we shall review this approach, which was earlier applied to

the model under study in [22, 25]. Whenever this approach holds, the large-deviation

function is given, up to leading order in the noise strength, by

I(v) ' lim
τ→∞

min
{x(t)}

1

2ετ

∫ τ

0

dt
(
ẋ(t)− F (x(t))

)2

, (24)
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with the boundary conditions

x(0) = 0,
x(τ)

τ
= v, (25)

where one takes the limit τ →∞. The optimal path in Eq. (24) can be obtained using

Lagrangian techniques:

ẋ(t)2 = F (x(t))2 +K, (26)

where K is an integration constant, which can be determined by the boundary condition,

Eqs. (25). As K is a constant of motion, the velocity ẋ(t) is a function of the position

x(t) only. Therefore, the time T for the particle to travel around the ring once is given

by

T =

∫ 1

0

dx

|ẋ(t)|
. (27)

This implies that the optimal trajectory is periodic, which leads to the following

expression of I(v) in a parametric form [22]:

I(v) ' v

ε

∫ 1

0

dx

(
2F (x)2 +K

2
√
F (x)2 +K

− F (x)

)
, (28)

with

v−1 = T =

∫ 1

0

dx√
F (x)2 +K

, (29)

for v > 0 and

I(v) ' − v

ε

∫ 1

0

dx

(
2F (x)2 +K

2
√
F (x)2 +K

+ F (x)

)
(30)

v−1 = −
∫ 1

0

dx√
F (x)2 +K

(31)

for v < 0. Using Eq. (16), one can also determine the cumulant generating function:

λ = I ′(v) ' 1

ε

∫ 1

0

dx
(
±
√
F (x)2 +K − F (x)

)
, (32)

µ(λ) = λv − I(v) =
K

2ε
(33)

which gives an implicit equation for µ(λ):

ελ = −f ±
∫ 1

0

dx
√

2εµ(λ) + F (x)2, (34)

where the sign associated with the integral is everywhere equal to the sign of v.

There is a peculiarity about this solution. Clearly for the square roots in the above

equations (28-34) to be defined, one needs that K ≥ −minx F (x)2 so that

µ(λ) ≥ −F (x)2

2ε
for all x . (35)
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Figure 2. Freidlin-Wentzell large-deviation function with F (x) = cos(2πx) + f , with

a) f = 1/2 and b)f = 2. One sees on the left pannel that in the presence of metastable

states I(0) = 0. In both cases a cusp appears at v = 0.

Therefore the above expression (34) is only valid outside the following range for λ

−f −
∫ 1

0

dx
√
F (x)2 − F (x∗)2 < ελ < −f +

∫ 1

0

dx
√
F (x)2 − F (x∗)2,

(36)

where F (x∗)2 is the minimal value of F (x)2. If F (x∗) = 0, i.e., in the presence of

metastable states, this unreachable range simplifies to

−f −
∫ 1

0

dx |F (x)| < ελ < −f +

∫ 1

0

dx |F (x)| . (37)

In this range, µ(λ) will be exponentially small, as discussed in [18]. This also manifests

itself in the large-deviation function, which has a ’cusp’ around v = 0, cf. Fig. 2. Indeed,

one sees from Eqs. (28-31) that K → −F (x∗)2 as v → 0 so that

I(0+) = I(0−) =
F (x∗)2

2ε
, (38)

and from Eq. (32) [18, 22]

εI ′(0−) = − f −
∫ 1

0

dx
√
F (x)2 − F (x∗)2

6= − f +

∫ 1

0

dx
√
F (x)2 − F (x∗)2 = εI ′(0+). (39)

To explore the range (36) or (37) one needs to study more carefully the limit µ→ −F (x∗)2

2ε

and this will be done in the next section using a WKB approach.

It is clear from Eq. (26) that |ẋ| =
√
F 2(x) +K. As the time spent near position x

is proportional to |ẋ|−1, the probability P (x|v) of finding the particle in x, conditioned

on a certain value of the empirical velocity v, is given by

P (x|v) ' v√
F 2(x) +K

, (40)

where we used Eqs. (29)-(31) to find the normalisation constant. We will come back

to this below (c.f., Eq. (49)). This equation of course reduces to Eq. (13) in the limit

λ→ 0 (i.e., µ→ 0 and K → 0).
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Finally, we note (see Eqs. (28,30)) that the large-deviation function satisfies the

fluctuation theorem [7, 18, 37]:

I(v) = I(−v)− 2v

ε

∫ 1

0

dxF (x). (41)

4. WKB approach when there is no metastable state

In this section, we obtain µ(λ) by solving the eigenvalue equation, Eq. (19), in the

low-but-finite noise limit. To do this, we look for an eigenvector, in a WKB form

s(x) ' g(x) exp

(
h(x)

ε

)
, (42)

where g(x) and h(x) are unknown functions, independent of ε.

As we expect from Eq. (33) that µ(λ) = O(ε−1) plugging in Eq. (42) into Eq. (19)

one gets:

2µε+ 2F (x)h′(x)− h′(x)2

2ε

+
2F ′(x)g(x)− g(x)h′′(x) + 2F (x)g′(x)− 2g′(x)h′(x)

2g(x)
= O(ε). (43)

Solving this equation gives us a solution for s(x) (up to zero-th order in ε in the

prefactors):

s(x) = C+ s+(x) + C− s−(x) (44)

where

s±(x) =

√
1± F (x)√

2εµ+ F (x)2
exp

[
1

ε

∫ x

0

dy
(
F (y)±

√
2εµ+ F (y)2

)]
(45)

Writing that s(x) and its derivatives satisfy the boundary condition, Eq. (20), implies

that one of the two constants C+ or C− vanishes and fixes the value of λ

ελ = −
[
f ±

∫ 1

0

dx
√

2εµ(λ) + F (x)2

]
. (46)

One recovers that way the result from the previous section, Eq. (34).

Similarly one can write the solution of Eq. (22) for the left eigenvector in a WKB

form

m(x) = C ′+ m+(x) + C ′− m−(x) (47)

where

m±(x) =

√
1∓ F (x)√

2εµ+ F (x)2
exp

[
−1

ε

∫ x

0

dy
(
F (y)±

√
2εµ+ F (y)2

)]
(48)

and again the boundary condition m(x + 1) = eλm(x) forces one of the two constants

C ′+ or C ′− to be zero and fixes the value of λ as in Eq. (46). Using Eq. (23) one sees

that the probability of finding the particle in x, conditioned on the velocity v is

P (x|v = µ′(λ)) ∼ l(x)r(x) = m(x)s(x) ∼ C√
2εµ(λ) + F (x)2

. (49)
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This is exactly what was obtained in Eq. (40) with the Freidlin-Wentzell approach.

Note that in contrast to the left and right eigenvector, Eqs. (44)-(47), the probability

distribution in Eq. (49) does not have any exponential factor, implying that the

distribution is not heavily peaked at a certain value, but is relatively spread out over

the entire ring, as was earlier pointed out in [18].

All the above calculations are valid as long as

µ+
F (x∗)2

2ε
= O (1) ,

where F (x∗)2 = minx F (x)2. This can be seen as the prefactors in Eqs. (45) and (48)

diverge in the limit x→ x∗ and εµ→ −F (x∗)2

2
.

In order to understand this limit, we consider now the case where F (x) does not

vanish on the ring and has a single quadratic minimum F0 at some position x0

F (x) ' F0 + F1(x− x0)2 +O
(

(x− x0)2
)

(50)

and we set

µ = −F
2
0

2ε
+
√

2F0F1

(
ν − 1

2

)
(51)

where ν − 1
2

is of order 1 (or smaller) in the limit ε→ 0

In this range of values of µ, to solve the eigenvalue problem Eq. (19), we decompose

the ring into three regions

• Region I : 0 < x < x0 and x0 − x�
√
ε

• Region II : x0 − x = O(
√
ε)

• Region III : x0 < x < 1 and x− x0 �
√
ε

In regions I and III, one can use solutions analogous to Eqs. (44,45) for the eigenvector

s(x) solution of Eq. (19) (see Eq. (B.1)), whereas in region II the solution takes a scaling

form

s = exp

[
F0(x− x0)

ε
+

√
F0F1

2

(x− x0)2

ε

]
G

(
(2F0F1)1/4 (x− x0)√

ε

)
. (52)

When this form is injected into Eq. (19), one gets that G should satisfy

ν G =
d

dz
(zG) +

1

2

d2G

dz2
. (53)

Our task then is to choose pairs of constants C+ and C− of Eq. (44) in regions I and

III and the appropriate solution of the Hermite equation, Eq. (53) for the asymptotics

of Eq. (52) in region II to match with those of the solutions in regions I and III in the

range
√
ε� |x− x0| � 1. This is what we do in Appendix B where we show that

µ+
F 2

0

2ε
+

√
2F0F1

2
' (2F0F1)

3
4

√
επ

(
eλ−D4+D2 + e−λ+D3−D1

)
(54)
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where the constants D1, D2, D3, D4 are given by Eqs. (B.3,B.4,B.7,B.8). We see that

as λ varies in the range (36), the λ-dependence of µ(λ) is exponentially small, as was

pointed out earlier in [18].

At the boundaries ελ = −
(
f ±

∫ 1

0
dx
√
F (x)2 − 2εF0

)
+O(ε), one can connect the

two results, Eqs. (46) and (54), via the formulas

−λ+D3 −D1 = ln

(
2ν
√
π

Γ (ν)

(
2F0F1

ε2

) ν
2
− 1

4

)
, (55)

near ελ ≈ −f −
∫ 1

0
dx
√

2εµ(λ) + F (x)2, and

λ−D4 +D2 = ln

(
2ν
√
π

Γ (ν)

(
2F0F1

ε2

) ν
2
− 1

4

)
, (56)

near ελ ≈ −f +
∫ 1

0
dx
√

2εµ(λ) + F (x)2. One can check that these equations are in

agreement with Eqs. (46) and (54) in the appropriate limit [25].

Finally, we return to the large-deviation function I(v). As discussed in the previous

section, the large-deviation function away from v ≈ 0, can be described by Eq. (28-31).

Near v = 0 (in particular for |v| � ε), one can now use Eq. (54) to determine the large

deviation function. This gives,

I(v) ' F 2
0

2ε
+

√
2F0F1

2
+ (D3 −D1) v −

√
v2 +

4(2F0F1)
3
2

επ
e−D1+D2+D3−D4

− v ln


√
πε

(√
v2 + 4(2F0F1)

3
2

επ
e−D1+D2+D3−D4 − v

)
2 (2F0F1)

3
4

 (57)

In the limit where v > 0 and ln v � −1/ε, this becomes

εI(v) ' F 2
0

2
+ v

∫ 1

0

dx

(
−F (x) +

√
F (x)2 − F 2

0

)
+O(ε), (58)

while v < 0 and ln(−v)� −1/ε leads to

εI(v) ' F 2
0

2
+ v

∫ 1

0

dx

(
−F (x)−

√
F (x)2 − F 2

0

)
+O(ε). (59)

In these two ranges one recovers the low-velocity limit in the Freidlin-Wentzell large-

deviation function, Eqs. (38-39). Therefore, one concludes that the results can be

smoothly connected to each other.

5. Conclusion

In this paper, we have calculated in the low noise limit the large-deviation and cumulant-

generating functions associated with the velocity of a Brownian particle on a ring. In
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all cases the large deviation function exhibits a cusp at zero velocity in the limit of

zero noise (see Figures 2). Our main progress is to calculate the leading order of the

cumulant-generating function. Away from the region given by Eq. (36), this corresponds

to the well-known Freidlin-Wentzell result [22]. Inside the region of Eq. (36), we have

shown that the cumulant-generating function is given by Eq. (54). Furthermore, there

exist boundaries between these two regions, where the cumulant-generating function is

described by Eqs. (55-56). By doing a Legendre transform, we are able to show that the

associated large-deviation function is smooth near v = 0, in contrast to the lowest-order

Freidlin-Wentzell large-deviation function, Eq. (28).

We limited our analysis to the case of a periodic force with no metastable state,

in contrast to most previous works [14, 18, 22, 23], which mainly focused on potentials

with metastable states . Our analysis can be extended to those cases. For example in

the case of a single metastable state as in the left panel of figure 1, one would need to

consider 5 regions: x < x0, x close to x0, x0 < x < x1, x close to x1 and x1 < x < 1

and one would calculate µ by matching the asymptotics very much as we did in section

4 and Appendix B.
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Appendix A. The large deviation of the current and the deformed

Fokker-Planck equation

In this appendix, we show how to derive Eq. (17). Similar equations have appeared in

a number of earlier works (see [5] and the references therein). We briefly explain here

the derivation.

After a short time interval ∆t one has

x(t+ ∆t) = x(t) + F (x(t))∆t+B (A.1)

where B is a Gausian random variable satisfying

〈B〉 = 0 ; 〈B2〉 = ε∆t (A.2)

If pt(x|x0) is the probability that xt = x, given x0, one has

pt+∆t(x|x0) =

∫
dx′ δ

(
x− x′ − F (x′)∆t−B

)
Pt(x

′, Q′|x0)

(A.3)

and

pt+∆t(x|x0) =

∫
dx′0 δ

(
x′0 − x0 − F (x0)∆t−B

)
Pt(x,Q

′|x′0)

(A.4)
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Taking the limit ∆t→ 0 these equations become

dp(x|x0)

dt
= − d[F (x)p(x|x0)]

dx
+
ε

2

d2p(x|x0)

dx2
, (A.5)

and

dp(x|x0)

dt
= F (x0)

dp(x|x0)

dx0
+
ε

2
+
d2p(x|x0)

dx2
0

, (A.6)

with the initial condition

p0(x|x0) = δ(x− x0). (A.7)

If one introduces the generating function

P̃t(x|x0) =
∑
n

eλ(x−x0+n)p(x+ n|x0) (A.8)

it satisfies

dP̃ (x|x0)

dt
= λF (x) P̃ (x|x0)− d[F (x)P̃ (x|x0)]

dx

+
ε

2

(
λ2P̃ (x|x0)− 2λ

dP̃ (x|x0)

dx
+
d2P̃ (x|x0)

dx2

)
. (A.9)

and

dP̃ (x|x0)

dt
= λF (x0) P̃ (x|x0) + F (x0)

dP̃ (x|x0)

dx0

+
ε

2

(
λ2 P̃ (x|x0) + 2λ

dP̃ (x|x0)

dx0

+
d2P̃ (x|x0)

dx2
0

)
. (A.10)

with the initial condition

P̃0(x|x0) = δ(x− x0). (A.11)

In the long time limit

P̃0(x|x0) ∼ eµ(λ) t r(x) `(x0). (A.12)

r(x) and `(x) are the right and left eigenfunctions solution of the eigenvalue problem

µ(λ) r(x) = λF (x) r(x)− d[F (x)r(x)]

dx

+
ε

2

(
λ2r(x)− 2λ

dr(x)

dx
+
d2r(x)

dx2

)
, (A.13)

µ(λ) `(x) = λF (x) `(x) + F (x)
d`(x)

dx
+
ε

2

(
λ2`(x) + 2λ

d`(x)

dx
+
d2`(x)

dx2

)
.

(A.14)
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Appendix B. The matching of the asymptotics

In this appendix, we analyse the situation Eq. (51) and we derive connection formulas

between the expressions of the solution s(x) in the various regions.

• In Region I (0 < x < x0) one can write the solution s(x) of Eq. (19) as (see

Eqs. (44,45))

sI(x) =c1

√
F (x)√

F (x)2 − F 2
0

+ 1 exp

[∫ x

0

dy

(
F (y) +

√
F (y)2 − F 2

0

ε
+

(ν − 1
2
)
√

2F0F1√
F (y)2 − F 2

0

)]

+c2

√
F (x)√

F (x)2 − F 2
0

− 1 exp

[∫ x

0

dy

(
F (y)−

√
F (y)2 − F 2

0

ε
−

(ν − 1
2
)
√

2F0F1√
F (y)2 − F 2

0

)]
(B.1)

For x→ x0 in this region I this leads to the following asymptotics and

sI(x) '
(
F0

2F1

) 1
4

(
c1 (x0 − x)−ν exp

[
D1 −

F0(x0 − x)

ε
−
√
F0F1

2

(x0 − x)2

ε

]

+c2 (x0 − x)ν−1 exp

[
D2 −

F0(x0 − x)

ε
+

√
F0F1

2

(x0 − x)2

ε

])
(B.2)

where

D1 =

(
ν − 1

2

)
log x0+

∫ x0

0

dy

(
F (y) +

√
F (y)2 − F 2

0

ε
+

(
ν − 1

2

)√
2F0F1√

F (y)2 − F 2
0

−
ν − 1

2

x0 − y

)
(B.3)

and

D2 = −
(
ν − 1

2

)
log x0+

∫ x0

0

dy

(
F (y)−

√
F (y)2 − F 2

0

ε
−
(
ν − 1

2

)√
2F0F1√

F (y)2 − F 2
0

+
ν − 1

2

x0 − y

)
.

(B.4)

• Similarly in Region III (x0 < x < 1)

sIII(x) =c3

√
F (x)√

F (x)2 − F 2
0

+ 1 exp

[
−
∫ 1

x

dy

(
F (y) +

√
F (y)2 − F 2

0

ε
+

(ν − 1
2
)
√

2F0F1√
F (y)2 − F 2

0

)]

+c4

√
F (x)√

F (x)2 − F 2
0

− 1 exp

[
−
∫ 1

x

dy

(
F (y)−

√
F (y)2 − F 2

0

ε
−

(ν − 1
2
)
√

2F0F1√
F (y)2 − F 2

0

)]
(B.5)

which gives as x→ x0
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sIII(x) '
(
F0

2F1

) 1
4

(
c3 (x− x0)ν−1 exp

[
D3 +

F0(x− x0)

ε
+

√
F0F1

2

(x0 − x)2

ε

]

+c4 (x0 − x)−ν exp

[
D4 +

F0(x− x0)

ε
−
√
F0F1

2

(x0 − x)2

ε

])
(B.6)

where

D3 = −
(
ν − 1

2

)
log(1−x0)−

∫ 1

x0

dy

(
F (y) +

√
F (y)2 − F 2

0

ε
+

(
ν − 1

2

)√
2F0F1√

F (y)2 − F 2
0

−
ν − 1

2

y − x0

)
(B.7)

and

D4 =

(
ν − 1

2

)
log(1−x0)−

∫ 1

x0

dy

(
F (y)−

√
F (y)2 − F 2

0

ε
−
(
ν − 1

2

)√
2F0F1√

F (y)2 − F 2
0

+
ν − 1

2

y − x0

)
.

(B.8)

• Finally in Region II (x− x0 = O(
√
ε)) the solution is of the form Eq. (52) with the

following asymptotics (see Eqs. (C.2,C.3)):

for (x− x0)/
√
ε→ −∞

sII ' exp

[
F0(x− x0)

ε

](
V

(
2F0F1

ε2

) ν−1
4

(x0 − x)ν−1 exp

[√
F0F1

2

(x− x0)2

ε

]

+W

(
2F0F1

ε2

)− ν
4

(x0 − x)−ν exp

[
−
√
F0F1

2

(x− x0)2

ε

])
(B.9)

and for (x− x0)/
√
ε→ +∞

sII ' exp

[
F0(x− x0)

ε

](
V ′
(

2F0F1

ε2

) ν−1
4

(x− x0)ν−1 exp

[√
F0F1

2

(x− x0)2

ε

]

+ W ′(x− x0)−ν
(

2F0F1

ε2

)− ν
4

exp

[
−
√
F0F1

2

(x− x0)2

ε

])
.

(B.10)

Now using the boundary condition Eq. (20) one has

c3 = c1e
−λ ; c4 = c2e

−λ (B.11)

and matching the asymptotics, on the one hand Eqs. (B.2) and (B.9) and on the other

hand Eqs. (B.6) and (B.10), one gets using Eq. (C.4) that λ should satisfy

e2λ − eλ
(
X(ν)

Γ(ν)
eD4−D2 +

Γ(ν)(1− Z2)

X(ν)
eD3−D1

)
+ eD4+D3−D1−D2 = 0 (B.12)
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where

X(ν) = 2ν
√
π

(
2F0F1

ε2

) ν
2
− 1

4

. (B.13)

For ε small, one has D4 − D2 � D3 − D1. This, combined with Z = 1 + O(ν)

and ν � ε−1 one can see that the term containing Z becomes negligible over the entire

range the range (36), i.e.,

D3 −D1 < λ < D4 −D2.

This simplifies the above equation to

Γ(ν) =
X(ν)

eλ−D4+D2 + e−λ+D3−D1
. (B.14)

Generally, λ−D4 +D2 and −λ+D3 −D1 are of the order ε−1, and in this regime the

above equation can only be satisfied for ν � 1, leading to

ν =
(2F0F1)

1
4

√
πε

(
eλ−D4+D2 + e−λ+D3−D1

)
. (B.15)

One can see that for λ ≈ D3 − D1 or λ ≈ D4 − D2 this simplification does no longer

hold. In these regimes, one gets

−λ+D3 −D1 = ln

(
X(ν)

Γ(ν)

)
. (B.16)

and

λ−D4 +D2 = ln

(
X(ν)

Γ(ν)

)
, (B.17)

respectively. For ν � 1 this simplifies to

λ+

∫ 1

0
dy(F (y) +

√
F (y)2 − F 2

0 )

ε
= ν log (νε) (B.18)

and

λ−
∫ 1

0
dy(F (y)−

√
F (y)2 − F 2

0 )

ε
= −ν log (νε) . (B.19)

This result can be verified by taking the limit to the boundary of Eqs. (46), which leads

to exactly the same result [25].

Appendix C. On the asymptotics of the solution of Eq. (53)

In this appendix we discuss some aspects of the connection formula of the asymptotics

at z → +∞ and at z → −∞ of a solution G of

ν G =
d

dz
(zG) +

1

2

d2G

dz2
(C.1)

For large z one expects either G ∼ zν−1 or G ∼ e−z
2
z−ν and our goal is to relate

between the pair V,W to the pair V ′,W ′ which characterize the asymptotics at ±∞
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G ' V (−z)ν−1
(

1+
(ν − 1)(ν − 2)

4 z2
+· · ·

)
+W

e−z
2

(−z)ν

(
1−ν(ν + 1)

4 z2
+· · ·

)
as z → −∞

(C.2)

and

G ' V ′zν−1
(

1+
(ν − 1)(ν − 2)

4 z2
+ · · ·

)
+ W ′ e

−z2

zν

(
1− ν(ν + 1)

4 z2
+ · · ·

)
as z → +∞

(C.3)

The goal of this appendix is to show that

V ′ = −Z V +
2ν
√
π

Γ(ν)
W ; W ′ =

(1− Z2) Γ(ν)

2ν
√
π

V + ZW (C.4)

where

Z = cos(πν). (C.5)

By expanding around z = 0, a general solution of Eq. (C.1) can be written as

G = g G3 + g′G4 (C.6)

where G3 and G4 are the even and the odd solutions

G3 =
∑
n≥0

(−)nz2n Γ(2n− ν) Γ(−ν
2
)

Γ(−ν) Γ(n− ν
2
) (2n)!

= 1 + (ν − 1)z2 +
(ν − 1)(ν − 3)

6
z4 + · · ·

and

G4 =
∑
n≥0

(−)nz2n+1 22n Γ(n+ 1− ν
2
)

Γ(1− ν
2
) (2n+ 1)!

= z +
ν − 2

3
z3 +

(ν − 2)(ν − 4)

30
z5 + · · ·

If one defines (assuming that ν is not an integer or half an integer)

G1 =

∫ ∞
−∞+i0

e−z
2+tz− t

2

4 tν−1dt

G2 =

∫ ∞
−∞−i0

e−z
2+tz− t

2

4 tν−1dt

one has

g1 = Γ
(ν

2

) (
1− eiπν

)
2ν−1 ; g′1 = Γ

(
ν + 1

2

)(
1 + eiπν

)
2ν

and

g2 = Γ
(ν

2

) (
1− e−iπν

)
2ν−1 ; g′2 = Γ

(
ν + 1

2

)(
1 + e−iπν

)
2ν
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Therefore

G3 =
1

2ν Γ
(
ν
2

)
(1− eiπν)

(
G1 − eiπνG2

)
(C.7)

G4 =
1

2ν+1 Γ
(
ν+1

2

)
(1 + eiπν)

(
G1 + eiπνG2

)
. (C.8)

Because

G2 −G1 =

∫ −∞+i0

−∞−i0
e−z

2+tz− t
2

4 tν−1dt (C.9)

and because this integral is dominated for large z by the neighborhood of t = 0 one has

the following asymptotics for z → +∞

G2 −G1 ∼
(
eiπν − e−iπν

)
e−z

2

(
Γ(ν)

zν
− Γ(ν + 2)

4zν+2
+ · · ·

)
(C.10)

On the other hand for large positive z a saddle point calculation leads to

G1 ∼ G2 ∼ 2ν
√
πzν−1

(
1 +

(ν − 1)(ν − 2)

4z2
+ · · ·

)
.

Then from Eqs. (C.7,C.8) one gets for large positive z

G3 '
√
π

Γ(ν
2
)
zν−1 ; G4 '

√
π

2 Γ(ν+1
2

)
zν−1 (C.11)

and from Eq. (C.9)

Γ
(ν

2

)
2ν−1G3 − 2ν Γ

(
ν + 1

2

)
G4 ' Γ(ν)

e−z
2

zν

So if one postulates that for z → +∞

G3 =

√
π

Γ(ν
2
)

[
zν−1

(
1 +

(ν − 1)(ν − 2)

4z2
+ · · ·

)
+

β

2ν−1

e−z
2

zν
(1 + · · · )

]
(C.12)

G4 =

√
π

2Γ(ν+1
2

)

[
zν−1

(
1 +

(ν − 1)(ν − 2)

4z2
+ · · ·

)
+

γ

2ν−1

e−z
2

zν
(1 + · · · )

]
(C.13)

one should have

β − γ =
1√
π

Γ(ν) (C.14)

In the above expressions β and γ are factors of subdominant terms and they are a priori

ill defined unless one specifies how the dominant divergent series is resummed.

A general solution of Eq. (C.1) can always be written as

G = xG3 + y G4

Then one has (see Eqs. (C.12,C.13))

V =

√
π

Γ(ν
2
)
x−

√
π

2Γ(ν+1
2

)
y ; W =

2
√
π

2νΓ(ν
2
)
x β − 2

√
π

2ν+1Γ(ν+1
2

)
y γ
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V ′ =

√
π

Γ(ν
2
)
x+

√
π

2Γ(ν+1
2

)
y ; W ′ =

2
√
π

2νΓ(ν
2
)
x β +

2
√
π

2ν+1Γ(ν+1
2

)
y γ.

Eliminating x and y one gets Eq. (C.4) where

Z =

√
π

Γ(µ)
(β + γ). (C.15)

So far Z is undetermined, and as mentionned earlier it depends on the way the

dominant contribution is resummed in Eqs. (C.12,C.13). This is related to Stokes

phenomenon [38].

As for real positive z the solutions G1 and G2 are complex conjugates one can

consider that their real part is by definition the resummed dominant contribution of the

large z asymptotics. This implies (see Eq. (C.10))

G2 ' 2
√
πzν−1

(
1 + · · ·

)
+

Γ(ν)

2

(
eiπµ − e−iπν

) e−z2
zν

G1 ' 2
√
πzν−1

(
1 + · · ·

)
− Γ(ν)

2

(
eiπν − e−iπν

) e−z2
zν

.

This gives Eqs. (C.7,C.8,C.12,C.13)

β =
Γ(ν)

(
1 + cos(πν)

)
2
√
π

; γ =
Γ(ν)

(
− 1 + cos(πν)

)
2
√
π

so that (see Eq. (C.15))

Z = cos(πν)

as in Eq. (C.5).
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