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Airborne infectious diseases such as influenza are primarily transmitted

from human to human by means of social contacts, and thus easily spread

within households. Epidemic models, used to gain insight into infectious

disease spread and control, typically rely on the assumption of random

mixing within households. Until now, there has been no direct empirical

evidence to support this assumption. Here, we present the first social contact

survey specifically designed to study contact networks within households.

The survey was conducted in Belgium (Flanders and Brussels) from 2010

to 2011. We analysed data from 318 households totalling 1266 individuals

with household sizes ranging from two to seven members. Exponential-

family random graph models (ERGMs) were fitted to the within-household

contact networks to reveal the processes driving contact between household

members, both on weekdays and weekends. The ERGMs showed a high

degree of clustering and, specifically on weekdays, decreasing connected-

ness with increasing household size. Furthermore, we found that the odds

of a contact between older siblings and between father and child are smaller

than for any other pair. The epidemic simulation results suggest that within-

household contact density is the main driver of differences in epidemic

spread between complete and empirical-based household contact networks.

The homogeneous mixing assumption may therefore be an adequate charac-

terization of the within-household contact structure for the purpose of

epidemic simulations. However, ignoring the contact density when inferring

based on an epidemic model will result in biased estimates of within-house-

hold transmission rates. Further research regarding the implementation of

within-household contact networks in epidemic models is necessary.
1. Introduction
Households are crucial units in the epidemiology of airborne infectious diseases

such as influenza, smallpox and SARS. Relations between household members

are typically characterized by frequent and intimate contacts, allowing for rapid

disease spread within the household upon introduction of an infectious case.

As stated by Ferguson et al. [1], ‘being a member of a household containing

an influenza case is in fact the largest single risk factor for being infected one-

self’ (p. 450, citing [2,3]). Furthermore, households with children have a

bridging function, allowing for an infection to spread from schools to work-

places, and vice versa. Inference from household final size data revealed that

children play a key role in bringing influenza infection into the household
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and in transmitting the infection to other household members

[3]. Households are the most common transmission unit used

in observational studies and in epidemic models.

Many epidemic models rely on the assumption of

homogeneous (random) mixing within households. In early

work, the Reed–Frost type of models were used to estimate

household and community transmission parameters from

household final size data, assuming a constant probability

of infection from the community [4–6]. Ball et al. [7] general-

ized this to the so-called ‘households model’ with two levels

of mixing, assuming random mixing within households

(local) and in the entire population (global), the latter typi-

cally at a much lower rate. The analytical tractability of the

households model allowed for the theoretical study of epi-

demic phenomena. This research has led to the definition of

threshold parameters such as the reproduction number R*,

representing the average number of households infected by

a typical infected household in a totally susceptible popu-

lation [7,8]. Meyers et al. [9] used a contact network model

in an urban setting incorporating households as complete

networks (cliques) to explain the early epidemiology of

SARS. Individual-based simulation models of infectious

disease transmission incorporate detailed individual-level

information in order to account for heterogeneities relevant

to the application (e.g. demography, socioeconomics or gen-

etics [10–12]). These models allow for incorporating more

detailed structure in specific settings such as schools and

workplaces, but typically assume random mixing in house-

holds. Studies that particularly highlight within-household

transmission and control policies targeting households can

be found in [1,13].

Until now, there has been no direct empirical evidence to

support the assumption of homogeneous mixing within

households. Egocentric contact surveys entailed partially

observed within-household contact networks and only

allowed for indirect inference of the unobserved network

links [14,15]. It has been argued that greater realism could

be gained by considering different household compositions

and contact heterogeneity within households [16].

In this paper, we describe the first social contact survey

specifically designed to study contact networks within

households. This study enables us to empirically assess the

assumption of homogeneous mixing (e.g. by studying the

effects of age and gender on social distance within house-

holds). Furthermore, it provides an answer to one of the

key questions regarding inference based on household

models: how does the density of the contact network scale

with the household size [16]? When ignoring contact hetero-

geneity between household members, the contact network

density equals the contact rate between two individuals in

a household and is a determinant for the within-household

transmission rate of airborne infectious diseases [17,18].

Finally, this study makes it possible to assess reporting

quality for diary-reported contact surveys by looking at

reciprocity (i.e. symmetry in contact reporting). We use

exponential-family random graph models (ERGMs [19]) to

develop a plausible model for within-household contact

networks and to gain insight into the factors driving

contacts between household members. We then compare

these empirically grounded ERGMs to the assumption of

random mixing using stochastic simulations of an epidemic

in the mise en scene of the households model with two

levels of mixing.
2. Results
(a) Household contact survey
From 2010 to 2011, a survey was conducted to study social

contact behaviour in households with young children in

Belgium (Flanders and Brussels). A larger similarly desig-

ned parallel contact survey of individuals from separate

households is described elsewhere [20,21]. Participants were

recruited via random-digit dialling, and stratified sampling

ensured the representativeness in terms of geographical

spread, day and week/weekend distribution and age and

gender of the youngest child. All participants were asked to

anonymously complete a paper diary recording their contacts

during one randomly assigned day without changing their

usual behaviour.

The survey focused on households with at least one child

of age 12 years or less. Upon sampling, all persons living

more than 50% of the time in the household were defined

as household members and recruited to take part in the

survey. Participants had to record all persons they made con-

tact with during a 24 h period assigned to them. A contact

was defined as a two-way conversation at less than 3 m dis-

tance or a physical contact involving skin-to-skin touching

(either with or without conversation). The information

recorded included the exact or estimated age (interval) and

gender of each contacted person, physical touching (yes/

no), location, frequency and total duration of the contact, in

addition to whether the contacted person was a household

member. If they contacted someone multiple times on a

day, participants specified this as a single contact, along

with the estimated contact duration accumulated over the

day and set the location category to ‘multiple’ if that person

was contacted at two or more different locations.

From the 342 households that participated in the survey, 24

households were excluded because of missing data. We ana-

lysed data from 318 households, including 1266 participants

who recorded 19 685 contacts in total, with household sizes

ranging from 2 to 7. Within-household contacts were identified

and matched with other household members using the pro-

cedure described in the electronic supplementary material,

text. This entailed 3821 identified within-household contacts

with 98% reciprocity, indicating a good quality of reporting,

as expected in this household setting [22]. We assumed all

social contacts to be reciprocal, depicting each household as

an undirected network in which nodes represent household

members and edges represent contacts within the household.

This process resulted in a total of 1946 distinct within-

household contacts, of which 1861 (96%) involved physical

contact (electronic supplementary material, figure S1).

Electronic supplementary material, figure S1 shows that

contacts between household members were of long duration,

which is consistent with findings from previous social contact

surveys [18] and from individual-based simulation models

creating so-called synthetic populations [23]. Further, inter-

actions between household members occurred (almost)

daily and 66% of household members only met each other

at home on their assigned day, whereas 33% met at multiple

locations, of which 98% included home. In the following, we

focus on physical contacts (with and without conversation)

since it has been shown that these better explain the observed

age-specific seroprevalence of airborne infections, such as

varicella and parvovirus B19, compared to non-physical con-

tacts [24–26]. Figure 1 allows one to appreciate at a glance



Figure 1. Observed within-household physical contact networks by household size (2 to 7). Nodes represent household members and edges represent physical
contacts. (Online version in colour.)
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the diversity in household size and network configurations

that we studied through the survey.

Age, gender and household size were used to assign the

role of child, mother and father to each household member.

Two households were excluded from further analysis due

to assignment issues associated with a grandparent and

a same-sex couple. The final dataset thus consists of 316

households, including 1259 participants.

Table 1 summarizes the proportion of complete (i.e. fully

connected) networks and the mean network density for the

within-household physical contact networks by household

size, distinguishing week from weekend days and regular

from holiday periods. The network density is defined as the

ratio of the number of observed edges to the number of

potential edges.

Overall, the type of day does not have a large impact on

the contacts within households; however, the data suggest

some decreasing connectedness with increasing household

size, mainly on weekdays and during regular periods. For

households of size 4, the observed proportion of complete

networks is 0.77 on weekdays and 0.85 on weekend days.

Various measures of within-household clustering are defined

in the electronic supplementary material, text, and table S1

presents the high degree of physical contact clustering

observed within households.

(b) Modelling within-household physical contact
networks

We use ERGMs [19] to model the within-household physical

contact networks. We explore the effect of relationships (i.e.

contacts between siblings, among children and their parents

and between partners), gender-preferential contacts and age
effects in children, and the effect of household size, distinguish-

ing small (less than or equal to 3 members), medium (4

members) and large (greater than equal to 5 members) house-

holds (electronic supplementary material, table S2). We also

explore the presence of higher-order dependency effects

between members of the same household, such as clustering

(see electronic supplementary material, table S1), by including

in the model the number of isolate individuals, 2-stars, tri-

angles and triangles in households of size greater than

or equal to 6. A 2-star is a person connected to two other

household members and a triangle is a set of three household

members such that all three are connected to each other.

The within-household physical contact networks were

modelled separately for weekdays and weekends, and the

final ERGMs are presented in table 2. Reference categories

are child–child contacts (both of age zero) and contacts

within households of size 4. The estimates reported in this

table are log odds ratios and hence need to be exponentiated

to obtain odds ratios. Note that the edge effect is estimated as

negative to counterbalance the large within-household edge

effect, which is needed because our data do not include

between-household contacts. By design, this entails highly

significant p-values associated with the edges and within-

household edges terms (not shown). For both types of days,

the effects of gender-preferential contacts and the number

of isolates were found to be non-significant (likelihood ratio

test p ¼ 0.5766 for weekdays). For weekend days, no signifi-

cant effect of household size was found, and the model was

further reduced to an 8-parameter model (likelihood ratio

test p ¼ 0.5134). On weekdays, the odds of a physical contact

occurring in a household of size less than or equal to 3 and

greater than or equal to 5 are estimated to be 2.10 and 0.67

times the odds of a physical contact occurring in a household



Table 1. Proportion of complete networks and mean network density, stratified by household (HH) size, for the observed within-household physical contact
networks, comparing weekdays and weekend days (top) and regular and holiday periods (bottom).

weekday weekend

HH no. proportion mean no. proportion mean

size HHs complete density HHs complete density

2 9 1.00 1.00 3 1.00 1.00

3 53 0.91 0.96 19 0.74 0.88

4 111 0.77 0.93 48 0.85 0.96

5 39 0.64 0.90 18 0.78 0.95

�6 13 0.46 0.85 3 1.00 1.00

total 225 0.77 0.93 91 0.82 0.94

regular period holiday period

HH no. proportion mean no. proportion mean

size HHs complete density HHs complete density

2 9 1.00 1.00 3 1.00 1.00

3 42 0.86 0.94 30 0.87 0.93

4 105 0.82 0.94 54 0.76 0.93

5 38 0.66 0.91 19 0.74 0.92

�6 12 0.50 0.84 4 0.75 0.98

total 206 0.79 0.93 110 0.79 0.93

Table 2. ERGM for within-household physical contact networks on week and weekend days: parameter estimates and Wald test p-values, log-likelihood and
AIC.

weekday weekend

network statistic estimate p-value estimate p-value

edges 228.16 220.63

within-household edges 28.97 22.78

child – father edges 20.60 0.23 21.15 0.45

child – mother edges 0.16 0.76 0.14 0.93

father – mother edges 0.27 0.66 20.76 0.63

age effect children 20.07 ,0.01 20.18 ,0.01

small households (�3) 0.74 ,0.01

large households (�5) 20.40 ,0.01

2-stars 20.26 0.25 20.87 0.01

triangles 2.06 ,0.01 3.58 ,0.01

triangles in households �6 20.28 0.02

log-likelihood 2306.80 265.98

AIC 635.59 147.95
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of size 4, respectively. Thus, the network density for physical

contacts decreases with increasing household size. Further,

on both types of days, the probability for siblings to make

physical contact decreases with increasing age. This result

implies that only the odds of a physical contact between

older siblings are less than between father and child. Elec-

tronic supplementary material, figure S3 illustrates this age
threshold in both the weekday and weekend day models.

For households of size less than or equal to 5, the odds of a

physical contact that will complete a triangle are estimated

to be 7.85 and 35.87 times the odds of a physical contact

that will not complete a triangle on weekdays and weekend

days, respectively. This results demonstrates the overall

high degree of contact clustering within households.
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On weekdays, the degree of clustering is slightly lower in

households of size �6 (conditional odds of 5.93).

The goodness-of-fit of the models is assessed by simulating

new sets of physical contact networks from the fitted ERGM

and by comparing specific contact network characteristics

that are not included in the model to the observed ones. We

compare the proportion of complete networks, the mean net-

work density and the proportion of observed versus potential

triangles by household size. Overall, the final ERGMs fit the

data well, as indicated in electronic supplementary material,

tables S3–S6 and figures S4–S6.

(c) Epidemic spread in a community of households
We simulate the spread of a newly emerging infection in a

closed fully susceptible population of households using

a discrete-time chain binomial SIR (susceptible–infected–

recovered) model [27]. The 225 households from the contact

survey that were analysed using the weekday ERGM are

used to construct the community of households. We

assume two levels of mixing similar to the households

model in [7]: high-intensity mixing within households and

low-intensity ‘background’ random mixing in the community

(i.e. between households). Two different configurations for

within-household mixing are compared: random mixing

and empirical-based mixing, where the latter refers to phys-

ical contact networks simulated from the fitted ERGMs. For

each epidemic simulation, two sets of within-household

contact networks are drawn from the ERGMs, one for time

points defined as weekdays and one for time points defined

as weekend days. These weekday and weekend contacts are

kept fixed during the entire simulation.

Since we aim to study the effect of contact heterogeneity,

we assume that susceptibility and infectiousness are invariant

with age. Further, we assume that there is no latent period

(i.e. individuals are infectious immediately upon acquiring

infection). At each time step (including time of infection),

infected individuals recover with a constant probability of

0.22, resulting in a mean infectious period of approximately

3.5 days. The values for the transmission parameters are

chosen in line with literature estimates for influenza based on

household final size and symptom onset data (electronic sup-

plementary material, table S7). The first day of the epidemic

is randomly determined to be a week or weekend day and is

started by infecting three random individuals. The epidemic

is then tracked until all infected individuals are recovered

and no new infections have occurred. The results are presented

as the means over simulations with 95% percentile intervals

indicated between square brackets. The box plots include

lower and upper hinges that correspond to the first and

third quartiles. The whiskers extend from the hinges to the

smallest/largest values no further than 1.5 times the interquar-

tile range (IQR). Outlying points are plotted individually.

The notches extend the median by 1:58� IQR=
ffiffiffi

n
p

. In the

figures, small outbreaks, defined as outbreaks with a final

size of ,100 individuals that lasted less than 60 days, are

excluded from display.

(i) Scenario 1
The results obtained from 1000 stochastic epidemic simulations

are shown in the electronic supplementary material, figures

S7–S10. The proportion of small outbreaks is significantly

smaller in the random mixing setting compared to empirical-
based mixing, 0.43 and 0.50, respectively (Fisher’s exact test,

p-value , 0.01). The mean proportion of individuals ulti-

mately infected and the mean proportion of households

infected are slightly greater under random mixing: 0.39 [0.12,

0.56] versus 0.36 [0.12, 0.53] (Wilcoxon rank sum test, p-value

, 0.01), and 0.70 [0.28, 0.88] versus 0.67 [0.29, 0.86] (p-value

, 0.01), respectively (electronic supplementary material,

figure S10). Furthermore, the household attack rate, defined

as the mean proportion of individuals infected per house-

hold [4], increases with household size under both settings

(electronic supplementary material, figure S8).
(ii) Scenario 2
In scenario 1, the small differences between the network model

and the random mixing scenario could be due simply to differ-

ent densities rather than to any particular characteristic of the

network structure. In this setting, we calibrate in order to

make a fairer comparison between the two scenarios (see elec-

tronic supplementary material, text). Figure 2a,b and electronic

supplementary material, figures S11 and S12 present the results

obtained from 1000 simulations. Figure 2a shows the same epi-

demic dynamics over time, and figure 2b shows that the

relation between household attack rate and household size is

the same in both settings. Furthermore, there are no significant

differences in the mean final fraction of individuals (0.37 [0.13,

0.52] versus 0.36 [0.12, 0.53]; p-value 0.11) and mean final frac-

tion of households (0.68 [0.31, 0.86] versus 0.67 [0.29, 0.86];

p-value 0.19; electronic supplementary material, figure S12)

for random mixing compared to empirical-based mixing. The

proportion of small outbreaks is similar in both settings, 0.48

and 0.50 (Fisher’s exact test, p-value 0.40).

A more ‘extreme’ setting, focusing on physical contacts

with a duration of more than 4 h and assuming a higher

within-household transmission rate, yields a lower incidence

for empirical-based mixing regardless of correcting for the

within-household density (see electronic supplementary

material, figures S13–S16).
3. Methods
Let Y denote the random adjacency matrix of an undirected

network, where Yij ¼ Yji ¼ 1 if person i and j made physical con-

tact and zero if not, and let V denote the support of Y (i.e. the

set of all obtainable networks). In an ERGM, the probability of

observing a set of network edges is defined as follows:

Pu,V(Y ¼ y) ¼ exp {uTg(y, X)}

k(u, V)
, y [ V,

where g(y, X) is a vector of network statistics that may depend on

additional covariate information X, with u the corresponding

vector of coefficients, and k(u, V) is a normalizing factor. By

using an alternative model specification (see SI text), u can be

interpreted as the increase in the conditional log-odds of the net-

work, per unit increase in the corresponding component of g(y,

X), resulting from switching a specific Yij from 0 to 1 while

leaving the rest of the network fixed at Yc
ij.

We infer the processes driving physical contacts between

household members by incorporating network statistics based

on nodal covariate information (see electronic supplementary

material, table S2). Although our analysis is focused on within-

household contact networks, we fitted a single ERGM including

all households. We include in our model a household effect

that captures the tendency to contact others in one’s own household.
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Because there are no between-household contact reports present in

our survey, the coefficient for the household preference effect

should be estimated to be extremely large; thus, the probability of

between-household contact is essentially zero.

Approximate maximum-likelihood estimates are obtained

using a stochastic Markov chain Monte Carlo (MCMC) algorithm

[28]. MCMC estimation is performed with the ‘ergm’ package

in R [29,30] that is part of the ‘statnet’ suite of packages for

statistical network analysis [31–33].

More detail can be found in the electronic supplementary

material.
4. Discussion
In this paper, we presented the first social contact study

focusing specifically on contact networks within households.

The inference of within-household contact networks in pre-

vious studies was based on egocentric contact data from

the POLYMOD study [14,15,18] or on data less representative

of the general population with limited sample sizes (rural

Peru and Kenya [34,35]). Estimates of the proportion of com-

plete networks inferred by Potter et al. [14,15] ranged from

0.34 to 0.65 for households of size 4 and are thus less than

the proportions that we observed (0.77 on weekdays and

0.85 on weekend days). The former estimates were based

on partially observed within-household contact networks

and therefore likely underestimated the true proportion of
complete networks. For the purpose of studying household

contacts, the current household-based survey design is con-

sidered an improvement on the individual-based survey

design (POLYMOD study [18]).

We analysed the household network data using ERGMs to

assess the effect of factors such as role in the household, gender,

children’s age and household size on physical contacts within

households. We found that contacts between father and chil-

dren are less likely than contacts between father and mother,

between mother and children and between siblings (except

older siblings). These results are in line with conclusions

obtained by de Greeff et al. [36]. They analysed data regarding

pertussis in households with young infants and found that

fathers were less likely to contract pertussis than other house-

hold members. The targeted vaccination of mothers and

siblings was found to be most effective, as siblings were

more likely to introduce an infection into the household. The

result that children are more likely to transmit an infection

than adults in the same household was also found for influenza

[3], and our study shows that contact heterogeneity could play

a role here. Hence, the specific contact patterns characterized

by the ERGMs in this paper could prove useful for agent-

based modelling of infectious disease spread. Further, in

most household transmission models, it is assumed that the

mean contact degree is proportional to zw, where z is household

size and w controls the extent of the density dependence.

We found that the contact density decreases and that the
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mean number of contacts increases with increasing household

size (see table 1, electronic supplementary material S1), which

implies that w has to be contained in the open interval ]0, 1[.

This result supplements findings from studies based on house-

hold epidemic data regarding close-contact infections [3,36,37]

from a social contact data perspective. Finally, by simulating

epidemics in a two-level SIR setting using literature-based

influenza parameters, we found that solely incorporating con-

tact heterogeneity has no impact on epidemic spread. This

result indicates that in this setting the assumption of random

mixing between household members may be an adequate

approximation of social contact behaviour for infections trans-

mitted via close contacts. However, the results do suggest that

accounting for the within-household contact density is impor-

tant. This result is well established for pathogens, such as

influenza, that are transmitted via casual interactions (see, for

example, Bansal et al. [38]). Furthermore, we found that in a

more extreme setting with intenser contacts and a higher

within-household transmission rate, a density correction is

insufficient to bridge the differences between both mixing

assumptions. This result suggests that informing mixing

between household members with social contact data could

impact modelling efforts in certain settings.

Our study has some limitations and assumptions. We

assume that a contact occurred if it was reported by at least

one household member. Thus, contacts forgotten by both

members could result in an underestimation of the network

density. Potter et al. [39] developed a model address the

issue of reporting error affecting network edges. However,

given that the high reciprocity rates (98%) indicate a very

good reporting quality of the survey, we believe that such

an adjustment will not have a significant impact on our

conclusions. Further, our results depend on the contact defi-

nition used to determine the within-household network links

and cannot be generalized to the spread of any infectious

disease. Based on exploration of various contact definitions

when using POLYMOD contact data to estimate age-specific

varicella transmission rates [25], we opted to use physical con-

tacts in this study as a surrogate of potential transmission

events for close-contact infections, such as influenza and

smallpox, although even for two airborne infections, different

networks may be appropriate because differing levels of inter-

action will be required to constitute an effective contact [40].

Additionally, the contact survey only included households

with at least one child of age 12 years or less. This subgroup

was considered to be most relevant as this group is mostly

affected by increased exposure to airborne/droplet infections

due to out-of-home care and school attendance [41]. Children

older than 12 years are less at risk because of prior immunity

and better hygiene. Therefore, contacts within households

with young children are considered the most important drivers

for transmission. Finally, even though a week/weekend dis-

tinction was made, static networks were used to simulate

epidemic spread. This simplified approach fails to capture

that missing contacts are likely not consistently missing but

rather a snapshot of a particular day.
The methods in this paper could be extended in a number

of manners, which would be interesting topics of future

research. We observed a relationship-specific heterogeneity in

duration of contact (presented in electronic supplementary

material, figure S2) and an impact of this duration on epidemic

spread, which might be relevant for some diseases. The ERGM

framework can be adapted to a ‘valued within-household

contact networks’ model [42], with the value of a contact deter-

mined by its total duration, and by weighting the transmission

rates in the epidemic simulation model accordingly. It is also of

potential interest to capture the temporal dynamics of within-

household contacts and to simulate the impact of contact

formation and dissolution on the spread of infection [43,44].

Combining time-use data with social contact data would

allow for inferring the potential timing of contacts with house-

hold members and to estimate dynamic within-household

contact networks. This combination would also be valuable

to inform large-scale individual-based simulation models of

infectious disease spread. Further, the exploration of potential

differences in the distribution of the generation interval in a

random-mixing setting versus empirical-based mixing is the

topic of current research. Finally, combining the model for

within-household contact networks developed in this paper

with epidemic data from a similar community of households

would allow for improving the estimates of age-specific hetero-

geneity in susceptibility and infectiousness for infections such

as influenza [6].

This study provides unique insights into within-house-

hold contacts, which are considered to be important drivers

of many close-contact infections. It presents the first empirical

evidence resulting from a large household contact survey

supporting the use of the random mixing assumption in

epidemic models incorporating household structure.
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