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Abstract

Time-to-event end points are the most frequent primary end points in phase III oncology trials, both in the adjuvant and
advanced settings. The evaluation of these end points is important to inform clinical practice. However, although different
measures can be used to describe the effect of treatment on these end points, we believe that any treatment benefit in a
given trial is best reported using various absolute and relative measures. Our goal is to help clinicians understand the
strengths and limitations of the traditional and novel measures used to denote the effect of treatment in randomized trials.
Although none of these measures can reliably predict the outcome of individual patients, some measures could be added to
the commonly used hazard ratio to provide a more patient-oriented assessment of treatment benefit. In particular, the differ-
ence of mean survival times quantifies the average survival benefit for a patient receiving a new treatment compared with a
patient treated with standard of care, whereas the net benefit quantifies the probability of a patient receiving the new treat-
ment to live longer by at least m months (for any number of months m of interest) than a patient receiving the standard treat-
ment. We encourage statisticians and clinical scientists to include various measures of treatment benefit in the reports of
phase III trials, acknowledging that different clinical situations may call for different measures of treatment effect. By using
the various available measures, we may better inform ourselves and communicate results to our patients.

End points that assess the time from random assignment to the
occurrence of clinically relevant events are widely used in oncol-
ogy trials and are the most frequent primary end points in phase
III trials, both in the adjuvant and the advanced settings (1–3).
Clinical trials inform clinical practice, and the clinician often
needs to communicate results on these time-to-event end points
to patients and their families. However, different measures and
approaches can be used to describe the effect of treatment on
these end points. It is well known that clinicians are affected by
the choice of measures used to report trial results (4), and the
way such results are communicated by clinicians may in turn in-
fluence the acceptance of different treatments in oncology (5).
Thus, a clear understanding of the various possible ways of

describing the effect of treatment on time-to-event end points is
important for oncologists. Although previous authors have
attempted to demystify measures of treatment benefit in oncol-
ogy (6–8), the recent focus on alternative methods to describe
survival curves (9–11) and new statistical developments (12,13)
in the field offer new ways of assessing the treatment effect. We
will discuss the complementary roles of these measures in fully
assessing the results of comparative time-to-event analyses.

Objective and Methods of This Review

Our goal here is to help clinicians understand the strengths and
limitations of traditional and novel measures used to denote
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the effect of treatment on a time-to-event end point in random-
ized trials in oncology. This is done under the assumptions that
one single measure is not sufficient in clinical practice and that
ideal measures should be well founded from the statistical, clin-
ical, and patient perspectives. We begin with a short introduc-
tion on the hazard ratio, a very useful and nearly universally
reported measure of the treatment effect. By referring to it, we
can more clearly point to advantages and disadvantages of the
alternative measure, which we will often contrast with the
hazard ratio. We then briefly discuss illustrative examples for
which we consider a single time-to-event end point in a trial. In
these examples, we introduce some of the absolute and relative
measures that will be discussed in further depth below. Novel
measures that can also be used in these examples will also be
discussed. Table 1 summarizes the advantages and disadvan-
tages of each of the traditional and novel measures discussed in
this review. Such measures can be applied to both simple end
points consisting of the time to a single event of interest (eg,
overall survival [OS], time to progression, duration of response,
etc.) and composite end points consisting of the time to the first
of a number of events (eg, disease-free survival, progression-
free survival [PFS], time to treatment failure, etc.). For the illus-
trative examples, we assume that hazards are proportional (the
meaning of this assumption is provided below). Of note, we do
not address the relationship between treatment benefit and the
associated toxicity, convenience, or cost of treatment; for the in-
terested reader, we recommend recent reviews on these topics
(14–17). Moreover, methods have been proposed to incorporate
safety issues into treatment decisions (and more generally sev-
eral outcomes), but the discussion of these methods is beyond
the scope of this review (18,19).

On a more technical note, we should point out that we do
not discuss the merits of the actual tests used to assess the sta-
tistical significance of the results quantified by the various
measures described. Moreover, we assume that the estimation
of treatment effect is unbiased (ie, we leave aside considera-
tions about the study design or analysis that might have an im-
pact on the estimated treatment effect by introducing
systematic errors), and for simplicity we do not take into ac-
count confidence intervals or other measures of precision for
the estimated measures of treatment effect. Such measures of
precision, which quantify the uncertainty around the estimates
obtained from clinical trials, help interpret the expected clinical
benefit from treatment, but they add a layer of complexity that
is beyond our scope here. Finally, although we point out specific
limitations of individual measures that are relevant for clini-
cians interpreting survival curves, we do not address some of
the more technical problems with these measures and the re-
medial actions that can be taken to correct these problems dur-
ing the planning or analysis stage of a trial; although important,
we believe these issues are beyond the scope of how best to
communicate clinical trial results to patients and their families.

The Hazard Ratio

In epidemiology, the most commonly used measure of change
in risk—that is, in the probability of an event (sometimes called
“cumulative risk”)—occurring over a fixed period of observation
is the relative risk, or risk ratio. The risk ratio contrasts the risks
for the event in exposed and unexposed groups, without regard
for the precise time of occurrence of each of those events for in-
dividual subjects. In clinical trials, and particularly for events
that will happen in most, if not all, patients in both groups, the

time of occurrence of the events is of interest. As a conse-
quence, the focus shifts to the hazard rate. The hazard rate at
time t is the “instantaneous risk” (probability) of occurrence of
an event at time t given that the event has not occurred by t. In
general, hazard rate depends on time, and a hazard function
describes this dependence. Consequently, in clinical trials, the
hazard ratio replaces the relative risk; the hazard ratio is a ratio
of hazard rates (or hazard functions). It follows that the hazard
ratio captures the reduction in hazard, that is, the reduction in
the instantaneous risk of an event.

It is worth noting that the hazard ratio is often, and some-
what confusingly, referred to as a “relative risk.” From the above
it should be clear that the proper term should rather be the
“relative instantaneous risk,” and the hazard ratio should be
interpreted as capturing the reduction in hazard, not the (cumu-
lative) risk of occurrence of an event over a specified period of
time. Figure 1 illustrates these concepts by showing survival
probabilities, cumulative risks, and risk reductions for a ficti-
tious example for two populations of patients with constant
hazard rates of 0.40 (control) and 0.20 (experimental), and a cor-
responding constant hazard ratio of 0.50.

As mentioned above, in general, the hazard rates as well as
the hazard ratio are functions of time. However, if the hazard
rates can be assumed to be proportional between the groups be-
ing compared (ie, the ratio of the hazard function for the experi-
mental arm to the hazard function for the control arm is
constant over time), the hazard ratio becomes constant in time
and can be expressed by a single numerical value. Under this
assumption of proportional hazards, the hazard ratio can be es-
timated using the Cox proportional hazards model. The hazard
ratio is a very useful and nearly universally reported relative
measure of the treatment effect. On the other hand, the hazard
ratio does not allow easy calculation of absolute benefits in
terms of survival probabilities at times of interest, such as one
or two years. Given that the hazard ratio is a number that can-
not be directly related to the expected survival of a given pa-
tient, its use as a measure to communicate treatment benefit in
clinical practice is limited (8).

It is worth noting that even if the hazard rates are propor-
tional, the estimated hazard ratio can be biased if important
covariates are omitted from the proportional hazards model
(20). In particular, even in a properly randomized clinical trial in
which the distribution of prognostic factors is balanced between
the compared treatment arms, the true hazard ratio can be
underestimated if the prognostic effect of these factors is not
taken into account (20). On the other hand, if one cannot as-
sume that the hazard rates are proportional, the interpretation
of the hazard ratio becomes problematic because in this case
the hazard ratio is time dependent and should not be repre-
sented by a single numerical value. The key assumption of pro-
portional hazards may not be fulfilled in two distinct situations:
1) when the patient population is a mix of patients with differ-
ing treatment effects (ie, there are interactions between treat-
ment effects and molecular or other patient characteristics) and
2) when the treatment effect truly varies over time (12,21,22).
The Iressa Pan-Asia Study (IPASS) trial provides a notorious ex-
ample of the former situation, with a crossing of PFS curves due
to the subset of patients with epidermal growth factor receptor
(EGFR) mutation enjoying a much prolonged PFS compared with
patients receiving chemotherapy, and the opposite patterns for
patients with wild-type EGFR (23). There are also many exam-
ples of the latter situation, with either survival curves converg-
ing after an early separation in comparisons between surgical
and medical therapy, or with survival curves diverging after
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being superimposed in comparisons between chemotherapy
and modern anticancer immunotherapy. For these reasons, the
hazard ratio has come under some criticism in oncology, and
other measures have been proposed as alternatives or comple-
ments to it (6,11–13,21,24–26). The following examples will be
used as a motivation for these other measures.

Illustrative Examples

Practically any randomized clinical trial could be used to illus-
trate our contention that various measures are usually needed
to fully depict the effect of treatment on survival. In order to
limit the possibilities, we will focus on two contrasting
settings—advanced pancreatic cancer, an incurable condition
with short expected follow-up, and early breast cancer, a poten-
tially curable disease with a need for long follow-up—our aim
being to provide examples that cover a broad field of application
of the concepts discussed (Table 2).

The first example is the phase III trial of gemcitabine plus
erlotinib vs gemcitabine plus placebo in advanced pancreatic
cancer (27). The primary end point in that trial was OS, which
was statistically significantly prolonged by the addition of erlo-
tinib to gemcitabine (stratified log-rank test P ¼ .038). In relative
terms, the benefit of adding erlotinib to gemcitabine was not
trivial because there was an 18% reduction in the hazard of
death (HR ¼ 0.82). However, the benefit was far less impressive
if looked at from an absolute point of view, that is, if expressed
in terms of differences on an appropriate scale. For example,
the reduction of the risk of death was only 6% after one year in
favor of erlotinib. Moreover, many commentators pointed out
that the median OS was 6.24 months for erlotinib and
5.91 months for placebo, a difference of only 10 days.

A second example in advanced pancreatic cancer is the
phase III trial of fluorouracil, leucovorin, irinotecan and oxali-
platin (FOLFIRINOX) vs gemcitabine (28). Once again, the pri-
mary end point was OS, which was statistically significantly
prolonged by the use of FOLFIRINOX (stratified log-rank test
P < .001). The relative benefit from the combination was

Table 1. Advantages and disadvantages of different measures of treatment effect

Measure Advantages Disadvantages

Hazard ratio Almost always reported
Clear interpretation
Takes entire survival curve into account

Not practical for patient communication
Difficult to interpret for nonproportional hazards

Difference between survival
probabilities at different
time points (t)

Easy to read off survival curves Depends on choice(s) of t
Loses information

Difference between
medians

Easy to read off survival curves
Easy to remember

Not directly patient-relevant
Not always reached
Affected by schedule of assessment for end points

other than overall survival
Loses information
Statistically unstable

Difference between re-
stricted means

Takes entire survival curve (until chosen time t) into
account

Does not depend on proportional hazards
assumption

Intuitive interpretation as difference between areas
under the survival curves

Almost never reported
Difficult interpretation if survival curves are far from

0 at the largest follow-up time t
Potential for misunderstanding the key role of

truncation time in its computation

Difference between unre-
stricted means

Easy to remember
Takes entire survival curve into account
Does not depend on proportional hazards

assumption
Intuitive interpretation

Almost never reported
Estimation requires a parametric distribution

assumption if survival curves do not reach 0
Imprecise estimation if data are not mature (survival

curves far from 0 at the largest follow-up time t)
Net benefit Can be readily interpreted as a net probability of

benefit
Can express benefit in terms of absolute gains in

survival time
Takes entire survival curve into account
Does not depend on proportional hazards

assumption
Prioritizes the more relevant component of a

composite end point

Recently proposed, hence little experience

Ratio of restricted means Takes entire survival curve (until chosen t) into
account

Valid even when hazards are nonproportional

Almost never reported
Doubtful interpretation if survival curves are far

from 0 at time t
Win ratio Takes entire curve into account

Does not depend on proportional hazards
assumption

Prioritizes the more relevant component of a
composite end point

Interpretation not straightforward
Recently proposed, hence little experience
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impressive, with a hazard ratio of 0.57, which indicates a 43%
reduction in the hazard of death. In absolute terms, the benefit
was also impressive, with a difference in median OS times of
4.3 months and a 21% higher survival probability at one year for
FOLFIRINOX patients. Other metrics that can be used to assess
the results of these two trials are shown in Table 2 and will be
introduced below.

The first example in early breast cancer is the Herceptin
Adjuvant (HERA) trial, which had disease-free survival (DFS) as

its primary end point (29). This trial showed that one year of ad-
juvant trastuzumab therapy improves DFS (log-rank test P <

.0001), in comparison with observation; in relative terms, this
benefit is captured by a hazard ratio of 0.54 at the first interim
analysis (notwithstanding a decrease in such benefit in updated
results for this trial) (30,31). A second example is the phase III
trial of adjuvant neratinib vs placebo in patients with early-
stage, human epidermal growth factor receptor 2 (HER2)–posi-
tive breast cancer previously treated with a trastuzumab-based

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Cu
m

m
ul

a�
ve

 ri
sk

Ab
so

lu
te

 ri
sk

 re
du

c�
on

N
et

 b
en

efi
t

Re
la

�v
e 

ris
k 

re
du

c�
on

Ha
za

rd
 ra

�o

Time, mo Time, mo

A B

C D

E F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Figure 1. Different views of the treatment effect in a situation of proportional hazards. Survival probability (A), cumulative risk (B), absolute risk reduction (C), relative

risk reductions (D), the net benefit (E), and hazard ratio (F) for a comparison of two fictitious survival curves of experimental (blue line) and control (red line) treatments.

For simplicity, the distribution of survival is assumed to be exponential (with hazard rates equal to 0.4 and 0.2 for the control and experimental treatments, respec-

tively). The net benefit (D) was computed as D¼ [1–HR]/[1þHR], where HR is the hazard ratio, assuming no censoring. These idealized data illustrate the fact that even

with a constant hazard ratio of 0.50, the risk reduction is a function of time and decreases toward 0. Moreover, they illustrate that, with proportional hazards, a reduc-

tion by half of the instantaneous risk of death translates into a 33% net benefit, that is, 33% net chance that the survival of a treated patient will be longer than the sur-

vival of a control patient.
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therapy (32). The primary end point in this case was invasive
DFS at two years. Treatment with neratinib statistically signifi-
cantly increased the invasive DFS (stratified log-rank test P ¼
.0091). The relative benefit of extending adjuvant therapy by us-
ing neratinib was evident because there was a 33% reduction of
the hazard of invasive breast cancer events or death (HR ¼ 0.67).
However, the absolute benefit in survival probability was even
smaller than the one seen for erlotinib in advanced pancreatic
cancer: the probability of staying alive and free from the inva-
sive breast cancer events of interest after two years was larger
by 2.3% for the neratinib arm. The survival curves had not
reached below 50%, and hence median survival times could not
be estimated nonparametrically (ie, using the Kaplan-Meier
method) in these two trials that studied early-stage disease.

The contrast between the measures of treatment effect in
these two different settings is made with no judgment as to the
comparative benefit accrued by patients, regardless of the pri-
mary end points. However, the comparison makes the point
that a better view of trial results can be obtained by considering
various measures. As shown in Table 2, not all measures are
readily available, either because they have not been reported by
the original authors (eg, the [restricted] mean survival time) or
because they cannot be estimated nonparametrically in some
cases (eg, the median survival). This contrast also exemplifies
the differences between the advanced-disease and adjuvant
settings with regard to the relationship between measures.
Novel measures can be used to assess these and other trials, as
will be shown below.

Measures to Quantify Treatment Benefit, Other
Than the Hazard Ratio

Absolute Measures

Absolute measures contrast the survival of two groups of
patients by computing a difference. These measures attempt to
indicate the actual benefit a new patient can expect from the
use of an intervention that proves superior to another in a ran-
domized trial. It is generally accepted that most absolute meas-
ures can inform individual decisions in clinical practice more
accurately than relative measures by conveying results in a
manner that improves patient understanding of trial results
(33). However, even absolute measures describe the “average”
experience of a patient in the trial, and as such they may not
apply to any given individual.

The Difference in Survival Probabilities at Time t
A survival probability is sometimes called an event rate, but we
will not use this term here to avoid confusion with its connota-
tion in epidemiology (with patient-years used in the denomina-
tor) or other fields. Given a chosen point in time (t, for
simplicity) of the Kaplan-Meier survival curve (hereafter, just
“survival curve”), the survival probability in each group that cor-
responds to t can be read on the y-axis. This technique, which is
one of the versions of the “snapshot method” (10), is straightfor-
ward and describes the probability of survival at time t for
patients in the trial. Hence, the choice of t influences the

Table 2. Results of different measures of treatment effect within trials*

Measure
Advanced pancreatic

cancer (27)
Advanced pancreatic

cancer (28) Early breast cancer (29) Early breast cancer (32)

Treatment comparisons Gemcitabine plus erloti-
nib vs gemcitabine
plus placebo

FOLFIRINOX vs
gemcitabine

Trastuzumab vs
observation

Neratinib vs placebo

Summary result for pri-
mary end point

Gemcitabine plus erloti-
nib superior for over-
all survival

FOLFIRINOX superior for
overall survival

Trastuzumab superior
for disease-free
survival

Neratinib superior for
invasive disease-free
survival

Hazard ratio 0.82 0.57 0.54 0.67
Difference between

survival probabilities
6% at 12 mo 20.7% at 12 mo 8.5% at 24 mo 2.3% at 24 mo

Difference between
medians

10 d 4.3 mo Not estimable nonpara-
metrically (medians
not reached)

Not estimable nonpara-
metrically (medians
not reached)

Difference between
restricted means

0.5 mo with restriction
at 18 mo

3.3 mo with restriction
at 18 mo

1.2 mo with restriction
at 24 mo

0.5 mo with restriction
at 24 mo

Difference between
unrestricted means
(Weibull model–
based)

1.1 mo 4.0 mo 100 mo (with
extrapolation)

30 mo (with
extrapolation)

Net chance of a longer
survival

Around 5% for differen-
ces in survival of up
to 6 mo (18)

Around 25% for differen-
ces in survival of up
to 6 mo (47)

11% for differences in
disease-free survival
of any magnitude

8% for differences in
invasive disease-free
survival of any
magnitude

*The restricted mean survival times were not initially reported for any of the trials. For the neratinib trial, the difference in restricted mean survival was later reported

by Chan et al (43). For the other three trials (27–29), we determined restricted mean survival times by digitizing the published survival curves and estimating their area

under the curves using the trapezoidal method. For the erlotinib trial (27), the computed mean overall survival times restricted at 18 months were 7.5 months for gem-

citabine plus erlotinib and 7.0 months for gemcitabine plus placebo. For the FOLFIRINOX trial (28), the computed mean overall survival times restricted at 18 months

were 10.6 months for gemcitabine plus erlotinib and 7.3 months for gemcitabine plus placebo. For the trastuzumab trial (29), the computed mean disease-free survival

times restricted at two years were 22.5 months for trastuzumab and 21.3 months for observation. The net benefit was likewise unavailable for the two trials on breast

cancer (29,32). We therefore computed the net chance of a longer disease-free survival using the formula D¼ (1–c)2 � [1–HR]/[1þHR], where c is the proportion of cen-

sored observations (46). Note that this formula assumes a situation of proportional hazards, an assumption that would not have been required had individual patient

data been available. FOLFIRINOX ¼ fluorouracil, leucovorin, irinotecan, and oxaliplatin.
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difference in survival probabilities when two treatments are
compared. Also, by considering only a single or a few points in
time, there is loss of information, and one may not be able to
cover the entire range of differences in the survival probabilities
compatible with the hazard ratio (see Figure 1). Moreover,
depending on the study follow-up period and the hazard ratio,
one may or may not be able to observe the maximum survival-
probability difference. The problem becomes even more acute
when hazard rates are nonproportional, an apparently increas-
ing phenomenon in an age of molecularly defined subsets of
patients and immunomodulating agents (22). The loss of infor-
mation may be eliminated by looking at the whole survival ex-
perience. In this regard, “risk-difference curves” may provide a
longitudinal assessment of the expected absolute benefit from
an intervention over time (21). Risk-difference curves plot the
absolute differences between the survival probabilities over
time (as in Figure 1C), and 95% confidence bands can be com-
puted for such curves. We will not discuss here the “number
needed to treat” (to avoid one event by time t), which is simply
the inverse of the absolute difference between the survival
probabilities at time t.

On a more technical note, it is important to realize that the
relationship between the difference in survival probabilities and
the hazard ratio is a complex one. In particular, even if hazards
are proportional, the absolute value (in the mathematical sense)
of the difference initially increases from 0 up to a maximum
value, and then decreases again toward 0 (see Figure 1).

The Difference in Median Survival Times
Another version of the snapshot method is the computation of
differences in median survival times, with the median repre-
sented by time tmed on the survival curve that corresponds to
the 50% survival probability on the y-axis for each treatment.
The oncology community clearly values this measure of treat-
ment effect (15–17,34–36). Although easy to compute, intuitive
for clinicians, and probably the easiest measure to remember,
the difference in medians suffers from the same disadvantages
highlighted for absolute differences in survival probabilities,
and its use leads to loss of information (see Table 1). Moreover,
even if the hazards are proportional, the ratio of median times
is equal to the hazard ratio only when the survival distribution
is exponential. Thus, the relationship between the difference in
medians and the hazard ratio is, in general, complex.
Consequently, even in the presence of proportional hazards, the
magnitude of the difference in medians may not adequately
correspond to the magnitude of the overall treatment effect,
that is, the hazard reduction implied by the hazard ratio, unless
the survival distribution is exponential (37). Moreover, the dif-
ference in medians suffers from additional limitations. Unless
the survival curve drops below 50%, the median cannot be esti-
mated from the curve. Hence, the estimate is not always avail-
able, especially for more indolent tumors, such as chronic
lymphocytic leukemia (38), or in the adjuvant setting (32). Also,
for end points other than OS, the difference in medians may be
affected by the schedule of assessment. This is common in the
assessment of PFS in second- or third-line therapy, when an ac-
tive agent (as judged by statistically significant hazard ratios)
displays a median PFS that is nearly identical, for example, to
that of placebo/best supportive care (39,40). Finally, the median
survival estimate is overly affected by heavy censoring of
patients with short follow-up and is generally statistically
unstable because its standard error is quite large for commonly

used sample sizes of a few hundred patients, a fact that is al-
most always ignored when the median is reported.

Given the fact that the median is a single point on the curve,
Kiely et al. have used multiples of the median survival to derive
best case, typical, and worst case scenarios that could be used
as a tool to discuss prognosis with breast cancer patients (36).
This method is an improvement over snapshot methods, but it
relies on the median and is therefore also subject to the prob-
lems just discussed.

The Difference Between Restricted Mean Survival Times
Because survival time generally has a skewed distribution and
because the median can easily be read off survival curves, the
mean survival time has long been neglected as a measure of
central tendency in survival analysis. If the survival curve
reaches 0 (ie, if the single longest observed time is an event), the
mean survival can be estimated nonparametrically by comput-
ing the area under the survival curve. However, this is almost
never the case in practice. It is nevertheless possible to estimate
the restricted mean survival time by restricting (or truncating)
the follow-up to a given time t and analyzing the data only up to
that point (9,10,26). This method, first proposed in 1949, in fact
measures the average time survived by patients over the period
of interest. The restricted time t can be chosen arbitrarily, but it
is usually taken equal to the minimum of the largest observed
event time on each of the two groups in order to make full use
of all the information available. The restricted mean survival for
each group is the area under its survival curve through time t
(10,41). Once the restricted means in both groups are computed,
they may be contrasted by subtraction; the difference between
restricted means is the area between the two survival curves
through time t. As a result, the difference of restricted mean
survival times measures the mean gain in life expectancy
through time t associated with the superior treatment. For this
reason, it is a relevant measure for patients because it tells how
much longer a patient receiving the superior treatment is
expected to live, on average, through time t, than a patient
treated with the inferior intervention. On the other hand, the
difference of restricted mean survival times may lead to cum-
bersome discussions with patients, who may not easily grasp
the fact that the expected (or restricted mean) survival only
applies to a fixed time horizon.

One may also compare the ratio between the areas under
the survival curves for the two interventions (see below).
Importantly, the use and interpretation of the difference of re-
stricted mean survival times does not depend on whether haz-
ards are proportional or not (42). On the other hand, restricted
means are very seldom reported, and their interpretation is dif-
ficult when survival probabilities are far from 0 at time t.
Several authors have found that differences of restricted means
can add an absolute dimension to the treatment effect esti-
mated by the hazard ratio, thus being advantageous for clinical
decisions (6,9,26). Moreover, the ratio of restricted mean sur-
vival times should be equal to the hazard ratio when the sur-
vival distribution is exponential, but it has been shown
empirically in a review of 54 trials that the hazard ratio tends to
overestimate the ratio of restricted mean survival times, thus
suggesting an artificially larger treatment benefit when hazards
are not proportional (9).

The difference of restricted means between the neratinib
and placebo arms in the trial discussed above was equal to only
0.5 months at two years (24) (Table 2). Although this difference
appears small, it should be viewed in the context of the
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maximum achievable benefit that would be accrued in theory
had all patients in the trial been alive and disease-free at two
years (43). This maximum achievable benefit was only
1.06 months; hence, the 0.5-month difference in restricted
means represents nearly 50% of the maximum possible gain at
this follow-up time of two years.

The Difference Between (Unrestricted) Mean Survival Times
As has been already mentioned, nonparametric estimation of
the mean survival time requires that the survival curve reaches
0. Because this rarely happens, nonparametric estimates of the
mean survival time are usually not reported. However, the
mean can be estimated if one is willing to make a parametric
assumption regarding the distribution of the survival time (eg,
that the time follows a Weibull distribution). Parametric analy-
ses are a standard approach for uncensored continuous data.
For censored data, they are also frequently used, for example, in
engineering (where the survival analysis is termed reliability
analysis). In contrast, in medicine, nonparametric analysis has
become the standard, due largely to the availability of methods
like the Kaplan-Meier survival curve, the log-rank test, and the
Cox proportional hazards model. However, the use of paramet-
ric models offers several advantages over nonparametric analy-
ses, such as an increase in power (44) or direct availability of
estimates for various characteristics (mean, median, etc.) of the
survival-time distribution. Moreover, parametric survival time
models include models that do not require the proportional
hazards assumption, which is an attractive feature given the
previously mentioned issues with that assumption (22). On the
other hand, the tail of the survival distribution is often not ob-
served because of censoring, so the model fit can only be
assessed to the data thus far, and the (unrestricted) mean
depends on extrapolation.

The important issue in this type of analysis is the choice of
the parametric distribution. However, there is a range of diag-
nostic tools that can be used to select a suitable parametric
model and check its fit to the data (44,45). If a suitable model is
selected, the difference in the mean survival times can be easily
estimated. The difference has an intuitive interpretation as the
mean gain in life expectancy associated with the superior treat-
ment. It is thus a relevant measure for individual patients
because it tells how much longer a patient receiving the supe-
rior treatment is expected to live, on average, as compared with
a patient treated with the inferior intervention.

For the four trials reported in Table 2, the Weibull model was
found to fit well to the reported survival curves. Table 2
presents the model-estimated mean differences. For the two
pancreatic cancer trials, the mean difference is close to the dif-
ference in the means restricted to 18 months. This is due to the
fact that both trials had sufficiently long follow-up. Hence, the
observed survival curves are close to 0 at 18 months. The (unre-
stricted) mean differences provide unambiguous and easily in-
terpretable information: for example, for the gemcitabine trial
(27), the expected gain in survival time is about one month for
patients treated with the combination of erlotinib and gemcita-
bine as compared with patients treated with gemcitabine alone.
On the other hand, for the breast cancer trials, the unrestricted
mean differences are remarkably dissimilar from the differen-
ces in the means restricted to 24 months. This is due to the fact
that in the two trials, the follow-up period was short with regard
to the natural history of these conditions. As a result, there
were very few observed events and the survival curves are still
very far from 0 by 24 months. Consequently, the restricted-

mean differences account only for a small portion of the differ-
ence over the entire life span of the patients. It is also worth
noting that, in this case, despite their considerable magnitude,
the unrestricted mean differences are rather imprecisely esti-
mated and, in fact, statistically not significant. This, again, is
due to the short follow-up and low number of events. Given this
limited amount of information, it appears that alternative para-
metric models (eg, log-logistic or log-normal) provide a very
similar fit to the survival curves as compared with the Weibull
model (data not shown). These alternative models would yield
quite different (unrestricted) mean differences. Nevertheless, in
all cases, the differences are not statistically significant (data
not shown). In this respect, the two breast cancer studies illus-
trate difficulties in inference regarding the long-term survival
time characteristics based on nonmature data rather than
issues with the suitability of treatment-effect measures such as
differences in mean or median survival times.

The Net Benefit
The net benefit, also called “the net chance of a longer survival”
when survival is the only outcome of interest, is a recently pro-
posed measure of treatment effect. It is denoted by D and de-
fined as the probability that a random patient in one of the
treatment groups survives longer (or longer by at least an
amount of time considered to be clinically relevant) than a ran-
dom patient in the other group minus the probability of the op-
posite situation (12). D is equal to 0 if there is no treatment
effect, it would be equal toþ 1 (100% in favor of treatment) if all
patients in the treatment group fared better than all patients in
the control group, and it would be equal to –1 (100% in favor of
control) if all patients in the control group fared better than all
patients in the treatment group. Hence positive and negative
signs indicate the direction of the effect, with a positive D indi-
cating that the new treatment is better than control. For exam-
ple, if D is estimated to be 0.10 in a comparison between a new
treatment and control, a random patient in the treatment group
would have a 10% higher probability of longer survival than a
random patient in the control group. Interestingly, D can be
computed directly from the hazard ratio in an idealized situa-
tion with no censoring and proportional hazards (D¼ [1–HR]/
[1þHR]) (12). This simple relationship can easily be adjusted in
the presence of censoring, but not when hazards are nonpro-
portional (in which case the hazard ratio is a function of time).
It has been suggested that this simple transformation of the
hazard ratio (equivalent to the net benefit in situations of pro-
portional hazards) can be used to enhance communication with
clinicians (37,46). Figure 1E displays the net benefit in a fictitious
example with a constant hazard ratio of 0.5, which illustrates
that this probabilistic measure of treatment effect is constant
over time. Importantly, the net benefit remains interpretable
when hazards are nonproportional (12).

The net benefit may be more relevant for an individual pa-
tient than other absolute measures because it directly answers
the question “What is my net chance of surviving longer with
treatment A than with treatment B (by a chosen amount of
time)?” For example, in the erlotinib trial in advanced pancre-
atic cancer, the net benefit was around 5% for differences in sur-
vival of up to six months (Table 2) (18). A patient who is told
that their chance of surviving six months longer from the addi-
tion of erlotinib to gemcitabine is only around 5% may not per-
ceive this treatment as worthwhile, especially in view of its
toxicity. Conversely, the net benefit hovered around 25% in fa-
vor of FOLFIRINOX (vs gemcitabine) for differences in OS of up
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to six months (47). But here too, a complete assessment of the
clinical value of adding erlotinib to gemcitabine requires consid-
eration of other end points, especially the added treatment tox-
icity (27). This can be done using a more sophisticated version
of the net benefit that allows for assessing several outcomes of
interest in a single analysis; although this discussion is beyond
our scope here, analyses considering the net benefit (longer sur-
vival or, failing an improvement in survival, lower toxicity) fa-
vored placebo over erlotinib (18), but continued to greatly favor
FOLFIRINOX over gemcitabine (47).

Relative Measures

Relative measures use ratios to describe differences in the survival
experience of two groups of patients, taking into account the total-
ity of the data and not individual arbitrarily chosen time points or
survival probabilities. The hazard ratio, already discussed, is the
most commonly used relative measure in clinical trials, and others
are discussed below (but not calculated in Table 2).

The Ratio of Restricted Mean Survival Times
As mentioned, it is possible to compare the survival experience
of two groups by computing the ratio of their restricted means
(ie, the ratio of the areas under their survival curves) (9).
Essentially, most of the advantages and disadvantages identi-
fied for differences in restricted means apply to their ratio (see
Table 1). Arguably, however, the ratio of restricted means is not
directly relevant to individual patients.

The Win Ratio
The win ratio has been proposed as an alternative measure of
treatment effect based on a similar approach as the one used
for the net benefit. The net benefit expresses the treatment ef-
fect on an absolute scale (difference between the probability of
a better outcome on treatment minus the probability of a better
outcome on control), while the win ratio expresses the treat-
ment effect as a ratio (ratio of those two probabilities) (13). The
win ratio was primarily proposed to compare treatments of car-
diovascular disease as an alternative measure of treatment ef-
fect when several outcome measures are combined to form
composite end points. As discussed above, the net benefit can
be similarly extended when several outcome measures are si-
multaneously of interest (12).

Relevance for the Individual Patient

When comparing different measures, one of the salient issues
is the extent to which they are relevant for individual patients.
None of the existing measures is reliable in predicting the out-
comes of individual patients because doing that would entail at
least the use of covariates that are prognostic for the events of
interest, thus allowing a prediction of the outcome of a given
patient by comparing this with “matched” individuals.
Alternatively, prognostic nomograms provide this type of indi-
vidualized information, but they are often derived from obser-
vational data, without incorporating information on the
treatment effects of specific interventions. If the issue of covari-
ates is left aside, however, absolute measures can be considered
relevant to inform clinical practice; although they have the ca-
veat of describing the expected (“average”) survival of a patient,
they incorporate information about the time and probability of
survival. This kind of information is arguably easier to interpret

than relative measures that are not directly related to the prob-
abilities of survival at given time points. Among the absolute
measures, the recently proposed net benefit is the closest to
addressing a patient-centered question because it incorporates
both a time dimension (the difference in survival thought to be
of interest, which may differ from patient to patient) and the
net probability of enjoying a survival longer by at least this dif-
ference if treated (12). The net benefit can be computed using
individual patient data from randomized clinical trials (48).

Conclusion

The treatment benefit in a given trial, even when only the pri-
mary end point is considered, can be difficult to understand by
analyzing the results using a single measure (6,26,42,49). There
are many examples, including the two we discuss above (18,32),
in which analyses using different methods have provided differ-
ent perspectives when compared with the primary results of a
randomized trial. It is hoped that decisions can be made more
rationally if such different perspectives are taken into account.
Moreover, the caveats of using relative measures, especially the
hazard ratio, have to be acknowledged (4,26,33). As pointed out
by Royston and Parmar, the hazard ratio is incomplete as an
outcome measure because it lacks an absolute component, and
thus needs to be complemented by other measures, such as
median survival, survival probabilities at specific time points, or
the restricted mean (26). Unfortunately, means (whether re-
stricted or not) and the more recently proposed measures are
not usually available in publications and cannot be readily de-
rived by busy clinicians. Although none of the existing meas-
ures are able to predict outcomes for individual patients,
absolute measures can be more relevant than relative measures
to inform clinical practice, and the net benefit is the closest to
addressing a patient-centered question in treatment decisions.
As have others in the field (13,26,42), we would encourage sta-
tisticians and clinical scientists to include novel measures in
the analysis and reports of phase III trials, including the mean
survival times and the net benefit.
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