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LOCAL COHOMOLOGY ASSOCIATED TO THE RADICAL OF A

GROUP ACTION ON A NOETHERIAN ALGEBRA

JIWEI HE AND YINHUO ZHANG

Abstract. An arbitrary group action on an algebra R results in an ideal r of

R. This ideal r fits into the classical radical theory, and will be called the radical
of the group action. If R is a noetherian algebra with finite GK-dimension

and G is a finite group, then the difference between the GK-dimensions of R

and that of R/r is called the pertinency of the group action. We provide some
methods to find elements of the radical, which helps to calculate the pertinency

of some special group actions. The r-adic local cohomology of R is related to

the singularities of the invariant subalgebra RG. We establish an equivalence
between the quotient category of the invariant subalgebra RG and that of the

skew group ring R ∗G through the torsion theory associated to the radical r.

With the help of the equivalence, we show that the invariant subalgebra RG

will inherit certain Cohen-Macaulay property from R.

0. Introduction

Let R be a noetherian algebra with finite GK-dimension, and let G be a fi-
nite group acting on R. In general, it is not easy to study the structure and
the representations of a group action. However, one possible way to understand
the group action is through the McKay correspondence, which establishes certain
correspondence among the representations of the group G, of the skew group al-
gebra R ∗ G, and of the invariant subalgebra RG (see [B] for a good survey of
the classical McKay correspondence, or [Mo, CKWZ1, CKWZ2] for noncommuta-
tive McKay correspondence). An important step for establishing noncommutative
McKay correspondence is the Auslander Theorem in the noncommutative case (cf.
[BHZ1, BHZ2, GKMW]). To prove certain noncommutative version of the Aus-
lander theorem, Bao-Zhang and the first-named author introduced an invariant
p(R,G), called the pertinency of the group action. In some sense, the pertinency
p(R,G) determines whether the Auslander theorem holds or not (cf. [BHZ1]).

The invariant subalgebra RG is not regular in general. For instance, if R is
Artin-Schelter regular and the homological determinant of G-action is trivial, then
RG is Artin-Schelter Gorenstein [JZ]. So, studying the representations of the non-
commutative singularities of RG is necessary. When RG has isolated singularities,
the representations of the singularities are well understood (cf. [MU1, MU2, U]).
Iyama-Wemyss developed a wonderful theory on the representations of non-isolated
singularities when the algebra under consideration is commutative (cf. [IW]). The
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representations of noncommutative non-isolated singularities remain less under-
stood. The main purpose of this paper is to understand the properties of the
invariant subalgebra RG when it has non-isolated singularities.

The main tool we will use in this paper is the radical r(R,G) of the group action.
Let B = R ∗G be the skew group ring, and let e = 1

|G|
∑
g∈G g ∈ kG, the integral

of kG. The radical r(R,G) is in fact the the intersection R∩BeB. The radical can
be introduced even if the group G is not finite. We introduce the concept of two
pertinent sequences of elements of R (cf. Section 1), through which we define the
radical r(R,G) for any group action. The radical r(R,G) is an ideal of R. We show
in Section 2 that r(R,G) fits into the classical radical theory which justifies the
name. It is usually difficult to compute R ∩ BeB directly, while there are several
natural ways to find pertinent sequences which lead to determine elements in the
radical.

The pertinency of a group action p(R,G) introduced in [BHZ1] is equal to
GKdim(R) − GKdim(R/r(R,G)) (cf. Section 3). The condition p(R,G) = 1 is
related to the regularity of the invariant subalgebra RG (see Proposition 3.10). As
it was shown in [BHZ1] that the condition p(R,G) ≥ 2 is equivalent to the Auslan-
der Theorem when R is GK-Cohen-Macaulay. We recover some known results in
Section 4 by using pertinent sequences .

Set A := RG, r = r(R,G) and a = A ∩ r. We mainly focus on the local co-
homology of A-modules associated to the ideal a. In Section 5, we established
some isomorphisms of the local cohomology (cf. Theorem 5.5). To consider certain
Cohen-Macaulay property of A, we need some settings (cf. Setup 7.1) on the ideals
a and r.

Setup 0.1. (i) a has the right AR-property (cf. [MR, 4.2.3]);
(ii) a and r are cofinal; that is, aR = Ra, and, for each s, there is an integer n

such that rn ⊆ asR.

As one of our main results, we have the following theorem (for the terminology,
see Section 8).

Theorem 0.2 (Theorem 8.8). Let G be a finite group, and let R be a noetherian
left G-module algebra with finite GK-dimension. Assume that chark - |G| and R
satisfies Setup 0.1. If R is G-Cohen-Macaulay, then A is a-Cohen-Macaulay of
dimension p(R,G).

As a corollary, we have the following equivalence of local cohomology, where
RiΓa is the ith local cohomology associated to the ideal a.

Corollary 0.3 (Corollary 8.9). Let R be a G-Cohen-Macaulay algebra. Assume
that chark - |G| and R satisfies Setup 0.1. If R has finite global dimension, then
we have

RiΓa(M) ∼= TorAp−i(M,D)

for M ∈ ModA and i ≥ 0, where p = p(R,G) and D = RpΓa(A).

We will list some examples in Sections 6, 7 and 8 which satisfy Setup 0.1. In case
the algebra R is commutative, then most conditions in Setup 0.1 are automatically
satisfied.

Theorem 0.2 is obtained via an equivalence of quotient categories associated
to the ideals a and r. Let ModA be the category of right A-modules, and let
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ToraA be the full subcategory of ModA consisting of a-torsion modules. Since
R is noetherian and G is finite, A is noetherian as well. Thus ToraA is a Serre
subcategory of ModA. Hence we obtain an abelian category QModaA := ModA

Tora A
.

Similarly, let b = r⊗ kG ⊆ B = R ∗G, we have QModbB := ModB
Torb B

. The functor
−⊗B R : ModB → ModA induces a functor:

−⊗B R : QModbB −→ QModaA.

We have the following equivalence of quotient categories.

Theorem 0.4 (Theorem 6.4). Retain the same hypotheses as in Theorem 0.2.

(i) The functor HomA(R,−) : ModA −→ ModB induces a functor

HomA(R,−) : QModaA −→ QModbB.

(ii) The functors −⊗B R and HomA(R,−) are quasi-inverse to each other.

If R is a commutative algebra, then the cofinal condition in the above theo-
rem is indeed necessary (cf. Theorem 6.7). The extension groups of objects in
QModbB can be obtained through the extension groups of the corresponding ob-
jects in QModrR (cf. Proposition 8.3), and thus we establish connections among
extension groups of objects in QModaA, QModrR and QModbB respectively.

Throughout the paper, k is a field. All the algebras and modules are assumed to
be over k. Unadorned ⊗ means ⊗k. All the finite groups considered in the paper
are nontrivial.

1. Radicals of group actions

Let R be a noetherian algebra. Let G be a finite group which acts on R by
automorphisms so that R is a left G-module algebra. The G-action determines an
ideal of R.

Definition 1.1. We say that two sequences (a1, . . . , an) and (b1, . . . , bn) of elements
of R are pertinent under the G-action, if

∑n
i=1 ai(g · bi) = 0 for all 1 6= g ∈ G. We

write (a1, . . . , an)
G∼ (b1, . . . , bn) for pertinent sequences.

Example 1.2. (i) Let R = k[x, y]. Let σ be the automorphism of A defined by

σ(x) = y and σ(y) = x. Let G = {1, g}. Then the sequences (x, y)
G∼ (x,−y).

(ii) LetR = k−1[x, y] be the skew symmetric algebra. Let σ be the automorphism
of A defined by σ(x) = y and σ(y) = x. Let G = {1, g}. Then the sequences

(x, y)
G∼ (x, y).

For the convenience of the narratives, we conventionally write (a1, . . . , an) ∨
(a′1, . . . , a

′
m) for the sequence (a1, . . . , an, a

′
1, . . . , a

′
m). We have the following basic

properties of pertinent sequences.

Proposition 1.3. Assume (a1, . . . , an)
G∼ (b1, . . . , bn). The following hold:

(i) (h · a1, . . . , h · an)
G∼ (h · b1, . . . , h · bn) for all h ∈ G;

(ii) (aa1, . . . , aan)
G∼ (b1b, . . . , bnb) for all a, b ∈ A;

(iii) if (a′1, . . . , a
′
m)

G∼ (b′1, . . . , b
′
m), then (a1, . . . , an)∨(a′1, . . . , a

′
m)

G∼ (b1, . . . , bn)∨
(b′1, . . . , b

′
m).

Proof. Straightforward. �
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Given a G-action θ : G→ Aut(R), we define

r(R,G) =

{
n∑
i=1

aibi|(a1, . . . , an)
G∼ (b1, . . . , bn), n ≥ 1

}
.

By Proposition 1.3(iii), r(R,G) is closed under addition, and by Proposition 1.3(ii)
r(R,G) is an ideal of R.

Definition 1.4. We call r(R,G) the radical of R under the G-action, or simply,
the G-radical of R, and we call the quotient algebra R(R,G) := R/r(R,G) the
pertinency algebra of R under the G-action.

Remark 1.5. We will show in the next section that the ideal r(R,G) fits into the
classical radical theory of rings (cf. [S]).

Example 1.6. (i) Let R = k[x, y]. Let σ be the automorphism of A defined
by σ(x) = y and σ(y) = x. Let G = {1, σ}. Note that (x, 1) and (1,−y) are
pertinent sequences. Hence x − y ∈ r(R,G). We claim that xn (n ≥ 2) is not in
r(R,G). Indeed, if xn ∈ r(R,G), then there are pertinent sequences (a1, . . . , am)
and (b1, . . . , bm) such that xn =

∑m
i=1 aibi. Note that R has a basis {xsyt|s, t ≥ 0}.

By a simple comparison of powers of y in the sum
∑m
i=1 aibi, we may assume

that ai =
∑
j kijx

sij and bi = rix
ti , where kij , ri ∈ k and t1, . . . tm are different

integers. Since (a1, . . . , am) and (b1, . . . , bm) are pertinent sequences, we have 0 =∑m
i=1 aiσ(bi) =

∑m
i=1

∑
j kijrix

sij yti . Then
∑
j kijrix

sij = 0 for all i. Therefore,∑m
i=1 aibi =

∑m
i=1

∑
j kijrix

sij xti = 0, a contradiction. Hence xn is not in r(R,G)

for all n ≥ 1. It follows that R(R,G) ∼= k[x].
(ii) Let R = k−1[x, y]. Let σ be the automorphism of R defined by σ(x) = y

and σ(y) = x. Let G = {1, σ}. As we see in Example 1.2, the sequences (x, y) and
(x, y) are pertinent, x2 +y2 ∈ r(R,G). Similar to (i), x−y ∈ r(R,G). If chark 6= 2,
then we see x2, y2, xy ∈ r(R,G). Therefore r(R,G) = k(x − y) ⊕ R2 ⊕ R3 ⊕ · · · ,
and R(R,G) is of dimension 2.

In some cases, the G-radical may be trivial. For example, if the G-action on R
is trivial, that is, g ·a = a for all g ∈ G and a ∈ R, then one sees that the G-radical
is zero. Following the classical radical theory, we introduce the following definition.

Definition 1.7. Let R be a left G-module algebra. If the G-radial r(R,G) = 0,
then we say that R is G-semisimple.

By the definition of the G-radical, one sees the following basic property of G-
semisimple G-module algebras.

Proposition 1.8. Let R be a left G-semisimple G-module algebra. If S is a subalge-
bra of R closed under the G-action, then S, as a G-module algebra, is G-semisimple.

2. Pertinency algebras

Let G be a group, and let R be a G-module algebra. We will review some basic
properties of the G-radical of R, which justify the name “radical”.

Proposition 2.1. Let R be a G-module algebra with G-action θ : G→ Aut(R).

(i) The G-radical r(R,G) is a G-ideal, i.e., it is closed under the G-action.
(ii) The G-action θ induces a G-action θ : G→ Aut(R(R,G)) so that R(R,G)

is also a left G-module algebra.
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(iii) If G is a finite group, then r(R(R,G), G) = 0, i.e., the G-module algebra
R(R,G) is G-semisimple.

Proof. Statement (i) follows from Proposition 1.3(i). Then statement (ii) follows
from (i).

(iii) For an element a ∈ R, we write a for the image of a in R(R,G). Let
(a1, . . . , an) and (b1, . . . , bn) be sequences of elements in R such that (a1, . . . , an)
and (b1, . . . , bn) are pertinent under the G-action in R(R,G). Since G is a fi-
nite group, we assume |G| = k and we may label the elements of G in {1 =
g0, g1, . . . , gk−1}. Then we have

∑n
i=1 ai(gj · bi) ∈ r(R,G) for all j = 1, . . . , k − 1.

Hence, for each 1 ≤ j ≤ k − 1, there are pertinent sequences (xj1, . . . , xjmj
) and

(yj1, . . . , yjmj
) in R such that

∑n
i=1 ai(gj · bi) =

∑mj

i=1 xjiyji. We claim that the
sequences (a1, . . . , an) ∨ (−x11, . . . ,−x1m1

) ∨ · · · ∨ (−xk−1,1, . . . ,−xk−1,mk−1
) and

(b1, . . . , bn) ∨ (g−1
1 · y11, . . . , g

−1
1 · y1m1

) ∨ · · · ∨ (g−1
k−1 · yk−1,1, . . . , g

−1
k−1 · yk−1,mk−1

)
are pertinent. Indeed, for 1 ≤ j ≤ k − 1, we have

n∑
i=1

ai(gj · bi)−
k−1∑
t=1

mt∑
s=1

xts(gjg
−1
t · yts)

=

n∑
i=1

ai(gj · bi)−
mj∑
s=1

xjsyjs −
∑
t6=j

mt∑
s=1

xts(gjg
−1
t · yts)

= 0.

Hence we have

n∑
i=1

aibi −
k−1∑
t=1

mt∑
s=1

xts(g
−1
t · yts) ∈ r(R,G). Since (xt1, . . . , xtmt) and

(yt1, . . . , ytmt
) are pertinent for all t = 1, . . . , k−1, we have

k−1∑
t=1

mt∑
s=1

xts(g
−1
t ·yts) = 0.

Hence
∑n
i=1 aibi ∈ r(R,G), that is,

∑n
i=1 aibi = 0 in R(R,G). It follows that the

G-module algebra R(R,G) is G-semisimple. �

By the third statement of the proposition above, we see that the pertinency
algebra R(R,G) is always G-semisimple for any finite group action. Indeed, the
G-radical r(R,G) is the smallest ideal of R closed under G-action such that the
quotient algebra is G-semisimple.

Lemma 2.2. Let G be a finite group acting on A by automorphisms. If I is a
G-ideal of R such that R/I is G-semisimple, then r(R,G) ⊆ I.

Proof. For an element a ∈ R, we write a for the image of a in R/I. Let (a1, . . . , an)
and (b1, . . . , bn) be pertinent sequences in R. Then

∑n
i=1 ai(g · bi) = 0 for all

1 6= g ∈ G. Hence
∑n
i=1 ai(g · bi) =

∑n
i=1 ai(g · bi) = 0 in R/I. Since R/I is

G-semisimple, we have
∑n
i=1 aibi = 0 in R/I. Therefore,

∑n
i=1 aibi ∈ I, and hence

r(R,G) ⊆ I. �

We have the following “universal property” of pertinency algebras.

Proposition 2.3. Let G be a finite group, and let R be a left G-module algebra. Let
S be a left G-semisimple G-module algebra. For any G-module algebra morphism
f : R → S, there is a unique G-module algebra morphism g : R(R,G) → S such
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that the following diagram commutes

R

π

��

f // S,

R(R,G)

g

;;

where π is the natural projection.

Proof. Since S is G-semisimple and f is a G-module morphism, the subalgebra
im(f) of S is also G-semisimple by Proposition 1.8. Hence the G-radical r(R,G) is
contained in ker(f) by Lemma 2.2. Thus the assertion follows. �

Let G be a finite group, R a left G-module algebra, and B = R ∗ G the skew
group algebra. Let ι : R → B, a 7→ a ⊗ 1 be the embedding map, so that R is
viewed as a subalgebra of B. Similarly, we view kG as a subalgebra of B. Set
e = 1

|G|
∑
g∈G g ∈ kG. Then e is an idempotent in B. LetMR be the class of right

R-modules obtained from right B-modules which are annihilated by e. The next
proposition shows that the G-radical of R is indeed theMR-radical in the classical
radical theory (cf. [S]).

Proposition 2.4. With the notions as above, the following holds:

r(R,G) =
⋂

M∈MR

AnnR(M)

where AnnR(M) is the annihilator of M in R.

Proof. We always view R as a subalgebra of B through the map ι. We see that
two sequences (a1, . . . , an) and (b1, . . . , bn) are pertinent under the G-action if and
only if

∑n
i=1 aiebi =

∑n
i=1 aibi ⊗ 1. Note that BeB = ReR (cf. [CFM, Proposition

2.13]). We have R ∩ BeB = r(R,G). For a module M ∈ MR, we have Me = 0,
and hence BeB ⊆ AnnR(M). Therefore r(R,G) ⊆ AnnR(M). Since B ∈ MR, we
have AnnR(B) = R ∩BeB = r(R,G). Therefore the proposition follows. �

The following lemma is easy to check.

Lemma 2.5. Let G be a finite group, and R a left G-module algebra.

(i) If (a1, . . . , an)
G∼ (c1b1, . . . , cnbn) where c1, . . . , cn ∈ RG. Then

(a1c1, . . . , ancn)
G∼ (b1, . . . , bn).

(ii) Assume (a1, . . . , an)
G∼ (b1, . . . , bn). If bi = bj for some i < j, then

(a1, . . . , ai + aj , . . . , âj , . . . , an)
G∼ (b1, . . . , bi, . . . , b̂j , . . . , bn),

where âj (and b̂j) means deleting the element aj (bj,resp.).

(iii) Assume (a1, . . . , an)
G∼ (b1, . . . , bn). If ai = aj for some i < j, then

(a1, . . . , ai, . . . , âj , . . . , an)
G∼ (b1, . . . , bi + bj , . . . , b̂j , . . . , bn),

where âj (and b̂j) means deleting the element aj (bj,resp.).

We end this section with some sufficient conditions for a G-module algebra to
be G-semisimple.
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Proposition 2.6. Let G be a finite group, and let R be a left G-module algebra.
Set A = RG := {a ∈ R|g · a = a,∀ g ∈ G}. If R is a free A-module with a free basis
y0 = 1, y1, . . . , yn ∈ R satisfying the conditions:

(i) there is an element g ∈ G such that g(y1, . . . , yn) = (ξ1y1, . . . , ξnyn) where ξi
is a ji-th (ji ≥ 2) primitive root of unity for all i = 1, . . . , n,

(ii) yiyj = 0 for i, j = 1, . . . , n,
then R is G-semisimple.

Proof. By Lemma 2.5, we may assume that pertinent sequences have the form

(a0, a1, . . . , an)
G∼ (1, y1, . . . , yn). By the condition (ii), we may assume a1, . . . , an ∈

A. Assume a0 = b0 + b1y1 + · · · + bnyn with bi ∈ A for i = 0, . . . , n. By the
equality

∑n
i=0 aig(yi) = 0 we obtain b0 = 0 and bi = −ξiai for i = 1, . . . , n. By

the equality
∑n
i=0 aig

2(yi) = 0, we obtain bi = −ξ2
i ai for i = 1, . . . , n. Since ξi is a

ji-th primitive root of unity with ji ≥ 2 for i = 1, . . . , n, we have bi = ai = 0 for
i = 1, . . . , n. Hence r(R,G) = 0. �

3. Group actions with p(R,G) = 1

Recall that we have a definition of the pertinency of a group action on an algebra
in [BHZ1], where we had to assume that the group is finite. In order to avoid this
restriction, we provide an alternative (equivalent) definition in this paper. We will
see, in some cases, the definition here is more flexible.

Definition 3.1. Let G be group, and let R be a noetherian algebra with finite
Gelfand-Killilov (GK) dimension. The pertinency of the G-action on R is defined
to be the number

(3.1.1) p(R,G) = GKdim(R)−GKdim(R(R,G)).

Let R be a noetherian G-module algebra with finite GK-dimension, and let
B := R ∗ G be the skew group algebra. Assume G is finite. Let kG be the group
algebra. As before, let e = 1

|G|
∑
g∈G g. Recall from [BHZ1] that the pertinency of

the G-action is defined to be

(3.1.2) p(R,G) = GKdim(R)−GKdim(B/(BeB)).

The following lemma is similar to [BHZ1, Lemma 5.2], whose proof applies to
our case.

Lemma 3.2. Assume G is a finite group. Let R be a noetherian left G-module
algebra with finite GK-dimension. Then GKdim(B/(BeB)) = GKdim(R(R,G)).

As a consequence of Lemma 3.2, we obtain:

Proposition 3.3. With the assumptions in Lemma 3.2, the pertinencies defined
by (3.1.1) and (3.1.2) are equivalent.

In order to compute the pertinency of a group action, one has to analyze the
radical ideal of the group action. Next we provide several ways of finding elements
in the radical ideal.

Lemma 3.4. Let R be an algebra, and G a cyclic group of order n generated by σ.
Assume that there are elements a1, . . . , an ∈ R such that σ ·ai = ξai for i = 1, . . . , n,
where ξ is an n-th primitive root of unity. Then a1a2 · · · an ∈ r(R,G).
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Proof. We show that the following sequences are pertinent under the G-action:
(1, a1, a1a2, . . . , a1a2 · · · an−1) and (a1a2 · · · an, a2 · · · an, . . . , an). Note that σj ·
ai = ξjai. For j = 1, . . . , n − 1, we have

∑n−1
i=0 a1 · · · ai(σj · (ai+1 · · · an)) =

(
∑n−1
i=0 ξ

j(n−i))a1a2 · · · an = 0. Hence a1a2 · · · an ∈ r(R,G). �

Let R be an algebra, and let a1, . . . , ak ∈ R. We write a1 · · · âi · · · ak for
the product a1 · · · ai−1ai+1 · · · ak with ai missing. Similarly, we have the notion
a1 · · · âi1 · · · âi2 · · · âis · · · ak for 1 ≤ i1 < · · · < is ≤ k. We write

a ̂[i1i2···is]
:= a1 · · · âi1 · · · âi2 · · · âis · · · ak,

and

(a ̂[i1i2···is]
: 1 ≤ i1 < · · · < is ≤ k)

for the sequence corresponding to all possible choices of arrays [i1i2 · · · is] in the
lexicographic order. Similarly, we have

a[i1i2···is] := ai1 · · · ais
for the products of elements, and

(a[i1i2···is] : 1 ≤ i1 < · · · < is ≤ k).

Let G be a group acting on R. For g1, . . . , gk ∈ G, we write

g ̂[i1i2···is]
(a ̂[i1i2···is]

) := g1(a1) · · · âi1 · · · âi2 · · · âis · · · gk(ak),

and (
g ̂[i1i2···is]

(a ̂[i1i2···is]
) : 1 ≤ i1 < · · · < is ≤ k

)
for the corresponding sequences in the lexicographic order.

Proposition 3.5. Let R be an algebra, and G = {1 = g0, g1 . . . , gn−1} a finite
group acting on R. Assume that a1, . . . , an−1 ∈ R are central elements of R. Then
we have

(i) the following two sequences

n−1⋃
s=0

(
g ̂[i1i2···is]

(a ̂[i1i2···is]
) : 1 ≤ i1 < · · · < is ≤ n− 1

)
and

n−1⋃
s=0

((−1)sa[i1i2···is] : 1 ≤ i1 < · · · < is ≤ n− 1)

are pertinent, where a[ ] = 1 and a
[̂ ]

= a1a2 · · · an−1 when s = 0;

(ii)
∏n−1
i=1 (gi(ai)− ai) ∈ r(R,G).

Proof. (i) For every 1 6= g ∈ G, we have∑
[i1i2···is]

g ̂[i1i2···is]
(a ̂[i1i2···is]

)g((−1)sa[i1i2···is]) =

n−1∏
i=1

(gi(ai)− g(ai)),

where on the left hand side, the sum is over all the possible choices of the arrays
[i1i2 · · · is] for s = 0, . . . , n−1. Since g must be one of the elements in {g1, . . . , gn−1},
the right hand side of the above equation is zero. Hence the result follows from the
definition of the pertinent sequences.
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(ii) Note that the sum of the products of the corresponding elements in the

pertinent sequences
⋃n−1
s=0 g ̂[i1i2···is]

(a ̂[i1i2···is]
) and

⋃n−1
s=0 ((−1)sa[i1i2···is]) is exactly

equal to
∏n−1
i=1 (gi(ai)− ai). �

We remark that a part of Proposition 3.5(ii) is indicated in [BL, Lemma 2.2]
with different constructions.

Now let R be an algebra, and let a1, . . . , an−1 ∈ R such that aiaj = qijajai for
all i < j and some qij 6= 0. Let G = {1 = g0, g1, . . . , gn−1}. Assume gi(ai) = ξiai
for i = 1, . . . , n− 1 with ξi ∈ k. Write

q[i1i2···is] =

s∏
k=1

∏
ε

qikj ,

where the restriction ε under the second
∏

reads as {j > ik, and j 6= i1, . . . , is}.

Lemma 3.6. With the assumptions as above, we have the following pertinent se-
quences

n−1⋃
s=0

g ̂[i1i2···is]
(a ̂[i1i2···is]

: 1 ≤ i1 < · · · < is ≤ n− 1)

and
n−1⋃
s=0

((−1)sq[i1i2···is]a[i1i2···is] : 1 ≤ i1 < · · · < is ≤ n− 1),

where a[ ] = 1 and a
[̂ ]

= a1a2 · · · an−1 when s = 0.

Proof. For every 1 6= g ∈ G, since g acts on a1, . . . , an−1 diagonally, we have
a ̂[i1i2···is]

g((−1)sq[i1i2···is]a[i1i2···is]) = (−1)sa1 · · · g(ai1) · · · g(ais) · · · an−1. Then the

same arguments as in the proof of Proposition 3.5(i) hold. �

There is another way to construct elements in the radical of a group action by
means of the determinant.

Let G = {1 = g0, g1, . . . , gn−1} be a finite group acting on an algebra R. Taking
any elements a1, . . . , an ∈ Z(R), we define an element

(3.6.1) δG(a1, . . . , an) =

∣∣∣∣∣∣∣∣∣
a1 a2 · · · an

g1(a1) g1(a2) · · · g1(an)
...

...
...

gn−1(a1) gn−1(a2) · · · gn−1(an)

∣∣∣∣∣∣∣∣∣ .
Proposition 3.7. Retain the notation as above. We have δG(a1, . . . , an) ∈ r(R,G).

Proof. Consider the following two sequences (a1, . . . , an) and (A1, . . . , An), where
Ai (i = 1, . . . n) is the cofactor of the element ai in the determinant (3.6.1). For
every 1 6= g ∈ G, we have ggj = 1 for some 1 ≤ j ≤ n− 1. Hence

g(Ai) =

∣∣∣∣∣∣∣∣∣∣∣∣

gg1(a1) · · · gg1(ai−1) gg1(ai+1) · · · gg1(an)
...

...
...

...
a1 · · · ai−1 ai+1 · · · an
...

...
...

...
ggn−1(a1) · · · ggn−1(ai−1) ggn−1(ai+1) · · · ggn−1(an)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Then
∑n
i=1(aig(Ai)) is a determinant in which there are tow equal rows, and hence

it is zero. Therefore, δG(a1, . . . , an) =
∑n
i=1 aiAi ∈ r(R,G). �

Proposition 3.8. Let R be a noetherian algebra which is a domain with 1 ≤
GKdim(R) < ∞, and let G ⊆ Aut(R) be a finite subgroup with |G| 6= 1 and
chark - |G|. If R and G satisfy one of the following conditions, then p(R,G) ≥ 1.

(i) R is connected graded, the G-action preserves the grading of R, and the
order of G is prime.

(ii) G acts faithfully on the center of R.
(iii) R = kqij [x1, . . . , xn], |G| ≤ n + 1 and every g ∈ G acts on x1, . . . , xn

diagonally.

Proof. (i) If |G| is a prime number, then G is a cyclic group. Assume G = 〈g〉.
Since R is noetherian, dimRi < ∞ for all i ≥ 0. Since the order of g is finite,
we may choose a basis S of Ri for some i so that g acts on the basis S diagonally
and nontrivially. We can pick an element a ∈ S such that g(a) = ξa for some
primitive p-th root of unity. Letting all the elements ai = a in Lemma 3.4, we see
ap ∈ r(R,G). Since R is a domain, ap 6= 0. It follows that GKdim(R/r(R,G)) ≤
GKdim(R/RapR) ≤ GKdim(R)− 1. Hence p(R,G) ≥ 1.

(ii) Let Z(R) be the center of R. Since G acts on Z(R) faithfully, for any
1 6= g ∈ G, there is an element a ∈ Z(R) such that g(a) 6= a. Since R is a domain,
Proposition 3.5(ii) asserts that there is a nonzero element b ∈ r(R,G). The rest of
the proof is similar to the case (i).

(iii) Similar to the above case, the assertion follows from Lemma 3.6 and Propo-
sition 3.5(ii). �

The above result shows that in reasonable cases the pertinency of a finite group
action is nonzero, which implies the following primeness of the skew group algebra.

Proposition 3.9. Let R be a neotherian locally finite graded algebra which is a
domain with 1 ≤ GKdim(R) <∞. Let G be a nontrivial finite subgroup of Aut(R)
such that the restriction of the G-action to the center of R is faithful. Then the
skew group algebra R ∗G is prime.

Proof. By [BHZ1, Lemma 3.10], R ∗G is prime if and only if p(G,R) ≥ 1. Now the
result follows from Proposition 3.8(ii). �

The finite group actions of pertinency 1 is of special interest. We have the
following result.

Proposition 3.10. Let R be a neotherian AS-regular algebra which is a domain
and Cohen-Macaulay, and let G ⊆ Aut(R) be a finite subgroup. Assume that R and
G are in one of the cases in Proposition 3.8. If gldim(RG) <∞, then p(R,G) = 1.

Proof. By [KKZ, Lemmas 1.10 and 1.11], if RG has finite global dimension, then R
is free as a graded right RG-module. Since both R and RG are connected graded,
R can be written as R ∼= RG⊕M where M ∼= ⊕ns=1R

G(is) for some n and is ≤ −1,
where RG(is) is a graded RG-module by a shift of degree is. Hence as a graded
algebra EndRG(R) contains nonzero component of negative degree. So, EndRG(R)
can not be isomorphic to R ∗ G as graded algebras. By [BHZ1, Theorem 0.3],
p(R,G) ≤ 1. It follows from Proposition 3.8 that p(R,G) = 1. �
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4. Group actions with p(R,G) > 1

Let G be a finite group, and let R be a noetherian left G-module algebra. It
is possible that the pertinency algebra R(R,G) is trivial, that is, r(R,G) = R.
Indeed, this is the case when R/RG is a Hopf Galois extension (for the definition,
see [CFM]).

Proposition 4.1. Let G be a finite group and let R be a left G-module algebra.
Then r(R,G) = R if and only if R/RG is a Hopf Galois extension.

Proof. Let e = 1
|G|
∑
g∈G g ∈ kG. Note that r(R,G) = R if and only if ReR = R∗G,

if and only if RG and R are Morita equivalent, which is equivalent to the condition
that R/RG is Hopf Galois extension [CFM, Theorem 1.2]. �

Assume that R has finite GK-dimension. It is clear that if R/RG is a Hopf Galois
extension, then p(R,G) = GKdim(R). A weak version of a Hopf Galois extension,
called a Hopf dense Galois extension, was introduced in [HVZ1]. The next result
is a consequence of Lemma 3.2 and [HVZ1, Proposition 1.3].

Proposition 4.2. Assume that G is a finite group. Let R be a noetherian left
G-module algebra with finite GK-dimension. Then R/RG is a Hopf dense Galois
extension if and only if p(R,G) = GKdim(R).

The following result gives an example of Hopf dense Galois extensions.

Proposition 4.3. Let R be a neotherian connected graded algebra generated by
elements x1, . . . , xm of degree one with finite GK-dimension. Let G be the cyclic
group generated by the automorphism defined by σ(xi) = ξxi for i = 1, . . . ,m, where
ξ is an n-th primitive root of unity. Then p(R,G) = GKdim(R).

Proof. For any elements a1, . . . , an ∈ R1, we see σ(ai) = ξai for i = 1, . . . , n. By
Lemma 3.4, we have a1a2 · · · an ∈ r(R,G). Note that Rk = (R1)k for all k ≥ 1.
Then we see Rn ⊆ r(R,G), and hence Ri ⊆ r(R,G) for all i ≥ n. Therefore the
pertinency algebra R(R,G) is finite dimensional. Hence p(R,G) = GKdim(R). �

Remark 4.4. A similar result was obtained in [MU1, Theorem 4.5] when R is an
Artin-Schelter regular algebra of global dimension 2 (not necessary generated in
degree 1) by using different method. A McKay type equivalence of similar group
actions as in Proposition 4.3 on Artin-Schelter regular algebras was also established
in [Mo, Theorem 5.4].

Let R = k−1[x1, . . . , xn] (n ≥ 2) be the skew-symmetric algebra. Let σ be the
automorphism of R defined by σ(xi) = xi+1 for i = 1, . . . , n − 1 and σ(xn) = x1.
Let G ≤ Aut(R) be the subgroup generated by σ. The pertinency p(R,G) was
computed in [BHZ1]. We give an alternative computation in this paper.

We may choose another set of generators for R so that σ acts on the generators
diagonally. Let ξ be an n-th primitive root of unity. For j = 1, . . . , n, let yj =∑n
i=1 ξ

jixi. Then {y1, . . . , yn} is a set of linearly independent generators of R, and
σ(yj) = ξ−jyi for j = 1, . . . , n. For 1 ≤ k ≤ n− 1, we have

n−1∑
i=0

yijσ
k(yn−ij ) =

n−1∑
i=0

ξ−jk(n−i)ynj .
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If gcd(j, n) = 1, then n - jk. In this case,
∑n−1
i=0 ξ

−jk(n−i) = 0, and hence∑n−1
i=0 y

i
jσ
k(yn−ij ) = 0, which in turn implies that the sequences (1, yj , . . . , y

n−1
j )

and (ynj , y
n−1
j , . . . , yj) are pertinent under the G-action. Hence we have the follow-

ing result.

Lemma 4.5. Retain the notation as above. If chark - n and gcd(j, n) = 1, then
ynj ∈ r(R,G).

Let A be the subalgebra of R generated by x2
1, . . . , x

2
n. Then A is a subalgebra of

the center of R. Note that R is finitely generated as an A-module. For j = 1, . . . , n,
let Yj =

∑n
i=1 ξ

ijx2
i . Then Y1, . . . , Yn are linearly independent generators of A

(cf. [BHZ1]). Let A′ = A/(A
⋂

r(R,G)). It is clear that A′ is a subalgebra
of R(R,G) and R(R,G) is finitely generated as an A′-module since R is finitely
generated as an A-module. So, GKdim(R(R,G)) = GKdim(A′). For j = 1, . . . , n,
we have y2

j =
∑n
i=1 ξ

2ijx2
i . For n + 1 ≤ t ≤ 2n, we set Yt = Yt−n. Then we

see y2
j = Y2j for j = 1, . . . , n. If gcd(j, n) = 1, then ynj ∈ r(R,G) by Lemma

4.5, which implies y2n
j ∈ r(R,G), and hence Y n2j ∈ r(R,G). So, we obtain that

Y n2j = 0 in A′ if gcd(j, n) = 1. Now let T be the subalgebra of A′ generated by
elements of the set {Y1, . . . , Yn}\{Y2j | gcd(j, n) = 1}. Then A′ is finitely generated
as a T -module. Hence GKdim(A′) = GKdim(T ). Let t be the cardinality of the set
{Y2j | gcd(j, n) = 1}. The commutative subalgebra T is generated by n−t elements.
Hence GKdim(T ) ≤ n− t. Hence

p(R,G) = n−GKdim(R(R,G)) = n−GKdim(T ) ≥ t.
Note that

t =

{
φ(n), if 4 - n;
φ(n)

2 , if 4|n,
where φ(n) := n

∏
all primes p | n(1− 1

p ) is the Euler’s totient function (cf. [BHZ1]).

Summarizing the above narratives, we have provided a simpler proof for [BHZ1,
Theorem 5.7(iii)].

Theorem 4.6. [BHZ1] Assume chark - n (n ≥ 2). Let R = k−1[x1, . . . , xn], and
G the subgroup of Aut(A) generated by the automorphism σ defined by σ(xi) = xi+1

for 1 ≤ i ≤ n− 1 and σ(xn) = x1. Then we have

p(R,G) ≥

{
φ(n), if 4 - n;
φ(n)

2 , if 4 | n,

where φ(n) := n
∏

all primes p | n(1− 1
p ) is the Euler’s totient function.

Now we consider the down-up algebra: R = k〈x, y〉/(r1, r2), where r1 = x2y −
αxyx−βyx2 and r2 = xy2−αyxy−βy2x. The pertinencies of finite group actions
on R were computed in [BHZ2] when β 6= −1 or β = −1 and α = 2. We have the
following result.

Proposition 4.7. Let R be a down-up algebra such that β = −1 and α 6= 2. Let
G = {1, σ} where σ is the automorphism of R defined by σ(x) = ay and σ(y) = a−1x
with a 6= 0. If chark = 0, then p(R,G) = 3.

Proof. We see that the sequences (1,−x) and (ay, 1) are pertinent under the G-
action. Hence ay − x ∈ r(R,G). Therefore x = ay in the pertinency algebra
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R(R,G). By definition, x2y = αxyx − yx2 in R, and hence it holds in R(R,G).
Combining the relations x = ay and x2y = αxyx−yx2 in R(R,G), we see y3 = 0 in
R(R,G) since α 6= 2. Therefore, R(R,G) is finite dimensional. Hence p(R,G) = 3
as GKdim(R) = 3 (cf. [KMP]). �

Remark 4.8. The pertinency of a permutation group acting on k−1[x1, . . . , xn]
or on a down-up algebra was recently computed by Gaddis, Kirkman, Moore and
Won using different methods [GKMW].

5. Local cohomology

In this section, A is always a noetherian algebra, and a is an ideal of A. Denote by
ModA the category of right A-modules, by ModA◦ the category of left A-modules,
and by ModAe the category of A-A-bimodules. Let Γa = lim−→HomA(A/an,−) :

ModA −→ ModA. For M ∈ ModA, if Γa(M) = M , then we say that M is an
a-torsion module. If Γa(M) = 0, then we say that M is a-torsion-free.

We say that a has the right Artin-Rees (AR) property if one of the following
equivalent conditions holds [MR, 4.2.3]

(i) For every right ideal b of A, b ∩ an ⊆ ba for some n.
(ii) For every finitely generated right A-module M , and every submodule N ⊆

M , N ∩Man ⊆ Na for some n.
(iii) For every finitely generated right A-module M , and every submodule N ⊆

M , and for every integer s ≥ 0, there is an integer n > 0 such that N ∩
Man ⊆ Nas.

The next lemma is well-known, which follows from [MR, Theorem 4.2,2] directly.

Lemma 5.1. Let A be a noetherian algebra, and a an ideal of A. Let I be the
injective envelope of N ∈ ModA.

(i) If N is a-torsion-free, so is I.
(ii) Assume further that a has the right AR-property. If N is an a-torsion

module, so is I.

The functor Γa is left exact. We write the i-th right derived functor as

RiΓa = lim−→ExtiA(A/an,−).

Let M be a right A-module. Define

deptha(M) = inf{i|RiΓa(M) 6= 0} ∈ N ∪ {∞}.

Lemma 5.2. Let M be a right A-module. Assume deptha(M) = d > 0. Let

0 → M → I0 δ0→ I1 δ1→ · · · δ
n−1→ In

δn→ · · · be a minimal injective resolution of M .
Then Ii is a-torsion-free for i < d.

Proof. Since d > 0, M is a-torsion-free. Hence I0 is a-torsion-free. Assume Ii

(i < d− 1) is a-torsion-free. If Γa(Ii+1) 6= 0, then Γa(Ii+1)∩ ker δi+1 6= 0. Since Ii

is a-torsion-free, Ri+1Γa(M) = Γa(Ii+1) ∩ ker δi+1 6= 0, which contradicts with the
hypothesis that deptha(M) = d. �

Lemma 5.3. The derived functor RiΓa (i ≥ 0) commutes with direct sums.

Proof. Note that RiΓa = lim−→ExtiA(A/an,−). Since A is noetherian, ExtiA(A/an,−)

commutes with direct sums. The direct limit lim−→ also commutes with direct sums.

Hence RiΓa commutes with direct sums. �
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Let B be another algebra, and let M be a B-A-bimodule. Then Γa(M) is a
B-A-bimodule. By taking the injective resolution of the B-A-bimodule M , we see
that RiΓa(M) is a B-A-bimodule for every i ≥ 0. In particular, RiΓa(A) is an
A-A-bimodule for every i ≥ 0.

Corollary 5.4. Let B be an algebra, and let P be a projective right B-module. For
every B-A-bimodule M . We have RiΓa(P⊗BM) = P⊗BRiΓa(M) for every i ≥ 0.

We write D(ModA) for the (unbounded) derived category of right A-modules,
and Db(ModA) (resp. D−(ModA)) for the bounded (resp. bounded above) derived
category of right A-modules. M · stands for an object in the derived category of
right A-modules. Let M be a right A-module. Set M∗ = Homk(M,k). The exact
functor ( )∗ : ModA→ ModA◦ induces a triangulated functor ( )∗ : Db(ModA)→
Db(ModA◦) (resp. D−(ModA)→ D+(ModA◦)).

Theorem 5.5. Let A be a noetherian algebra, and let a be an ideal of A. Assume
that Γa has finite cohomological dimension, or injdimAA <∞ and injdimAA <∞.
Then we have the following statements.

(i) For every M · ∈ D−(ModA),

RΓa(M ·) ∼= M · ⊗LA RΓa(A)

in D−(ModA).
(ii) For every M · ∈ D−(ModA),

RΓa(M ·)∗ ∼= RHomA(M ·, RΓa(A)∗)

in D+(ModA◦).

Proof. The statement (ii) is similar to [VdB, Theorem 5.1]. We include the proof
for the completeness. Assume that Γa has finite cohomological dimension (the
proof is similar for the case that A has finite injective dimension in both sides).

Let 0 → I0 δ0→ · · · δ
n−1

→ In
δn→ · · · be an injective resolution of the A-A-bimodule

A. Since Γa has finite cohomological dimension, we see that ker δn is Γa acyclic for
some n. Let Ei = Ii for 0 ≤ i < n and En = ker δn. Denote by E· the complex

0 → E0 δ0→ · · · δ
n−2

→ En−1 δn→ En → 0. Then RΓa(A) = Γa(E·). Let P · be a
projective resolution of M . We have

M · ⊗LA RΓa(A) ∼= P · ⊗A Γa(E·).

On the other hand, consider the complex P · ⊗A E·. Since E· is bounded and
is quasi-isomorphic to A, P · ⊗A E· is quasi-isomorphic to M ·. Moreover, each
component of the complex P · ⊗ E· is Γa-acyclic by Corollary 5.4. Hence

RΓa(M ·) ∼= Γa(P · ⊗A E·) ∼= P · ⊗A Γa(E·).

Hence (i) follows. Finally, applying the functor ( )∗ to the isomorphism in (i), we
obtain Statement (ii). �

6. Quotient categories

Let A be a noetherian algebra, and let a be an ideal of A. We write ToraA for
the full subcategory of ModA consisting of a-torsion modules. Then ToraA is a
localizing subcategory of ModA. Define

QModaA =
ModA

ToraA
.
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The category QModaA is an abelian category. For any module M ∈ ModA, we
write M for the corresponding object in QModaA through the natural projection
functor π : ModA→ QModaA. Since ToraA is a localizing subcategory of ModA,
the projection functor π has a right adjoint functor ω : QModaA −→ ModA. For
M,N ∈ ModA, the hom-set in QModaA is defined by

HomQModa A(N ,M) = lim−→HomA(N ′,M/Γa(M))

where the limit runs over all the submodules N ′ of N such that N/N ′ is a-torsion.
Assume that N is a finitely generated A-module. If N/N ′ is a-torsion, then there
is an integer n such that Nan ⊆ N ′. Hence, in this case,

(6.0.1) HomQModa A(N ,M) = lim
n→∞

HomA(Nan,M/Γa(M)).

We refer the reader to the book [P] for the basic properties of the quotient category
QModaA.

In the rest of this section, R is a noetherian algebra, and G is a finite group
acting on R so that R is a left G-module algebra. Let B = R∗G be the skew group
algebra. Let r = r(G,R) be the G-radical of R. Set A = RG and a = r ∩ A. Then
A is a noetherian algebra and a is an ideal of A. Let e = 1

|G|
∑
g∈G g. Then A is

isomorphic to eBe through the isomorphism A→ eBe, a 7→ a⊗ e. Set b = r⊗ kG.
Since the radical r is stable under the G-action, b is an ideal of B.

The following facts are easy.

Lemma 6.1. (i) bn = rn ⊗ kG.
(ii) If M is a right B-module, then Γr(M) is a right B-submodule of MB. More-

over, Γb(M) = Γr(M) as right B-modules.

Since A is a subalgebra of R, aR is a right ideal of R. In general, aR is not a
two-sided ideal of R.

Definition 6.2. We say that a and r are cofinal, if (i) aR = Ra, and (ii) the
filtrations R ⊇ aR ⊇ a2R ⊇ · · · ⊇ anR ⊇ · · · and R ⊇ r ⊇ r2 ⊇ · · · ⊇ rn ⊇ · · ·
defined by the ideals aR and r of R, are cofinal, or equivalently, for each s, there is
an integer n such that rn ⊆ asR.

Lemma 6.3. Let R and G be as above. Assume that a and r are cofinal.

(i) If N is an a-torsion right A-module, then HomA(R,N) is a b-torsion right
B-module.

(ii) If in addition, a has the right AR-property, then ExtiA(R,N) is a b-torsion
right B-module for all i ≥ 0.

Proof. (i) For every f ∈ HomA(R,N), by Lemma 6.1, we only need to show that
frn = 0 for some n. Note that RA is finitely generated. We assume that R =
r1A + · · · + rtA for some r1, . . . , rt ∈ R. Since N is a-torsion, there is an integer
s such that f(ri)a

s = 0 for all i = 1, . . . , t. Since a and r are cofinal, there is an
integer n such that rn ⊆ Ras. Now for every x ∈ R, we have (frn)(x) = f(rnx) ⊆
f(rn) ⊆ f(Ras) = f(r1a

s + · · ·+ rta
s) = f(r1)as + · · ·+ f(rt)a

s = 0. It follows that
frn = 0. Hence HomA(R,N) is a b-torsion module.

(ii) Take a minimal injective resolution 0 → N → I0 → I1 → · · · . Since a
has the right AR-property, Ii is a-torsion for all i ≥ 0 by Lemma 5.1. By (i),
HomA(R, Ii) is b-torsion. Hence ExtiA(R,N) is b-torsion for all i ≥ 0. �
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Since R is isomorphic to Be through the isomorphism R → Be, r 7→ r ⊗ e, the
functor − ⊗B R : ModB −→ ModA is exact. By Lemma 6.1(i), M ⊗B R is an
a-torsion module if MB is a b-torsion module since a = r∩A. Hence −⊗BR induces
an exact functor:

−⊗B R : QModbB −→ QModaA.

Theorem 6.4. Let R be a noetherian algebra, and let G be a finite group acting
on R so that R is a left G-module algebra. Assume that a and r are cofinal, and a
has the right AR-property.

(i) The functor HomA(R,−) : ModA −→ ModB induces a functor

HomA(R,−) : QModaA −→ QModbB.

(ii) The functors −⊗B R and HomA(R,−) are quasi-inverse to each other.

Proof. (i) By Lemma 6.3, we see that HomA(R,−) sends a-torsion modules to b-
torsion modules. Let f : MA → NA be a morphism in ModA such that ker f
and coker f are a-torsion modules. We show next that the kernel and cokernel of
the morphism f∗ = HomA(R, f) : HomA(R,M) → HomA(R,N) are b-torsion. By
Lemma 6.3, ker f∗ = HomA(R, ker f) is b-torsion. Consider the exact sequences:

(6.4.1) 0→ ker f →M
g→ K → 0,

(6.4.2) 0→ K
ι→ N → coker f → 0,

where K = im f , ι is the inclusion map and g is the natural morphism induced by f .
By the exact sequence (6.4.1), we have an exact sequence 0 → HomA(R, ker f) →
HomA(R,M)

g∗→ HomA(R,K)→ Ext1
A(R, ker f). Since a has the right AR-property

and ker f is a-torsion, Ext1
A(R, ker f) is b-torsion by Lemma 6.3. Hence the quotient

module HomA(R,K)/ im g∗ is a b-torsion B-module. By the exact sequence (6.4.2),
we see that the quotient module HomA(R,N)/ im ι∗ is a b-torsion B-module since
it is a submodule of the b-torsion module HomA(R, coker f). Note that f∗ = ι∗g∗.
Thus im f∗ = ι∗(im g∗). Hence we have a short exact sequence

0 −→ im ι∗/ im f∗ −→ HomA(R,N)/ im f∗ −→ HomA(R,N)/ im ι∗ −→ 0.

Since ι∗ is injective, we have im ι∗/ im f∗ ∼= HomA(R,K)/ im g∗. As both the first
term and the third term are b-torsion, the middle term is b-torsion as well, which
is isomorphic to coker f∗. Now by the definition of the quotient categories, we see
that the functor HomA(R,−) induces a functor between the quotient categories as
desired.

(ii) Note that R is isomorphic to Be through the map r 7→ r ⊗ e, and A is
isomorphic to eBe via the map a 7→ a ⊗ e. in subsequent, we identify the B-A-
bimodule R with Be via the above maps.

For any N ∈ ModA, we have

HomA(R,N)⊗B R ∼= HomeBe(Be,N)⊗B Be
∼= HomeBe(Be,N)⊗B HomB(eB,B)
∼= HomB(eB,HomeBe(Be,N))
∼= HomeBe(eB ⊗B Be,N)
∼= N.

Hence we obtain that HomA(R,N )⊗B R is naturally isomorphic to N .
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For a B-module M , we have HomA(R,M ⊗B R) = π(HomA(R,M ⊗B R)).
Similarly we have the following isomorphisms:

HomA(R,M ⊗B R) ∼= HomeBe(Be,M ⊗B Be)
∼= HomeBe(Be,HomB(eB,M))
∼= HomB(Be⊗eBe eB,M).

Consider the exact sequence

(6.4.3) 0→ L→ Be⊗eBe eB
m→ BeB → 0,

(6.4.4) 0→ BeB
τ→ B → B/BeB → 0,

where m is the multiplication of the algebra B, τ is the inclusion map and L is the
kernel of m.

Since b ⊆ BeB, B/BeB is b-torsion on both sides. Applying the functors
− ⊗B Be and eB ⊗B − to the exact sequence (6.4.3), we obtain that Le = 0
and eL = 0. Hence L is b-torsion both as a right B-module and as a left B-module.
Since B is noetherian and Be is finitely generated as an eBe-module, both B/BeB
and L are finitely generated as right B-modules. It follows from the exact sequences
(6.4.3), (6.4.4) and Lemma 6.6 below, that the kernels and cokernels of both maps
HomB(τ,M) : M −→ HomB(BeB,M) and HomB(m,M) : HomB(BeB,M) −→
HomB(Be⊗eBe eB,M) are b-torsion. Therefore, we obtain a natural isomorphism
in QModbB:

π(HomB(Be⊗eBe eB,M)) ∼=M.

Hence we have a natural isomorphism HomA(R,M⊗B R) ∼=M. �

Remark 6.5. Theorem 6.4 may be compared to [BHZ1, Theorem 0.6]. The torsion
modules considered in [BHZ1, Theorem 0.6] are those B-modules (or A-modules)
with GK-dimensions less or equal to d ≥ 0. Assume that GKdimR(R,G) ≤ d. If
M is a b-torsion module, then one sees that GKdimM ≤ d. The converse in general
is not true. Hence the torsion classes considered in Theorem 6.4 are contained in
the torsion classes considered in [BHZ1, Theorem 0.6].

Lemma 6.6. Assume that X is a B-B-bimodule which is finitely generated as
a right B-module. If X is b-torsion as a left B-module, then ExtjB(X,M) is a
b-torsion right B-module for all i ≥ 0 and any right B-module M .

Proof. Since X is finitely generated as a right B-module, we have X = x1B+ · · ·+
xtB for some x1, . . . , xt ∈ X. As X is b-torsion as a left B-module, there is an
integer n such that bnxi = 0 for all i = 1, . . . , t. For any element f ∈ HomB(X,M),
we have (fbn)(xi) = f(bnxi) = 0 for i = 1, . . . , t. Hence HomB(X,M) is b-
torsion. Now take an injective resolution 0 → M → I0 → I1 → · · · . We see
that HomB(X, Ij) is b-torsion for all j ≥ 0. Hence ExtjB(X,M) is b-torsion for all
j ≥ 0. �

It is known that any ideal of a noetherian commutative algebra has the AR-
property (cf. [M, Theorem 8.5]). The condition that a and r are cofinal in the
above theorem is necessary when the algebra R is commutative.

Theorem 6.7. Assume that R is a noetherian commutative algebra and G is a
finite group acting on R by automorphisms. Then the following are equivalent.
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(i) The functor −⊗B R : QModbB −→ QModaA is an equivalence of abelian
categories.

(ii) The ideal a of A and the ideal r of R are cofinal.

Proof. That (ii) implies (i) has been proved in Theorem 6.4. Now assume that (i)
holds. Write F for − ⊗B R. For s ≥ 0, let M = R/asR. Note that asR is a right
B-submodule of R. Hence M is a right B-module. Then F(M) = π(M ⊗B R) = 0
since (M ⊗B R)as = M ⊗B Ras = Mas ⊗B R = 0. Therefore M = 0, equivalently,
M is an r-torsion module. Since M is finitely generated, there is an integer n such
that Mrn = 0, that is, rn ⊆ asR. �

Example 6.8. Let R = k[x, y] and let G = {1, g} where g is the automorphism
of R defined by g(x) = −x and g(y) = −y. It is easy to see that (1, x) and
(x, 1) are pertinent, hence x ∈ r(R,G). Similarly, y ∈ r(R,G). Therefore r :=
r(R,G) = Rx + Ry. The invariant subalgebra A := RG is the subalgebra of R
consisting of elements of even degrees (here, we view x and y of degree 1). Then
a = r ∩A = Ax2 +Ay2 +Axy. Now it is easy to see that a and r are cofinal.

Example 6.9. Let R = k−1[x, y, z], and let G = {1, g} where g is the automor-
phism of R defined by g(x) = x, g(y) = −y and g(z) = −z. Then the invariant
subalgebra A = k[x, y2, z2, yz]. As in the above example, y, z are in the G-radical
r = r(R,G). Let i = Ry + Rz. Then i ⊆ r. Note that i is closed under G-action,
hence R/i is a G-module algebra. One sees that the induced G-action on k[x] ∼= R/i
is trivial. Hence by Lemma 2.2, i = r. Then a = r ∩ A = Ay2 + Az2 + Ayz. Since
A is commutative, a has the (right) AR-property. Moreover, one sees that a and r
are cofinal.

Example 6.10. Let R = k−1[x, y, z], and let G = {1, g, g2} where g is the auto-
morphism of R defined by g(x) = x, g(y) = ωy and g(z) = ω2z in which ω is a
third primitive root of unity. Then it is easy to see that the invariant subaglebra A
is generated by x, y3, z3, yz. We next compute the G-radical of R. An easy compu-

tation shows (y2, y, 1)
G∼ (1, y, y2), (z2, z, 1)

G∼ (1, z, z2) and (yz,−z, y)
G∼ (1, y, z).

Hence y2, z2, yz ∈ r. Let i be the ideal of R generated by y2, z2, yz. Then i ⊆ r.
Consider the quotient algebra R/i. Note that R/i is also a G-module algebra and
the invariant subalgebra is isomorphic to k[x]. As a left k[x]-module, R/i is isomor-
phic to k[x]⊕ k[x]y ⊕ k[x]z. By Proposition 2.6, R/i is G-semisimple. By Lemma
2.2, r = i. Then a = r∩A = Ay3 +Az3 +Ayz. Since y3, z3, yz are normal elements
in A, a has the right AR-property (cf. [MR, Proposition 4.2.6]). Also, it is easy to
see that a and r are cofinal.

7. Relative Cohen-Macaulay algebras

Let R be a noetherian algebra, and let G be a finite group acting on R by
automorphims. Let A = RG be the invariant subalgebra. As before, r = r(R,G) is
the G-radical of R and a = r ∩A. Set B = R ∗G and b = r⊗ kG.

Setup 7.1. In this section, we assume that the following conditions hold:

(i) a has the right AR-property;
(ii) a and r are cofinal.

Remark 7.2. If a = a1A+ · · ·+asA, where a1, . . . , as are normal elements in both
A and R, then Setup 7.1(i) is automatically satisfied.
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Lemma 7.3. Both ideals r and b have the right AR-property.

Proof. Let M be a finitely generated right R-module, and let N be a B-submodule
of M . Since R is finitely generated as a right A-module, both M and N are finitely
generated as right A-modules. By Setup 7.1(i), aR = Ra. Let I = Ra. Then
In = Ran for n > 0. Hence MIn = Man. Since a has the right AR-property,
MIn ∩N = Man ∩N ⊆ Na ⊆ NI for some n > 0. Therefore I has the right AR-
property. Since the filtrations I ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · and r ⊇ r2 ⊇ · · · ⊇ rn ⊇ · · ·
are cofinal, it follows that r has the right AR-property.

Similarly, we may show that b has the right AR-property by noticing that Kbn =
Krn for every finitely generated right B-module K. �

Let M be a right A-module, and let

(7.3.1) 0→M → I0 δ0→ I1 δ1→ · · · → Ii
δj→ · · ·

be an injective resolution of M . Let T i = Γa(Ii) for each i. By Lemma 5.1, we
see that T i is an injective a-torsion module. Hence, for each i ≥ 0, we have a
decomposition Ii = T i ⊕ Ei where Ei is an a-torsion-free injective module. The
differential δi has a decomposition δi = δiE + δiT + f i where δiE : Ei −→ Ei+1,

δiT :: T i −→ T i+1 and f i : Ei −→ T i+1. Since δi+1δi = 0, we have δi+1
E δiE = 0,

δi+1
T δiT = 0 and f i+1δiT + δi+1

E f i = 0. Let E· (resp. T ·) denote the complex with
differential δ·E (resp. δ·T ). Then

(7.3.2) f · : E·[−1] −→ T ·

is a morphism of complex, and the injective resolution I · = cone(f ·).
The next two lemmas are well-known. The proofs are similar to that of [AZ,

Proposition 7.2], where the algebras considered are graded.

Lemma 7.4. Retain the notation as above. Then RiΓa(M) = Hi(T ·) for all i ≥ 0,
where Hi(−) is the i-th cohomology of the complex.

Recall from Section 6 that π is the projection functor ModA −→ QModaA, and
its right adjoint functor is ω : QModaA −→ ModA. For M ∈ ModA, we write M
for the object π(M). From the decomposition of the injective resolution (7.3.1) of
M above, we obtain an injective resolution of M in QModaA (cf. [P, Corollary
5.4])

0→M→ E0 → E1 → · · · → E i → · · ·
where E i = π(Ei) for all i ≥ 0.

Lemma 7.5. Retain the notation as above. Then ExtiQModa A
(A,M) ∼= Hi(E·)

for all i ≥ 0.

Proof. The same proof of [AZ, Proposition 7.2(2)] applies. �

Proposition 7.6. If R has finite global dimension, then the torsion functor Γa has
finite cohomological dimension.

Proof. Assume that the global dimension of R is d. For N ∈ ModB, let 0→ N →
Q0 → · · · → Qd → 0 be an injective resolution. By Lemma 7.3, b has the right
AR-property. Hence the injective envelope of a b-torsion B-module is still b-torsion
by Lemma 5.1. By [P, Corollary 5.4], 0 → π(N) → π(Q0) → · · · → π(Qd) → 0 is
an injective resolution in QModbB. Hence the global dimension of QModbB is not
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larger than d. Setup 7.1 implies that the conditions in Theorem 6.4 are satisfied.
Hence the abelian categories QModaA and QModbB are equivalent. Therefore,
the global dimension QModaA is not larger than d.

For M ∈ ModA, let

0→M → I0 δ0→ I1 δ1→ · · · → Ii
δj→ · · ·

be an injective resolution. As we have seen that I · = cone(f ·) where f · : E· → T ·

is the morphism given in (7.3.2). Since the global dimension of QModaA is not
larger than d, we have ExtiQModa A

(π(A), π(M)) = 0 for all i > d. Then Lemma

7.5 implies that Hi(E·) = 0 for i > d. From the exact sequence 0 → T · →
I · → E· → 0 of complexes, we obtain that Hi(T ·) = 0 for i > d + 1. Now
RiΓa(M) = Hi( lim

n→∞
HomA(A/an, I ·)) = Hi(T ·) = 0 for i > d + 1. Therefore Γa

has finite cohomological dimension. �

Note that the global dimension of the invariant subaglebra A is often infinite even
if the global dimension of R is finite. For example, it is well known that a non-
trivial finite subgroup of the special linear group SLn(k) acting on the polynomial
algebra k[x1, . . . , xn] yields a Gorenstein invariant subalgebra with infinite global
dimension. More general, it is known that a finite group acting on an Artin-Schelter
regular algebra with trivial homological determinant gives rise to an Artin-Schelter
Gorenstein invariant subalgebra (cf. [JZ]). Hence it is reasonable to consider the
Cohen-Macaulay modules over the invariant subalgebra. Similar to the concept
introduced in [Z, CH], we make the following definition.

Definition 7.7. We say that the invariant subalgebra A = RG is (right) a-Cohen-
Macaulay of dimension d if RiΓa(A) = 0 for i 6= d.

Example 7.8. Recall from Example 6.9 that the ideals a and r satisfy the condi-
tions in Setup 7.1. Note that y2, z2, yz are normal elements in R. The invariant
subalgebra A = k[x, y2, z2, yz] = k[x] ⊗ Λ where Λ = k[u, v, w]/(uv − w2). Under
this isomorphism, a ∼= k[x]⊗m where m = Λu+Λv+Λw. It is well known that Λ has
injective dimension 2. Moreover, RiΓm(Λ) = 0 for i = 0, 1 and R2Γm(Λ) = E(k),
where E(k) is the injective envelope of the trivial Λ-module k. Thus, we have:

RiΓa(A) ∼= lim
n→∞

Exti
k[x]⊗Λ(k[x]⊗ Λ/mn,k[x]⊗ Λ) ∼= k[x]⊗ lim

n→∞
ExtiΛ(Λ/mn,Λ).

Hence RiΓa(A) = 0 for i 6= 2 and R2Γa(A) ∼= k[x]⊗ E(k).

Theorem 7.9. Assume that R has finite global dimension and A is a-Cohen-
Macaulay of dimension d. Set D = RdΓa(A). For M ∈ ModA,

RiΓa(M) ∼= TorAd−i(M,D)

for all i ≥ 0.

Proof. By Proposition 7.6 and Theorem 5.5, we have RΓa(M) ∼= M ⊗LA RΓa(A) ∼=
M ⊗LA D[−d]. Taking the cohomology of the complexes, we obtain the desired
isomorphisms. �

8. Extension groups in the quotient categories

Let S be a noetherian algebra, and let s be an ideal of S. Assume that s has the
right AR-property. We have the following computation of extension groups in the
quotient category.
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Lemma 8.1. If N is a finitely generated right S-module and M is a right S-module,
then ExtiQMods S

(N ,M) = lim
n→∞

ExtiS(Nsn,M) for i ≥ 0.

Proof. Let T be an injective s-torsion S-module. We claim that lim
n→∞

HomS(Nsn, T ) =

0. Indeed, applying the functor HomS(−, T ) to the exact sequence 0 → Nsn →
N → N/Nsn → 0, we obtain the exact sequence 0 → HomS(N/Nsn, T ) →
HomS(N,T )→ HomS(Nsn, T )→ 0. Taking the direct limit we have

0→ lim
n→∞

HomS(N/Nsn, T )→ HomS(N,T )→ lim
n→∞

HomS(Nsn, T )→ 0.

Since N is finitely generated, for any S-module homomorphism f : N → T , there
is an integer n such that f(Nsn) = f(N)sn = 0. Hence Nsn ⊆ ker f . Therefore,
f : N → T factors though N/Nsn. Thus the morphism lim

n→∞
HomS(N/Nsn, T ) →

HomS(N,T ) in the exact sequence above is an epimorphism. So, the claim holds.
We continue to prove the lemma. Take a minimal injective resolution of the right

S-module M as follows:

(8.1.1) 0→M → I0 → I2 → · · · → Ik → · · · .
Since s has the right AR-property, the injective module Ii (i ≥ 0) has a decomposi-
tion Ii = T i⊕Ek with T i a s-torsion submodule and Ei a s-torsion free submodule.
Applying the projection functor π : ModS −→ QMods S to the projective resolu-
tion (8.2.1), we obtain the following exact sequence

(8.1.2) 0→M→ E0 → E2 → · · · → E i → · · · .
Since Ei is s-torsion free, E i is injective in QMods S for all i ≥ 0. Hence the exact
sequence (8.1.2) provides an injective resolution of M in QMods S. Applying the
functor HomQMods S(N ,−) to (8.1.2), we have the following complex

(8.1.3) 0→ HomQMods S(N , E0)→ · · · → HomQMods S(N , E i)→ · · · .
By Equation (6.0.1), the complex (8.1.3) is isomorphic to the following complex

(8.1.4) 0→ lim
n→∞

HomS(Nsn, E0)→ · · · → lim
n→∞

HomS(Nsn, Ei)→ · · · .

By the above claim, (8.1.4) is isomorphic to

(8.1.5) 0→ lim
n→∞

HomS(Nsn, E0⊕T 0)→ · · · → lim
n→∞

HomS(Nsn, Ei⊕T i)→ · · · ,

which is equivalent to

(8.1.6) 0→ lim
n→∞

HomS(Nsn, I0)→ · · · → lim
n→∞

HomS(Nsn, Ii)→ · · · .

By (8.1.1), the i-th cohomology of the complex (8.1.6) is lim
n→∞

ExtiS(Nsn,M). �

Throughout the rest of this section, we let G be a finite group, and let R be a
noetherian left G-module algebra. As before, write B = R∗G, A = RG, r = r(R,G),
b = r ⊗ kG and a = A ∩ r. Assume that the radical r has the right AR-property
(contemporarily, we don’t assume that a and r are cofinal). It follows from the
proof of Lemma 7.3 that b has the right AR-property as well.

Let N and M be B-modules. Assume that N is finitely generated. Note that
we may view N and M as right R-modules. Then there is a right G-action ↼ on
HomR(N,M) defined by

(8.1.7) (f ↼ g)(n) = f(ng−1)g, for all g ∈ G, f ∈ HomR(N,M), n ∈ N.
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With this right G-action on HomR(N,M), we have (cf. [CFM])

HomB(N,M) = HomR(N,M)G,

where the right hand side is the G-invariant subspace. Consider the Hom-sets in
the quotient categories QModrR and QModbB. For any n ≥ 0, Nrn is a right
B-submodule, and hence HomR(Nrn,M) has a right G-action. It is easy to see
that the direct limit system lim

n→∞
HomR(Nrn,M) is compatible with the right G-

actions. By Lemma 8.1, HomQModr R(N ,M) = lim
n→∞

HomR(Nrn,M) has a right

G-action. Moreover, since Nrn = Nbn, we have

HomQModb B(N ,M) = lim
n→∞

HomB(Nbn,M)

= lim
n→∞

HomR(Nrn,M)G

= ( lim
n→∞

HomR(Nrn,M))G

= HomQModr R(N ,M)G,

where the last equality holds because G is a finite group. Summarizing the above
arguments, we obtain the following result.

Lemma 8.2. Let N and M be right B-modules. Assume that N is finitely gener-
ated. Then there is a right G-action on HomQModr R(N ,M) induced from (8.1.7).
Moreover, we have

HomQModb B(N ,M) ∼= HomQModr R(N ,M)G.

If M ′ is another B-module and f : M → M ′ is a B-module homomorphism,
one sees that f is compatible with the right G-module structures on HomR(N,M)
and HomR(N,M ′). Moreover, f is compatible with the direct limit systems in the
above narratives. Hence f induces a G-module homomorphism

HomQModr R(N ,M) −→ HomQModr R(N ,M′).

Next we show that ExtiQModr R
(N ,M) has a right G-action as well, and the

above isomorphism may be extended to the extension groups. Take a minimal
injective resolution of the right B-module M as follows:

(8.2.1) 0→M → I0 → I2 → · · · → Ik → · · · .
Since b has the right AR-property, as we have seen in the proof of Lemma 8.1, the
injective module Ii (i ≥ 0) has a decomposition Ii = T i ⊕ Ei with T i a b-torsion
submodule and Ei a b-torsion-free submodule. Then we have an injective resolution
of M in QModbB:

(8.2.2) 0→M→ E0 → E1 → · · · → E i → · · · .

Proposition 8.3. Let N and M be right B-modules. Assume that N is finitely
generated. The following statements hold:

(i) ExtiQModr R
(N ,M) has a right G-action for all i ≥ 0.

(ii) Assume that chark - |G|. Then ExtiQModr R
(N ,M)G ∼= ExtiQModb B

(N ,M)
for all i ≥ 0.

Proof. (i) Note that a B-module is injective if and only if it is injective as an R-
module (cf. [HVZ2, Proposition 2.6]). Then we may view (8.2.1) as an injective
resolution of the R-module M in ModR. Since a B-module is b-torsion-free if and
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only if it is r-torsion-free as an R-module, the exact sequence (8.2.2) is also an
injective resolution ofM in QModrR. Applying the functor HomQModr R(N ,−) to
the injective resolution (8.2.2), we obtain a complex of right G-modules

(8.3.1) 0→ HomQModr R(N , E0)→ · · · → HomQModr R(N , E i)→ · · · .

Taking the cohomology of the above complex, we obtain ExtiQModr R
(N ,M) which

inherits the right G-module structure on HomQModr R(N , E i). Statement (i) follows.

(ii) Applying the functor HomQModb B(N ,−) to (8.2.2), we obtain the following
complex

(8.3.2) 0→ HomQModb B(N , E0)→ · · · → HomQModb B(N , E i)→ · · · .
By Lemma 8.2, the complex (8.3.2) is isomorphic to the following complex

(8.3.3) 0→ HomQModr R(N , E0)G → · · · → HomQModr R(N , E i)G → · · · .
Taking the cohomology of the complex (8.3.3), we obtain the desired isomorphisms
in (ii). �

Recall that a noetherian algebra S with finite GK-dimension is called a right
GKdim-Cohen-Macaulay algebra if for any finitely generated right S-module K,
GKdim(K) + jS(K) = GKdim(S), where jS(M) = min{i|ExtiS(M,S) 6= 0}.

Now we return to our noetherian algebra R with a G-action. Assume that the
GK-dimension on right R-modules is exact, that is, if 0 → N → M → K → 0
is an exact sequence of finitely generated right R-modules, then GKdim(M) =
max{GKdim(N),GKdim(K)}. For instance, if R is N-graded or filtered with an
ascending locally finite filtration, then the GK-dimension is exact (cf. [KL]). For
any integer n ≥ 1, we have GKdim(R/r) = GKdim(R/rn). If, furthermore, R
is right GKdim-Cohen-Macaulay, then jR(R/rn) = GKdim(R) − GKdim(R/rn) =
p(R,G). We next show that depthr(R) is often equal to the pertinency p(R,G).

Proposition 8.4. Let G be a finite group, and let R be a noetherian G-module
algebra with finite GK-dimension. Assume that R is GKdim-Cohen-Macaulay and
that the GK-dimension is exact on right R-modules. Then depthr(R) = p(R,G).

Proof. Let p = p(R,G). As we know, jR(R/rn) = p for n > 0. It follows that
ExtiR(R/rn, R) = 0 for all i < p. Hence RiΓr(R) = lim

n→∞
ExtiR(R/rn, R) = 0 for all

i < p. Let 0→ R→ I0 δ0→ I1 δ1→ · · · → Ii
δi→ · · · be a minimal injective resolution of

R. By Lemma 5.2, Ii is r-torsion-free for all i < p. Since jR(R/rn) = p for all n > 0,
Γr(I

p) 6= 0. Then Γr(I
p)∩ker δp 6= 0 since I · is a minimal injective resolution. Since

Ii is r-torsion-free for all i < p, it follows that RpΓr(R) = Γr(I
p)∩ker δp 6= 0. Hence

depthr(R) = p. �

Remark 8.5. In Proposition 8.4, we don’t need the assumption that r has the
right AR-property.

The above proposition shows that RiΓr(R) = 0 for i < p(R,G). Sometimes the
local cohomology of R will be concentrated in degree p = p(R,G) as shown in the
next example.

Example 8.6. Let R = k[x, y, z] and let σ be the automorphism of R defined by
σ(x) = x, σ(y) = −y and σ(z) = −z. Let G = 〈σ〉. Then r = r(R,G) = Ry + Rz,
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and p(R,G) = 2. Let Λ = k[y, z], and m = (y, z) the maximal ideal of Λ generated
by y, z. For any n ≥ 1, R/rn ∼= k[x]⊗ Λ/mn. Hence

RiΓr(R) = lim
n→∞

ExtiR(R/rn, R)

= lim
n→∞

Exti
k[x]⊗Λ(k[x]⊗ Λ/mn,k[x]⊗ Λ)

∼= k[x]⊗ lim
n→∞

ExtiΛ(Λ/mn,Λ).

Now lim
n→∞

ExtiΛ(Λ/mn,Λ) = 0 for i 6= 2, and lim
n→∞

Ext2
Λ(Λ/mn,Λ) ∼= E(k), where

E(k) is the injective envelope of k as a Λ-module.

Definition 8.7. Let G be a finite group, and let R be a noetherian G-module
algebra with finite GK-dimension. If RiΓr(R) = 0 for all i 6= p(R,G), then we call
R a G-Cohen-Macaulay algebra.

We may now prove the main result of this section. Recall that B = R ∗ G,
A = RG, r = r(R,G), b = r⊗ kG and a = A ∩ r.

Theorem 8.8. Let G be a finite group, and R a noetherian left G-module algebra
with finite GK-dimension. Assume that chark - |G| and R satisfies Setup 7.1. If
R is G-Cohen-Macaulay, then A is a-Cohen-Macaulay of dimension p(R,G).

Proof. By Theorem 6.4, we have an equivalence of abelian categories

−⊗B R : QModaA −→ QModbB.

Under this equivalence, the object R ∈ QModbB corresponds to A ∈ QModaA,
where R (resp. A) is the corresponding object of the right module RB ∈ ModB
(resp. AA ∈ ModA) in the quotient category. Then we have isomorphisms:

(8.8.1) ExtiQModa A
(A,A) ∼= ExtiQModb B

(R,R)

for all i ≥ 0. By Proposition 8.3, ExtiQModb B
(R,R) ∼= ExtiQModr R

(R,R)G for all
i ≥ 0. Hence we have

(8.8.2) ExtiQModa A
(A,A) ∼= ExtiQModr R

(R,R)G,

for all i ≥ 0. Applying the functor HomR(−, R) to the exact sequence

0→ rn → R→ R/rn → 0,

we obtain the following exact sequence

0→ HomR(R/rn, R)→ R→ HomR(rn, R)→ Ext1
R(R/rn, R)→ 0,

and isomorphisms

ExtiR(rn, R) ∼= Exti+1
R (R/rn, R), for i ≥ 1.

Taking the direct limits and applying Lemma 8.1, we obtain the exact sequence

(8.8.3) 0→ Γr(R)→ R→ HomQModr R(R,R)→ R1Γr(R)→ 0,

and isomorphisms

(8.8.4) ExtiQModr R
(R,R) ∼= Ri+1Γr(R), for i ≥ 1.

If p = p(R,G) ≥ 2, then by (8.8.4), Exti−1
QModr R

(R,R) = 0 for all i 6= p and i ≥ 2.

By (8.8.2), Exti−1
QModa A

(A,A) = 0 for all i 6= p and i ≥ 2. Since a has the right
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AR-property, the exact sequence (8.8.3) and the isomorphisms (8.8.4) also hold if
we replace r by a, and R by A. Hence RiΓa(A) = 0 for i ≥ 2 and i 6= p.

Since depthr(R) ≥ 2, it follows that Γr(R) = R1Γr(R) = 0. We see that the
natural morphism R → HomQModr R(R,R) in (8.8.3) is an isomorphism, which
implies that the natural morphism A→ HomQModa A(A,A) is an isomorphism since

R = AG and HomQModa A(A,A) ∼= HomQModr R(R,R)G by (8.8.2) and Lemma
8.2. Replacing r by a, and R by A in the exact sequence (8.8.3), we obtain that
R1Γa(A) = 0 and Γa(A) = 0.

If p = p(R,G) = 1, then by (8.8.4), ExtiQModr R
(R,R) = 0 for all i ≥ 1. Hence by

(8.8.2), ExtiQModa A
(A,A) = 0 for all i ≥ 1, which implies that RiΓa(A) = 0 for all

i ≥ 2. Since Γr(R) = 0, we see that the natural morphism R→ HomQModr R(R,R)
in (8.8.3) is a monomorphism. This implies that the natural morphism A →
HomQModa A(A,A) is also a monomorphism. Hence Γa(A) = 0.

Finally, if p = p(R,G) = 0, similar to the above case, we have ExtiQModa A
(A,A) =

0 for all i ≥ 1. Since R1Γr(R) = 0, we see that the natural morphism R →
HomQModr R(R,R) in (8.8.3) is an epimorphism, implying that the natural mor-

phism A→ HomQModa A(A,A) is also an epimorphism. Hence R1Γa(A) = 0. �

Corollary 8.9. Let R be a G-Cohen-Macaulay algebra. Assume that chark - |G|
and R satisfies Setup 7.1. If R has finite global dimension, then we have

RiΓa(M) ∼= TorAp−i(M,D)

for M ∈ ModA and i ≥ 0, where p = p(R,G) and D = RpΓa(A).

Proof. This is a direct consequence of Theorems 8.8 and 7.9. �

Remark 8.10. Theorem 8.8 is similar to [HZ, Theorem 4.5], where the authors
considered the invariant subalgebras of Hopf dense Galois extensions. We are ex-
pecting to proved a more general result covering both results in [HZ] and in the
present paper in the future. We thank the referee for pointing out the possibility
to develop a general theory in this direct.
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