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Data in medical sciences often have a hierarchical structure with lower-level units (e.g. children) nested in
higher-level units (e.g. departments). Several specific but frequently studied settings, mainly in longitudinal
and family research, involve a large number of units that tend to be quite small, with units containing only
one element referred to as singletons. Regardless of sparseness, hierarchical dataaregenerallyshould be
analysed withappropriate methodology such as e.g.linear mixed models.
Using a simulation study, based on the structure of a data example on ceftriaxone consumption in hospital-
ized children, we assess the impact of an increasing proportion of singletons (0− 95%), in data with a low,
medium or high intracluster correlation, on the stability of linear mixed models parameter estimates, confi-
dence interval coverage and F test performance. Some techniques that are frequently used in the presence of
singletons include ignoring clustering, dropping the singletons from the analysis and grouping the singletons
into an artificial unit. We show that both the fixed and random effects estimates and their standard errors
are stable in the presence of an increasing proportion of singletons. We demonstrate that ignoring clustering
and dropping singletons should be avoided as they come with biased standard error estimates. Grouping the
singletons into an artificial unit might be considered, although the linear mixed model performs better even
when the proportion of singletons is high.
We concludethat in the presenceof a high proportionof singletons,the linear mixed model is stable.
Ignoringclustering,groupingor removingsingletonsshouldbeavoidedat all times. We conclude that the
linear mixed model is stable in the presence of singletons when both lower- and higher level sample sizes are
fixed. In this setting, the use of remedial measures, such as ignoring clustering and grouping or removing
singletons, should be dissuaded.

Key words: F test; Hierarchical data; Intracluster correlation; Performance characteristics;
Sparseness;
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1 Introduction

Data that are collected in e.g. medical sciences often have ahierarchical structure. This means that units at a
lower level (secondary units) are nested within units at a higher level (primary units) (Snijders and Bosker,
1999). Some well-known examples of such hierarchies include patients nested within hospitals, workers
nested within factories and animals nested within litters.Multi-level hierarchies also occur frequently (e.g.
students nested within classes within schools within cities within countries). As subjects that are nested
within one unit tend to be more alike than subjects from different units, the observations are typically no
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2 R. Bruyndonckxet al.: Evaluation of the linear mixed model

longer independent. Ignoring the correlation within clusters will usually cause a downward bias in the
standard errors, resulting in possible misinterpretationof the effect of predictor variables (Garson, 2013;
Hox, 1998; Kreft and De Leeuw, 1998; Moulton, 1986). To account for the hierarchical nature of the data,
linear mixed models are often used (Goldstein, 2003; Verbeke and Molenberghs, 2009).
Fitting such models can be done with a statistical software package such asSAS. A description on the
use of theSAS PROC MIXED procedure to fit a linear mixed model is given by Littellet al. and Singer
(Littell et al., 2006; Singer, 1998). For a comprehensive elaboration on linear mixed models, we refer to
the books by Snijders and Bosker, Goldstein, Raudenbush andBryk, Hox and Wanget al. (Goldstein,
2003; Hox, 2010; Raudenbush and Bryk, 2002; Snijders and Bosker, 1999; Wang et al., 2012). For some
illustrations on the application of linear mixed models to hierarchical data we refer to Goldsteinet al.,
Renardet al. and Lee (Goldstein et al., 1993; Lee, 2000; Renard et al., 1998).

The study presented in this paper was motivated by the Ceftriaxone data, which contain information on
doses (expressed in mg/kg/day) of ceftriaxone prescribed to hospitalized children (one day surveillance in
September2011). These data were collected within work package5 (European Neonatal and Paediatric An-
timicrobial Point Prevalence Survey) of the ARPEC project (Antibiotic Resistance and Prescribing in Euro-
pean Children), which was set up to improve the quality of antibiotic prescribing and reduce the prevalence
of antimicrobial resistance in European children, and is described in detail elsewhere (Versporten et al.,
2013). The Ceftriaxone data include329 children hospitalized in124 departments. Figure1 shows that in
most departments, only few children were prescribed with ceftriaxone, which resulted in47.6% singleton
departments.

[Figure 1 about here.]

Most multi-level settings consist of a small number of unitsat the primary level that tend to be quite
large. When these units contain only a small number of secondary units, this is referred to as primary
unit sparseness. Examples are macro-geographical regionscontaining only a few countries (Australia) or
schools in which only a few classes decide to participate in astudy. Regardless of primary unit sparse-
ness, such data are generally analysed with linear mixed models in which F tests are used to evaluate the
significance of the included explanatory variables. We havehowever demonstrated that the F test becomes
unstable in the presence of primary unit sparseness and the permutation test is a more trustworthy alterna-
tive (Bruyndonckx et al., 2016).

Another specific but frequently studied setting (e.g. family research) involves a large number of units
that tend to be quite small. In the Ceftriaxone data,47% of included departments contain only one child
(referred to as singleton). Regardless of sparseness caused by the high proportion of singletons, such data
are generally analysed with a linear mixed model. Several studies to determine the impact of small cluster
sizes on different aspects of the linear mixed model showed that both residual and random effects variance
were biased when the number of subjects within the units is small. The impact on fixed effects appeared to
be smaller, as both fixed effects estimates and their standard error were unbiased in the presence of small
clusters (Bell et al., 2014; Clarke, 2008; Maas and Hox, 2005). Although the small sample setting has been
extensively studied and renders promising results, we are specifically interested in the setting with different
proportions of singletons. To our knowledge, only a few studies assessed the impact of singletons on the
linear mixed model. Pickering and Weatherall investigateda setting with15% of singletons and found that
fixed effects estimates and standard errors were unbiased (Pickering and Weatherall, 2007). Sauzetet al.
studied a setting with80 − 99% of singletons and found that parameter estimates for fixed effects were
biased when the proportion of singletons became extreme (Sauzet et al., 2012). While these studies already
give an idea about the impact of the presence of singletons, they focus on specific singleton proportions
(either very high or fairly low) and use rather simple modelsonly containing explanatory variables at the
lowest level of the hierarchy.
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In this paper, we will use a simulation study,keeping lower- and higher-level sample sizes fixed,to as-
sess the impact of an increasing proportion of singletons (0−95%) on different aspects of the linear mixed
modelfitted using restricted maximum likelihood. Here, we will focusfocussing on a two-level setting
with a low, medium or high intracluster correlation, and includinge explanatory variables both at the pri-
mary and at the secondary level. We will assess whether, whenhigh proportions of singletons are present,
the model’s performance improves by applying some frequently used techniques to cope with singletons:
ignoring the dependency within units, removing singletonsand grouping singletons in an artificial unit.

2 Methods

To reflect a realistic setting, we set up a simulation study based on the Ceftriaxone data, which contain
information on the prescribed ceftriaxone dose for329 children in124 departments. Included explanatory
variables are the size of the department (large, medium, small), the reason for treatment of the child (mild,
moderate, severe, different) and the age of the child. Parameter estimates and standard errors obtained by
fitting a linear mixed model, that accounts for the correlation within departments by including a random
intercept (unmodified model), are given in Table1.

The unmodified model can be presented as follows:

Yij = β0+b0j+β1Size1j+β2Size2j+β3Ageij+β4Reason1ij+β5Reason2ij+β6Reason3ij+ǫij ,

(1)

whereYij represents the ceftriaxone dose prescribed to childi (i = 1, ..., nj) in departmentj (j = 1, ..., J),
nj is the number of children in departmentj, J is the number of included departments,β0 is the general
intercept,b0j is the department-specific intercept,Size1j is 1 if departmentj is large and0 otherwise,
Size2j is 1 if departmentj is medium and0 otherwise,Ageij is the age of childi in years,Reason1ij is
1 if the reason for treatment is different and0 otherwise,Reason2ij is 1 if the reason for treatment is mild
and0 otherwise,Reason3ij is 1 if the reason for treatment is moderate and0 otherwise,β1 up toβ6 are
the respective coefficients for the listed parameters andǫij is the residual error term. We assume that the
randomeffectdepartment-specific interceptfollows a normal distribution with mean zero and varianceσ2

B

and that the error terms are independent and follow a normal distribution with mean zero and varianceσ2

W .

[Table 1 about here.]

For computational feasibility and to be able to vary the intracluster correlation and the percentage of single-
tons included, we considered350 children divided equally over50 departments, rather than329 children
divided over124 departments according to Figure1, in the first setting of our simulation study.Throughout
the simulation study, the lower- and higher-level sample sizes were kept constant at350 and50, respec-
tively, in order to eliminate the known impact of changing sample sizes and depict the impact of the
proportion of singletons as purely as possible.The proportion of singletons ranged from0 to 95% (in
steps of5%, Figure2). The number of singleton departments was rounded upwards (e.g. 5% singletons
implies 2.5 departments containing only one child. Hence, for 5% singletons, we included3 departments
with one child). The remaining children were divided equally amongst the remaining departments. For the
intracluster correlation we used a low, realistic and high intracluster correlation coefficient (ICC) which is
defined in terms of the variance between departments (σ2

B) and the variance within departments (σ2

W ) as:

ICC =
σ2

B

σ2

B + σ2

W

The realistic ICC (0.27) was obtained using the Ceftriaxonedata. The low (0.15) and high (0.64) ICC were
obtained after adjustingσ2

W to 1000 and100, respectively.
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2.1 Simulation procedure

For each of the60 scenarios,1000 datasets were simulated according to the following procedure:

1. Sample a random intercept from a normal distribution withmean zero and standard deviationσB for
each of the50 included departments.
Note that we assume that the random intercepts follow a normal distribution while for real data they
are often might be non-Gaussian. This however has been shownnot to impact to have little or no
impact on the stability of the linear mixed model (Verbeke and Lesaffre, 1997)

2. Assign a department size to the simulated departments according to the distribution of department
sizes in the Ceftriaxone data (16 small,18 medium and16 large departments).
Note that department size is unrelated to the number of children included in the department and is
merely a characteristic of the department (referring to thetotal number of beds on the department).

3. Group the combination of age and reason for treatment for the329 children in the Ceftriaxone Data
based on the size of the department they are treated in. Then,conditional on the size of the simulated
department, sample a combination of age and reason for treatment for350 children.

4. Sample a residual error term from a normal distribution with mean zero and standard deviationσW

for each of the350 included children.
Note that we assume that the residuals follow a normal distribution while for real data theyare often
might be non-Gaussian. This however has been shown not to impact the stability of the linear mixed
model (Jacqmin-Gadda et al., 2007)

5. Simulate the prescribed dose for each child using Equation 1 and parameter estimates reported in
Table1.

2.2 Models fitted

All simulated datasets were analysed with the unmodified model. Because some of the simulated scenarios
contain a fairly high proportion of singletons, one might doubt the need to correct for clustering. Therefore,
we studied three different methods that are frequently usedto handle singletons in the data. The first
method is to simply ignore the dependence within units (i.e.ignoring clustering). This is done by fitting
a model containing fixed effects for reason for treatment, age and department size, but no random effect.
Other options are to discard the singletons from the data (i.e. dropping singletons) or to group the singletons
into an artificial unittreated as one additional department(i.e. grouping singletons). Both approaches were
evaluated by fitting the unmodified model to all simulated datasets either after dropping or after grouping
the included singletons.

2.3 Analyses of simulated datasets

For each scenario, we assessed the performance of the fitted model using three performance characteris-
tics. The first is the relative difference between the meanof theparameter estimates and the true param-
eters (mean estimated minus true parameter over true parameter, with true parameters reported in Table
1; RDM). The second characteristic is the relative differencebetween the mean estimated standard error
and the empirical standard error (mean estimated minus empirical standard error over empirical standard
error; RDE). Here, the estimated standard error reflects theuncertainty within the simulations while the
empirical standard error (SES) reflects the variability between simulations. The first is calculated as the
mean of theobtainedestimatedstandard errors while the latter is calculated as the standard deviation of
obtained parameter estimateswhen fitting the unmodified model. The last performance characteristic is the
coverage of the confidence interval, calculated as the percentage of times the true parameter(reported in
Table1) falls within the estimated95% Wald confidence interval. The stability of the F test was assessed by
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comparing the number of times the null hypothesis was rejected (rejection rate) in the presence of different
proportions of singletons to the rejection rate when no singletons were present.

3 Results

3.1 The unmodified model

All simulated datasets were analysed with the unmodified model (Equation1). We report three perfor-
mance characteristics for the multi-level model that were introduced in Section2.3. These characteristics
are shown for one fixed effect at the level of the child (Figure3, solid lines) and one fixed effect at the
level of the department (Figure4, solid lines). Performance characteristics for the other fixed effects can
be consulted in FiguresA1 up toA5 (in Appendix, solid lines). Stability of the F test for parameters at the
level of the child (AgeandReason) and at the level of the department (Size) is reported in FigureA6 (solid
lines). Accuracy of the random effects variance and the residual variance is illustrated in FigureA7 (solid
lines).

The differences between the estimated and the true parameter (RDM) for the fixed effects at the level
of the child were not affected by the proportion of singletons or the intracluster correlation and were con-
sistently small (Figures3 andA1-A3: first row, solid lines). This indicates that the parameter is estimated
well regardless of the proportion of singletons present in the data. The differences between the estimated
and true standard error (RDE) were small throughout the simulation study, indicating that the standard
error accurately estimated the true standard error for the unmodified model (Figures3 andA1-A3: second
row, solid lines). Coverage of the confidence intervals was around95% throughout the simulation study
(Figures3 andA1-A3:third row, solid lines).

The RDM for the fixed effects at the level of the department were slightly higher than for a covariate
at the level of the child, but fluctuated regardless of the proportion of singletons (Figures4 andA4-A5:
first row, solid lines). The RDE were small throughout the simulation study, indicating that the standard
error accurately estimated the true standard error for the unmodified (Figures4 andA4-A5: second row,
solid lines). Coverage of the confidence intervals remainedaround95% throughout the simulation study
(Figures4 andA4-A5: third row, solid lines).

The rejection rate for the F test for the effects at the level of the child increased slightly with an increas-
ing proportion of singletons while the rejection rate for the effect at the level of the department decreased
slightly with an increasing proportion of singletons (FigureA6: solid lines).

The RDM for both the random effects variance and the residualvariance was small throughout the simula-
tion study (FigureA7: solid lines, left and right, respectively). This indicates that generally, in the presence
of singletons, the estimated variances approach the true variances quite well. The RDM was slightly higher
when the intraclass correlation decreased.

3.2 Ignoring clustering and dropping or grouping singletons

Three different methods that are currently used to handle singletons in the data are compared to the un-
modified model. To ignore clustering, all simulated datasets were analysed with a model containing a fixed
effect for age, reason for treatment and department size. Additionally, the unmodified model was fitted to
the datasets where singletons were removed (dropping singletons) or grouped into an artificial department
(grouping singletons).
Obtained performance characteristics for one fixed effect at the level of the child and one fixed effect at
the level of the department are visualized in Figures3 and4, respectively. Performance characteristics for
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6 R. Bruyndonckxet al.: Evaluation of the linear mixed model

the other fixed effects can be consulted in FiguresA1 up to A5. Stability of the F test for parameters at
the level of the child (AgeandReason) and at the level of the department (Size) is reported in FigureA6.
RDM for both residual and random effects variance are shown in FigureA7.

[Figure 2 about here.]

Figure 3 shows that the RDM and confidence interval coverage for the fixed effect at the level of the
child (Reason1ij) were comparable for the unmodified model fitted to the original data and the three
options to handle the singletons (ignoring clustering and dropping or grouping singletons) regardless of
the intracluster correlation. When clustering was ignored (dotted lines), the RDE was higher compared to
the unmodified model fitted to the original data (full lines) or when dropping and grouping the singletons
(dashed and dot-dashed lines, respectively). This seems tobe counter-intuitive, but can be explained by
the design of the simulation study where a combination of ageand reason for treatment for a child were
sampled conditional on the size of the simulated department(in step4). Therefore, the observed doses
were not only clustered within departments, but also stratified according toSize. When ignoring clustering,
but accounting for stratification, the standard error estimates tend to be overestimated (Stepleton and Kang,
2016). The overestimation increased with increasing intracluster correlation, indicating that the importance
of accounting for clustering increases with the homogeneity of observations within clusters.

[Figure 3 about here.]

Figure 4 shows that the RDM for the fixed effects at the level of the department were comparable for
the unmodified model fitted to the original data and the three options to handle the singletons. Ignoring
clustering (dotted lines) resulted in a decreased RDE and anunacceptably low confidence interval coverage
for all proportions of singletons and all intracluster correlations under study. When dropping the singletons
(dashed lines), the RDE increased with an increasing proportion of singletons. This increase was steeper
for the scenario with a high intracluster correlation. The confidence interval coverage remained stable
throughout the simulation study. For the scenario with95% of singletons, the plots show a severe drop in
both RDE and confidence interval coverage. When grouping the singletons into an artificial department
(dot-dashed lines), RDE and confidence interval coverage decreased slightly with an increasing proportion
of singletons, with this increase being again steeper for the scenario with a high intracluster correlation.
FigureA6 shows that dropping and grouping the singletons (dashed anddot-dashed lines, respectively)
does not influence the performance of the F test for an effect at the level of the child. Ignoring the depen-
dency within clusters (dotted lines) causes the rejection rate to be slightly lower compared to the rejection
rate for the unmodified model fitted to the original data (solid lines).
Dropping and grouping the singletons (dashed and dot-dashed lines, respectively) cause the rejection rate
for the fixed effect at the level of the department to be respectively lower and higher compared to the rejec-
tion rate for the unmodified model fitted to the original data (solid lines). Ignoring the dependency within
clusters (dotted lines) causes the rejection rate to be a lothigher than the rejection rate for the unmodified
model fitted to the original data (solid lines). The rejection rates increased with an increasing ICC, which
can be explained by the decrease in variance within departments, which increases rejection rates.
FigureA7 shows that when dropping the singletons (dashed lines), theresidual variance stayed close to the
true residual variance regardless of the intracluster correlation. The random effects variance was close to
the true random effects variance throughout the simulationstudy, but decreased steeply at the end (for the
scenario with95% singletons).
When grouping the singletons (dot-dashed lines), the residual variance was slightly overestimated while
the random effects variance was slightly underestimated, with the difference between estimated and true
variance getting bigger with an increasing proportion of singletons and with an increase in intracluster
correlation.
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4 Discussion

We conducted a simulation study, inspired by the structure of the Ceftriaxone data, to investigate the im-
pact of an increasing proportion of singletons (0− 95%) combined with different intracluster correlations
(low-medium-high) on different aspects of the linear multi-level model. Note that this simulation study in-
cludes rather extreme situations (up to95% of singletons),andthatalthoughthesesituationsrarelyoccurin
practice,theywere included to demonstrate the effect of increasing the proportion of singletons as clearly
as possible.Note also that throughout this simulation study both the lower- and the higher-level sample
sizes were kept constant, in order to illustrate the pure impact of the proportion of singletons, which was
the focus of this study, from theimpactof changingsamplesizes.The impact of the presence of singletons
was assessed through three performance characteristics, which revealed that neither the RDM nor the RDE
were affected by the proportion of singletons in the data or by the increase in intracluster correlation. They
were consistently low, with RDM and RDE for an effect at the level of the child being slightly lower than
RDM and RDE for an effect at the level of the department. This might be explained by the number of inde-
pendent observations that are available to estimate both effects, with this number being considerably lower
for the effect at the level of the department. The confidence interval coverage and rejection rates fluctuated
slightly while the proportion of singletons changed, with this fluctuation being unrelated to the propor-
tion of singletons in the data. Confidence interval coveragestayed stable while increasing the intracluster
correlation, while the F test rejection rates increased with an increasing intracluster correlation. This can
be explained by the variance within departments which is decreased in order to increase the intracluster
correlation and increased the rejection rates. The rejection rate for the effect at the level of the department
decreased slightly with an increasing proportion of singletons, which can be explained by the more stable
estimation of the average dose for a department when the number of children in that department is larger.
These findings verify the conclusions reached by (Pickering and Weatherall, 2007), and hence increases
confidence to use a linear mixed model, even when the proportion of singletons increases above15%.
While Sauzetet al. mention biased parameter estimates for fixed effects in the presence of extreme pro-
portions of singletons, which were not found in the present study. One possible explanation is that Sauzet
et al. considered only singletons and clusters of size two, while we considered singletons together with
clusters of medium to large size (7−151). Another possible explanation is that Sauzetet al. varied both the
sample size (152−1200) and the number of clusters (150−1000), while in the simulation study presented
here, both were kept constant in order to filter out the impactof an increasing proportion of singletons as
clearly as possible.
In an additional exploratory simulation study, we varied the total sample size (62 − 350) according to the
proportion of singletons, while keeping the number of departments (50) and department size (1 or 7) fixed,
and varied the number of departments (50− 290) according to the proportion of singletons while keeping
the total sample size (350) and department size (1 or 7) fixed. Results from this study (not shown here)
verify that a decrease in total sample size goes together with a decreased rejection rate (mainly at the level
of the child), and that a decrease in the number of departments goes together with a decreased rejection
rate (mainly at the level of the department). Therefore, thesimulation setting presented in this paper, which
varies department size according to the proportion of singletons but keeps both the number of departments
and total sample size constant, is the setting which presents the impact of a changing proportion of single-
tons most accurately.

Three different methods that are currently used to handle singletons in the data were compared to the
unmodified model (ignoring clustering, dropping singletons and grouping singletons). A simulation study
was conducted to investigate the consequences of these three options on different aspects of the multi-level
model. Impact on the level of the child was minor, while impact on the level of the department was more
clear. As mentioned before, this can be explained by the number of independent observations available.
When ignoring clustering, the RDM did not change notably. TheRDE at the level of the child increased,
while the rejection rate for the F test decreased in comparison to the unmodified model fitted to the original
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data. This can be explained by the design of the simulation study where the observed doses were not only
clustered within departments, but also stratified according to Size. When ignoring clustering, but account-
ing for stratification, the standard error estimates tend tobe overestimated (Stepleton and Kang, 2016).
The overestimation increased with increasing intracluster correlation, indicating that the importance of ac-
counting for clustering increases with the homogeneity of observations within clusters. Confidence interval
coverage remained stable. The RDE at the level of the department decreased, while the rejection rate for the
F test increased in comparison to the unmodified model fitted to the original data. This can be explained by
the consistent underestimation of the standard error when ignoring clustering (Verbeke and Molenberghs,
2009). The rejection rates increased with an increasing intracluster correlation, which can be explained by
the decrease in variance within departments, which increases rejection rates. Confidence interval coverage
was unacceptably low for all proportions of singletons and ICCs, indicating that ignoring the dependency
within the clusters is never a good idea.
When dropping the singletons, the RDE was higher while the rejection rate for the F test was lower com-
pared to the unmodified model fitted to the original data, withthis difference increasing when the propor-
tion of singletons increases or when the intracluster correlation increases. This can be explained by the
increase in standard error due to the decrease in number of remaining departments, which is steeper when
intracluster correlation is high. For the scenario with95% singletons (Figure4), there is a severe drop
in RDE and confidence interval coverage that goes together with a steep increase in F test rejection rate,
which is explained by the presence of only one large department in this scenario. The low confidence inter-
val coverage resulting from dropping the singletons forcesus to conclude that it worsens the performance
of the multi-level model.
When grouping the singletons into an artificial department, the RDE was lower while the rejection rate was
higher compared to the unmodified model fitted to the originaldata, with this difference again enlarged by
an increase in intracluster correlation. The residual variance was slightly overestimated while the random
effects variance was slightly underestimated, with the difference between estimated and true variance in-
creasing with an increasing proportion of singletons and anincreasing intracluster correlation. All these
findings can be explained by the grouping of singletons that are not actually related, which decreases the
variance between included departments and causes a slight underestimation of the true standard error for
the effect at the level of the department. Although groupingis an option that might be considered when
the data at hand contain a high proportion of singletons, theregular multi-level model performs better even
when the proportion of singletons is large.
An alternative that could be used in the presence of sparseness at the lowest level of multi-level hierarchy
is to select a more convenient clustering level (e.g. country or hospital in which the department is situated)
(Cortiñas Abrahantes et al., 2004). Although this strategy would improve the model’s stability, it was not
considered here because we focussed on a two-level setting,where clustering by department is the only
option.

5 Conclusion

The linear mixed model appears to be stable enough to handle high proportions of singletonswhen both
lower- and higher level sample sizes remain fixed, alsowhen the intracluster correlation is high. Alterna-
tives which are frequently used, such as ignoring clustering or removing the singletons, should be avoided
as they provide biased standard error estimates for the fixedeffects. Although grouping the singletons is
an option, the regular multi-level model performs better.Therefore,wecanbeconfidentin usingthelinear
mixedmodel,evenwhenthedataathandcontainhighproportionsof singletons.
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Figure A1 Performance characteristics for the fixed effectAgeij in the unmodified model, when ignoring
clustering and when dropping and grouping the singletons with an increasing intracluster correlation (ICC)
and an increasing proportion of singletons; RDM: relative difference between estimated and true mean;
RDE: relative difference between estimated and true standard error.
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Figure A2 Performance characteristics for the fixed effectReason2ij in the unmodified model, when
ignoring clustering and when dropping and grouping the singletons with an increasing intracluster corre-
lation (ICC) and an increasing proportion of singletons; RDM: relative difference between estimated and
true mean; RDE: relative difference between estimated and true standard error.
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Figure A3 Performance characteristics for the fixed effectReason3ij in the unmodified model, when
ignoring clustering and when dropping and grouping the singletons with an increasing intracluster corre-
lation (ICC) and an increasing proportion of singletons; RDM: relative difference between estimated and
true mean; RDE: relative difference between estimated and true standard error.
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Figure A4 Performance characteristics for the fixed intercept in the unmodified model, when ignoring
clustering and when dropping and grouping the singletons, with an increasing intracluster correlation (ICC)
and an increasing proportion of singletons; RDM: relative difference between estimated and true mean;
RDE: relative difference between estimated and true standard error.
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Figure A5 Performance characteristics for the fixed effectSize2j in the unmodified model, when ignor-
ing clustering and when dropping and grouping the singletons, with an increasing intracluster correlation
(ICC) and an increasing proportion of singletons; RDM: relative difference between estimated and true
mean; RDE: relative difference between estimated and true standard error.
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Figure A6 Rejection rate of the F test for the fixed effects in the unmodified model, when ignoring
clustering and when dropping and grouping the singletons, with an increasing intracluster correlation coef-
ficient (ICC) and an increasing proportion of singletons; RDM: relative difference between estimated and
true mean; RDE: relative difference between estimated and true standard error.

c© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



16 R. Bruyndonckxet al.: Evaluation of the linear mixed model

0 20 40 60 80 100

−
10

0
0

50
10

0
15

0

Percentage of singletons (%)

R
an

d
o

m
 in

te
rc

ep
ts

 v
ar

ia
n

ce

R
D

M
(%

)

low ICC

0 20 40 60 80 100

−
10

0
0

50
10

0
15

0

Percentage of singletons (%)

R
D

M
 (

%
)

medium ICC

0 20 40 60 80 100

−
10

0
−

50
0

50
10

0

Percentage of singletons (%)

R
D

M
 (

%
)

high ICC

0 20 40 60 80 100

−
30

−
10

0
10

20
30

Percentage of singletons (%)

R
es

id
u

al
 v

ar
ia

n
ce

R
D

M
(%

)

0 20 40 60 80 100

−
30

−
10

0
10

20
30

Percentage of singletons (%)

R
D

M
 (

%
)

0 20 40 60 80 100

−
30

−
10

0
10

20
30

Percentage of singletons (%)

R
D

M
 (

%
)

unmodified
dropping
grouping

Figure A7 Relative difference between estimated and true mean (RDM) for the random effects variance
(top) and residual variance (bottom) in the unmodified model, when ignoring clustering and when dropping
and grouping the singletons, with an increasing intracluster correlation coefficient (ICC) and an increasing
proportion of singletons.
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Figure 1 Barplot representing the distribution of the
number of children within the124 departments in-
cluded in the Ceftriaxone data.
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Figure 2 Barplot representing the distribution de-
partment sizes for the50 simulated departments in the
presence of0% (light grey),50% (dark grey) and95%
(black) singletons.
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Figure 3 Performance characteristics for the fixed effectReason1ij in the unmodified model, when ig-
noring clustering and when dropping and grouping the singletons with an increasing intracluster correlation
coefficient (ICC) and an increasing proportion of singletons; RDM: relative difference between estimated
and true mean; RDE: relative difference between estimated and true standard error.
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Figure 4 Performance characteristics for the fixed effectSize1j in the unmodified model, when ignor-
ing clustering and when dropping and grouping the singletons, with an increasing intracluster correlation
coefficient (ICC) and an increasing proportion of singletons; RDM: relative difference between estimated
and true mean; RDE: relative difference between estimated and true standard error.
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Tables

Table 1 Parameter estimates and standard errors obtained by fittingthe unmodified model to the Ceftri-
axone data.

Parameter Estimate Std. error

Intercept 82.951 4.513

Size1j -3.224 4.771

Size2j 4.469 4.747

Ageij -2.060 0.338

Reason1ij -8.254 4.319

Reason2ij -21.995 7.432

Reason3ij -5.586 3.574

σ2

B 180.370 47.139

σ2

W 489.510 44.756
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