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ABSTRACT
Missing data methods, maximum likelihood estimation (MLE) and
multiple imputation (MI), for longitudinal questionnaire data were
investigated via simulation. Predictive mean matching (PMM) was
applied at both item and scale levels, logistic regression at item level
and multivariate normal imputation at scale level. We investigated
a hybrid approach which is combination of MLE and MI, i.e. scales
from the imputed data are eliminated if all underlying items were
originally missing. Bias and mean square error (MSE) for parameter
estimates were examined. ML seemed to provide occasionally the
best results in terms of bias, but hardly ever on MSE. All imputation
methods at the scale level and logistic regression at item level hardly
ever showed the best performance. The hybrid approach is similar or
better than its original MI. The PMM-hybrid approach at item level
demonstrated the best MSE for most settings and in some cases also
the smallest bias.
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1. Introduction

A common approach in performing observational research is to collect information with
multi-item questionnaires. The item scores are often used to calculate a sum score or scale
in order to summarize the information or to obtain onemeasure for the domain of interest.
However, calculation of sum scores is complicated or impossible when just one or a few
items are being unanswered.

Numerousmissing datamethods have been developed to deal with the incomplete ques-
tionnaire data.Historically, complete case (CC) and single imputation (SI) approaches have
been used frequently [1]. The CC approach uses the data on individuals with a complete
set of answered items, while the SI approach substitutes the missing items or scales with a
single plausible value. Although SI approaches may be relevant to complete cohort data, it
has been well known that, in general, most of the SI strategies often produce biased esti-
mates andmay underestimate the standard error of the parameter estimates and hence can
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produce narrower confidence intervals. The limitation of CC and SI have been well dis-
cussed (see for instance [2,3]). The way to overcome these limitations is applying multiple
imputation (MI).

The principle of MI is to substitute missing observations with plausible values multiple
times, say M times, and create M complete data sets. Each complete data set is analysed
independently and the results of the analyses are then combined using Rubin’s rule [4].
Theoretically, MI is reliable when the missing mechanism fulfills the missing completely at
random (MCAR) and the missing at random (MAR) assumptions [2,5]. MCAR refers to
situations that the probability ofmissingness does not depend on the observed andmissing
outcomes while the MAR assumption indicates that the missingness mechanism depends
on the observed outcome(s) but not on themissing outcomes [6,7]. Under these conditions,
MI mostly outperforms CC and SI for questionnaire data [8–10], although the difference
could be small [11].

MI can be conducted with parametric and non-parametric approaches. Parametric
approaches apply either joint distributions [4,12] or conditional distributions [13,14]. The
latter approach is called fully conditional specification (FCS) or multivariate imputation
by chained equations (MICE) [15]. The joint distribution approach mainly applies a mul-
tivariate normal distribution (MVN) for all input variables in the imputation process
irrespective of the types of variables, while FCS typically applies some kinds of regres-
sion model for each variable as a function of all other variables in the imputation process.
Non-parametric imputation methods like predictive mean matching (PMM) use group-
ing algorithms to create donor groups from which missing data is imputed [5]. These
approaches have all been applied to questionnaire data.

The MVN approach was studied on scale and item level for cross-sectional question-
naire data using expectation-maximization (EM) algorithm and Markov Chain Monte
Carlo (MCMC) method [16]. The results of this study did not demonstrate a clear or sig-
nificant difference between these two algorithms. Resseguier et al. [17] investigated the
performance of PMM and FCS using a multinomial logit model at item level as well as
the PMM imputation method at the scale level on a real data set. They recommended that
either PMM or multinomial logit regression imputation at the item level should be used.
Gottschall et al. [18] conducted a comparison study between item and scale imputation
using regression models. They applied the EM algorithm to generate starting values for
the imputation, and they did not round the imputed values to integers. Although their
analyses showed negligible biases in the parameter estimates of their statistical model, the
mean square error (MSE) indicated that imputation at item level increases the statistical
power. Yet, another cross-sectional simulation study investigated the influence of various
MI methods for a covariate that is constructed from multiple items under different miss-
ing mechanisms [19]. This study suggested that imputation at the item level with either
PMMor regressionmodel should be used before calculating the score of the covariate sum
score.

An alternative approach to handling missing scales under the MAR assumption and
when the scale represents an outcome measure is to just apply maximum likelihood
(ML) inference. Based on the distributional properties of the statistical model, ML does
not inappropriately add information from the observed data to address the missing-
ness [2,5,20–23]. Von Hippel [24] and White et al. [3] even suggested to discard the
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imputed outcomes values after the missing covariate and outcome values were substi-
tuted with MI. Their logic is that MI is needed to complete missing covariates but ML
might be a better approach than MI in the presence of missing outcomes since the
imputed outcomes may add noise to the parameter estimates in the final analysis [3]. It
should be noted that imputation of covariates can be conducted in the same manner as
imputation of outcomes. Imputation of missing covariates are essential since statistical
models cannot deal with missing covariates, unless removing the corresponding case or
unit.

Surprisingly, the ML approach has not been studied in details for questionnaire out-
come data, although a multitude of studies compared ML with MI on non-questionnaire
data [21,25–33]. Only Bell et al. [34] discussed the possibility of usingML on questionnaire
data and Eekhout et al. [35] investigated the ML approach in structural equation mod-
elling on longitudinal questionnaire data using auxillary variables. The use of a hybrid
approach, in line with [24] and [3], where the imputed scales would be discarded after
MI when all items of that scale was missing, has not been studied at all. This hybrid
approachwould only use the imputed scales when partial information is available (through
available items), but not when all items were originally missing. It can be used with all
MI approaches. Therefore, the purpose of our study is to determine if there is a benefit
of the hybrid approach on handling missing data in longitudinal questionnaire outcome
data.

Our paper is organized as follows. The next section describes shortly the missing data
approach that we will study in an extensive simulation study. The third section describes
the simulation study, which is based on a real cohort case study. It describes the generation
of binary items and the missing items. It also describes the statistical analysis model. This
model is applied to the full data set (before imposing missingness), to the incomplete data
set and to the imputed data sets for evaluation of the missing data methods. Biases and
the MSE are calculated to assess the performances. The fourth section describes the sim-
ulation results and our case study, and the discussion of the results is provided in the final
section.

2. Missing datamethods

2.1. Multiple imputation

Sincemultiple imputation can be executed either on the items or on the sum scores directly,
we studied both options. We considered a sum score as missing when at least one item
would be missing. All imputation methods were carried out with procedure MI of the SAS
software, version 9.4, under default settings [36]. To pool the obtained results of the analy-
ses frommultiple imputed data sets, we usedRubin’s rule implemented in theMIANALYZE
procedure in SAS [37].

Multivariate normal imputation: We applied this approach on scale level only using the
MCMC approach starting with the EM algorithm to estimate the mean and covariance
matrix as the starting value for the MCMC approach. The MCMC option from the MI
procedure with single chain [12] and 200 burn-in iterations was employed for this method.
We imposed natural boundary constraints to generate realistic scales; if the imputed sum
score was outside the boundaries (i.e. below zero or above the maximum possible sum
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score), we replaced the imputed sum score by the boundary value, but we did not use any
further rounding to obtain integer (imputed) sums scores. This approach is referred to as
theMCMCscale approach.

Fully conditional specification: We applied FCS imputation at the item level using logis-
tic regression [4,14] referred to it as the LRitem approach in the remainder of this study.
The MI procedure of SAS with the default settings uses 10 burn-in iterations. FCS for the
sum scores can be performed with linear regression, but it has been noted that FCS along
with linear regression and MVN provide similar results under the normality assumption
[13,38]. Hence, we omitted FCS with linear regression on sum scores since we include the
MVN approach on sum scores.

Predictive mean matching: We studied predictive mean matching at the item level
(PMMitem) and at the scale level (PMMscale) using the REGPMM option from the MI
procedure with the default number of closest observations being 5.We implemented a con-
straint for imputation at the scale level: the imputed sum score using PMMwas not allowed
to be lower than the sum score of the available items for each individual. If PMM violated
this constraint, the imputed sum score was replaced by the sum score of the available items
of that particular individual.

2.2. Maximum likelihood inference

When we apply ML, we have to make a decision on when the scale would be considered as
missingness. In one setting, the scales or sum scores are treated asmissingwhen at least one
item was missing but in another setting, sum scores are considered missing when all items
were missing. This means that we calculated sum scores on the available items irrespective
of how many items were missing, as a proportion to the number of items being available,
we denoted the ML approaches ML1 and ML10, respectively.

To combine the advantages of maximum likelihood and multiple imputation, we intro-
duced a hybrid approach at the item level and at the scale level. This hybrid approach
eliminates the imputed values when all items were originally fully missing (whether impu-
tation was conducted on item or scale level). We denoted the hybrid method by putting an
‘H’ in front of our notation already introduced for the imputation methods, for instance
H-PMMitem indicates the hybrid approach using PMM at item level.

3. Simulation study

The simulated incomplete data set was conducted in two steps. In the first step, a full data
set questionnaire including all covariates (independent variables) as well as J binary items
(dependent variables) across different follow-up times were generated. With this simula-
tion, we tried to mimic the cohort study that motivated this research, which is described in
detail in section 4.2. In the second step, binary indicators were generated at the item level to
eliminate items from the full data set. The parameter settings in the simulationmodel were
selected based on our case study and are provided in Appendix 1. We kept the parameter
settings in the full data set the same in all simulations but generated different proportions of
missingness and referred to as small, medium and large proportions of missingness. Each
simulated data set contained 1000 individuals and setting each was repeated 500 times. Ten
(M = 10) imputed data sets were used for MI for each repeated data set.
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3.1. Full data set generation

One time-dependent covariate and five baseline covariates were generated first. The time-
dependent covariate (X1it), t = 1, 2, 3, 4, represents age of individuals at four follow-up
times. This was simulated with a multivariate normal distribution having a vector of
means μa and a variance-covariance matrix �a. One baseline binary covariate (X2i),
which may indicate gender, was simulated independent of age and with a Bernoulli dis-
tribution with success probability pg . The remaining four baseline covariates (X3i, X4i,
X5i, X6i) were simultaneously simulated, independent of both age and gender, using
a multivariate normal distribution with a vector of means μc and variance-covariance
matrix �c. Keeping only one covariate continuous, X6i, three other covariates were con-
verted into binary variables. To create these binary variables, we compared the inverse
normal standard distribution function of X3i, X4i, and X5i with pre-defined threshold
probabilities p3, p4, and p5, respectively. That is, covariate Xqi was converted to one if
�−1(xqi) < pq, for q = 3, 4, 5, and � the cumulative standard normal distribution func-
tion. Therefore, the probability pq, could be viewed as the success probability of binary
variable Xqi. This way of simulating covariates guarantees that X3i, X4i, X5i, and X6i are
not independent. We applied the COPULA procedure in SAS to generate these vari-
ables. The parameter settings for μa, �a, pg , μc, �c, p3, p4, and p5 are provided in
Appendix 1.

Furthermore, we simulated 10 longitudinal correlated items (J = 10) using the idea
of item response theory. We began by generating four correlated abilities/traits or latent
variables (Zi1,Zi2,Zi3,Zi4) via a multivariate normal distribution having a vector of
means equal to zero and a Toeplitz correlation matrix �L. Then, the binary items Yit(1),
Yit(2), . . . , Yit(J) for individual i at time t were drawn from a Bernoulli distribution given
the latent variable Zit and covariatesXT

it = (X1it ,X2i, . . . ,X6i). The conditional probability
πit(j) = P(Yit(j) = 1|Xit ,Zit) is given by

πit(j) = exp
(
atj + btjZit + XT

itctj
)

1 + exp
(
atj + btjZit + XT

itctj
) , (1)

with ctj a set of coefficients for the covariates, atj and btj the difficulty and the discrimination
parameters for item j at time t, respectively. The indicator Yit was determined by Yit(j) =
I[0,πit(j)](Uitj), with Uitj uniformly distributed on (0, 1), and IA(x) the indicator function
being equal to one when x ∈ A and zero otherwise. The applied set of parameters atj, btj,
and ctj in the simulation study are listed in Table A1.

3.2. Generation ofmissing items in the simulated full data set

We simulated a binary indicator Rit(j) for each generated item in the full data set and elim-
inatedYit(j) from the full data set when Rit(j) = 0.We decided not to generate anymissing
items at the first visit, i.e. Ri1(j) = 1. Furthermore, we chose a logistic regression model for
the probabilities of the binary indicator variables that depended on the covariates (Xit) and
the latent variable from the first time point (Zi1). We chose a set of parameters ãtj as the
intercepts and b̃tj as the slopes for the baseline latent variable, and coefficients c̃tj for the
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covariates. The probability for missing an item was set equal to

P
(
Rit(j) = 0

) = π̃it(j) = 1

1 + exp
{
ãtj + b̃tjZi1 + XT

it c̃tj
} . (2)

Using standard uniformly distributed random variables Uit(j), which were independent
from the uniformly distributed variables used to generate the full data set, and comparing
them with the missingness probability π̃it(j) results in the missingness indicator variable,
i.e. Rit(j) = I[π̃it (j),1]

(Uit(j)). We generated the random variables Uit(j) in two different
ways to impose either dependency or independency among the Rit(j)’s, given the latent
variable and covariates. The independent setting was generated by taking independent
Uit(j) for each item j, subject i, and time points t>1, whereas the dependent setting was
generated by taking a uniform random variable Uit for all J items of subject i at time point
t>1. The set of parameters ãtj, b̃tj, and c̃tj, used in this simulation study, are presented in
Table A2.

It should be noted that the system ofmissing items in (2) follows an intermittent pattern
of missingness rather than a drop-out pattern [39]. Furthermore, we assumed no missin-
geness at the baseline which leads into the MAR missing mechanism with respect to the
latent variables. Nevertheless, one may argue that the missing mechanism is MNAR at the
level of the observed items.MNARmissingnessmeans that the probability of beingmissing
depends on both the unobserved and observed values. MNAR also occurs when the miss-
ingness depends on latent variable at the baseline.We explicitly generatedmissing items in
this way since we feel that it is more realistic to have the missingness depends on the latent
variable or ability of subjects at baseline instead of the response at the baseline.We strongly
believe that the missingness concept is similar to answering the items themselves since a
missing item represents the unanswered item with its own difficulty and discrimination
parameters (ãtj andb̃tj).

3.3. Statistical analysis of sum scores

To assess the impact of covariates on the repeated sum score Yit = ∑J
j=1 Yit(j), it is

common to select a linear-mixed model with normally distributed outcomes [40–52].
Linear-mixedmodels can be re-formulated as population-averaged ormarginal models for
normally distributed outcomes. In this case, covariates are connected to outcomes using a
linear regression model and the residuals are assumed to be correlated in order to capture
the associations over time.

The marginal model can be formulated as

Yi = Xiβ + εi, (3)

with Yi = (Yi1,Yi2 . . . .,YiT) as the vector of sum scores for individual i across time, Xi
= (Xi1,Xi2, . . . ,XiT) thematrix of covariates,β the set of unknown regression parameters,
and εi a vector of residuals having a normal distribution with mean 0 and variance-
covariance matrixV, i.e. εi ∼ N(0,V). Various structures can be considered for the matrix
V, however, we choose the Toeplitz covariance matrix since this choice seems to fit appro-
priately to our case study. Procedure MIXED of the SAS software, version 9.4, was used to
implement this model. Note that parameters inmodel (3) can be estimated withmaximum
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likelihood and restricted maximum likelihood estimation methods, though maximum
likelihood is used for the current study.

All the methods for handling missing data were compared with an analysis of the full
data set. We applied the same statistical model (3) on the full, imputed and incomplete
data and investigated the parameter estimates in terms of bias and (square root of the)
MSE. The bias indicates the mean distance of the parameter estimates from the missing
data methods and the parameter estimates of the full data sets when averaged over all our
simulations while MSE indicates how close the estimates are across simulations. Further-
more, we computed an average relative efficiency [4] for each parameter across imputed
data sets to evaluate the imputation process with 10 imputed data sets.

4. Results

4.1. Simulation study

Table 1 provides the percentages of missing items (item missing) and the percentages of
subjects who did not record any items (unit missingness) for each follow-up time (visit)
for the different setting. The proportion of unit missingness is substantial for the depen-
dent missingness indicator variables but almost non-existent for the independent missing
indicator variables. The percentage of missing items is really large for the dependent
missingness indicator variables.

As it was expected, imputation at the item level takes much more time than MI at the
scale level such that MI at the item level could take up to 36 h, while MI at the scale level
lasts almost 2 h to create 10 imputed data sets for all 500 simulated data sets. PMM at the
item level is slightly faster than logistic regression, but it is slower than MCMC when it
was applied at the scale level. In our simulation, generating 10 imputed data sets indicated
that the average relative efficiency [4] for all parameters per simulation scenario was at least
95%, except for a few cases. The smallest average relative efficiency of 91%was observed for
the correlation coefficients and variance components. It was observed with MI at the item
level using logistic regression (LRitem) with a medium proportion of missingness for the
dependentmissingness indicator variables.We also observed aminimumof 92% efficiency
in the regression parameters for LRitem when the proportion of missingness was large.

Investigating the bias in the fixed effects showed that the logistic regression on items
and the two imputation methods on scales, with or without the hybrid approach, hardly
ever obtained the smallest bias compared with the other four methods. Among these four
missing datamethods, there is no clear winner for the fixed effect estimates, since they fluc-
tuate in their rankings on the smallest bias across parameters andmissing data settings. For
instance, the smallest absolute bias for the fixed effect of the second follow-up time (βT2)

Table 1. The overall proportion (percentage) of missingness in the simulated data sets.

Unit missing Itemmissing
Missingness
indicator variable

Proportion of
missingness Visit 2 Visit 3 Visit 4 Visit 2 Visit 3 Visit 4

Independent Small 0.004 0.72 1.46 4.19 13.95 10.15
Medium 0.000 1.75 8.80 7.20 26.23 24.04

Dependent Medium 4.95 23.43 23.56 7.26 26.33 24.06
Large 8.93 45.73 37.06 12.75 53.12 44.03
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is obtained byML10, H-PMMitem, PMMitem, andML1, respectively, when a large number
of missing items was generated (Table 2). However, this order is fully reversed for the same
parameter when only a small number of items are missing. On the other hand, it seems
that themaximum likelihoodmethods provide somewhat smaller biases, in general, for the
fixed effects parameters that are related to follow-up times. For the bias in correlation coef-
ficients, themaximum likelihoodmethodML10 performs best for large numbers ofmissing
items, while H-PMMitem performs best for all other settings of generating missing data.

Testing for no biaseswith theWilcoxon signed rank test demonstrates that bias in almost
all parameters for all methods and under all settings are significant at the level of α = 0.05.
The bias with respect to the estimate of the full data set is not just significant but can also
be substantial even for the best performing methods. For instance, the absolute bias for
parameter βT3 is 0.792 withML10 (Table 2) when large proportions of missing items were
generated. The parameter βT3 is estimated at−2.375 with the full data set, which implies a
bias of 33%biaswithML10. In otherwords, themissing datamethods are not fully unbiased
when substantial proportions of items are missing.

The simulation results on MSE demonstrate that the hybrid method H-PMMitem per-
forms generally best on almost all fixed effects parameters and on the correlation param-
eters in all our settings compared with all other methods. For instance, the square root
MSE is determined at 0.783 for an average estimate of 1.411 in the full data set for the
interaction effect of gender and follow-up time (β2T4) in the setting with large numbers
of missing items (Table 3). The other methods are closer to or even above a square root
MSE of one. When textitH-PMMitem is outperformed by another method for a specific
parameter, the hybrid method is still close to the other method (relative to the estimate
in the full data set). Even stronger, we could see that the hybrid methods H-PMMitem and
H-LRitem outperform their original methods PMMitem and LRitem, respectively, on almost
all fixed effects and correlation coefficients, although differences between the hybrid and
the original method are never very large relative to the estimates in the full data set. Con-
trary to this, the hybrid approach at the scale level does not seem to contribute or is even
somewhat worse than the corresponding MI method. MSE does not reveal a clear winner
for the estimation of variance components. The worst performing methods on variance
components are in general the hybrid MCMC method on scales (H-MCMCscale) and the
maximum likelihood approach (Tables 3 and 4).

4.2. The TRAILS cohort: amotivating example

The Dutch cohort ‘Tracking Adolescents’ Individual Lives Survey: TRAILS’ is a longitudi-
nal study to assess the development of mental health from childhood towards adulthood
[53]. Data on the psychological, social and physical health of 2230 participants (49% boys
and 51% girls) at age 10–12 was collected through a special questionnaire, and they were
asked to participate in bi-annual follow-ups until they reached an age of 24. In the cur-
rent study, we decided to study the depression domain of the first four waves. This domain
is investigated with a questionnaire containing 13 items for the first three waves (youth
self-report) and 18 items for the fourth wave (adolescent self-report). This change in ques-
tionnaire is due to the psychological changes during adolescence. All relevant items were
designed as multiple choice with three levels (0, 1, 2). We only used the 10 common items
in all four waves and treated the items as binary responses (zero and non-zero).
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Table 2. Absolute bias of the fixed effect estimates, with large proportion of missingness.

Parameter Full data set ML10 ML1 PMMitem LRitem PMMscale MCMCscale H-PMMitem H-LRitem H-PMMscale H-MCMCscale

Fixed effects β0 25.413 −1.382* −1.20* −0.47* −2.032* −1.079* −0.902* −0.928* −1.220* −1.152* −1.255*
β1 0.007 0.128* 0.12* 0.04* 0.192* 0.095* 0.082* 0.089* 0.117* 0.109* 0.117*
β2 −5.592 0.002 0.00 0.00* 0.001* 0.000* 0.000* 0.000* 0.000* 0.000* 0.001*
β3 0.736 −0.061* −0.12* 0.08* −0.048* 0.067* 0.004* −0.062* −0.088* −0.071* −0.047*
β4 −0.673 0.079* 0.14* −0.23* −0.207* −0.088* −0.008* 0.034* 0.037* 0.071* 0.060*
β5 1.449 −0.173* −0.32* 0.04* −0.435* −0.057* −0.114* −0.183* −0.266* −0.237* −0.269*
β6 0.293 0.124* 0.01 0.13* 0.271* 0.227* 0.142* 0.024* 0.025* 0.069* 0.222*

Fixed effects of time βT2 0.026 0.004 −0.95* −0.54* −0.791* −1.220* −1.175* −0.521* −0.603* −1.084* −1.304*
βT3 −2.375 0.792* −1.67* −1.69* −3.198* −2.153* −2.097* −1.453* −1.785* −1.975* −2.678*
βT4 −5.135 1.789* −1.12* −1.20* −3.107* −1.515* −1.507* −1.006* −1.357* −1.377* −1.734*

Interaction of gender with time β2T2 −3.024 0.044* 0.35* −0.18* 0.146* 0.117* 0.124* 0.103* 0.195* 0.212* 0.285*
β2T3 −1.081 −0.744* 0.25* −1.54 −0.089* −1.196* −0.313* −0.096* 0.179* −0.077* −0.873
β2T4 1.411 −0.669* −0.16* −0.98* −0.514* −0.891* −0.487* −0.308* −0.222* −0.331* −0.725*

Correlation ρ12 0.399 0.021 0.041 0.025 0.029 0.045 0.044 0.024 0.024 0.049 0.040
ρ13 0.310 0.059 0.086 0.099 0.146 0.099 0.097 0.076 0.090 0.124 0.094
ρ14 0.241 0.073 0.061 0.084 0.085 0.077 0.068 0.059 0.062 0.079 0.070
ρ23 0.383 −0.021 0.068 0.078 0.166 0.084 0.082 0.062 0.081 0.096 0.075
ρ24 0.313 0.023 0.049 0.064 0.099 0.066 0.055 0.048 0.057 0.064 0.057
ρ34 0.376 0.037 0.036 0.078 0.049 0.071 0.047 0.044 0.041 0.054 0.050

Variance components σ 2
1 478.49 0.360 0.480 −0.40 −0.633 −0.738 −0.837 0.216 0.223 0.008 0.06

σ 2
2 366.79 −22.670 −13.630 5.85 −2.076 2.352 4.304 −4.491 −7.022 −3.183 −6.39

σ 2
3 239.20 −108.050 −49.390 19.64 −44.616 −3.404 −16.494 −23.326 −39.079 −26.409 −31.77

σ 2
4 220.38 −69.910 −30.690 13.22 −61.465 −4.072 −5.334 −14.216 −30.728 −18.071 −20.43

� Significate bias in the level of α = 0.05 using Wilcoxon signed rank test.
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Table 3. Square root of MSE for the large proportion of missingness.

Parameter Full data set ML10 ML1 PMMitem LRitem PMMscale MCMCscale H-PMMitem H-LRitem H-PMMscale H-MCMCscale

Fixed effects β0 25.413 5.308 5.413 4.420 6.779 5.943 6.378 4.322 4.658 5.303 5.052
β1 0.007 0.479 0.491 0.399 0.614 0.536 0.576 0.391 0.422 0.480 0.457
β2 −5.592 0.032 0.034 0.030 0.044 0.038 0.042 0.027 0.029 0.033 0.033
β3 0.736 0.449 0.472 0.412 0.579 0.507 0.563 0.371 0.400 0.458 0.438
β4 −0.673 0.792 0.793 0.722 1.033 0.837 0.934 0.651 0.698 0.779 0.740
β5 1.449 0.658 0.714 0.532 0.928 0.688 0.768 0.548 0.607 0.668 0.654
β6 0.293 0.297 0.300 0.269 0.446 0.391 0.398 0.232 0.245 0.294 0.345

Fixed effects of time βT2 0.026 0.296 1.018 0.594 0.857 1.266 1.230 0.580 0.657 0.992 1.345
βT3 −2.375 1.209 1.929 1.795 3.480 2.319 2.306 1.626 1.970 2.041 2.825
βT4 −5.135 1.901 1.320 1.299 3.457 1.652 1.665 1.127 1.549 1.410 1.852

Interaction of gender and time β2T2 −3.024 0.372 0.559 0.374 0.398 0.441 0.468 0.332 0.381 0.473 0.502
β2T3 −1.081 1.319 1.197 1.709 1.146 1.594 1.169 0.879 0.969 1.176 1.383
β2T4 1.411 1.052 0.949 1.178 1.344 1.232 1.013 0.783 0.823 1.001 1.116

Correlation ρ12 0.399 0.023 0.042 0.026 0.031 0.046 0.046 0.025 0.025 0.050 0.045
ρ13 0.310 0.067 0.093 0.102 0.154 0.105 0.104 0.081 0.094 0.128 0.102
ρ14 0.241 0.035 0.075 0.081 0.177 0.090 0.088 0.066 0.087 0.100 0.084
ρ23 0.383 0.078 0.068 0.087 0.092 0.083 0.075 0.063 0.067 0.084 0.075
ρ24 0.313 0.032 0.054 0.067 0.108 0.070 0.067 0.052 0.061 0.068 0.060
ρ34 0.376 0.050 0.050 0.082 0.068 0.078 0.060 0.051 0.050 0.063 0.057

Variance components σ 2
1 478.49 0.693 0.796 0.711 1.051 1.108 1.223 0.547 0.579 0.644 0.660

σ 2
2 366.79 23.623 15.001 7.188 5.891 6.058 7.049 6.161 8.276 6.347 6.647

σ 2
3 239.20 109.861 52.753 22.276 52.284 15.296 21.380 26.605 41.456 30.600 38.356

σ 2
4 220.38 71.919 33.530 15.888 70.411 12.088 11.645 17.479 33.357 21.437 23.235
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Table 4. Square root of MSE for the medium proportion of missingness.

Parameter Full data set ML10 ML1 PMMitem LRitem PMMscale MCMCscale H-PMMitem H-LRitem H-PMMscale H-MCMCscale

Fixed effects β0 25.413 6.025 3.794 2.445 2.784 5.465 7.052 2.392 2.560 5.466 7.360
β1 0.007 0.545 0.342 0.220 0.252 0.495 0.637 0.142 0.185 4.491 1.506
β2 −5.592 0.037 0.023 0.016 0.019 0.033 0.042 0.015 0.017 0.033 0.044
β3 0.736 0.507 0.334 0.219 0.239 0.457 0.608 0.209 0.223 0.454 0.633
β4 −0.673 0.886 0.577 0.381 0.414 0.793 1.094 0.358 0.373 0.785 1.147
β5 1.449 0.315 0.202 0.167 0.223 0.384 0.429 0.287 0.323 0.747 0.938
β6 0.293 0.778 0.446 0.295 0.365 0.725 0.886 0.155 0.185 0.390 0.429

Fixed effects of time βT2 0.026 1.478 0.158 0.142 0.185 4.491 1.906 0.464 0.672 4.802 2.461
βT3 −2.375 2.335 0.530 0.473 0.689 4.771 2.813 0.497 0.822 2.503 1.302
βT4 −5.135 1.296 0.454 0.542 1.089 2.420 1.592 0.216 0.232 0.495 0.666

Interaction of gender and time β2T2 −3.024 1.153 0.206 0.198 0.185 1.189 1.006 0.198 0.185 1.189 1.214
β2T3 −1.081 1.590 0.663 0.585 0.421 1.193 1.471 0.551 0.411 1.187 1.701
β2T4 1.411 0.834 0.697 0.584 0.646 0.899 0.905 0.518 0.539 0.906 0.888

Correlation ρ12 0.399 0.008 0.047 0.005 0.005 0.059 0.050 0.005 0.005 0.059 0.048
ρ13 0.310 0.066 0.095 0.028 0.036 0.119 0.107 0.027 0.034 0.012 0.101
ρ14 0.241 0.047 0.073 0.037 0.076 0.113 0.084 0.034 0.056 0.119 0.073
ρ23 0.383 0.076 0.078 0.024 0.025 0.098 0.088 0.023 0.025 0.099 0.085
ρ24 0.313 0.061 0.057 0.030 0.052 0.079 0.064 0.028 0.039 0.080 0.059
ρ34 0.376 0.097 0.055 0.034 0.043 0.081 0.067 0.032 0.037 0.081 0.063

Variance components σ 2
1 478.49 0.828 0.475 0.336 0.370 1.075 1.497 0.297 0.310 1.038 1.485

σ 2
2 366.79 30.673 11.881 5.321 3.684 11.194 19.364 5.364 3.681 11.195 35.417

σ 2
3 239.20 59.341 97.360 12.362 8.692 17.245 26.322 11.173 8.904 17.149 65.150

σ 2
4 220.38 28.553 92.536 9.581 15.097 8.814 10.178 5.408 12.548 8.670 30.872

Note: The third column represents the parameter estimates for the full data set.
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Table 5. Pattern of missing during the follow-up of the TRAILS

Pattern Wave 1 Wave 2 Wave 3 Wavet 4 %Complete set of items %Available items

1 X X X X 61.06 65.91
2 X X . . 11.11 11.48
3 X X . X 9.41 8.54
4 X X X . 7.31 7.55
5 X . . . 4.07 3.98
6 . X X X 3.02 0.36
7 X . X X 1.42 0.63
8 X . . X 1.05 0.86
9 . X . X 0.82 –
10 . X . . 0.73 0.32

Patterns ofmissingness for the sum scores are provided in Table 5. In this table, the signs
‘X’ and ‘.’ indicate observed and missing outcomes, respectively. Moreover, the percentage
of participants are provided based on two approaches: one column indicates the percentage
of participants with a complete set of items at each wave, and the other column provides
the percentage of participants that have at least one item (out of 10 items) available.

For instance, 61.06%of participants answered all 10 items at all fourwaves, while 11.11%
of participants responded all 10 items present at the first two waves but missed at least one
item at the other two waves. Furthermore, 7.55% of all participants answered at least one
item available at the first three waves, but none of the items available at the fourth wave.

To study the risk factors for depression status and development, data were collected
on the history of parental internalizing and externalizing behaviour, family structure, and
social-economic status of the family, next to age and gender of the participants. To under-
stand the association of these factors with depression, we studied their relation with the
depression scale, i.e. the mean score of 10 items expressed as percentages. We applied the
two maximum likelihood methods and the PMM at the item level with and without the
hybrid approach, since these four methods were most promising in the simulation study.

Table 6. Parameter estimates (standard errors) of the real data set.

Parameter ML10 ML1 PMMitem H-PMMitem

Fixed effects Intercept 39.229*(8.398) 36.771*(8.620) 37.538*(8.383) 38.187*(8.334)
Gender −5.740*(1.146) −5.478*(1.126) −5.555*(1.133) −5.497*(1.125)
Age at baseline −0.759 (0.755) −0.554 (0.776) −0.614 (0.756) −0.672 (0.749)
Externalising behaviour −0.400 (1.105) −0.837 (1.133) −0.339 (1.092) −0.351 (1.090)
Internalising behaviour 2.075*(0.544) 2.240*(0.560) 2.030*(0.521) 2.045*(0.539)
Social-economic status −0.104 (0.546) −0.533 (0.560) −0.299 (0.535) −0.159 (0.540)
Family structure 1.950 (1.094) 2.157 (1.124) 2.026 (1.094) 1.995 (1.082)

Fixed effects of
time

Time2 3.601*(0.818) 4.445*(0.816) 3.706*(0.811) 3.713*(0.807)
Time3 1.254 (0.935) 1.453 (0.920) 0.792 (0.943) 1.350 (0.921)
Time4 −2.008 (0.916) 0.084 (1.019) −1.760 (0.908) −1.953*(0.909)

Interaction of
gender and time

Gender*Time2 −7.136*(1.179) −7.527*(1.173) −7.304*(1.146) −7.357*(1.155)
Gender*Time3 −9.790*(1.359) −9.911*(1.335) −9.006*(1.247) −9.931*(1.335)
Gender*Time4 −5.356*(1.341) −3.054*(1.489) −4.834*(1.316) −5.401*(1.330)

Variance
components

σ 2
1 675.13*(21.141) 674.43*(20.680) 671.106*(20.703) 672.612*(20.664)

σ 2
2 620.60*(19.587) 667.63*(20.741) 615.468*(19.198) 619.058*(19.428)

σ 2
3 585.14*(20.535) 588.40*(20.499) 564.072*(19.633) 585.522*(20.316)

σ 2
4 531.54*(18.279) 753.31*(25.542) 513.644*(16.838) 526.272*(18.187)

� Significatively different from zero in the level of α = 0.05.
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Results of these analyses are presented in Table 6. Comparing the four methods of
handling missing data demonstrates that the estimates are not identical. For most of
the parameters, the differences are relatively small compared to the size of the estimate,
although some substantial differences also occur. For instance, PMMitem gives a different
effect for the third time point with respect to the other three methods. For the effect of the
fourth time point and the effect of socio-economic status,ML1 deviates strongly from the
other three methods. Moreover, it seems that the maximum likelihoodML1 to deviate for
most parameters from the other three. In our example, there was only one parameter where
the methods conflict in significance. The hybrid PMM method at the item level demon-
strates a significant effect of time point four, while the other methods do not. Considering
our simulation study, this hybrid method would most likely be the closest to the value of a
complete data set.

5. Discussion

The aim of the present study was to determine how well ML would handle missing out-
comes from longitudinal questionnaire data in comparison with ML at the item level or at
the scale level. Multiple imputation at the item level was conducted using logistic regres-
sion via the FCS approach, and using PMM;whereas imputation at scale level was achieved
using PMM and the multivariate normal imputation (MVN) using the MCMC approach.
In addition to the aforementioned missing data methods, we were particularly interested
in the advantage of combiningMI andML, referred to as the hybrid approach. This hybrid
approach first imputes all the unobserved values (depending on the choice of imputation
at the item level or at the scale level) and then eliminates the imputed scales whenever all
items corresponding to those scales were originally missing. An extensive simulation study
was conducted, imposing intermittent missingness with different proportions. The scale in
each data set (i.e. full, incomplete, and imputed data sets) was analysed with a population-
averaged model (or marginal model) and the accuracy of parameter estimates from each
missing data method was compared to the parameter estimates of the full data set, in terms
of bias and MSE. The relevance of our comparisons was motivated by a Dutch cohort data
set (TRAILS).

Results of our simulation studies showed that MI at item level outperforms imputation
at the scale level. This finding is consistent with cross-sectional studies [17,18], although
it would have been possible that the information from other time points would enhance
MI at scale level more than at the item level. In fact, the reverse seems true. Due to ignor-
ing (partial) items in scale-level methods, we lost a lot of information on scale level that
could not be compensated by information of scales from other time points. Nevertheless,
the available information on scales from other time points was sufficient for ML since it
was the best approach for estimation of the correlation coefficients across time in sev-
eral settings. A study on missing data with structural equation modeling also indicated
the advantage of using score information from other time points as auxiliary variables in
maximum likelihood inference [35].

Another result of the current study is that the hybrid approach did not show massive
differences with their original MI method with respect to the size of the estimates in the
full data set. However, the hybrid approach was somewhat better when the imputation
procedure was executed at item level. More importantly, the hybrid approach with PMM
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at item level revealed smaller MSE compared to the other applied techniques for almost all
parameters and inmost of the simulation settings. Thismeans that the parameter estimates
of this approach are in general closest to the parameter estimates of the full data compared
to other missing data methods. For cases where it was not the best approach, it was quite
comparable to the best approach. This finding is in accordance with Von Hippel [24] and
White et al. [3] who advocated to ignore the imputed dependent variables before perform-
ing the final analysis, because they add noise to the estimators. Apparently, this argument
can be extended to incomplete questionnaire data. Indeed, the hybrid method overcomes
the limitation of the maximum likelihood inference, which cannot handle partial avail-
able items. Imputing partially missing items improves the analysis, but fully missing sum
scores do not have to be imputed since ML handles this appropriately. Hence, the partial
loss of information is corrected with MI but imputing unit missingness adds noise to the
parameter estimates of the analysis.

The scope of this study was limited to methods that can handle general missingness
patterns and which have been established in the past. We used MVN at the scale level
since it was assumed that mean scores are normally distributed across time (at least in
the analysis of the scales). However, we avoided MVN at the item level since prior stud-
ies on non-questionnaire data have suggested not to use MVN when the input variables
strongly violate normality assumptions [13,54–58]. In addition, Horton et al. [59] have
demonstrated bias in the parameter estimates when the imputed values of the MVN are
rounded to binary variables. Therefore, we imputed unobserved items using logistic regres-
sion.However, itmight not result in the bestmethod (with or without the hybrid approach)
since logistic regression does not consider a subject-specific latent (ability) variable in the
model. Hence, logistic regression did not fully match with the simulated item response
theory model since MI does not consider a latent varaible for the items [20, Chapter 2].
To overcome this limitation, we applied PMM since it retains the distribution of variables,
is robust to transformation, and is less sensitive to mis-specification of the model [14].
Hence, we explored it at the item and at the scale level. Our simulation study confirmed
these published advantages, although we showed that PMM is best used with the hybrid
approach for questionnaire data.

The strengths of this study is the realistic longitudinal simulationmodel. Previous stud-
ies utilized either real data sets or Monte Carlo simulations for cross-sectional data, and
a multivariate normal distribution for items in structural equation models. We simulated
longitudinal questionnaire data borrowing ideas from item response theory and also took
into account effects of covariates. We generated correlated latent variables across time, and
specified different item characteristics (difficulty and discrimination) for each binary item
over time. We selected the parameter settings based on our real motivating case study, but
we did not examine the impact of possible other realistic settings for our simulation. It
should be noted that our simulation model mimics longitudinal questionnaire data from
just one domain, but it can also be viewed as multi-domain cross-sectional questionnaire
data, where the trait of each domain is mimicked by our multivariate latent variable over
time. We studied missing data methods that treat all items simultaneously rather than
implementing missing data methods per time point separately. This choice is supported
by Graham et al. [60] and Gottschall et al. [18] who advocated not to split domains in
handling missing data, although Graham et al. [61] suggested earlier to treat the domains
separately.
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Aweakness of our study is the dependence of the missingness indicator variables on the
baseline latent variable. This introduces an MNAR missing mechanism. However, there
are a few arguments for our choice. First and foremost, we are convinced that the trait of
a subject may affect the missingness instead of the baseline observed score. The ability or
latent variable is the true subject characteristic, while the sum score represents a somewhat
arbitrary value since it could be different when observed almost immediately again. Hence,
a missing item represents the inability to answer the question. Secondly, MAR can never
be demonstrated and it is probably seldom fully satisfied in practice. Although our simula-
tion produces MNAR, it is MAR at the latent level. This means that our MNAR is not that
far away from MAR and may actually be a realistic MNAR model. Finally, some research
is currently implementing MAR missing data methods without really knowing if MAR is
satisfied. Understanding the performance of these methods in settings that areMNAR, but
not dramatically violating MAR, seems reasonable since this may mimic real studies even
better.

A potential topic for further research is maximum likelihood in combination with
weighted approaches. Indeed, if scales could be calculated on the basis of the observed
items, the precision would be determined by the number of available items. Taking into
account these differences in weights, we may actually improve the maximum likelihood
approach. Note that some theoretical work has been conducted on weighted maximum
likelihood methods [62–65]. Alternatively, inverse probability weighting methods may
also be investigated in this setting [66–69], but it is probably somewhat complicated for
missing data patterns other than drop-out. Furthermore, it would be of interest to investi-
gate if a sequential approach of imputation would improve our investigated methods. One
could start imputing the first longitudinal observations using only the covariates and then
sequentially impute the outcomes at the next time points using the covariates and the pre-
vious imputed outcomes. This approach would fit better with the way that the data were
collected, but whether this approach would really be better is not immediately clear, since
the correlation between an outcome at later time points and an outcome at an earlier time
point can be informative for the imputation method when an outcome at an earlier time
point is imputed. Finally, developing multiple imputation methods for questionnaire data
that uses latent variablemodelsmay improve the currentmethod andmay bemore realistic
with respect to this type of data.

In summary, handling missing data in longitudinal questionnaire type of outcome data
seems to perform best with a PMM approach at item level when the imputed unit missing
scales are eliminated (the hybrid approach). This method outperformed other approaches,
in particular on the fixed effects parameters of the marginal linear-mixed model. For
estimation of variance components, no clear winner among missing data methods was
observed. The multiple imputation methods at the scale level performed worse across
almost all parameters.
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Appendices

Appendix 1. Parameter settings for simulation study

The TRAILS case study was used to generate questionnaire data in our simulation. Thus, we used
the set-up and selected parameter values that would be close to the parameter estimates when we
would fit model (1). We used J = 10 items on 2230 individuals at T = 4 time points from TRAILS.

A.1 Full data set: covariates and latent variables

A descriptive analysis of the covariates showed that ages (x1t) had approximately a mean vector
μT
a = (11.1, 13.5, 16.3, 19.0) and standard deviation (0.5, 0.5, 0.7, 0.6). The correlation between x1t

and x1,t+2 was selected 0.6 + 0.1(−1)T, for t = 1 and 2, and it was approximately equal to 0.6 for
any other pair of time points. Therefore, the covariance matrix �a was equal to

�a =

⎛
⎜⎝
0.250 0.15 0.175 0.180
0.150 0.25 0.210 0.210
0.175 0.21 0.490 0.252
0.180 0.21 0.252 0.360

⎞
⎟⎠ .

We selected the success probability pg as 0.45 to obtain more females than males in the simulation.
The mean of the remaining covariates were selected μc = (0, 0, 0, 0.1) with standard deviations (1,
1, 1, 0.8) and correlation matrix

ρc =

⎛
⎜⎝

1 0.20 0.15 −0.10
0.20 1 0.40 −0.15
0.15 0.40 1 −0.20

−0.10 −0.15 −0.20 1

⎞
⎟⎠ ,

which leads to the variance-covariance matrix as following

�c =

⎛
⎜⎝

1 0.20 0.15 −0.08
0.20 1 0.40 −0.12
0.15 0.40 1 −0.16

−0.08 −0.12 −0.16 0.64

⎞
⎟⎠ .

Then probabilities p3, p4, and p5 were chosen equal to 0.4, 0.1, and 0.2, respectively. Finally, the
correlation matrix for the latent variables (�L) was determined as 0.55 for time lags of 1, 0.45 for
time lags of 2, and 0.35 for time lags of 3.

A.2 Full data set: items

We analysed the 10 items, from TRAILS, per time point separately using model (1) and in the
NLMIXEDprocedure of SAS [70], version 9.4, to obtain the regression parameters for the covariates,
the difficulty and discrimination parameters of each item per time point. Based on the estimates, the
coefficient of age (x1t) was determined at −0.1 for the first-seven items and at 0.1 for the remaining
items on all time points. For gender (x2) we used time-varying coefficients, meaning that there was
an interaction between time and gender for each item: if Item was 1, 4, 6 or 10, the coefficient was
−0.5 for the first visit and −1 for the other visits. For Item 5, 7, and 8, it was −0.5 for the first and
last visits and it was −1 for the second and third visits. Finally, the coefficient for Items 2, 3, and 9
were fixed at zero for visit one, −1 for Visit 2 and 3, and −0.5 for Visit 4. We took time stationary
coefficients of 0.1 and−0.1 for x3 and x4 on all items, respectively. For x5, we selected 0.3 for Item 1,
3, 4, 9, and 10; and 0.1 for the rest of the items on all time points. Finally, the regression coefficients
for x6 were selected at −0.1 for item one, three, four, and nine; and at 0.1 for the other items on all
time points. Table A1 represents the values for the difficulty and discrimination parameters at each
time point.
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A.3 Missing indicator variables

For the medium proportion of missing items, the following coefficients were chosen to be imple-
mented in (2). The coefficient for age (x1) was 0.2 for the second and fourth time points, and 0.1
for the third time point. Effect of gender (x2) was determined at 0.5 for Item 1, and at 0.2 for the
other items at the second visit. It changed to −0.2 and −0.9 for the third and fourth time points,
respectively. The effects of x3 and x4 were taken zero for all items at all visits. Variable x5 had an
effect of −0.8 for item 1 and −0.4 for the remaining items at visit two, but a constant effect of −0.1
and −0.6 for all items at the third and fourth time points, respectively. The coefficients for the final
independent variable x6 was set to 0.2 for Item 1 and at 0.06 for the other items at the second visit. It
was 0.5 for all items at the third and fourth time points. Furthermore, the difficulty parameter was
set at zero at all items and time point. The discrimination parameters are listed in Table A2. These
setting generated a similar pattern of missingness per item over time as the TRAILS study when we
use the independent indicators.

For the small proportion of missing items, we tried to diminish the number of missing items,
while still having a dominant influence of the latent variable from the first time point. This changed
the difficulty and discrimination parameters to the values listed in Table A2.We used the same coef-
ficient setting variables x1, x2, and x5 from the medium setting, but changed the settings for x3, x4,
and x6. The coefficients for the 10 items of variable x3 were selected at (0.1, 0.12, 0.2, 0.1, 0.2, 0.16,
0.9, 0.5, 0.3, 0.4), (0.2, 0.25, 0.18, 0.6, 0.4, 0.24, 1.1, 0.9, 0.7, 0.7), and ( 0.15, 0.1, 0.3, 0.4, 0.4, 0.2, 1.5,
1.5, 0.4, 0.5) for time points 2, 3, and 4, respectively. For variable x4, the coefficients for the second
time points were 0.1, 0.25, 0.5, 0.2, 0.3, 0.5, 0.4, 0.8, 0.7, and 0.8 for the 10 items, respectively. For the
third time point, the coefficients were 0.3 and 0.4 for Item 1 and Item 2, and 0.2 for the other items.

Table A1. The implemented intercepts and random effect in the simulation.

atj btj

Visit 1 Visit 2 Visit 3 Visit 4 Visit 1 Visit 2 Visit 3 Visit 4

Item 1 −0.5 −1.00 −1.5 −1.5 1.2 1.6 1.6 1.6
Item 2 −1.4 −1.40 −1.9 −2.5 1.6 1.7 1.6 1.7
Item 3 −1.5 −2.00 −2.5 −3.0 1.3 1.4 1.6 1.7
Item 4 −2.5 −3.00 −3.5 −4.0 2.0 2.5 3.0 3.5
Item 5 0.05 0.05 −0.2 −0.5 1.4 1.6 1.6 1.6
Item 6 −1.5 −2.00 −2.5 −3.0 2.0 2.0 2.0 2.0
Item 7 −1.0 −1.50 −2.0 −2.5 1.8 1.8 1.8 1.8
Item 8 −0.6 −0.10 −0.2 −0.5 1.5 1.5 2.0 2.0
Item 9 −3.0 −3.50 −4.0 −4.5 1.5 2.0 1.5 2.0
Item 10 −1.2 −0.20 0.8 −0.2 2.0 2.0 2.0 2.0

Table A2. Intercept and coefficient of the first latent variable in logistic regression model for missing
indicator variable.

Small Medium Large
(ãtj , b̃tj) (ãtj = 0,b̃tj) (ãtj = 0,b̃tj)

Visit 1 Visit 2 Visit 3 Visit 1 Visit 2 Visit 3 Visit 1 Visit 2 Visit 3

Item1 (1.5, 1.1) (1.20, 2.0) (1.7, 3.2) 1.1 1.5 4.2 2.1 2.5 4.2
Item2 (1.1, 1.6) (1.10, 2.3) (1.9, 3.3) 0.6 1.8 4.3 1.2 4.6 7.3
Item3 (1.2, 1.5) (0.90, 2.2) (1.6, 3.3) 0.5 1.7 4.3 1.5 4.7 6.3
Item4 (1.4, 1.8) (1.50, 2.1) (0.8, 3.4) 0.8 1.8 4.4 3.5 5.8 6.4
Item5 (1.1, 1.7) (1.05, 2.0) (1.2, 3.2) 0.7 2.0 4.2 1.5 4.5 6.2
Item6 (1.1, 1.7) (1.30, 2.3) (1.5, 3.2) 0.7 1.9 4.2 2.0 4.9 7.2
Item7 (1.9, 1.4) (1.40, 2.5) (1.2, 3.3) 0.4 1.8 4.3 1.4 3.6 6.3
Item8 (1.6, 1.5) (1.50, 2.1) (1.1, 3.2) 0.5 1.8 4.2 1.8 3.0 6.2
Item9 (1.3, 1.5) (1.10, 1.9) (1.5, 3.4) 0.5 1.4 4.4 1.5 3.4 6.4
Item10 (1.0, 1.5) (1.40, 1.7) (1.1, 3.6) 0.7 1.5 4.6 1.5 3.5 6.6



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3435

No effect of x4 was applied at the fourth visit. The coefficients of x6 for the 10 items were chosen at
the second visit at 0.20, 0.16, 0.19, 0.30, 0.20, 0.16, 0.16, 0.14, 0.20, and 0.60, respectively, and 0.5 for
all 10 items at time 3 and 4.

For the large proportion of missingness, we used almost similar settings as the medium setting.
The coefficients of covariate age (x1) at time 2 were 0.2 for Items 1, 3, 4, 8, 9, and Item 10; 0.18 for
Item 2 andItem 7; 0.3 for Item 4; and 0.23 for Item 6. For the third time point, it was selected at 0 for
Items 1, 2, and 5; −0.01 for Items 3, 7 and 10; −0.03 for Items 4, and 9; and −0.02 for Items 6 and 8.
For Visit 4, the coefficients were 0.1 for Items 1 and 2; 0.09 for Items 3, 5, and 9; 0.06 for Item 4; 0.08
for Items 6, 7 and 8 and 0.03 for Item 10. The effect of (x2) were 0.2 for all items at Visit 2, except
for Item 1 which was 0.5. For the third and fourth time points, the coefficients were −0.2 and −0.9
for all items, except for Item 2 which was −2.2 and −2.9, respectively. The effect of x3 was fixed at
0.2 and 0.1 for third and fourth visit for Item 2, but it had no effect on the other items at any time
points. Variable x4 had no effect at any items at any time points. The effect of independent variable
x5 was set at −0.8 for Item 1 and at −0.4 for the other items at Visit 2. These coefficients altered to
−0.1 and−0.6 for the time 3, and 4, respectively. Covariate x6 had a coefficient of 0.2 for Item 1 and
0.06 for the other items at Visit 2. At Visit 3 and 4, the effect of x6 was 1.5 for Item 2 and 0.5 for the
other items. Furthermore, the difficulty parameter was set at zero at all items and time point. The
discrimination parameters are listed in Table A2.

Appendix 2. SAS syntax

A.4 Code forMI using PMM

PROC MI DATA= ITEMLEVEL NIMPUTE=10 OUT=ITEMPMM seed=3478568;
FCS NBITER = 10 REGPMM(ITEM1_2 ITEM2_2 ITEM3_2 ITEM4_2 ITEM5_2

ITEM6_2 ITEM7_2 ITEM8_2 ITEM9_2 ITEM10_2
ITEM1_3 ITEM2_3 ITEM3_3 ITEM4_3 ITEM5_3
ITEM6_3 ITEM7_3 ITEM8_3 ITEM9_3 ITEM10_3
ITEM1_4 ITEM2_4 ITEM3_4 ITEM4_4 ITEM5_4
ITEM6_4 ITEM7_4 ITEM8_4 ITEM9_4
ITEM10_4 / K=3);

VAR ITEM1_1 ITEM2_1 ITEM3_1 ITEM4_1 ITEM5_1
ITEM6_1 ITEM7_1 ITEM8_1 ITEM9_1 ITEM10_1
ITEM1_2 ITEM2_2 ITEM3_2 ITEM4_2 ITEM5_2
ITEM6_2 ITEM7_2 ITEM8_2 ITEM9_2 ITEM10_2
ITEM1_3 ITEM2_3 ITEM3_3 ITEM4_3 ITEM5_3
ITEM6_3 ITEM7_3 ITEM8_3 ITEM9_3 ITEM10_3
ITEM1_4 ITEM2_4 ITEM3_4 ITEM4_4 ITEM5_4
ITEM6_4 ITEM7_4 ITEM8_4 ITEM9_4 ITEM10_4
X1 X2 X3 X4 X5 AGE1 AGE2 AGE3 AGE4 ;

RUN;

A.5 Code forMI using logistic regression

PROC MI DATA = ITEMLEVEL NIMPUTE=10 OUT=ITEMLOG;
CLASS ITEM1_2 ITEM2_2 ITEM3_2 ITEM4_2 ITEM5_2

ITEM6_2 ITEM7_2 ITEM8_2 ITEM9_2 ITEM10_2
ITEM1_3 ITEM2_3 ITEM3_3 ITEM4_3 ITEM5_3
ITEM6_3 ITEM7_3 ITEM8_3 ITEM9_3 ITEM10_3
ITEM1_4 ITEM2_4 ITEM3_4 ITEM4_4 ITEM5_4
ITEM6_4 ITEM7_4 ITEM8_4 ITEM9_4 ITEM10_4;

FCS NBITER = 10 LOGISTIC(ITEM1_2 ITEM2_2 ITEM3_2 ITEM4_2 ITEM5_2
ITEM6_2 ITEM7_2 ITEM8_2 ITEM9_2 ITEM10_2
ITEM1_3 ITEM2_3 ITEM3_3 ITEM4_3 ITEM5_3
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ITEM6_3 ITEM7_3 ITEM8_3 ITEM9_3 ITEM10_3
ITEM1_4 ITEM2_4 ITEM3_4 ITEM4_4 ITEM5_4
ITEM6_4 ITEM7_4 ITEM8_4 ITEM9_4
ITEM10_4);

VAR ITEM1_1 ITEM2_1 ITEM3_1 ITEM4_1 ITEM5_1
ITEM6_1 ITEM7_1 ITEM8_1 ITEM9_1 ITEM10_1
ITEM1_2 ITEM2_2 ITEM3_2 ITEM4_2 ITEM5_2
ITEM6_2 ITEM7_2 ITEM8_2 ITEM9_2 ITEM10_2
ITEM1_3 ITEM2_3 ITEM3_3 ITEM4_3 ITEM5_3
ITEM6_3 ITEM7_3 ITEM8_3 ITEM9_3 ITEM10_3
ITEM1_4 ITEM2_4 ITEM3_4 ITEM4_4 ITEM5_4
ITEM6_4 ITEM7_4 ITEM8_4 ITEM9_4 ITEM10_4
X1 X2 X3 X4 X5 AGE1 AGE2 AGE3 AGE4 ;

RUN;
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