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Notwithstanding important advances in the context of single-
variant pathogenicity identification, novel breakthroughs in dis-
cerning the origins of many rare diseases require methods able to
identify more complex genetic models. We present here the Variant
Combinations Pathogenicity Predictor (VarCoPP), a machine-
learning approach that identifies pathogenic variant combinations
in gene pairs (called digenic or bilocus variant combinations). We
show that the results produced by this method are highly accurate
and precise, an efficacy that is endorsed when validating the
method on recently published independent disease-causing data.
Confidence labels of 95% and 99% are identified, representing the
probability of a bilocus combination being a true pathogenic result,
providing geneticists with rational markers to evaluate the most
relevant pathogenic combinations and limit the search space and
time. Finally, the VarCoPP has been designed to act as an interpret-
able method that can provide explanations on why a bilocus
combination is predicted as pathogenic and which biological in-
formation is important for that prediction. This work provides an
important step toward the genetic understanding of rare diseases,
paving the way to clinical knowledge and improved patient care.
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Advances in high-throughput sequencing technologies and the
application of massive parallel sequencing have revolution-

ized the field of human genetics, providing a huge amount of
information on human genetic variation (1–5). Interpreting this
variation has provided important insights into the genetic ar-
chitecture of many rare diseases, notably those inherited in a
Mendelian pattern (6–8), and has opened the path to promising
preventive, diagnostic, and therapeutic strategies (9). The
amount of genetic data available has also allowed for the de-
velopment of successful predictive tools that integrate genetic,
molecular, evolutionary, and/or structural information (10–13).
Such tools are routinely applied in clinics to identify pathogenic
variants potentially associated with a specific disease phenotype.
Notwithstanding these advancements, the analysis of a growing
number of rare human disorders has highlighted the difficulties
in establishing a genotype–phenotype relationship due to non-
Mendelian patterns of inheritance, incomplete penetrance,
phenotypic variability, or locus heterogeneity (14–18). The
classic concept of one gene leading to a particular phenotype
appears to be an oversimplification, since to better explain the
situation of an affected individual, one often needs to consider
more complex genetic models where mutations in multiple genes
cause or modulate the development of one or several simulta-
neous disease phenotypes (15, 19–21).
Oligogenic or multilocus genetic patterns have already been

discovered for diseases initially considered to be monogenic, for
instance, phenylketonuria (22) or hereditary nonsyndromic
deafness (23). These types of diseases may have a central pri-
mary causative gene and a network of modifier genes, as in
Hirschsprung disease (24) and cystic fibrosis (25), or they may

present a spectrum of genetic models from monogenic to poly-
genic, as in the case of neurodevelopmental disorders (26, 27).
Gene-disease network analysis studies further support the notion
that a disease phenotype is hardly the result of a mutation in one
gene alone, showing that the vast majority of Mendelian diseases
may actually be modulated by multiple genes that are usually
involved in similar pathways or cellular and biological processes
(28, 29). Along with the cases where a phenotype or syndromic
phenotypes can be modulated by several genes, a multilocus
genetic pattern can also be observed in an affected individual
where disease-causing monogenic mutations in different genes
segregate independently, leading to multiple independent mo-
lecular clinical diagnoses (21, 30–33). Some cases of multiple
diagnoses can affect different tissues (distinct), but others can
share phenotypes (overlapping), indicating a possible relation-
ship between the involved multilocus variations at the protein or
cellular level. It is evident that in order for the clinical predictive
tools to remain valuable for diagnostic purposes, they need an
update toward these more elaborate biological and inheritance
scenarios. For instance, such tools will need to consider that the
nature or frequency of variants observed in oligogenic diseases
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will be different from those observed in monogenic ones (20, 34).
The current work makes this leap, introducing and validating a
computational approach that predicts the pathogenicity of vari-
ant combinations as opposed to single variants, and this within
the context of gene pairs.
This leap is made possible by the steady increase in literature

reports on disease-causing variant combinations in gene pairs
(bilocus variant combinations) in the last decades, which have
been grouped and made publicly available via an online resource,
the Digenic Diseases Database (DIDA) (35). This novel re-
source collects, organizes, and annotates cases where a bilocus
genetic model helped to explain a patient’s phenotypic variability
and reduced penetrance, including, for example, the well-known
cases of Bardet–Biedl syndrome (BBS) (36, 37) and retinitis
pigmentosa (38). The first version of the database (which will be
referred to henceforth as the DIDAv1) contained 213 manually
curated bilocus variant combinations obtained from independent
scientific papers involving 136 different genes and leading to
44 diseases (a detailed explanation of the curation process in the
DIDA is provided in SI Appendix, Text S1). These variant
combinations are divided into three classes based on their effect
(Fig. 1). The first class, referred to as the “true digenic class,”
requires the presence of variants in two independent genes to
trigger the disease, with carriers of the variants found in one
gene being unaffected. The second class covers Mendelizing
variants with modifiers, which is referred to as the “composite
class.” In this scenario, the individual carrying the Mendelizing
variant can present symptoms of the disease, with the extra
variant at the second gene modifying the severity of the symp-
toms or the age of onset. The DIDAv1 also contained a few cases
of a third class, which is referred to as the “dual molecular di-
agnoses” class. This class consists of those cases wherein two
disease-causing Mendelizing variants in different genes lead to
two independent clinical diagnoses. Given their limited number

in the DIDAv1, they were added to the composite class. An initial
study on the DIDAv1 revealed that biological features defined at
the variant, gene, and combination levels are sufficient to differ-
entiate composite from true bilocus variant combinations, pro-
viding novel insights into the properties of disease-causing bilocus
variant combinations (39). Although the terms bilocus and digenic
are both used for pairs of variant combinations, we will use here
the term bilocus so as to avoid confusion with those combinations
referred to as “true digenic” (as discussed above).
Based on the presence of these fully annotated bilocus disease

data in the DIDAv1 and the variety of cases they cover, one can
hypothesize that the transition from single to variant combination
pathogenicity predictors is now possible, starting from variant
combinations within gene pairs. Such a predictor should exclude
the nonrelevant variant combinations [true negative (TN)], which
will be abundantly present in a patient’s exome, and accurately
identify the scarce disease-causing ones [true positive (TP)]. To
meet this challenge, we developed the Variant Combination
Pathogenicity Predictor (VarCoPP), a pathogenicity predictor for
combinations of variants in gene pairs, which is able to accurately
identify disease-causing variant combinations using variant, gene,
and gene pair information. The accuracy and sensitivity of the
predictor are also validated on an independent dataset consisting
of new bilocus disease data from novel publications that appeared
after the construction of the DIDAv1. Moreover, by visualizing
how each feature guides the pathogenicity prediction, the Var-
CoPP provides an explanation as to why a given bilocus variant
combination is classified as disease-causing or not. To further
support clinical geneticists in their analysis, statistical scores for
each prediction, as well as 95% and 99% confidence labels for
each evaluated combination, are provided. These labels capture
the most relevant variant combinations that should be further
analyzed clinically and provide potential for patient counseling.
VarCoPP is available online at http://varcopp.ibsquare.be/ (40).

Results
Curation of the 1000 Genomes Project Data Reveals the Presence of
Known Disease-Causing Bilocus Variant Combinations. In total, 46%
of the individuals in the 1000 Genomes Project (1KGP) carry at
least one variant found in the DIDAv1 (Fig. 2). Twenty-four
individuals with a diverse, mostly African, ancestry carried four
or more DIDA variants, with the vast majority of them being rare
[minor allele frequency (MAF) < 0.01]. Information on these
individuals and the corresponding variants can be found in SI
Appendix, Tables S1 and S2.
In general, the majority of all overlapping variants (86%) are

involved in disease-causing variant combinations belonging to
the true digenic class, thus explaining their monogenic presence
in a control population. Nevertheless, more than 10% of over-
lapping variants are involved in bilocus combinations with a
monogenic + modifier effect. Most of the variants found in the
1KGP (69%) are located in the secondary (modifier) gene of the
pair, possibly explaining why the control individuals carrying
them could be asymptomatic. However, the rest of the over-
lapping variants are probably located in the primary (Mendel-
izing) gene, and some of them have been shown to cause disease
symptoms in individuals in a dominant monogenic fashion, like
the variants c.511C > T and c.637G > A in the WNT10A gene,
which are involved in tooth agenesis (41); the variant c.670G > A
in the PDX1 gene, which is involved in the development of
maturity-onset diabetes of the young 4 (MODY 4) (42, 43); and
the c.313G > A variant in the SLC7A9 gene, which is involved in
nontype I cystinuria (44, 45). It should be noted that MODY
could be overlooked, as the c.670G > A variant can present in-
complete penetrance (42), as also suggested by its frequency in
the Exome Aggregation Consortium database (0.002113), while
incomplete penetrance is also well known for nontype I cystin-
uria. Tooth agenesis could also be easily clinically overlooked.

A B C

Fig. 1. Examples of different cases of disease-causing bilocus variant com-
binations present in an individual, and which can be detected by the VarCoPP.
(A) “True digenic” case, where mutations on both genes should be present
to trigger any symptoms of the disease. Individuals with the mutation in
either one of the two genes remain unaffected. (B) One example of a
“composite” case, where one mutation at the most deleterious gene can be
sufficient to show disease symptoms (affected parent), but the second mu-
tation affects the severity of symptoms or the age of onset. (C) One example
of a dual molecular diagnosis case, which concerns the simultaneous ag-
gregation of variants that cause two independent Mendelian diseases, with
or without overlapping phenotypes. It should be noted that dual molecular
diagnosis cases can include different inheritance models (e.g., segregation of
two recessive diseases).
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Intriguingly, we discovered seven disease-causing bilocus com-
binations present in the DIDAv1, leading to MODY (43), Kallman
syndrome (46), or familial hemophagocytic lymphohistiocytosis
(47) in 14 individuals of the 1KGP (Fig. 2 and SI Appendix, Text
S2 and Table S3). These combinations were not supported by
functional evidence in the original studies and had not been com-
pared with a large control cohort to further statistically ensure their
relevance. However, some of the involved pairs were supported by
familial evidence in their original papers (detailed information is
provided in SI Appendix, Text S2). From a clinical point of view, the
individuals could also be undiagnosed: A mild Kallman syndrome
could be easily clinically overlooked, and, as stated beforehand, the
c.670G > A variant for MODY can present incomplete penetrance.
Furthermore, the bilocus combinations could be incompletely
penetrant.
To ensure that the data used for the construction of the

VarCoPP does not contain contradicting instances, we removed
from our analysis these 14 individuals from the 1KGP neutral
set, as well as the seven incriminated bilocus combinations from
the DIDAv1 as a precaution.

The VarCoPP Identifies Accurately Pathogenic Variant Combinations.
Using bilocus variant combinations randomly selected from in-
dividuals of the 1KGP (5) as the neutral set and the bilocus variant
combinations from the DIDAv1 (35) as the disease-causing set, we
successfully trained the VarCoPP (a summary of the procedure is
provided in Fig. 3). We limited the search space to 1KGP variants
with up to 3%MAF to match the frequency range observed in the
DIDAv1, located in or close to exons (Fig. 3A). Each gene and
variant inside a bilocus combination were ordered in the same way
for both datasets, a process necessary for reliability (Fig. 3B and
Materials and Methods). We then annotated our data with in-
formation at the variant, gene, and gene-pair level, leading to
21 characteristics (computationally called “features”) in total per
bilocus combination. This set was reduced to 11 after a feature
selection procedure (Fig. 3C and SI Appendix, Tables S4 and S5).
This annotated information for each bilocus combination of the
DIDA and 1KGP was then used as training input for the machine

learning method, allowing it to learn how to differentiate between
pathogenic and neutral bilocus combinations.
Without going into the technical details (Materials and Meth-

ods), it is important to mention that the VarCoPP is an ensemble
predictor (48), meaning that it is composed of a large number
(500) of individual predictors that each try to solve the same task.
The individual decisions of the predictors are combined via a
majority vote to define the final class: If 50% or more of the
predictors agree that a bilocus combination is disease-causing,
then the “pathogenic” class label will be assigned to that com-
bination (Fig. 3D). Our results show that the VarCoPP performs
very well, achieving a TP rate of 0.88 and a false positive (FP)
rate of 0.11 (SI Appendix, Fig. S1), meaning that 88% of the
disease-causing combinations of the DIDAv1 are correctly
identified, with 11% wrongful assignments of the disease-causing
label in nonrelevant combinations. The Matthews correlation
coefficient, a more robust measure for the predictive quality of
binary classifications that takes into account the correlation be-
tween observed and predicted results, achieves a score of 0.74,
confirming that the method is highly accurate (SI Appendix,
Table S6). It is important to also note that these results were
obtained using a stratified form of cross-validation on the
training data (Materials and Methods), meaning that considerable
efforts were made to avoid bias and overfitting in the construc-
tion and evaluation of the predictor.
For each variant combination given as input, the VarCoPP

generates a final majority class label (“pathogenic” or “neutral”)
and two prediction scores: (i) a classification score (CS) (i.e., the
median probability that the variant combination is pathogenic)
calculated over all pathogenic probabilities provided by each
individual predictor of the ensemble, and (ii) a support score
(SS) (i.e., the percentage of individual predictors in the ensemble
agreeing on the pathogenic label) (a detailed explanation of
these scores is provided in Fig. 3D and Materials and Methods).
The higher the CS and SS, the more confident the predictor is
about the classification of a bilocus combination as pathogenic.
To better split the neutral and disease-causing combinations, the
CS threshold for pathogenic combinations was optimized to
0.489 (Materials and Methods). Consequently, as the predictor is
based on a majority vote, a bilocus variant combination is pre-
dicted to be pathogenic when it has SS > 50 and CS > 0.489 (Fig.
4A). If we plot the predictions of the bilocus combinations of the
DIDAv1 during cross-validation based on these two evaluation
scores (CS on the x axis and SS on the y axis), we see that they are
distributed in an S-shaped curve (Fig. 4B). The vast majority of
the DIDAv1 data (88%) cluster with high confidence in the right
part of the S-shaped curve.

Validation on Independent Disease-Causing Data Confirms the
VarCoPP’s Predictive Success. As the evaluation on independent
data provides the best insight into the quality of a predictive
method, we validated the VarCoPP on a set of 23 new bilocus
disease-causing variant combinations, which were gathered from
research articles published after the creation of the DIDAv1
(Fig. 3E, SI Appendix, Table S7, and Dataset S1). These in-
dependent bilocus variant combinations contained unexplored
gene pairs associated with 10 diseases not previously reported in
the DIDA. This independent set includes diseases such as Alport
syndrome (49) [Online Mendelian Inheritance in Man (OMIM):
catalog nos. 301050, 203780, and 104200], holoprosencephaly
(50) (OMIM catalog no. 236100), and Leber congenital amau-
rosis (51) (OMIM catalog no. 204000).
The VarCoPP remains very successful when used with these

new data (Fig. 4C): The vast majority of the new bilocus com-
binations (20 of 23) are correctly labeled as pathogenic, with a high
confidence (SS > 80). Three bilocus combinations, one leading to
chronic atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature syndrome (52) and two leading to Alport

Fig. 2. Overlapping variants and bilocus combinations between the DIDA
and 1KGP. (A) Statistics on 1KGP individuals carrying at least one DIDA in-
dependent variant or a disease-causing bilocus combination. (B) Histogram
of 1KGP individuals carrying one or more DIDA variants (including those that
carry DIDA combinations). (C) Histogram of the DIDA bilocus combinations
found in the 1KGP and the diseases they are leading to.
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syndrome (49), were wrongfully predicted as neutral, with support
of SS = 46.2, SS = 24, and SS = 1.6, respectively. The gene pairs
involved seem to be relevant for the studied disease, and the genes
of the pairs were closely biologically related, indicating that their
protein products are most likely directly interacting. However, low

Combined Annotation Dependent Depletion (CADD) variant
scores, a single-variant pathogenicity metric (12), and some miss-
ing gene recessiveness and haploinsufficiency values are most
likely the reasons why those combinations were misclassified
(SI Appendix, Text S3). When these missing data become
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variant zygosity is also being considered (e.g., for a homozygous variant, both available alleles of the gene contain the same variant information). In this specific panel,
we show a bilocus combination with a heterozygous variant in gene A (the second allele is wild-type) and two different heterozygous variants in gene B. Gene A is
always the gene with the lowest Gene Damage Index (GDI) score, thus with the higher probability of being a deleterious gene. Different variant alleles inside the same
gene were ordered based on their CADD pathogenicity score, with the variant present in the first allele of that gene always having the highest CADD score. (C) Initial
number of biological features used for classification was 21, but the final selected and more relevant features were filtered to 11. These included information at the
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probabilities for gene A and gene B)], and gene-pair level [BiolDist (i.e., biological distance, a metric of biological relatedness between two genes of a pair based on
protein–protein interaction information)]. A more detailed explanation of the features is provided in SI Appendix, Table S4. (D) After the filtering process, the 1KGP
dataset contained billions of bilocus combinations compared with the DIDAv1 set, which contained 200 bilocus combinations. To solve this class imbalance problem,
500 random 1KGP samples, each containing 200 bilocus combinations, were extracted using two types of stratification: Each sample contained an equal amount (41) of
bilocus combinations from individuals of each continent as well as an equal distribution of degrees of separation (i.e., a metric of protein–protein interaction distance)
between the genes of each pair, following the degrees of separation distribution of the DIDAv1. Each 1KGP sample was used against the complete DIDAv1 set to train
an individual classifier that gives a class probability for each bilocus combination. Based on a majority vote among the individual classifiers, the output of the VarCoPP
for each tested bilocus combination is the final class (“neutral” or “disease-causing”), the SS (i.e., the percentage of the classifiers agreeing about the pathogenic class),
and the CS (i.e., the median probability among the individual predictors that the bilocus combination is pathogenic). (E) To validate the VarCoPP on new disease-
causing data, we collected 23 bilocus combinations from independent scientific papers, which included gene pairs not used during the training phase. To perform
confidence testing, we extracted three different random sets of 100, 1,000 and 10,000 bilocus combinations from the 1KGP set, which included gene pairs not used
during the training phase of the VarCoPP. By exploring the number of FPs predicted with these neutral sets, we defined 95% and 99% confidence zones that provide
the minimum SS and CS boundaries above, of which a bilocus combination has a 5% or 1% probability, respectively, of being a FP.
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available or annotations are improved, the VarCoPP might also
classify these three cases correctly.

Statistical Confidence Zones Make It Easy to Detect the Most Relevant
Combinations. It can be expected that even after a standard variant
filtering procedure, the number of neutral variant combinations
(i.e., TNs) in an individual’s exome will vastly outnumber the
number of the real disease-causing ones (i.e., TPs). It is therefore
highly relevant to estimate how likely it is that a variant combi-
nation predicted as pathogenic by the VarCoPP is actually a FP.
To examine this FP probability, we randomly collected neutral

variant combinations from 1KGP individuals, consisting exclu-
sively of gene pairs unknown to the VarCoPP, and calculated
their prediction scores (i.e., their CS and SS) (Fig. 3E). We an-
alyzed three different sets of such random combinations [sets of
100, 1,000 (Fig. 4D), and 10,000 combinations] to also examine
whether the percentage of FPs changes relative to the sample
size (Datasets S2, S3, and S4, respectively).

We observed that, on average, 93% of the combinations are
correctly identified as neutral, of which 72% have a confirmative
SS equal to zero, meaning that no predictor in the ensemble
classified them as disease-causing (SI Appendix, Table S8). The
overall fraction of FP combinations predicted as disease-causing
fluctuates at around 7–8%. This percentage remains stable even
if the sample size changes. Therefore, in general, there is only a
7% chance that a bilocus variant combination is wrongfully
predicted to be disease-causing.
Using this insight, it is possible to define stringent confidence

zones for the predictions, delimited by specific CS and SS scores,
which denote the probability that a bilocus variant combination
is a TP. We define in this manner a 95% confidence zone con-
taining all predicted variant combinations that have at least CS ≥
0.55 and SS ≥ 75. Combinations belonging to this zone have at
least 95% probability to be TP disease-causing variant combi-
nations. Similarly, we define a 99% confidence zone, which re-
quires at least CS ≥ 0.74 and SS = 100, containing all predicted

Fig. 4. Distribution of the predictions of the DIDAv1 and of the independent test bilocus combinations, based on the CS on the x axis and the SS on the y axis. (A)
SS > 50 and CS > 0.489 were required to label a bilocus combination as disease-causing. The red box represents the area where a bilocus combination is predicted as
disease-causing, while the blue box represents the area where a bilocus combination is predicted as neutral. (B) Distribution of disease-causing bilocus combinations
of the DIDAv1 during a cross-validation procedure. (C) Distribution of the 23 disease-causing bilocus combinations of the validation set. (D) Distribution of the
1,000 neutral test set combinations. The 95% confidence zone has a minimal boundary of CS = 0.55 and SS = 75, and contains combinations with a 5%probability of
being FPs, while the 99% confidence zone has a minimal boundary of CS = 0.74 and SS = 100, and contains combinations with a 1% probability of being FPs.
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combinations that have a 99% or higher probability of being a
TP (SI Appendix, Table S8). These confidence zones are useful as
the focus can fall directly on the bilocus variant combinations
belonging to one of these two zones, and therefore have higher
confidence of being relevant. Underlining again the quality of
the VarCoPP, one can observe that all 20 correctly classified
elements in the independent validation set discussed in the
previous section belong to at least the 95% confidence zone, with
15 of those even present in the 99% confidence zone (Fig. 4C).
Although these confidence zones provide a guarantee on the

probability of a variant combination being a TP, the absolute
number of combinations falling in those zones increases with the
number of variant combinations to be tested. This is also the case
when testing single variants with monogenic pathogenicity pre-
dictors. A consequence of this observation is that the precision
[i.e., the fraction of real disease-causing combinations (TPs)
detected among those that were predicted to be disease-causing
(TPs and FPs)] and recall (i.e., the fraction of the real disease-
causing combinations predicted correctly as pathogenic over all
real disease-causing combinations present in the dataset) will be
affected: The smaller the fraction of real disease-causing com-
binations among all tested combinations, the smaller is the
precision and the larger is the difficulty to recall them all (SI
Appendix, Text S4, Fig. S2, and Table S9). As a consequence, it is
best to filter down the number of variants and genes as much as
possible before testing them for pathogenicity with the VarCoPP.
Another possibility would be to apply post-VarCoPP FP re-
ducing strategies, such as, for example, using trio data, to avoid
considering further irrelevant combinations already present in an
unaffected parent.

Confidence Zones Are Relevant for the Clinical Analysis of Disease-
Specific Gene Panels. With the previously defined 95% and 99%
confidence zones and additional filtering steps, we can restrict
our analysis to the most relevant pathogenic bilocus variant
combinations within full exomes. However, as a large absolute
number of combinations to consider may still exist, one can
further reduce the number of combinations by zooming in on
those combinations that occur in a subset of genes related to the
disease of interest (i.e., to restrict the analysis to well-defined
gene panels). However, even by shifting to a gene panel, the
current predictive quality of the VarCoPP might be altered due
to the specific properties of the genes included in that panel.
First, we assessed the expected absolute number of FP com-

binations in the 95% and 99% confidence zones for different
sizes of randomly generated gene panels (ranging from 10 to
300 genes). This analysis provides insight into the number of FP
combinations present in each confidence zone that we can expect
for a random gene panel of a given size, which consists only of
neutral variants. This insight is essential as geneticists do not
want to be confronted with a large amount of FPs in these zones,
given the time and costs associated with analyzing and/or testing
them. On the other hand, knowing how many FPs to expect in
the confidence zones relative to the size of the gene panel pro-
vides a baseline that could be used to quantify differences be-
tween healthy patients and those having a specific disease
phenotype: If the number of predicted variant combinations
present in the confidence zones for a gene panel of a particular
size exceeds significantly what is expected for random neutral
combinations, then there may be important genetic information
in the predicted results that merits future exploration.
The results for random gene panels of different sizes (10, 30,

100, and 300 genes) that contain neutral variant combinations
from 1KGP individuals (details are provided in Materials and
Methods) are shown in Table 1. One can first observe that the
percentage of FPs does not fluctuate significantly among the
random gene panels, similar to the random neutral validation
data results described before (SI Appendix, Table S8). There is

only a slight increase in the percentage of FPs in the 95% con-
fidence zone for the 100 and 300 random gene panels. The strict
99% confidence zone appears to be more consistent, as for all
random gene panels, it contains, on average, less than 1% of
neutral bilocus combinations per individual. The absolute num-
ber of FP combinations increases, as expected, with the size of
the gene panel; of the 1,312 variant combinations per individual
that are generated, on average, for a panel of 300 genes, ∼12
(0.9%) may end up in the 99% confidence zone. Additional
evaluations of those cases using knowledge about the disease
phenotype or molecular functionalities will most likely further
reduce these numbers to acceptable sets of combinations to
evaluate clinically or test experimentally.
Second, as known disease gene panels can have more detri-

mental properties than randomly selected ones, given that they
are known to be associated with a disease, it is important to see
how these statistics change in such circumstances. We decided
here to evaluate, on one hand, a gene panel for a disease known
to be caused by bilocus variants (i.e., BBS) and, on the other
hand, gene panels for a mono-to-polygenic disease [i.e., autism/
intellectual disability (ID)], using SFARI Gene top categories,
applied again on neutral combinations of 1KGP individuals
(Materials and Methods). Whereas the first BBS set is expected to
generate higher percentages of FPs as most of the genes are
present in the DIDAv1, we expected to see a reduction in FPs in
the latter panels.
As can be observed in Table 1, the VarCoPP appears to pre-

dict more FPs for the BBS gene panel compared with a gene
panel of random genes with similar size. The BBS panel contains
highly recessive genes with low haploinsufficiency probabilities
(0.19 on average) and whose neutral 1KGP variants have rela-
tively higher CADD scores compared with random genes.
However, the defined confidence zones are still clinically rele-
vant as the VarCoPP guarantees that, on average, less than one
variant combination will be predicted as pathogenic and will be
present in the strict 99% confidence zone. As a consequence,
almost any bilocus combination present in the 99% confidence
zone should be clinically relevant. Such an assertion could be
tested in the future on new cohorts of BBS-demonstrated
bilocus patients.
The gene panels of autism/ID, although larger in size, reveal

lower FP fractions, as expected. This result is most likely due
to the observation that genes in those panels have high
haploinsufficiency probabilities (0.40–0.49 on average among
the different panels), while the 1KGP variants present in those
genes generally have lower CADD scores than average. Hence,
the 95% and 99% confidence zones stay quite devoid of false
predictions. Together, these results show that the VarCoPP can be
very precise, making it a relevant tool for discovery and diagnosis.

The Synergy of Different Biological Features Determines the
Pathogenicity. The VarCoPP combines a number of molecular
features at the variant, gene, and gene-pair level to identify
which variant combinations are potentially disease-causing. By
analyzing how each feature influences the predictions in-
dependently, we can gain an idea about their relative importance
for the full predictor. Through a feature selection procedure, we
determined that a subset of 11 biological features of the original
21 (Fig. 3C and SI Appendix, Text S5, Fig. S3, and Table S4) is
sufficient for making high-quality predictions while, at the same
time, reducing the chance of overfitting.
For each of these 11 features, we calculated a Gini importance

score (53), which quantifies the importance of a feature propor-
tionally to the number of samples it can successfully differentiate.
Fig. 5 shows that the CADD score of the first variant allele of gene
A (CADD1) and that of the first variant allele of gene B
(CADD3), along with the gene recessiveness probabilities (RecA,
RecB), are the most important features for separating the two
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bilocus combination classes. Their capacity to differentiate be-
tween pathogenic and neutral combinations becomes clear by
comparing their value distributions between the two sets (SI Ap-
pendix, Fig. S4).
Although the CADD pathogenicity of variants is important for

the VarCoPP to classify a variant combination, using CADD1
and CADD3 alone (the CADD scores of the most pathogenic
variant alleles of each gene inside a combination) is not sufficient
to achieve satisfactory results (run with two features in SI Appendix,
Fig. S3). By adding information about the genes’ recessiveness
(run with four features in SI Appendix, Fig. S3), we see an im-
provement in classification, but it is the addition of the complete
biological information (i.e., all 11 selected features) that pro-
vides the best performance. Therefore, it is the synergy of all
features that contributes to the correct classification of a bilocus
combination, underlining the necessity of developing a tool like
the VarCoPP compared with solely using combinations based on
single-variant pathogenicity information.

From Black-Box to White-Box Predictions That also Explain
Classification Decisions. Since it is the synergy between the fea-
tures that determines whether a particular variant combination in
a pair of genes is pathogenic or not, their joint impact on the
prediction process should provide an even better understanding of
how the VarCoPP makes its decisions. Understanding this de-
cision process transforms the VarCoPP from a black-box predictor
into a white-box predictor, an issue that is becoming more and
more important as these artificial decision makers may have a
crucial impact on patients and people in general.
Using a method that follows the decision steps for each new

bilocus combination in each individual predictor inside the
VarCoPP (Materials and Methods and SI Appendix, Text S5), we
can show the preference of each feature for either the neutral or
disease-causing class. That preference or decision gradient can
be either positive or negative, depending on whether the feature
pushes the decision to the pathogenic or neutral class, re-
spectively. For example, in the DIDAv1, most disease-causing
combinations are between genes that correspond to proteins
that are directly or indirectly (i.e., separated by one intermediate
protein) interacting. Thus, if the biological distance feature be-
tween the two genes of a variant combination is rather low,
meaning that the genes are very close in the protein–protein
interaction network, the decision gradient for the biological
distance feature will be positive, driving the prediction toward
the pathogenic class. Performing that preference analysis for
each feature and individual predictor inside the VarCoPP when
predicting a bilocus combination, a distribution of decision gra-
dient values for that feature is produced. The simplest way to
visualize these values per feature is by using boxplots that reveal
both the median and variance among the individual predictors in

the VarCoPP (as can be seen in Fig. 6, where positive values that
vote for the pathogenic class are depicted in red, while negative
values voting for the neutral class are depicted in blue).
The higher the confidence of a prediction, the more clearly it

is that features show preference for a particular class. As can be
seen in Fig. 6, there is a clear positive or negative preference
among the features for cases where there is full support for ei-
ther the disease-causing (Fig. 6A, SS = 100) or the neutral (Fig.
6B, SS = 0) class for a bilocus combination. However, in cases
where the prediction is ambiguous, such as, for example, in cases
where the average support from the individual predictors in the
VarCoPP is close to the threshold (SS ∼ 50), we observe that
such a clear consensus among the features is missing (Fig. 6C).
These visualizations provide a good indication as to why we

reach a disease-causing or neutral prediction for a bilocus variant
combination. By examining the actual values of the features that
most strongly influence the decision process for a particular
combination [i.e., are furthest away from zero (Fig. 6)], we can
obtain insight into why this combination is assigned to a specific
class and people can assess whether they agree with this assign-
ment. For example, if we see that the CADD1 feature of a variant
combination drives significantly the prediction toward the patho-
genic class, we can most probably expect that the CADD feature
value of the corresponding variant is relatively high.

Table 1. Performance of the VarCoPP on independent 10, 30, 100, and 300 random gene panels and on disease gene panels for the BBS
and autism/ID genes, iterated 100 times on 100 random 1KGP individuals

Gene panels

10 Random
genes

30 Random
genes

100 Random
genes

300 Random
genes

21 BBS
genes

24 SFARI
1 genes

79 SFARI 1 + 2
genes

237 SFARI 1 + 2 + 3
genes

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Combinations 3.03 1.9 14.12 12.9 143.63 81.8 1,312 463.8 8.83 12.9 11.99 15.9 146.51 161.4 1,672.06 1,548.2
% TNs, SS = 0 74.65 19.5 74.87 15.5 72.87 10.9 73.02 6.5 58.24 35.5 90.04 17.9 86.02 12.9 79.88 6.94
% FPs 7.23 11.6 6.54 8.9 7.93 6.8 7.39 3.4 12.66 20.4 1.99 7.4 2.81 5.0 4.22 3.2
% 95-FPs 4.62 8.9 4.48 7.8 5.53 5.4 5.13 2.7 8.45 16.2 1.39 4.9 2.02 4.1 2.75 2.4
95-FPs 0.16 0.4 0.73 2.1 7.15 7.2 67.27 50.4 1.04 2.4 0.19 0.6 3.18 6.6 48.71 58.6
% 99-FPs 0.81 2.7 0.78 2.4 0.88 1.2 0.88 0.7 2.44 7.3 0.44 2.6 0.46 1.3 0.48 0.76
99-FPs 0.03 0.1 0.11 0.4 1.16 1.5 11.86 11.5 0.35 0.9 0.03 0.2 0.67 1.9 7.80 11.7

95-FPs, FPs falling in the 95% confidence zone; 99-FPs, FPs falling in the 99% confidence zone; SFARI 1, high-confidence category; SFARI 2, strong candidate
category; SFARI 3, suggestive evidence category.

Fig. 5. Boxplot of the Gini importance for each feature among all 500 in-
dividual predictors of the VarCoPP using the training DIDA and 1KGP data.
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Discussion
This work demonstrates that sufficient genetic knowledge is
available to produce pathogenicity predictors capable of differ-
entiating between pathogenic and neutral bilocus variant combi-
nations. We presented here the VarCoPP, a clinically competent

predictive tool, which is precise and sensitive both in cross-
validation settings (87% correct predictions) and also when tested
on new independent data. Its performance will further increase by
improving the quality of the genetic annotations and by using
more training data.
The VarCoPP provides robust 95% and 99% confidence labels,

which constitute an objective assessment of the relevance of newly
identified pathogenic bilocus variant combinations. These zones
are important as a form of primary filtering and evaluation of the
predictions, while further statistical and biological verification can
be performed for those 95% confidence- and 99% confidence-
labeled variant combinations. Such an approach boosts the clinical
relevance of the VarCoPP as it limits the search space produced
by all variant combinations of a gene panel or exome to the most
relevant ones and, as a consequence, reduces the required time
needed to further explore these relevant results.
Moreover, our method has been designed to produce “white-

box” predictions by providing insights into the importance of the
biological features in distinguishing disease-causing combinations
from neutral ones (Fig. 5). Furthermore, it can provide objective
explanations on the class decision made by the predictor for each
new bilocus combination that is being tested (Fig. 6). While the
former provides a way to assess the relevance of novel features in
further developments of the VarCoPP, the latter allows users to
assess the relevance of the prediction using their genetic and bi-
ological expertise and to capture reasoning differences for dif-
ferent bilocus instances. Providing such decision transparency for
automated systems is highly important, given the effect that pre-
dictions may have on individuals and society.
Although we can now start to analyze combinations in patient

exomes, it is important to keep in mind that the magnitude of the
search space increases dramatically when moving to a full-exome
analysis. Although there is only a 1% chance of observing a FP in
the 99% confidence zone, the absolute number of FP combina-
tions will exponentially increase, a classic problem that is un-
fortunately encountered in most types of bioinformatics predictors
when tested at the exome level. Additional pre- or postfiltering
steps to reduce these absolute numbers are thus required, which
can be done, for instance, by adding knowledge about the disease
or comparing the predictions with genetic information obtained
for the parents in trio studies. In line with the former, the study
can be limited to gene panels known to be associated with the
disease or belonging to the relevant pathways. We demonstrated
that such a focus will indeed help in limiting the number of
nonrelevant bilocus combinations: Using a panel of 150 random
genes produces potentially one nonrelevant combination in the
99% confidence zone, confirming the clinical relevance of our
method. Furthermore, rare diseases’ recessive gene panels (like
BBS) may produce a bit more FPs, in contrast to known
haploinsufficient gene panels (like those of neurodevelopmental
disorders). Clinical users of the VarCoPP should be aware of this
issue in the analysis of their target disease.
The results furthermore show that especially the CADD

scores of the first variant allele of each gene, an expected ob-
servation as we order the variant alleles inside each gene based
on pathogenicity, but also the gene recessiveness probabilities
seem to be the main drivers of predictions. Although these
features independently show great importance, it is the combi-
nation of all 11 selected features, including those with a lower
effect, that leads to the highest classification accuracy. These
results make the VarCoPP a clinically important tool that is
more informative and accurate than simply selecting potentially
relevant variant combinations based solely on monogenic variant
pathogenicity scores, such as the CADD scores.
Further expansions of the VarCoPP into the oligogenic realm

should consider that the variant filtering criteria that were shown
to be important for the method differ from the “strict” criteria
that are commonly used to identify pathogenic variants in rare

Fig. 6. Decision profile (DP) boxplots that show the class preference (or de-
cision) gradients of each feature used for the classification of test bilocus
combinations. Features whose median decision gradient values, among all
classifiers of the VarCoPP, fall above zero on the y axis are in favor of the
disease-causing class (red color), whereas features whose median decision gra-
dient values fall below zero on the y axis are in favor of the neutral class (blue
color). (A) DP boxplot for a TP bilocus combination with SS = 100 (Dataset S1,
testpos_21), where the vast majority of features have a median decision value
above zero. (B) DP boxplot for a TN bilocus combination with SS = 0 (Dataset S3,
testneg_769), where all features have a median decision value below zero
agreeing for the neutral class. (C) Example of an indecisive DP boxplot for a
neutral bilocus combination of the set of 1,000 test neutral combinations, which
was predicted as disease-causing with SS = 51 (Dataset S3, testneg_358).
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Mendelian diseases (i.e., rare exonic variants with a strong
monogenic effect). Although the majority of positive cases in the
DIDA have a MAF of less than or equal to 3%, we observed that
some variants involved in rare oligogenic diseases can reach, for
instance, a MAF of up to 18% (54). As these are present but
constitute exceptions in the current DIDA dataset, we restrict
ourselves for now to a MAF of 3% for the creation of the neutral
dataset as well. Nonetheless, this threshold can be further re-
laxed in the future as more data on pathogenic bilocus combi-
nations become available.
Similarly, while it is widely presumed that genes involved in

the same disease can belong to the same molecular pathway or
biological process, this does not necessarily apply to all cases. It
is shown in the DIDAv1 that for some gene pairs, such as the
ANOS1-PROKR2 pair found in many studies associated with
Kallman syndrome (46, 55–57), no interaction or coexpression
information is known yet, indicating that potentially more com-
plex pathways and cellular mechanisms may be involved to cause
disease. Nonetheless, the gene pairs in the neutral data used by
the VarCoPP were filtered in such a way that they contained
genes with a similar distance distribution from a protein–protein
interaction network (i.e., degrees of separation) as the one ob-
served in the DIDAv1. As a consequence, the importance of the
biological distance feature, which is strongly related to this de-
grees of separation metric, is reduced. It remains to be seen
whether this stratification should not be relaxed when moving
into the realm of oligogenic disease cases, as subsets of genes
involved in different pathways may be responsible for the ob-
served phenotype. However, relaxing this biological distance
normalization will lead to a less “clever” predictor with a slightly
higher FP rate, as it would provide an obvious way to learn
separating known pathogenic from random neutral bilocus
combinations (SI Appendix, Fig. S5).
The VarCoPP is a bilocus variant combination pathogenicity

predictor that is trained using combinations involved in known
oligogenic diseases. As our predictor is not phenotypically
driven, it could also be used to predict bilocus combinations
involved in cases of dual molecular diagnosis (i.e., cases where
several independent monogenic diseases are present in an indi-
vidual due to the segregation of monogenic variants in two un-
related loci). The recent work of Posey et al. (21) provides a
collection of such dual molecular diagnosis cases. An analysis of
76 cases in that paper revealed that the VarCoPP predicted 67
(88%) correctly (SI Appendix, Fig. S6 and Dataset S5). These
results are again very promising, especially since dual diagnosis
cases are almost completely missing from the DIDAv1. None-
theless, such cases appear to consist of strong monogenic vari-
ants and genes whose nature and properties are different
compared with those causing or modulating the diseases con-
tained in the DIDAv1. Within the context of another study,
expanding on Gazzo et al. (39), it is observed that dual diagnosis
instances are indeed separated from the other types of bilocus
diseases. Although further developments of the VarCoPP should
incorporate these cases for training, a distinction should be
further made between dual diagnosis instances with distinct and
overlapping phenotypes. Especially the latter appear to be rel-
evant for a predictor that aims to find synergies between variants,
which is the long-term ambition of the VarCoPP.
In conclusion, the VarCoPP reveals that the first steps to

multivariant pathogenicity predictions can be taken. Our method
shows great predictive ability during cross-validation and using
independent validation sets, which may be further improved with
the advent of new data and the inclusion of additional biological
information. The provision of statistical evaluations, as well as
white-box explanations on the obtained results, establishes the
VarCoPP as a pioneering clinical tool for the detection of
disease-causing variants implicated in more complex genetic
patterns. By scoring bilocus combinations and gene pairs, gene

triplets or quadruplets may be identified in exome or gene panel
data as causative genetic models for a particular disease, paving
the path for the detection of multilocus signatures derived with
machine learning approaches. The VarCoPP therefore provides
an important leap forward, allowing for more fine-grained
pathogenic predictions.

Materials and Methods
An illustrated summary of the materials and methods used in this study is
presented in Fig. 3. Additional details on each subsection in this section can
be found in SI Appendix, Text S5.

Data Filtering and Annotation.We filtered the variants and genes between the
DIDAv1 and the 1KGP so that both sets contained comparable information (Fig.
3A), using exonic and splicing SNPs, as well as indels of MAF equal to or less
than 3%. Individuals in the 1KGP who carried disease-causing bilocus combi-
nations, as well as the corresponding overlapping combinations in the DIDAv1,
were removed (Fig. 2 and SI Appendix, Table S3). Variants and genes inside
each bilocus combination were ordered in both datasets so that gene A and
the first variant allele of each gene in a bilocus combination were the most
pathogenic ones according to the Gene Damage Index score (58) and CADD
score (12), respectively (Fig. 3B). We then annotated both sets based on in-
formation at the variant, gene, and gene-pair levels, leading initially to
21 features per entry. After a feature selection procedure, this set was reduced
to 11 features (an overview and explanation of the features are provided in
Fig. 3C and SI Appendix, Text S5 and Tables S4 and S5).

Stratification of the 1KGP Data and Training. To train the VarCoPP, we created
500 balanced sets (Fig. 3D), each consisting of 200 1KGP bilocus combinations
of randomly chosen gene pairs and the 200 disease-causing combinations of
the DIDAv1. For each 1KGP subset, we included 40 individuals per continent.
However, we observed that there is no significant difference in performance
when the predictor is trained using 1KGP combinations only from individuals
of a particular continent against the DIDAv1, confirming no population bias
(SI Appendix, Table S10). Each random control subset contained gene pairs
following a degrees of separation distribution equal to that of the DIDAv1,
based on information obtained from the Human Gene Connectome tool (59)
(SI Appendix, Fig. S5). We used the scikit-learn version 0.18.1 implementa-
tion (60) of the Random Forest (RF) algorithm (53) as a classifier for each of
the 500 balanced sets. Each RF consisted of 100 decision trees using boot-
strapping with a maximum tree depth of 10, using the square root of the
features for each split. We implemented a leave-one-pair-out stratified
cross-validation procedure individually for each predictor (39).

Validation of the VarCoPP. We collected 23 new disease-causing bilocus com-
binations derived from independent scientific papers, which were published
after the release of the DIDAv1 (Fig. 3E, SI Appendix, Table S7, and Dataset S1).
For confidence testing, we collected different sets of random 100, 1,000, and
10,000 neutral bilocus combinations from the 1KGP that were unused during
training (Fig. 3E and Datasets S2–S4). For the gene panel analysis, we created
random panels consisting of 10, 30, 100, and 300 genes and tested each gene
panel on 100 random 1KGP individuals, with 100 iterations. For the BBS
analysis, we used the 21-gene list obtained from the Genome Diagnostics
Nijmegen laboratory (http://gdnm.nl/en/), and for autism/ID, we used the SFARI
Gene panels (https://gene.sfari.org/).

Feature Selection and Interpretation. We applied a recursive feature elimi-
nation procedure (61) on a balanced set with median performance among all
sets leading to a performance peak with 10 features (SI Appendix, Fig. S3).
As no variant features about the second variant allele of gene B remained,
we included for interpretability reasons the CADD score of this allele
(CADD4), finalizing the number of selected features to 11. To create the
decision boxplots per bilocus combination, we used the “treeinterpreter”
Python package (https://github.com/andosa/treeinterpreter).

Tool and Code Availability. The VarCoPP can be accessed online at http://
varcopp.ibsquare.be/ (40). This online tool annotates a list of given variants
(single-nucleotide polymorphisms and indels) and scores all possible bilocus
variant combinations present in that list, including those with heterozygous
compound variants. The source code to reproduce the performance results
of the VarCoPP for the training dataset and the validation sets is present at
https://github.com/sofiapapad90/VarCoPP (62).
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