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Assessing the predictive value of a binary surrogate for a binary true

endpoint, based on the minimum probability of a prediction error.

Paul Meyvisch, Ariel Alonso, Wim Van der Elst & Geert Molenberghs

Abstract

The individual causal association (ICA) has recently been introduced as a metric of surrogacy
in a causal-inference framework. The ICA is de�ned on the unit interval and quanti�es the
association between the individual causal e�ect on the surrogate (∆S) and true (∆T ) endpoint.
In addition, the ICA o�ers a general assessment of the surrogate predictive value, taking value
one when there is a deterministic relationship between ∆T and ∆S, and value zero when both
causal e�ects are independent. However, when one moves away from the previous two extreme
scenarios, the interpretation of the ICA becomes challenging. In the present work, we introduce
the minimum probability of committing a prediction error when both endpoints are binary, i.e.,
the probability of erroneously predicting the value of ∆T using ∆S. This probability has a more
straightforward interpretation but it is also shown that its magnitude is bounded above by a
quantity that depends on the true endpoint. For this reason, the so-called reduction in prediction
error (RPE) attributed to the surrogate is de�ned. The RPE can be more easily interpreted, it
always lies in the unit interval, taking value 1 if prediction is perfect and 0 if ∆S conveys no
information on ∆T . Furthermore, it has been demonstrated using simulations that the RPE is
in strong agreement with the ICA. All analyses are illustrated using data from two clinical trials
and a user-friendly R package Surrogate is provided to carry out the validation exercise.

Key words: Surrogate endpoint, Causal inference, Prediction Error, R package Surrogate

1 Introduction

Shortening the duration of clinical studies, reducing their economic costs and addressing their ethical
issues are important motivations for the use of surrogate endpoints in clinical research [1]. Certainly,
the extrapolation of the results obtained with a surrogate to the most clinically relevant outcome, the
so-called true endpoint, cannot be made without risk. However, in some practical situations the use
of surrogate endpoints may be the most reasonable strategy to move research forward [2]. Actually,
as the surge of the AIDS and SARS epidemics in the past and the more recent expansion of Multi-
Drug Resistant Tuberculosis in various parts of the world clearly showed, the potential of surrogate
endpoints to speed up the approval of new therapeutic means may be of an immense value, in spite of
their potential risk. In addition, the use of surrogate endpoints may be bene�cial, not only in terms of
cost or time, but they can also improve the accuracy in the estimation of target parametric functions
such as the di�erence in success probabilities from di�erent treatments, odds ratios and/or log risk
ratios [3].

Over the last decades, several methodologies have been introduced for the evaluation of surrogate
endpoints. Jo�e and Greene grouped these methodologies into the so-called causal e�ects (CE) and
causal association (CA) frameworks [4]. In these frameworks researchers have long tried to identify the
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properties that a good surrogate should ful�ll and several validation strategies have been introduced
in the literature within the so-called causal-inference and meta-analytic paradigms [2,5,6,7]. In both
paradigms attempts have been made to assess the capacity of the surrogate to predict the causal
treatment e�ect on the true endpoint. For instance, when both endpoints are binary, Alonso et al.

introduced an information-theoretic metric of surrogacy, the so-called individual causal association
(ICA), to assess the surrogate predictive value [8]. To provide a more granular insight into the rela-
tionship between the individual causal treatment e�ect on the true endpoint ∆T and the individual
causal treatment e�ect on the surrogate ∆S, Alonso et al. proposed the surrogate predictive function,
which determines the most likely outcome of ∆T for any given value of ∆S [9]. Furthermore, these
authors also introduced the so-called best prediction function, i.e., the function of ∆S that provides
the best prediction for ∆T . In the present work, based on the best prediction function, the minimum
probability of a prediction error is de�ned and an algorithm is proposed to handle the unidenti�ability
issues. In the rest of the manuscript, we will use the terms �minimum probability of a prediction error�
and �probability of prediction error� (PPE) interchangeably. Furthermore, the so-called reduction in
prediction error attributed to the surrogate (RPE) is de�ned and interpreted. It is shown that the
RPE always lies in the unit interval, taking value 1 if prediction is perfect and 0 if ∆S conveys no
information on ∆T . The RPE has a simple yet appealing interpretation in terms of the reduction in
prediction error obtained from the surrogate, with respect to the prediction error obtained when only
the information on the distribution of ∆T is used for prediction purposes. As both the RPE and the
ICA are put forward as candidate measures to evaluate surrogate endpoints, it would be useful to
investigate how both compare. An extensive simulation exercise is conducted which e�ectivily show
that both measures are in strong agreement, i.e., higher values of the ICA correspond to higher values
of the RPE and vice versa. In addition, both measures are fairly comparable in magnitude.

An additional objective of the current work is to present the analyses using the R package Surrogate as
it is a tool that can help practitioners to conduct the complex analyses. All newly introduced concepts
are built in the library that is freely available at CRAN. The remainder of this paper is organized as
follows. In Section 2 − 4, the theoretical model that underlies the causal-inference framework is
detailed and the (reduction in) prediction error is introduced. The two case studies are introduced in
Section 5 and the application of the concepts are provided in Section 6. In Section 7 some concluding
remarks are provided.

2 Causal-inference model

The so-called Rubin's model for causal inference assumes that each patient has a four-dimensional
vector of potential outcomes Y = (T0, T1, S0, S1)′ [10]. T1, S1, T0 and S0 are potential outcomes in
that they represent the outcomes for the true (T ) and surrogate (S) endpoint of an individual had
he received the experimental treatment (Z = 1) or control (Z = 0), respectively. Each of the four
variables is coded 1 (0) when a bene�cial outcome is observed (not observed). We will temporarily
restrict attention to the true endpoint, but similar arguments can be put forward for the surrogate
endpoint as well.

The bivariate distribution of the vector of potential outcomes for the true endpoint Y T = (T0, T1)′

follows a multinomial distribution with parameters πTij = P (T0 = i, T1 = j) with i, j = 0, 1, and

marginals πTi. =
∑

j π
T
ij , π

T
.j =

∑
i π

T
ij . Typically, only one of the two potential outcomes T0 and

T1 can be observed and, consequently, the distribution of Y T is often not identi�able [11] which
implies that the association structure of the two potential outcomes cannot be inferred from the
data. However, the marginal probabilities πT =

(
πT0·, π

T
1·, π

T
·0, π

T
·1
)′

are identi�able under fairly gen-
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Table 1: Distribution of ∆ = (∆T,∆S)′.

∆S

−1 0 1

∆T

−1 π∆
−1−1 π∆

−10 π∆
−11 π∆T

−1

0 π∆
0−1 π∆

00 π∆
01 π∆T

0

1 π∆
1−1 π∆

10 π∆
11 π∆T

1

π∆S
−1 π∆S

0 π∆S
1 1

eral conditions. Indeed, under SUTVA, T = ZT1 + (1− Z)T0 and if the treatment assignment is
independent of the potential outcomes (Y T⊥Z), then πT1· = E (T |Z = 0) with πT0· = 1 − πT1· and
πT·1 = E (T |Z = 1) with πT·0 = 1 − πT·1. SUTVA basically states that the potential outcomes of an
individual are not a�ected by the treatments received by other individuals in the study and that the
observed outcome under treatment Z equals the corresponding potential outcome TZ . In addition,
due to the random treatment allocation, the assumption of independence Y T⊥Z can typically be
guaranteed in randomized clinical trials.

The individual causal e�ect of the treatment on the true endpoint can be de�ned as ∆T = T1−T0; it
follows a multinomial distribution parametrized by π∆T

i = P (∆T = i) =
∑

pq π
T
pq with i = −1, 0, 1

and the sum taken over all sub-indexes p, q satisfying q−p = i. Note that, like for Y T , the distribution
of the individual causal treatment e�ect on the true endpoint ∆T is not identi�able from the data.
However, it only requires making one untestable assumption about the association structure of the
potential outcomes to identify it. Actually, it can easily be shown that assuming a speci�c value for
πT10, is enough to fully identify the multinomial distribution of ∆T . Notice also that the range of πT10

is constrained to the identi�able interval
[
0,min(πT1·, π

T
·0
)
].

Similarly, the potential outcomes Y S = (S0, S1)′ can be used to de�ne the individual causal treatment
e�ect on the surrogate endpoint ∆S and its distribution. Furthermore, the vector of individual causal
treatment e�ects can be de�ned as ∆ = (∆T,∆S)′; it follows the multinomial distribution given in
Table 1 and it is the fundamental quantity used in the following sections to assess the surrogate PPE
and RPE.

It has been argued that, if S is a good surrogate for T , then ∆S should convey a substantial amount
of information about ∆T [8]. The mutual information between both individual causal treatment e�ects
I(∆T,∆S) quanti�es precisely the average amount of uncertainty in ∆T , expected to be removed
if the value of ∆S becomes known. Along these ideas, when both endpoints are binary, Alonso et

al. proposed to quantify the ICA, i.e., the association between ∆T and ∆S, using the following
transformation of the mutual information [8]

R2
H(∆T,∆S) =

I(∆T,∆S)

min [H(∆T ), H(∆S)]
,
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where

I(∆T,∆S) =

1∑
i,j=−1

π∆
ij log

(
π∆
ij

π∆T
i π∆S

j

)
,

H(∆T ) =−
1∑

i=−1

π∆T
i log(π∆T

i ),

H(∆S) =−
1∑

j=−1

π∆S
j log(π∆S

j ).

As previously stated, the �rst term I(∆T,∆S) is the mutual information between both individual
causal treatment e�ects and the other two expressions are the entropies of the individual causal
treatment e�ects ∆T and ∆S. The concept of entropy lies at the center of information theory and
quanti�es the randomness or uncertainty associated with a random variable [12].

These authors showed that R2
H(∆T,∆S) is invariant under one to one transformations and that

it always lies in the [0, 1] interval, taking value zero when ∆T and ∆S are independent and value
one when there is a nontrivial transformation ψ so that P [∆T = ψ(∆S)] = 1. Consequently, when
R2
H(∆T,∆S) = 1 there exists a deterministic relationship between both individual causal treatment

e�ects, namely ∆T = ψ(∆S), and ∆S predicts ∆T without error. In addition, when R2
H(∆T,∆S) =

0 both individual causal treatment e�ects are independent and no meaningful predictions are possible.

3 Minimum probability of a prediction error

In spite of being theoretically sound and intuitively appealing, the interpretation of the ICA may
be challenging. For instance, it is di�cult to de�ne a cut-o� point for the ICA, based on clinical
considerations, that can help to identify good surrogate endpoints. In the present work we propose to
quantify, for a given surrogate and the corresponding ICA, the PPE. Such a probability has an easy
clinical interpretation and, therefore, it may be useful to identify good surrogates, where good can
be de�ned in terms of the probability of making an incorrect assessment about ∆T based on ∆S.
A low PPE is a necessary condition to qualify a surrogate and it should therefore be regarded as a
measure that is complementary to the ICA. The PPE is derived from the best prediction function.
Indeed, Alonso et al. de�ned the best prediction function associated with the distribution of ∆ as the
function ψb : {−1, 0, 1} → {−1, 0, 1} satisfying ψb = arg maxψ P [∆T = ψ(∆S)] [9]. These authors
further proved that ψb(j) = arg maxi P (∆T = i|∆S = j). If the argument function in the previous
equation returns more than one value then any of them can be chosen arbitrarily to de�ne ψb(j);
in such a case ψb will not be unique. Obviously, the best prediction function will also provide the
minimum PPE. Actually, once the best prediction function ψb is obtained, the PPE is de�ned as:

Pe(∆T |∆S) = 1− P [∆T = ψb(∆S)] . (1)

If the information on the surrogate is completely ignored, then the best prediction for ∆T has to be
based solely on the distribution of ∆T and it will take the form arg maxi P [∆T = i]. Obviously, in
such scenario, the aforementioned prediction will have the smallest probability of a prediction error
Pe(∆T ) = 1−maxi P [∆T = i]. Ignoring the information on the surrogate is basically equivalent to
using a prediction function ψm de�ned as ψm(j) = arg maxi P [∆T = i] for all j. It follows from the
de�nition of the best prediction function that

4



P [∆T = ψb(∆S)] ≥ P [∆T = ψm(∆S)] = max
i
P [∆T = i] , (2)

and, therefore, Pe(∆T |∆S) ≤ Pe(∆T ). As expected, it is very easy to show that the equality is
reached if and only if ∆T and ∆S are independent. The previous inequality formalizes the intuitive
idea that, if used correctly, additional information can only improve prediction. In practice, calculation
of the reduction of the prediction error proceeds as follows. As the ICA is de�ned as a normalized
version of the mutual information I(∆T,∆S)= H(∆T ) − H(∆T |∆S), it seems sensible to work
with the reduction in the probability of a prediction error in a similar fashion, i.e., the RPE is de�ned
as

RPE =
Pe(∆T )− Pe(∆T |∆S)

Pe(∆T )
= 1− Pe(∆T |∆S)

Pe(∆T )
, (3)

The RPE quanti�es how much the probability of a prediction error is reduced when using the surrogate
as a predictor, with respect to the prediction based on the marginal distribution of ∆T only. From
the previous developments it follows that the RPE always lies in the unit interval, taking value zero
when ∆S conveys no information on ∆T and value one when both causal e�ects are deterministically
related.

4 Identi�ability issues

Causal inference models, based on potential outcomes, are conceptually attractive for the evaluation of
surrogate endpoints. However, their use poses some practical challenges. Indeed, due to the so-called
fundamental problem of causal inference, metrics of surrogacy developed from these models are not
identi�able [11]. These identi�ability problems are often tackled by de�ning identi�ability conditions.
For instance, to identify the estimands of interest, Gilbert and Hudgens, and Wolfson and Gilbert
assumed that the surrogate endpoint under the control (S0) was �xed and known [6,13]. Identi�ability
conditions are frequently combined with additional modeling assumptions in order to estimate the
parameters of interest.

Although appealing, the use of identi�ability conditions in this context has some conceptual and
practical problems. In fact, often there is not enough substantive knowledge to assess the validity
of the identi�ability and/or modeling assumptions and, in general, they can be neither proven nor
disproven based on the data. Therefore, the implementation of a sensitivity analysis, as proposed in
Alonso et al., seem to be more appropriate in this setting [8].

Alonso et al. approach the identi�ability problem following a two-step Monte Carlo procedure, and
based on the distribution of the vector of potential outcomes Y . Actually, the parameter space of the

distribution of Y is given by Γ =
{
π ∈ [0, 1]16 : 1π = 1

}
, where 1 is a vector of ones, π = (πijpq),

πijpq = P (T0 = i, T1 = j, S0 = p, S1 = q) and i, j, p, q = 0/1. Due to the unidenti�ability of Y
the maximum likelihood estimator (MLE) of π is not unique, i.e., there is an entire region of the
parameter space associated with the distribution of Y , where the likelihood is maximized (ΓD). In
order to characterize ΓD let us notice �rst that, as described in Li, Taylor and Elliott and in the work
of Elliott, Li and Taylor, the data at hand impose some restrictions on πijpq

[21,22]. In fact, the data
allow identifying three probabilities P (T = t, S = s|Z) within each treatment group and, thus, the
16 parameters characterizing the distribution of Y are subjected to 7 restrictions, implying that 9 are
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allowed to vary freely and, hence, are not identi�able from the data. The set of restrictions on π can
be written as:

π1·1· = P (T = 1, S = 1|Z = 0), π·1·1 = P (T = 1, S = 1|Z = 1),

π1·0· = P (T = 1, S = 0|Z = 0), π·1·0 = P (T = 1, S = 0|Z = 1), (4)

π0·1· = P (T = 0, S = 1|Z = 0), π·0·1 = P (T = 0, S = 1|Z = 1),

π···· = 1,

with the points in the sub-indexes indicating sums over those speci�c sub-indexes. Further, if one
de�nes the vector b′ = (1, π1·1·, π1·0·, π·1·1, π·1·0, π0·1·, π·0·1), then all the identi�ed restrictions in (4)
can be written as a system of linear equations Aπ = b, with A a binary matrix. This hyperplane
geometrically characterizes the subspace of Γ compatible with the data at hand, i.e., ΓD = {π ∈ Γ :
Aπ = b}. Essentially, the data at hand do impose some restrictions on π but do not fully determine
it. The vector b contains all the estimable margins of π and in the original implementation of the
algorithm these components were replaced by their MLE.

Furthermore, in a second step, the behavior of the parameters of interest like, for instance, the ICA is
studied on ΓD. Studying the behavior of a function on a region of an Euclidean space is a deterministic
problem. However, using graphical or analytical techniques in this scenario is rather cumbersome due
to the complex dependence of the ICA, PPE and RPE on π and the high dimensionality of the latter.
Alonso et al. tackled these problems using a Monte Carlo approach. Monte Carlo methods are often
used for obtaining numerical solutions to problems too complicated to solve analytically, like solving
high-dimensional integrals, complex optimization problems or solving complex di�erential equations.
Basically, in the second step, points are uniformly sampled on ΓD and the estimads of interest are
computed for all of them. Given that all points in ΓD are equally compatible with the data, the use
of a uniform sampling scheme is the most natural choice and it also guarantees that all regions on
the hyperplane have the same probability of being covered by the sampling procedure.

As previously stated, in the original implementation of the algorithm, the sampling variability in the
estimates of the marginal probabilities contained in b was not taken into account. Although this may
only be a minor issue in large clinical trials, it may induce a non-negligible bias in small studies. Alonso
et al. carried out a simulation study to evaluate this issue. They found that only when the sample
size was rather small, i.e., N = 50 patients, certain degree of bias was observed. For instance, when
estimating the ICA the relative bias was merely 3.5% and 1.3% for a sample size of N = 100 and
N = 300, respectively [9]. If considered opportune, the sampling variability can be taken into account
by uniformly sample the components of b from their corresponding con�dence intervals at each run
of the Monte Carlo algorithm [8,9]. This strategy is also implemented in the Surrogate package and
in the Web appendix a new analysis of the case study is provided using this correction. We remit the
interested reader to the original publications for a more detailed explanation of the procedure.

5 Case studies

In the present section the previous ideas will be used to assess the predictive value of two surrogate
endpoints in ophthalmology and psychiatry. Both case studies have been previously analysed [8,9]

to introduce the individual causal association and the surrogate predictive value respectively. We
will re-analyse both case studies introducing the concepts of PPE and RPE, hereby providing more
insights in the suitability of the proposed surrogate endpoints. We will additionally discuss a third
case study in hepatitis B. It is also important to point out that a major practical problem frequently
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encountered when validating surrogate endpoints, is the lack of user-friendly software packages to
conduct the analysis. The R package Surrogate is freely available at http://cran.r-project.org/
web/packages/Surrogate/ and has been documented in [14]. The R package Surrogate additionally
allows for the computation of the PPE and RPE. For conciseness, in the present section only a
summary of the main results is given and no reference to the software is made. In the Supplementary
Materials accompanying the paper a more detailed analysis of the case studies is provided and their
implementation in R is discussed.

5.1 Collaborative Initial Glaucoma Treatment Study (CIGTS)

The Collaborative Initial Glaucoma Treatment Study (CIGTS) was a randomized clinical trial designed
to evaluate the e�cacy of surgery versus a conventional therapy in the treatment of patients su�ering
from glaucoma. A total of 228 patients were randomized to either surgery (Z = 1, 102 patients) or
the conventional therapy (Z = −1, 126 patients). Both treatments were intended to bring intraocular
pressure (IOP) down to less than 18 mm Hg. The surrogate endpoint was de�ned in terms of IOP
at 12 months and the true endpoint at 96 months. S and T were equal to 1 if IOP was less than 18
mm Hg and to 0 otherwise [15]. See Table 2 for the cross-classi�cation of surrogate and true endpoint
for each treatment group. The data has been analysed by Alonso et al. who concluded that S is a
poor surrogate for T based on low values of R2

H
[8]. A summary of the data is provided in top part of

Table 2.

Table 2: Cross-tabulation of S versus T in the control (left) and experimental (right) treatment

groups for both case studies.

CIGTS Case Study

Control Experimental

T T

0 1 0 1

S
0 36 32

S
0 15 9

1 15 43 1 8 70

Psychiatric Case Study

T T

0 1 0 1

S
0 105 12

S
0 94 7

1 12 94 1 11 116

5.2 Psychiatric study

The data come from a clinical trial designed to compare the e�cacy of risperidone (experimental
group) and haloperidol (control group) in the treatment of schizophrenic patients. A total of N =
454 patients were treated for eight weeks and their condition was assessed using two psychiatric
rating scales. Oftentimes in psychiatry, several rating scales are available to assess a patient's global
condition. A useful and su�ciently sensitive assessment scale is the Positive and Negative Syndrome
Scale (PANSS; [16]). PANSS consists of 30 items that provide an operationalized, drug-sensitive
instrument, which is highly useful for both typological and dimensional assessment of schizophrenia.
The Brief Psychiatric Rating Scale (BPRS; [17]) is a subscale of PANSS including only 18 items.
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Figure 1: Individual Causal Association

The outcome of interest was the presence of a clinically relevant change in schizophrenic symptoma-
tology as evaluated by the BPRS/PANSS scales. Clinically relevant change is de�ned as a reduction
of 20% or more in the BPRS/PANSS scores, i.e, 20% reduction in post-treatment scores relative to
baseline scores [18,19]. The BPRS is a scale which is more convenient to use than PANSS and it was
investigated whether BPRS can be shown to be a reliable surrogate for PANSS. A summary of the
data is provided in bottom part of Table 2.

5.3 Hepatitis B Surface Antigen (HBsAg)

In a recently concluded trial [20], comparing the combination of peginterferon α2a (PEG) with Teno-
fovir Disoproxil Fumarate (TDF) versus PEG alone in patients with chronic hepatitis B, it was shown
that combination therapy with PEG+TDF resulted in higher rates of Hepatitis B Surface Antigen
(HBsAg) loss (8.6%) at the end of the trial (Week 72) compared to PEG alone (2.7%). What dis-
tinguishes this case study from the previous 2 is that the rates for T are very low. Unfortunately, the
authors did not suggest a surrogate marker implying that the evaluation of the ICA, PPE and RPE
can not be performed. The data are primarily used to illustrate the consequences of the low responder
rates in regards to the expected magnitude of PPE for potential surrogate markers.

6 Results

The two-step Monte Carlo procedure introduced by Alonso et al. was applied to assess the estimands
of interest [8,9]. Basically, a large number of vectors π were uniformly sampled on ΓD, i.e., on the
region of the parametric space of the distribution of Y compatible with the data at hand. From
the set of obtained valid vectors π, the distribution of ∆, given in Table 1, can be determined and,
based on it, all the parameters of interest can be computed. Finally, frequency distributions for
all the estimands can be obtained. These frequency distributions characterize the estimands across
all scenarios compatible with the data and quantify the uncertainty emanating from the essential
unidenti�ably of the distribution of Y .

Figure 1, left panel, shows the frequency distribution of the ICA values for the CIGTS. In general,
the ICA seems to take rather small values on the entire ΓD region. Indeed, as shown in Table 3,

8



50% of all the π vectors uniformly sampled on ΓD led to ICA values smaller than 13% and for 95%
of the sampled vectors the ICA never exceeded 23%. Therefore, looking at the previous results, a
preliminary conclusion that can be drawn is that the IOP at 12 months is likely a poor surrogate for
IOP at 96 months.

Li, Taylor and Elliott analyzed the CIGTS based on the so-called associative (AE) and dissociative

(DE) e�ects [21]. Frangakis and Rubin introduced a principal strati�cation approach to evaluate
surrogacy and suggested that the quality of a surrogate should be assessed based on the size of its
associative e�ect relative to its dissociative e�ect [23]. The e�ect is associative if the causal treatment
e�ect on T is re�ected on the causal treatment e�ect on S, otherwise it is dissociative. A good
surrogate is expected to have a large AE, indicating that the causal treatment e�ect on the surrogate
is highly associated with the causal treatment e�ect on the true endpoint. Similarly, a good surrogate
is expected to have a small DE, indicating that the causal treatment e�ect on the true endpoint
is small when the causal treatment e�ect on the surrogate is zero [21,22]. Because AE and DE are
constrained, Taylor, Wang and Thiébaut proposed to use instead the so-called associative (AP ) and
dissociative (DP ) proportions, respectively [5].

Using log-linear models within a Bayesian framework, Li, Taylor and Elliott obtained results qualitative
similar to our �ndings based on AP and DP [21]. However, it has been pointed out that AP and DP
su�er from some conceptual problems. For instance, Alonso et al. considered the setting in which
∆T and ∆S are independent, i.e., the individual causal treatment e�ect on the surrogate conveys
no information whatsoever on the individual causal treatment e�ect on the true endpoint [9]. Clearly,
such a surrogate should not be considered valid. The results obtained from the ICA were conclusive,
R2
H = 0, i.e., knowing the individual causal treatment e�ect on the surrogate does not reduce our

uncertainty about the individual causal treatment e�ect on the true endpoint at all. However, AP
and DP could take any possible value in this setting depending on the value of π∆S

0 . Other problems
were also detected in other scenarios. Based on these results Alonso et al. concluded that, at least in
some scenarios, the ICA o�ers a more coherent assessment of surrogacy than AP and DP [9].

The results for the PANSS data are more uncertain. Indeed, as shown in the right panel of Figure 1,
the ICA can take both small and moderately high values on ΓD (see Table 3). In fact, while for 5%
of the sampled vectors the ICA was smaller than 36%, for other 5% it was larger than 65% and the
frequency distribution has a median value of 56%. It is in this kind of �middle range� scenarios that
the interpretation of the ICA becomes di�cult and the proposed PPE and RPE can be of great value.
Actually, it is di�cult to determine, in clinical terms, how large an ICA values need to be to establish
surrogacy. In general, most data analysts would agree that values larger than 90% or smaller than
20% o�er evidence of good and poor surrogacy respectively, but �middle range� values are certainly
hard to interpret.

6.1 Distribution of prediction functions

Figure 2 shows the frequencies at which di�erent functions were selected as the best prediction
function. Basically, for every valid sampled π vector on ΓD, the distribution of ∆ = (∆T,∆S) was
�rst obtained, i.e, the cell probabilities in in Table 1 were determined. Subsequently, for every column,
i.e., for every value of ∆S, the row with the largest probability was selected. This way, 3 cells were
selected, one in each column. The selection of these 3 cells represents the best prediction function
for the sampled π and the sum of the 6 cells that are not selected gives the probability of making
a prediction error PPE. There exist a total of 27 possible prediction functions ψ : {−1, 0, 1} →
{−1, 0, 1} which for ease of notation are represented by a triplet (a, b, c) with ψ(−1) = a, ψ(0) = b

9



0 
/ 0

 / 
1

0 
/ 0

 / 
0

−
1 

/ 0
 / 

1

−
1 

/ 0
 / 

0

1 
/ 0

 / 
1

1 
/ 0

 / 
0

Prediction Functions CIGTS

0

100

200

300

400

500

600

700

515

388

293

217

81
61

−
1 

/ 0
 / 

1

0 
/ 0

 / 
1

−
1 

/ 1
 / 

1

−
1 

/ −
1 

/ 1

0 
/ 0

 / 
0

−
1 

/ 0
 / 

0

1 
/ 0

 / 
1

Prediction Functions PANSS

0

200

400

600

800

1000

797

62
5 4 2 1 1

Figure 2: Most frequently selected prediction functions

and ψ(1) = c. For example, the triplet (−1, 0, 1) represents the identity function, i.e., projecting
every value of ∆S onto the same value of ∆T . Similarly, the triplet (0, 0, 0) represents the function
that projects every value of ∆S onto ∆T = 0, etc. From each valid vector of π that is sampled,
the best prediction function represented by the corresponding triplet (a, b, c) is obtained. Sampling
a large number of π vectors yields a distribution of triplets which reveals an insightful pattern. For
instance, a very clear picture is observed in the PANSS study. Here, the identity function (−1, 0, 1)
is by far the most frequently selected from which it follows that the best prediction function and the
identity function largely overlap. Given that BPRS is essentially a subscale of PANSS, this result is
intuitively plausible.

The results for CIGTS trial are substantially di�erent. In this case even the most frequently selected
prediction function (0, 0, 1) is selected in less than 50% of the times. In addition, the function (0, 0, 0)
is the second most frequently selected which is yet another indication that S may be a poor surrogate
for T . Indeed, for all samples π that are obtained for which (0, 0, 0) is the best prediction function,
∆S does not provide information that improves the prediction of ∆T that one would obtain based
only on the distribution of the latter, i.e., ∆S can be completely ignored. Notice that these results
are completely in line with the conclusions obtained from the analysis of the ICA values.

6.2 The PPE and RPE

The distribution of the PPE and the RPE are graphically presented in Figure 3 and Figure 4 respec-
tively. Summary statistics of the distribution of PPE and RPE are provided in Table 3. As the top
part of the table illustrates, in the CIGTS for 95% of the sampled vectors the PPE exceeds 28% and
for 50% of them it is larger than 37%. This is underscored by the distribution of the RPE which
has a median value of 8.8%, indicating that there is only marginal gain in predictivity when using the
information of ∆S to predict ∆T . It is also observed that for a substantial part of the distribution,
the RPE equals zero, which is consistent with the earlier �nding that the prediction function (0, 0, 0),
which is independent from ∆S, was often selected as the best prediction function. The previous
results, together with the low ICA values already found, strongly suggest that the IOP at 12 months
is indeed a poor surrogate for IOP at 96 months.

The analysis of the PANSS data is even more interesting. Indeed, as the bottom part of Table 3
clearly shows, for 95% of the sampled vectors the PPE does not exceed 16% and for 50% of them it
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is actually smaller than 13.5%. In addition, the high values for RPE indicate that there is a subtantial
reduction in PPE when ∆T is predicted using the information conveyed by ∆S. Notice that, for 95%
of the sampled vectors, using ∆S to predict ∆T reduced the PPE in more than 32%. Whether or not
BPRS quali�es as a suitable surrogate for PANSS warrants a clinical discussion but it does put the
magnitude of the ICA in a much better perspective. Furthermore, parameters like the PPE and RPE
are much easier to understand and, therefore, it would be much easier for clinicians to de�ne cut o�
points for them in order to establish surrogacy. // Another useful analysis consists of the assessment
of association between ICA and RPE. We refer to the Supplementary Materials for a more detailed
analysis. It is reassuring that the association in the PANSS case study is quite high as the Pearson
correlation coe�cient between ICA and RPE is 93%. A Pearson correlation coe�cient of 61% has
been observed in the CIGTS case study.

Finally, as there is no proposed surrogate for the HBsAg study, densities for ICA, PPE and RPE can
not be produced. However, it has been demonstrated in (2) that the PPE is always bounded above
by the probability of the prediction error based on the marginal distribution of ∆T only, which we
have denoted as Pe(∆T ). It is a striking result that any surrogate that is to be proposed, including
surrogates with a very low ICA, will yield a median PPE of less than 8.6%. However, this is a feature
of the trial results, as very low response rates have been observed, and is independent from the choice
of surrogate. This should not come as a surprise as every clinician treating hepatitis B patients is
well aware that the current therapies fall short in attaining sustained HBsAg loss. It is therefore a
relatively safe bet that an individual patient will fail treatment, irrespective which of the two therapies
are assigned. Translating this to the causal inference setting, ∆T = 0 is always the best prediction
which is associated with a high probability. Conversely, the probability of making a prediction error
using information on the clinical trial results for T only, is low and equals 1− P (∆T = 0) for which
the values are provided in Table 3. As earlier stated, the PPE for any proposed surrogate will be
bounded above by these values.
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Figure 3: Probability of a Prediction Error

6.3 Simulations

A simulation exercise was conducted to explore the relationship between the ICA and RPE. To this end,
a large set of trials are simulated under various scenarios and the ICA and RPE values that emerged
from these simulated trials have been systematically compared. We highlight the conclusions of
this exercise in this section and refer the interested reader to the Supplementary Materials. More
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Table 3: Distribution of PPE and RPE
CIGTS 5% 10% 20% 50% 80% 90% 95%

ICA 0.057 0.073 0.092 0.133 0.178 0.205 0.227

PPE 0.282 0.301 0.326 0.370 0.410 0.431 0.446

RPE 0 0 0 0.088 0.194 0.246 0.288

PANSS

ICA 0.357 0.411 0.479 0.556 0.602 0.626 0.648

PPE 0.098 0.107 0.117 0.135 0.151 0.159 0.164

RPE 0.319 0.418 0.548 0.725 0.777 0.798 0.815

HBsAg

PPE < 0.062 < 0.064 < 0.070 < 0.086 < 0.102 < 0.108 < 0.110
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Figure 4: Reduction of the Prediction Error

speci�cally, we focused on whether the densities of ICA and RPE are strongly correlated, i.e., whether
high (low) values of ICA in Figure 1 e�ectively associate with high (low) values of the RPE in Figure
4. Another objective of this exercise consisted in comparing central tendency of both densities. The
simulation results have indeed reliably demonstrated that there is strong relationship between the ICA
and RPE in the sense that the mean values consistently move in the same direction, i.e., surrogates
having higher mean ICAs will naturally have higher mean RPEs and vice versa. In addition it is
fair to conclude that both mean values are numerically close to one another. As far as the pairwise
correlation between the ICA and RPE values for a given trial is concerned, a more complex pattern is
observed which is in line with the �ndings on the PANSS and CIGTS studies. The results have clearly
indicated that there is strong correlation in most settings with some exceptions. First, the correlation
can be low when the width of the ICA and RPE densities are narrow which is of limited concern.
Indeed, when this occurs, the ICA and RPE can reliably be represented by its mean values which we
have shown to be consistent. Another reason impacting the correlation is when the ICA and RPE
densities are low in magnitude. This is related to the intrinsic nature of the PPE and RPE. Similar to
what has been depicted in Figure 2, there is a wider range of prediction functions selected when the
surrogate is poor. In the extreme case, when prediction function (0, 0, 0) is frequently selected, the
RPE is consistently equal to zero. The more discrete nature of RPE negatively impacts the correlation
with the ICA. In light of above �ndings we can conclude that the Pearson correlation for the PANSS
study was high (93%) due to the relatively large width of the ICA and RPE densities in addition
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to the high magnitude of the ICA density. Conversely, the Pearson correlation for the CIGTS study
was lower (61%) due to the more narrow width of the ICA and RPE densities along with the lower
magnitude of the ICA density.

7 Conclusions

The ICA has recently been proposed as a metric of surrogacy in a causal-inference framework. It is
de�ned on the unit scale and takes the value 1 when there exists a deterministic relationship between
∆S and ∆T and value zero when both causal e�ects are independent. However, in practical settings,
the ICA will take values somewhere on the unit interval and it is challenging to de�ne thresholds
for the ICA in the absence of a clear clinical interpretation. This calls for development of additional
measures such as the PPE that express surrogacy in terms of the probability of making a prediction
error, which has a more straightforward interpretation. Actually, clinicians may often be able to
de�ne the risk they are willing to take, when using a surrogate, in terms of the probability prediction
error. For instance, they may determine that a surrogate that leads to erroneous predictions of the
individual causal treatment e�ect on the true endpoint in less than 20% of the cases, is acceptable in
certain medical contexts. Analogously, they may determine that a surrogate that leads to erroneous
predictions of the individual causal treatment e�ect on the true endpoint in more than 30% of the
cases is not acceptable. From this perspective, the PPE is complementary to the ICA as it exactly
equals the probability of making a prediction error on ∆T after accounting for the information that
∆S has on ∆T . One would therefore expect that high values of the ICA naturally correspond to
low values of the PPE, as was seen in the PANSS case study. However, the HBsAg case study has
revealed that caution has to be exercised in interpreting the PPE as low values may be the result
of characteristics of the true rather than the surrogate endpoint. The fact that PPE is bounded
above by a quantity that depends on the true endpoint and the treatment under consideration, clearly
hinders its interpretation. Therefore, the RPE may often be more useful for the task at hand than
the PPE. Indeed, the RPE quanti�es how much the probability of a prediction error is reduced when
using the surrogate as a predictor, with respect to the prediction based on the marginal distribution
of ∆T only. The RPE is constructed in a similar fashion as the ICA but uses the marginal and
conditional probability of a prediction error on ∆T instead of the marginal and conditional entropy of
∆T as primary building blocks. It shares with the ICA the convenient property that it takes value zero
when ∆S conveys no information on ∆T and value one when both causal e�ects are deterministically
related. Moving away from these extreme scenarios simulations have demonstrated that the RPE and
the ICA will behave approximately similarly while the RPE has a more straightforward interpretation.
Interestingly, as the �eld of Hepatitis B is moving quickly with new mechanisms of action that are
being tested in Phase 1 and 2 trials, there are high hopes that the rates of therapeutic success will
substantially increase in the next decade. This will inevitably have an impact on the relationship
between RPE and PPE as the prediction based on the marginal distribution of ∆T will be associated
with more uncertainty. As an example, if we were to impose a PPE of 5% with a Pe(∆T ) = 10%,
it follows that RPE=50%. Similarly, with Pe(∆T ) = 50%, the RPE has to increase to 90%. This
corresponds to a surrogate which has a near-deterministic relationship with the true endpoint. It can
be concluded from this simple example that any requirement for a PPE and RPE should be based on
both clinical and statistical arguments.
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