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Abstract

A quasi-static problem is usually formulated by the equations of static equilibrium and a load

parameter which shows the level of loading. Path-following methods are widely used to analyze

these kinds of problems. These methods add a constraint function to the equilibrium equations

in order to determine the loading evolution. There is a parameter in the constraint function, the

step-length, which should be positive in each analysis step and which is determined by a step-

length adaptation law. Different adaptation laws control the step-length growth differently, and

thus, they influence the performance of the solution. We propose two novel types of adaptation

laws based on a) a local degree of smoothness and b) global performance measures of the so-

lution. The former uses the angle between the linearized solution path and the tangent to the

analytical solution curve while the latter employs simple prediction models for the future evo-

lution of two performance measures. Moreover, appropriate constraint functions for the latter

are suggested. Example problems of structural damage are solved by path-following methods

utilizing the proposed adaptation laws as well as a conventional one. Results show that the new

laws raise distinct possibilities to have solutions with an improved performance.
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1. Introduction

Solving a quasi-static nonlinear structural problem usually requires determining the evolu-

tion of a load parameter. Path-following methods are effectively used to find the load parameter

in each analysis step. The method, essentially, adds another equation, called a constraint func-

tion, to the system of equilibrium equations. The characteristic of this function is that it always

increases a response of the structure (e.g. the arc-length [1], dissipated energy [2], etc.) by a

positive valued step-length. The amount of step-length increase in each analysis step influences

the quality of the numerical solution. Figure 1 emphasizes the importance of using appropri-

ate step-lengths by showing the solution points obtained from two different step-lengths in the

analysis steps. The step-length either is a constant during the analysis or is determined in each

analysis step according to a step-length adaptation law. The former is not a practical choice

because it usually faces convergence issues for sharp nonlinear parts of the solution path or for

rather considerable changes in the displacement vector. It may also lead to too many solution

points which provide negligible progress in the displacement vector. The latter usually utilizes

current and/or previous solution points so as to modify the step-length of the next step.

For example, Crisfield [1] and Ramm [3] used the ratio between an optimal number of iter-

ations and the number of iterations needed to converge to a solution point in each step as a cor-

rection to the current step-length. Bergan et al. [4] introduced a different nonlinearity measure

called ‘current stiffness parameter’. Bergan [5] also recommended a step-length correction ratio

that maintained the variation of this measure approximately constant. Widjaja [6] used this mea-

sure to adapt the step-length but in a different way than Bergan. And, Chan [7] adopted a simpler

version than Bergan’s current stiffness parameter. Like Bergan, Eriksson [8] derived two stiffness

measures which provided some information about the iterative behavior of solution method, limit

points of load, bifurcations, etc. He used different iteration constraining equations together with

searching critical solution points [9]. He also utilized derivatives of the tangential stiffness ma-

trix and several higher-order methods in order to improve predictions in the incremental solution

procedure and identification of critical points [10, 11]. With emphasis on the development of

criteria utilized during the corrector phase, Eriksson and Kouhia [12] developed two step-length

adaptation procedures. Schmidt [13] proposed an adaptive step-length procedure which imposed

the drifting error to be within a contractive boundary at each analysis step. He, then, used it to-

gether with a set of conditions for the detection of impending divergence of the corrector phase.
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Figure 1: Two methods have found different solution points on the exact solution curve (solid black line). Method A has

used better values for the step-lengths than method B.
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From the view of corrector phase, Georg [14] sketched a step-length adaptation law based on

elementary asymptotic error considerations while Den Heijer and Rheinboldt [15] proposed an

error model for the corrector iterations. By the latter, one could predict an approximation of the

step-length value needed for a specified error. In contrast, Schwetlick [16] investigated on the

predictor phase. He proposed a Newton-type path-following method by using a model based on

the Kantorovich theorem and provided a condition for the maximal step-length. Szyszkowski

and Husband [17] proposed a path-following technique that monitored and used the curvature of

the equilibrium path to predict both the step-length and forward direction. Main categories and

aspects of using step-length adaptation laws are discussed in [18] and [19], respectively.

The mentioned step-length adaptation laws focus on providing relative robustness by keeping

a simple measure of local degree of nonlinearity almost constant in each analysis step. Although,

it may prove to be beneficial to consider other objectives (such as smoothness and speed of the

solution process explained in Section 3.1) in forming the adaptation law. We, therefore, propose

a first law in Section 4 which modifies a local degree of nonlinearity based on the angle between

the linearized solution path and the tangent to the analytical solution curve. As a second law,

we propose an adaptation based on an objective combination of a speed measure and a cosine

measure in Section 5. An issue of using global performance measures in the adaptation process is

that it is needed to know the complete solution path to be able to calculate them, while only a part

of the solution path is known when step-length adaptations of intermediate steps are needed! This

contradiction could be dealt with via the prediction of the (unknown) future part of the solution

path. For this, we employ simple and effective mathematical models to solely predict the future

values of basic performance measures in each step. By using these prediction models, a step-

length which maximizes an objective performance measure is determined and used as the step-

length of the next step. As mentioned before, path-following methods could be improved in two

aspects: the constraint functions and the step-length. In [20], we focused on improvements of the

quality of path-following methods by focusing on new mathematical formulations of constraint

functions, while we, in this paper, propose step-length adaptation laws to enhance the overall

performance of path-following methods.
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2. Damage model and the path-following method

In this section, we present the damage model of our problem as well as the path-following

methods which are used in the next sections.

2.1. Damage model

In the numerical examples of Section 6, an isotropic damage model is adopted to model the

nonlinear behavior of interface elements. The constitutive relation follows

tint = (1 − ω)Cintuint (1)

where tint and uint are the traction and the relative displacement field (or jump) of the interface,

respectively, Cint is the constant stiffness matrix of an undamaged state of the interface, and ω is

the scalar damage parameter of the isotropic damage model which takes a value between 0 (no

damage) and 1 (fully damaged). In case of irreversible damage, ω is defined as a function of a

parameter which stores the largest damage state occurred in each material point. The parameter

is usually called the damage history parameter, κ. The relation between κ and ueq is depicted by

the Karush-Kuhn-Tucker conditions:

ueq − κ ≤ 0, κ̇ ≥ 0, (ueq − κ) κ̇ = 0 (2)

where κ̇ is the rate of change of damage history parameter and ueq = ueq(uint) is an invariant

measure of the total relative displacement. It should be noted that two other assumptions are

made for modelling damage in this paper: a) healing of the damaged points does not occur and

b) the damage history parameter is a continuous function of (artificial) time. These assumptions

together with (2) guarantee the monotonic increase of κ. Typical examples of damage parameter

functions are linear damage

ω =


0 , κ < κ0

1 −
κ0

κ

κu − κ

κu − κ0
, κ0 ≤ κ < κu

1 , κu ≤ κ

(3)

and exponential damage

ω =


0 , κ < κ0

1 −
κ0

κ
exp

(
−
κ − κ0

βint

)
, κ0 ≤ κ

(4)
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where κ0 and κu are the values of the history parameter indicating the initiation and end of the

damage growth, respectively and βint is a parameter that scales the exponential growth related to

the fracture energy.

2.2. Path-following method

A quasi-static structural finite element problem which is parametrized for external loads by a

load factor normally takes the following form of a nonlinear algebraic system of equations

r(a, λ) = f IN(a, λ) − f EX(a, λ) = 0 (5)

where r is the vector of unbalanced or residual forces, f IN and f EX are the vectors of internal

and external forces, respectively, a is the displacement vector, and λ is the load factor. A path-

following method utilizes an extra equation, called a constraint function, in order to solve (5) and

find the evolution of the displacements and the load factor. In other words, the method searches

for a solution with respect to an artificial (or pseudo) time. A typical constraint function can be

formulated as

g(a, λ, η) = h(a, λ) − η = 0 (6)

where g is the (total) constraint function, h is the (total) constraint kernel, and η is the indepen-

dent scalar total step-length parameter which must monotonically increase. The function h is

called the (total) constraint kernel because its increase by the magnitude of η controls finding the

solution points. In a sequential process of searching for responses by an incremental-iterative

method, it is presumed for the decomposition of an+1, λn+1, and ηn+1 that

an+1 = an + ∆an+1, λn+1 = λn + ∆λn+1, ηn+1 = ηn + ∆ηn+1 (7)

where ∆an+1, ∆λn+1, and ∆ηn+1 are the increments of a, λ, and η in step (or increment) n +

1, respectively. In addition, the system composed of equations (5) and (6) is reformulated to

have functions of ∆an+1, ∆λn+1, and ∆ηn+1 (instead of functions of an+1, λn+1, and ηn+1) for two

reasons: a) it is more convenient to explicitly show the evolution of the system which is going

to be solved in each step and b) (incremental) constraint functions which are functions of the

increment of the displacements and the load factor are usually proposed and utilized: rn+1(∆an+1,∆λn+1)

gn+1(∆an+1,∆λn+1,∆ηn+1)

 = 0 (8)
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where rn+1(∆an+1,∆λn+1) = r(an+1, λn+1) and gn+1(∆an+1,∆λn+1,∆ηn+1) = g(an+1, λn+1, ηn+1) are

the residual force vector and the (incremental) constraint function in step n + 1, respectively. The

(incremental) constraint function is equal to hn+1(∆an+1,∆λn+1) − ∆ηn+1 where hn+1 and ∆ηn+1

are the (incremental) constraint kernel and step-length, respectively. It should be noted that rn+1,

gn+1, and hn+1 are different functions from r, g, and h. We have employed the Newton-Raphson

method to solve (8) in step n + 1: Kk
t Vk

zk wk


δak+1

n+1

δλk+1
n+1

 = −

rk
n+1

gk
n+1

 (9)

where the components of the Jacobian matrix of step n + 1 are defined by

Kk
t =

∂rn+1

∂(∆ak
n+1)T

, (10)

Vk =
∂rn+1

∂(∆λk
n+1)

, (11)

zk =
∂gn+1

∂(∆ak
n+1)T

, (12)

wk =
∂gn+1

∂(∆λk
n+1)

, (13)

the difference vector of the solution is composed of

δak+1
n+1 = ∆ak+1

n+1 − ∆ak
n+1, (14)

δλk+1
n+1 = ∆λk+1

n+1 − ∆λk
n+1, (15)

and the components of the right-hand side of (9) are equal to

rk
n+1 = rn+1(∆ak

n+1,∆λ
k
n+1), (16)

gk
n+1 = gn+1(∆ak

n+1,∆λ
k
n+1), (17)

in which superscript k indicates the kth iteration, and xT is the transpose of vector x. The Jacobian

matrix in (9) is unsymmetric in general. Therefore the bordering algorithm (e.g. see [21]) is

employed to benefit from the symmetry of the tangential stiffness matrix Kt by the following

decomposition:

δak+1
n+1 = δ̄ak+1

n+1 − δλ
k+1
n+1 δ̃ak+1

n+1 (18)

where δ̄ak+1
n+1 and δ̃ak+1

n+1 are obtained by solving

Kk
t δ̄ak+1

n+1 = −rk
n+1 , Kk

t δ̃ak+1
n+1 = Vk (19)
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and δλk+1
n+1 is calculated by substituting equation (18) in the second part of (9):

δλk+1
n+1 = −

gk
n+1 + zk δ̄ak+1

n+1

wk − zk δ̃ak+1
n+1

(20)

2.3. Constraint functions

The constraint functions used in solving the example problems are the energy release control

[2] and slightly different versions of κ and κ–ω control proposed by the authors in [20]. The

energy release control constraint is

gn+1 = hn+1(∆an+1,∆λn+1) − ∆ηn+1 =
1
2

(λn ∆aT
n+1 − ∆λn+1 aT

n ) f̂ EX − ∆ηn+1 (21)

where hn+1 is defined as the variation of the energy release in step n + 1, f̂ EX is the unit vector

of external forces when the external force is independent of the deformations (i.e. f EX = λ f̂ EX).

The second constraint function is called modified κ control:

gn+1(∆an+1,∆ηn+1) =

∫
Ω0

∆κn+1 dΩ0 − ∆ηn+1 (22)

where ∆κn+1 = κn+1 − κn is the increment of the history parameter in step n + 1, κn+1 is equal to

max(κn, ueq(an + ∆an+1)), κn is the converged value of the damage history in step n, and Ω0 and

dΩ0 are the domain of and the volume element of the undeformed body under analysis. The only

difference between this constraint function and its original formulation in [20] is that it integrates

over the undeformed domain of the body instead of over last deformed configuration. For the

formation of a third constraint function, the same idea of κ–ω control in [20] is adopted except

that κ̇ (instead of ∆κ) is weakened for the points with more damage. To do this, firstly, we suggest

the following function

$(κ) =

∫ t

0
(1 − cLωL) κ̇ dt =

∫ κ

0
(1 − cLωL) dκ (23)

which, after integration, becomes

$(κ) =



κ , 0 ≤ κ < κ0

κ + cL

ln ( κ
κ0

) − κ
κ0

+ 1
1
κ0
− 1

κu

, κ0 ≤ κ < κu

κ + cL

 ln ( κu
κ0

)
1
κ0
− 1

κu

− κ

 , κu ≤ κ

(24)

where $ is an augmented damage parameter, ωL is the linear damage function of (3), and cL

is a coefficient between 0 and 1 to modify the contribution of damaged points for the solution
8



Figure 2: The curve of $ versus κ for different values of cL.

progress. By setting smaller values of cL, the contribution of fully damaged points will increase

and vice versa. Figure 2 shows the curve of $ versus κ for different values of cL. The figure

obviously illustrates that a) $ is equal to κ from κ = 0 to κ0 regardless of the magnitude of cL, b)

the curve with cL = 0 is $ = κ, and c) $ remains as a constant value (= ln (κu/κ0)/(1/κ0 − 1/κu))

after κu when cL = 1. Finally, the integration of the increment of $ is proposed as the modified

κ–ω control:

gn+1(∆an+1,∆ηn+1) =

∫
Ω0

(∆$n+1 − ∆ηn+1) dΩ0 (25)

where ∆$n+1 = $n+1 − $n is the increment in the augmented damage parameter. It should be

noted that the function of ω in (1) can differ from ωL. The difference of the above constraint

function from the original κ–ω control is that a) it integrates over the undeformed domain of the

body and b) it uses the augmented damage parameter instead of directly multiplying 1−ω to the

increment of κ.

The constraint functions (22) and (25), like their original forms, possess the advantage of

leading the solution path to a dissipative one and preventing global artificial unloading. In addi-

tion, the increments of the constituent parameters of modified κ and κ–ω control can be precisely

calculated according to the values obtained in the analysis steps without knowing how those

values are evolved between the steps. This is a significantly required property of a constraint

function when utilizing the global adaptation law as will be discussed in Section 5.
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3. Objective performance assessment

A method can increase its speed by jumping over curved parts of the analytical solution,

which decrease the smoothness of the numerical curve; or, a method could be very fast for a

specific problem while it does not converge well in most of other problems, which shows a weak

robustness. To assess the performance of the numerical solutions found by using the adaptation

laws, it is required to use performance measures as well as appropriate combinations of them.

3.1. Performance measures

We utilize the same speed and robustness measures proposed by Fayezioghani et al [20]

Psp =
1
N i (26)

Prob =
1

Nr + 1
(27)

where Psp is the speed measure, N i =
∑m

n=1 N i
n is the total number of iterations of the analysis

steps, N i
n is the number of iterations needed to find the solution point in step n, m is the total

number of steps (increments), Prob is the robustness measure, Nr =
∑m

n=1 Nr
n is the total number

of restartings of a complete analysis, and Nr
n is the number of restartings needed in step n. It is

common that if a method cannot find a solution in an increment, the searching process of that

increment will restart with different parameters (e.g. different step-length, initial guess of the

solution vector, or search method), which is often called the restarting strategy. In contrast to

these two measures, we use a different smoothness measure based on the distance followed on a

piecewise linear solution curve:

Psm =

 −
D/Dref
D−Dref

,D < Dref

1
D−Dref

,D > Dref

(28)

where Psm is the smoothness measure, D =
∑m

n=1 Dn is the sum of lengths of the lines connecting

consecutive solution points, Dn = ‖∆vn‖ is the length of that line, ∆vT
n = [∆aT

n , γ0∆λn] is the

generalized solution vector, γ0 is a scale factor between the space of nodal displacements and the

load parameter, ‖x‖ is the Euclidean norm of vector x, and subscript �ref indicates the reference

value. The solution curve obtained from a very comprehensive analysis is referred as a reference

solution here. Practically, a reference solution is obtained by setting very small step-lengths
10
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Figure 3: Smaller angles (Θ) between two consecutive linearized solution paths (solid blue lines) makes the numerical

curve get closer to the analytical one (black line), which means having a more smooth numerical solution.

which provide a very smooth numerical curve. Moreover, a measure which shows the relative

smoothness of a numerical curve and is appropriate to be used in the procedure of step-length

adaptation in Section 5 is introduced:

Pcos =

1
cos Θ−1 + 1

2
1

cos Θref−1 + 1
2

(29)

where Pcos is the cosine measure and

cos Θ =

∑m
n=1

1
2 ∆ηn(cos Θn−1 + cos Θn)∑m

n=1 ∆ηn
(30)

is the weighted average of the hyper cosines of consecutive lines connecting consecutive solution

points, and cos Θn =
∆vT

n
‖∆vn‖

∆vn+1
‖∆vn+1‖

is the hyper cosine in step n. Figure 3 graphically shows the

linearized solution curve and the relative location and numbering of the hyper angles. It should

be noted that a) the same piecewise linear curve as that in the smoothness measure is assumed

for the calculation of the hyper cosine of each step, b) the reference values are suggested for each

example problem of Section 6, and c) Pcos is specifically defined for the global adaptation law

because it is more straightforward and more effective to construct a prediction model for it.

3.2. Objective combinations of the performance measures

The objective performance measure, Pobj, is composed of the normalized performance mea-

sures, and their corresponding importance factors. In the example problems, we utilize two of
11



the objective measures recommended in [20]:

Pobj,I =
∑

i

αiXi (31)

Pobj,II =
∏

i

Xαi
i (32)

where Xi is the normalized measure, αi is the positive importance factor of Xi relative to the

other ones, and
∑

and
∏

are sum and product operators. A normalized measure is a performance

measure which is scaled to fall between a certain interval, say 0 and 1. We assess the performance

of the numerical solutions by three measures for smoothness, speed, and robustness. Therefore,

two importance ratios, αi/α j, will affect the comparison results based on (31) or (32). We use

the space of importance ratios proposed in [20] to uniformly visualize the areas in which each

solution has the best performance (i.e. has the largest objective performance measure).

4. The local adaptation law based on local responses

A well-known and mostly used conventional adaptation law [1] is

∆ηn+1 =

N i
opt

N i
n

 ∆ηn (33)

where N i
opt is the optimal number of iterations per increment. This law is designed to approxi-

mately maintain the number of iterations needed for convergence in each step constant for the

whole system of problem and solution method. To also consider the smoothness of the numerical

curve in a new step-length adaptation law, we first define a measure of local degree of smoothness

and include it in the formulation of the conventional law.

A numerical curve is usually drawn by connecting consecutive solution points by lines. The

larger the number of solution points on a complete solution curve, the smoother the linearized

numerical curve. In a perfect case of an infinite number of points, the direction of any line

connecting two consecutive points is approximately the same as the tangent to the analytical

curve. Thus, we suggest utilizing a hyper angle between the line connecting two solution points

and the tangent to the analytical curve at the second point. The cosine of the hyper angle is

calculated by

cos (ξn) =
∆vT

n

‖∆vn‖

∂∆vn
∂∆ηn

‖
∂∆vn
∂∆ηn
‖

(34)

12
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Figure 4: If the linearized solution curve (the solid blue line) between two consecutive solution points ,vn−1 and vn, has

a smaller inclination with the tangent to the curve (i.e. it has a smaller ξn), a smoother curve will be obtained.

where, ξn is the hyper angle of step n and

∂∆vn

∂∆ηn
=

 ∂∆an
∂∆ηn

γ0
∂∆λn
∂∆ηn


is the generalized tangent to the analytical curve at the end of step n. The tangent vector

∂∆an/∂∆ηn and the tangent value ∂∆λn/∂∆ηn are determined from solving the following al-

gebraic equation Kk
t Vk

zk wk


n

 ∂∆an
∂∆ηn

∂∆λn
∂∆ηn

 =

01
 (35)

where the Jacobian matrix is calculated according to the converged values at the end of step n.

By the same analogy of the conventional law, we define a desired optimum value of the hyper

angle, ξopt, and then try to keep ξn as close to it in every step as possible. The idea is to use the

cosine distance between the linearized vector of solution and the tangent to the curve in order to

obtain a smoother solution. Thus, we propose a modified version of the conventional adaptation

law and call it local adaptation law:

∆ηn+1 =

N i
opt

N i
n

β1 (
cos (ξn) + 1

cos (ξopt) + 1

)β2

∆ηn (36)

where β1 and β2 are the parameters to adjust magnification of each ratio in (36). Figure 4 depicts

a schematic visualization of the vectors and the hyper angle. The conventional adaptation law is

a special case of the adaptation law (36) when β1 and β2 are set to 1 and 0, respectively. Figure 5
13



shows the variation of the local modification factor with respect to ξopt and β2. It is illustrated

in the figure that a) the modification factor decreases the step-length for the hyper angles larger

than ξopt and vice versa and b) for larger β2, the modification is sharper and vice versa. For the

analysts who want to use CPU time in the definition of the speed measure, the calculation of

the tangent vector needed by the local adaptation law should be considered as a surplus to the

computations of each increment by a conventional law.

5. The global adaptation law based on prediction of performance measures

The conventional as well as the local adaptation law use previous converged values to adapt

the step-length in each analysis step. In other words, they adjust the step-length according to the

past information. These kinds of adaptation laws are usually simple and easy to implement while

they do not consider any information related to the global performance of the solution (i.e. the

performance of the solution up to the final increment). The global performance is assessed by

an objective combination of performance measures like in equations (31) or (32). To be able to

use these global measures in the global adaptation law in each step, the future responses should

be known. Obviously, the future values are unknown in each step and, thus, an approximation or

prediction of the future responses should be adopted, where it should be noted that the prediction

of desired responses does not mean prediction of the whole solution path. In this section, we

propose a global adaptation law based on the prediction of the speed and cosine measures defined

in Section 3.1.

5.1. Progress indicator

For our global adaptation law, it is necessary to define the progress of a solution. In order to

determine the progress of a problem with a progress indicator, we suggest using the sum of the

step-lengths up to the current increment, q:

sq =

q∑
n=1

∆ηn (37)

where sq is the indicator of the progress of the problem along the solution path up to increment

q. To consider the ability of the method to reach to a desired stage of an analysis, the progress

indicator is selected to be equal to a reference value at the final step, m. Thus,

sm =

m∑
n=1

∆ηn = sref (38)
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Figure 5: The local modification factor in equation (36) versus the hyper angle, ξn, is drawn for different values of ξopt

and β2 in Figure 5(a) and 5(b), respectively.

15



where sref is a reference value determined according to our desired stage and will be specified

for each example problem in Section 6.

5.2. Prediction of two basic measures

Prediction, here, means giving an approximation to a future response of a problem during

an analysis based on relevant information of the problem or simplifying assumptions. In this

subsection, we propose simple models to predict two basic measures which are applicable in

step q (the current step) during an analysis. The basic measures are the total number of iterations

for a complete solution, N i, and the weighted average of cosines of linear hyper angles, cos Θ,

which are used to calculate the speed and the cosine measure, respectively. While having a larger

Psp needs fewer solution points, a larger Pcos imposes more points and thus a smoother numerical

solution curve. Therefore, there will theoretically be an optimum set of solution points for each

objective performance function composed of the two performance measures. However, finding

such set of points requires conducting full analyses of a problem several times, which is rather

time consuming. If finding the optimum set of points is not of interest but obtaining a full analysis

which fairly balances the solution against the performance measures is desired, a predict-and-

reorient strategy can be employed. For instance, we predict the future part of the mentioned

basic measures in each step, calculate Pobj, and find an optimum value of the step-length and use

it at the start of the next step.

The prediction model, yi, is a simple function which allows the calculation of the future part

of each basic measure up to the final step. For the future trend/evolution of the step-length used

in the constraint function, it is assumed that

∆ηn = ∆̃η for n > q (39)

where ∆̃η is a fixed step-length for the rest of the steps to the end. With the assumption (39) for

sm (the progress indicator of the final step), the following equation is obtained

s̃m =

q∑
n=1

∆ηn + y0 (40)

where

y0 = mr ∆̃η (41)

and s̃m is the prediction of the progress indicator of the final step, y0 is a prediction of the future

part of sm which is
∑m

n=q+1 ∆ηn, and mr = m − q is the remaining number of steps to the final
16



analysis step. The prediction of the total number of iterations, Ñ i, is written as

Ñ i =

q∑
n=1

N i
n + y1 (42)

where y1 is a prediction of the future part of N i which is
∑m

n=q+1 N i
n. To propose a prediction

model for y1, it is needed to assume some minimal information: a) the restarting strategy should

be considered in the model, b) if a determined maximum number of iterations considering a

maximum number of restartings (i.e. N i
ref) occurs in an increment of an analysis, the solution of

that increment is labeled as non-convergent, c) the mentioned number is proportional to the rest of

the progress, and d) if the total number of iterations of a complete path goes to infinity, the step-

length goes to zero, and consequently the increments converge with one iteration. Therefore,

every function with a minimum number of parameters which satisfies these assumptions is a

candidate for y1. Here, we propose the following equation

y1 = a1mr + b1 exp(−c1mr) (43)

where a1, b1, and c1 are the parameters of y1 and should be updated in each step. To determine

these parameters in step q, three pairs of (mr, y1) are needed. These pairs are determined ac-

cording to the minimal assumptions of y1: (0,N i
ref), (1, (1 − sq

sref
)N i

ref), and (+∞,mr), respectively,

which leads to

a1 = 1 (44)

b1 = N i
ref (45)

c1 = − ln (
d1

b1
) (46)

where ln is the natural logarithm. In order to prevent a logarithm with a negative value in the

very last analysis steps, we suggest d1 to be equal to (1− sq

sref
)N i

ref − a1 if it is positive; otherwise,

a very small value such as 0.05a1 is used for d1. Figure 6 shows a schematic curve of y1. A

decrease of y1 is seen from the figure, which confirms consideration of the restarting strategy in

the formulation of y1. As assumed, mr = 0 means non-convergence which happens when the

path-following method is not able to find a solution within the maximum number of iterations

per step as well as within the maximum number of restartings. In general, the method converges

with fewer restartings and consequently with a smaller total number of iterations as mr increases

from 0. This trend continues until around the point where no restarting occurs (i.e. the minimum
17



Figure 6: The prediction value of y1 starts from Ni
ref and decreases to a minimum as mr increases; then, the curve

approaches to the bisector as defined in the minimal assumptions.

point of the curve indicated by m∗r = − 1
c1

ln ( a1
c1b1

) and y∗1 = a1
c1

(1 − ln ( a1
c1b1

)). Afterwards, y1

starts to increase simply because the final number of steps is increased without any restartings.

Adopting the assumption (38) for cos Θ leads to

c̃os Θ =
1

sref

q−1∑
n=1

1
2

∆ηn(cos Θn−1 + cos Θn) +
1
2

∆ηq cos Θq−1 + y2

 (47)

where y2 is a prediction of the future part of the weighted sum of cosines of linear hyper angles

which is
∑m

n=q
1
2 ∆ηn(cos Θn−1+cos Θn)− 1

2 ∆ηq cos Θq−1. By the same analogy of proposing y1, we

minimally assume that a) the minimum value of cos Θq (which is equal to −1) occurs in case of

non-convergence, b) the linearized solution curve approaches to a linearized curve with cos Θ =

cos Θref (which is not equal to its ideal value, +1, because of the machine precision) when the

number of increments goes to infinity, and c) the prediction function should be monotonic with

respect to mr. We propose the following candidate for y2:

y2 = (sref − sq)
(
a2 cos

(
(1 −

sq

sref
)

2π
mr + 2

)
+ c2

)
(48)

where a2 and c2 are the parameters of y2 and are updated in each step. The minimal assumptions

of y2 are interpreted as two pairs of (mr, y2): (0,−(sref − sq)) and (+∞, cos Θref · (sref − sq)),

18



Figure 7: The prediction value of y2/(sref − sq) starts from its lowest possible value, −1, and monotonically increases to

approach to cos Θref when mr goes to infinity.

respectively, which gives us

a2 =
1 + cos Θref

1 − cos
(
(1 − sq

sref
) π

) (49)

c2 = cos Θref − a2 . (50)

Figure 7 draws a schematic illustration of y2 versus mr. The curve in the figure shows to possess

a value of −1 in case of non-convergence. In addition, approaching to cos Θref which is not equal

to +1 expresses that the machine precision as well as the numerical deviation from the exact

analytical solution curve are considered in the formulation of y2.

5.3. The global adaption law

The value of the prediction of the objective performance measure, P̃obj, is calculated accord-

ing to the prediction of the speed and cosine measures. In other words,

P̃obj = Pobj(X̃ j; α̃ j) (51)
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where

X̃1 =
N i

ref

Ñ i
, (52)

X̃2 =

1
c̃os Θ−1

+ 1
2

1
cos Θref−1 + 1

2

, (53)

and α̃1 and α̃2 are their corresponding importance factors. To find a suitable step-length for

the next step (i.e. step q + 1), the value of mr which maximizes P̃obj should be found first, i.e.

m∗r = arg (max
mr

P̃obj). Then, by substituting equations (37), (38), and (41) into equation (40) and

reordering, an equation is found by which a step-length corresponding to m∗r could be calculated:

∆η∗ =
sref − sq

m∗r
(54)

where ∆η∗ is the optimal value of ∆̃η according to the maximization of P̃obj. Therefore, the

global adaptation law will be

∆ηq+1 = ∆η∗ . (55)

It is significant for this adaptation law that the employed constraint functions to be derivative-

free (i.e. the incremental constraint functions can be precisely calculated from the total constraint

functions without any need for discretization in artificial time). Otherwise, the progress indicator,

equation (38), cannot be employed as an equation of finding the optimal step-length in (54). For

example, the constraint functions of the modified κ and κ–ω control are derivative-free while the

original κ–ω control is not. Again, for the analysts who define the speed measure as a function

of CPU time, the calculations solely assigned to the global adaptation law should be considered

as a surplus to the computations of the conventional law.

6. Example problems

In the following example problems, the proposed adaptation laws with different sets of

parameters are used and their results are compared to the conventional adaptation law (equa-

tion (33)) according to the objective performance measures. The example problems share the

following assumptions:

• It is assumed that the external force is deformation-independent.
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• The problems are analyzed for each constraint function and for different sets of adapta-

tion parameters. The constraint functions are energy release (En), modified κ (Mκ), and

modified κ–ω (Mκω). For the local adaptation law, the sets of parameters are determined

N i
opt = 5, cos (ξopt) = 1.0, and β1 = 1 together with β2 ∈ {0, 1, 2, 3} to simulate the influ-

ence of the modification factor to the conventional law and N i
opt = 5, β1 = 0, and β2 = 1

together with cos (ξopt) ∈ {0.70, 0.80, 0.95} in order to focus on the effectiveness of the

modification factor itself. In addition, Table 1 lists the sets of parameters employed for the

global adaptation law.

• We adopted an abbreviated name for each simulation: ‘S ymbol L N i
opt cos (ξopt) β1 β2’

for the local adaptation law and ‘S ymbol G P-Type α̃1 α̃2’ for the global adaptation law.

It should be emphasized that the energy release constraint function is not derivative-free

and, therefore, is not used together with the global adaptation law.

• The analyses are initially started by force control on the body at rest. They switch to one

of the mentioned constraint functions when passing a threshold for the dissipated energy

increment (defined in [2]) and continue to reach the desired stage. Both the desired stage

and the threshold value are reported for each example separately.

• A simple adaptation rule is also used for the initial guess of each step after adaptation of

the incremental step-length: ∆a0
n+1

∆λ0
n+1

 =
∆ηn+1

∆ηn

∆an

∆λn

 (56)

• Each time non-convergence occurs in an analysis step, the restarting strategy adds 15 to

N i
n and restarts the analysis of the step from adapting the step-length and the initial guess.

In case of non-convergence after a predefined maximum number of restartings, the method

is labeled ‘unacceptable’. This maximum number is a value which scales the incremen-

tal step-length down to almost one-hundredth of its value at the start of each step. For

example, it will be 27 or 34 for N i
opt = 4 or 5.

• If each of the simulations is able to reach a desired stage of the analysis, its result is

considered as an acceptable one for further assessment; otherwise, it is assumed as an

unacceptable simulation and is excluded from the portfolio of simulations.
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Table 1: The parameter sets of the global adaptation law used in the example problems

Global adaptation law parameters

P-Type α̃1 α̃2 P-Type α̃1 α̃2

I 1 1 II 1 1

I 1 10 II 1 10

I 1 25 II 1 25

I 1 50 II 1 50

I 1 100 II 1 100

I 10 1 II 10 1

I 25 1 II 25 1

I 50 1 II 50 1

I 100 1 II 100 1

• The normalized measures mentioned in Section 3.2 are

X1 =
Psm

Psmmax
, X2 =

Psp

Pspmax
, X3 =

Prob

Probmax
(57)

where Psmmax, Pspmax, and Probmax are the maximum of smoothness, speed, and robustness

measures among all acceptable simulations, respectively. It should be noted that only the

parts of the solution path which are obtained by employing the constraint functions are

considered in these calculations with excluding the path initially found by force control.

• The objective performance measures are calculated for each set of measures, [X1, X2, X3],

and the set which has the largest objective measure is shown with a specific color on the

space of importance ratios (e.g. see Figure 10 or 14).

6.1. Perforated beam

This example problem is presented in [22] and is a modified version of the numerical exam-

ple in [2]. The problem considers fracture of a perforated beam (see Figure 8) by using cohesive

zones which are modeled by predefined planes in the beam. Pure mode-I fracture is assumed to

occur along the x-axis because of the positions of holes and symmetry of the problem. Charac-

teristics of the continuum and cohesive zones are listed in Table 2. For a smooth transition from
22



Table 2: Characteristics of the perforated beam problem.

Continuum region

•Modulus of elasticity: E = 100 N/mm2

• Poisson’s ratio: ν = 0.30

• Thickness = 1 mm

• Constitutive law: σ = Cε

• Plain strain condition: C =
E(1 − ν)

(1 + ν)(1 − 2ν)


1

ν

1 − ν
0

ν

1 − ν
1 0

0 0
1 − 2ν

2(1 − ν)


• Element type: 6-node triangular

• Integration scheme: 7-point Gauss

Cohesive zone

• Uniaxial tensile strength: ft = 1 N/mm2

•Mode-I fracture energy per unit area: Gf,I = 2.5 × 10−3 N/mm

• Damage law: tint = (1 − ω)Cintuint

• Damage parameter function: linear damage function of equation (3)

• tT
int = [ts, tn], uT

int = [us, un], and Cint =

ds 0

0 dn

 where subscripts �s and �n indicate

directions tangent and normal to the interface surface in a 2D space, respectively.

• ds = 5 × 103 N/mm3 and dn = 104 N/mm3.

• κ0 = ft/dn and κu = 2Gf,I/ ft.

• Element type: 3-node quadratic interface

• Integration scheme: 3-point Newton-Cotes
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Figure 8: Perforated beam problem set-up and its dimensions in mm.

force control to the control by the employed constraint functions, a fixed 0.00156 N incremental

step-length (which is equal to 1
60 of the maximum force) is selected for the force control together

with 10−11 J for the dissipated energy threshold. The desired stage of the perforated beam is

defined to be where the vertical displacement of the top loading point is equal to 0.075 mm. It is

worth noting that the desired stage might be defined in another way. For instance, by determin-

ing a value for the progress indicator of a derivative-free constraint function. This is not recom-

mended for a constraint function which is not derivative-free because the discretization adopted

to obtain its incremental form causes a difference between the cumulative sum of step-lengths up

to the current stage of the problem and the current state of the constraint kernel. The reference

distance Dref and the reference total number of iterations N i
ref are equal to 2.063 mm and 510,

respectively. Representative deformed meshes of the perforated beam problem are shown in Fig-

ure 9. In a quasi-static analysis, the dissipation of energy (in the interfaces) requires a decrease

of the external load at the snap-backs (i.e. from a, c, e, and g, to b, d, f, and h, respectively).

The performance measure values resulted from employing the adaptation laws are listed in

Appendix A. Figure 10 shows the regions of dominance of the best sets of adaptation parameters

for the perforated beam example. It is observed from the figure that

• By using energy release control, the local adaptation law is always better based on Pobj,I.

It also performs better based on Pobj,II except in the region 2.14 ≤ α2/α1 ≤ 5.06 in which

the conventional law is the best.

• By using the κ control, the global adaptation law has been the best based on Pobj,I where
24
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Figure 9: The interface elements which are responsible for the start of snap-backs are indicated by red arrows in Fig-

ures 9(a), 9(c), 9(e), and 9(g).
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α2/α1 is greater than 1. The local adaptation has performed better in the region 1.17 ≤

α1/α2 ∩ 1.0 ≤ α1/α3; the conventional law has been dominant in 1.65 ≤ α1/α2 ∩ 1.0 ≤

α3/α1. Based on Pobj,II, the global adaptation has been better for 5.06 ≤ α2/α1; and, the

conventional law has the highest rank for α2/α1 < 5.06 ∩ 1.0 ≤ α3/α1 and for 1.69 ≤

α2/α1 ≤ 5.06 ∩ 1.0 ≤ α1/α3. In the region of 1.0 ≤ α1/α3, the local adaptation law has

outperformed for 1.36 ≤ α2/α1 ≤ 1.69 and for 5.80 ≤ α1/α2. In this region, the global

adaptation law has owned another dominance subregion of 0.20 ≤ α1/α2 ≤ 5.80.

• By using the modified κ–ω control, the global adaptation has been the only dominant law.

However, the dominance regions are very different based on Pobj,I and Pobj,II.

• The global adaptation law with Pobj,II has been more effective than Pobj,I. By using Pobj,II,

the step-length is adapted to keep the normalized speed and cosine measures almost equal;

in contrast, by using Pobj,I, the step-length tends to a very large or small value in order to

maximize Pobj,I.

• The proposed adaptation laws have been really competitive to the conventional law, spe-

cially for the modified κ–ω control.

Figure 11 depicts the curve of the loading point displacement versus force for the perforated

beam example. Note that the colors of the curves are chosen for a clear distinction between

them and should not be confused with the consistent colors used for the space of importance

ratios in Figure 10. Solely, the results which have performed best in a region of the space of

importance ratios are shown in the figure. It is seen from the curves that a) only the smoothest

local adaptation law has been able to trace the second snap-back when using the energy release

control, b) the fastest global adaptation law has skipped a part of the first, second, and third snap-

backs by the modified κ control, and c) the smoothest path belongs to the global adaptation by

the modified κ–ω control which has followed the end parts of the snap-backs quite well.

6.2. Masonry wall

In this example, which is a slightly changed version of that explained in [23], we discuss the

quasi-static response of a masonry wall preconfined with a vertical compressive load in phase I

and subjected to a lateral in-plane force at its top in phase II (see Figure 12). Unlike the wall

in [23], kinematics of both bricks and joints are defined by conventional finite elements. In
26



(a) Pobj,I by the energy release control (b) Pobj,II by the energy release control

(c) Pobj,I by the modified κ control (d) Pobj,II by the modified κ control

(e) Pobj,I by the modified κ–ω control (f) Pobj,II by the modified κ–ω control

Figure 10: The space of objective performance measures of the perforated beam example.
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(a)

(b)

(c)

Figure 11: The loading point displacement-force curve of the dominant solutions found by using (a) the energy release,

(b) the modified κ, and (c) the modified κ-ω control for the perforated beam problem.
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(a) (b)

Figure 12: Confined masonry wall problem set-up and its dimensions in mm. (a) phase I: confining by a compressive

load and (b) phase II: imposing a lateral load.

addition, bricks and joints are modeled exactly with their mentioned dimensions and geometry.

Damage is assumed to only occur within the mortar material by adopting mode-I fracture along

the centerline of mortar joints while the bricks remain elastic. Consequently, non-zero-width

joints are modeled by interface elements located in their centerlines [20]. Table 3 summarizes

the properties of bricks and mortar joints. For simulation purposes, a very stiff bar is added on

top of the wall so that the bar transfers the concentrated load to the top nodes of the wall.

The analysis is started by using force control with a fixed incrementation of 297.24 N (which

is equal to 1
125 of the maximum force) and a switching threshold of 0.001 J in order to smoothly

switch to the employed constraint functions. After it switched to one of the mentioned control

constraints, the analysis proceeded to pass the desired stage which was defined by the absolute

value of the horizontal displacement of the top right node to be equal to 1 cm. The reference

distance and the reference total number of iterations are equal to 456.1 mm and 510, respectively.

Deformed meshes of the masonry wall problem at representative steps are shown in Figure 13.

Like previous example, a decrease of the external load in the snap-backs (i.e. from c and f, to d

and g, respectively) is required for energy dissipation (in the interfaces) in a quasi-static analysis.

Results of employing the adaptation laws are summarized by the performance measures in

Appendix A. It is observed from Figure 14 (which shows the regions of dominance of the best

sets of adaptation parameters), that
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Table 3: Characteristics of the confined masonry wall problem.

Bricks

• Full brick dimensions: 210 mm × 52 mm × 100 mm

• Half brick dimensions: 100 mm × 52 mm × 100 mm

•Modulus of elasticity: E = 16700 N/mm2

• Poisson’s ratio: ν = 0.15

• Constitutive law: σ = Cε

• Plain stress condition: C =
E

1 − ν


1 ν 0

ν 1 0

0 0
1 − ν

2


• Element type: 4-node rectangular

• Integration scheme: 4-point Gauss

Mortar joints

• Dimensions: hint = 10 mm and thickness = 100 mm

• Uniaxial tensile strength: ft = 0.25 N/mm2

• Uniaxial compressive strength: fc = 10.5 N/mm2

• Poisson’s ration: νint = 0.14

•Mode-I fracture energy per unit volume: Gf,I = 0.018 N/mm2

• Damage law: tint = (1 − ω)Cintuint

• Damage parameter function: exponential damage function of equation (4)

• tT
int = [ts, tn], uT

int = [us, un], and Cint =

ds 0

0 dn

 where subscripts �s and �n indicate directions

tangent and normal to the interface surface in a 2D space, respectively.

• ds = 36 N/mm3 and dn = 82 N/mm3.

• κ0 = ft/dn and βint =
hintGf,I

ft
− 1

2 κ0

• Equivalent relative displacement, ueq, is defined by a degenerated capped Drucker-Prager model

[23]:

ueq =


A Iu + B Ju , Ju ≥

A −C
D − B

Iu

C Iu + D Ju , Ju ≤
A −C
D − B

Iu

where Iu = (1 + νint)un,

Ju =
1

1 + νint

√
1
3 (1 + νint + ν3

int + ν4
int)u

2
n + 1

4 u2
s ,

A =
1
2

fc − ft

fc
, B =

√
3

2
fc + ft

fc
, C =

( fb − fc) ft

fb fc
, and D =

√
3

(2 fb + fc) ft

fb fc
.

• Biaxial compressive strength: fb = 1.2 fc

• Element type: 2-node linear interface

• Integration scheme: 2-point Newton-Cotes

30



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

a

b

c

d

e

f

g
h

i

Figure 13: The interface elements which are responsible for the start of snap-backs are indicated by green arrows in

Figures 13(c) and 13(f).
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• The local adaptation law is the best when using the energy release control.

• By utilizing the κ control, the global adaptation law has outperformed in the region of a)

1.0 ≤ α1/α3 ∩ α2/α1 ≤ 1.63 based on Pobj,I and b) 1.0 ≤ α1/α3 ∩ α2/α1 ≤ 2.96 based on

Pobj,II; the conventional law is better in the region of a) 1.0 ≤ α2/α3 ∩ 1.63 ≤ α2/α1 based

on Pobj,I and b) 1.0 ≤ α2/α3 ∩ 2.96 ≤ α2/α1 based on Pobj,II; and the local adaptation law

is almost dominant in the region of 1.0 ≤ α3/α1 ∩ 1.0 ≤ α3/α2.

• In the region of 1.0 ≤ α3/α1 ∩ 1.0 ≤ α3/α2, the global adaptation law has the first rank

among the others by the modified κ–ω control. While, in the rest of the regions, the local

and conventional laws are the best based on a) Pobj,I where α2/α1 ≤ and ≥ 4.94 and b)

Pobj,II where α2/α1 ≤ and ≥ 12.90, respectively.

• The outperforming parameter sets does not vary by the objective performance measure

except the analysis En L 5 1.00 1 2 which is added in the very limited region of 1.0 ≤

α1/α3 ∩ 1.62 ≤ α2/α1 ≤ 1.70 based on Pobj,II.

• The proposed adaptation laws are functioning quite well compared to the conventional law.

Like the previous example problem, the loading point displacement-force curves of the best

performing results of the masonry wall are shown in Figure 15. Different colors from the space

of importance ratios are chosen for the sake of visual clarity. One can see from the curves that

a) one of the results by the local adaptation has skipped a small part of the second snap-back

by utilizing the energy release control, b) all of the dominant results have smoothly traced the

snap-backs by the modified κ control, and c) the conventional law has started the snap-back a

little before the other ones by the modified κ-ω control.

32



(a) Pobj,I by the energy release control (b) Pobj,II by the energy release control

(c) Pobj,I by the modified κ control (d) Pobj,II by the modified κ control

(e) Pobj,I by the modified κ–ω control (f) Pobj,II by the modified κ–ω control

Figure 14: The space of objective performance measures of the masonry wall example.
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(a)

(b)

(c)

Figure 15: The loading point displacement-force curve of the dominant solutions found by using (a) the energy release,

(b) the modified κ, and (c) the modified κ-ω control for the masonry wall problem.
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7. Summary and conclusions

In a quasi-static analysis of structures using a path-following method, determination of the

step-length in each analysis increment is necessary to improve the performance of the method.

We proposed two new step-length adaptation laws: a local and a global law. The former locally

considers the adaptation and adds a multiplier as a modification to a conventional law in order

to enhance the smoothness of the solution curve. The latter is based on the global performance

of the numerical solution and adopts prediction models to be able to determine the step-length in

each analysis step. The results of comparisons between the new and the conventional adaptation

laws based on objective performance measures show that

• As intended, the local adaptation modification factor has increased the smoothness of so-

lution when it is solely used. However, if the modification factor is multiplied to the con-

ventional law, the step-length increases in some steps instead of decreasing. The reason

for this is that if the modification factor significantly decreases the step-length calculated

by the conventional law in an analysis step, that step converges with a significantly smaller

number of iterations which sharply increases the step-length of the next step. Thus, in

problems with sharp variations of the modification factor, a decrease in the smoothness

might be observed when multiplying the modification factor to the step-length calculated

by the conventional law.

• The global adaptation law has controlled the step-length well. By assigning more impor-

tance to smoothness or speed, the adaptation law has managed to increase the smoothness

or speed measure of the solution, respectively.

• The lower and upper bounds which are imposed to restrict the step-length in practice as

well as the restarting strategy affect the results of the performance measures of a solution.

They, thus, may slightly change the overall performances which are expected from the

adaptation laws.

It should be noted that the example problems have been chosen to explore the efficiency areas

of the studied and proposed constraint functions and step-length adaptation laws. The above

conclusions can be generalized to problems with similar features such as finite element size, type

of elements, underlying phenomena, etc. and may change with variations of the problem features.
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Appendix A. Performance measures resulted from the example problems

The values of the performance measures of the acceptable results by employing the adapta-

tion laws are listed in Tables A1, A2, and A3 for the perforated beam as well as in Tables A4,

A5, and A6 for the masonry wall example problem. In the tables, the numbers of each column

should be multiplied to the number inside of bracket to obtain the value of objective performance

measure of that column. For example, if the header of a column shows Psm[×10+3], and x is a

number in that column, the value of Psm is equal to x × 10+3.

Table A1: The performance measures are calculated for the acceptable results of the perforated beam example which is

controlled by the energy release constraint.

Analysis name Psm[×10+3] Psp[×10−3] Prob

En L 5 1.00 1 0 5.635 9.091 1.00

En L 5 1.00 1 1 3.322 10.101 1.00

En L 5 1.00 1 2 5.667 8.264 0.50

En L 5 1.00 1 3 7.988 5.988 1.00

En L 5 0.70 0 1 10.698 6.098 1.00

En L 5 0.80 0 1 22.234 3.344 0.33

En L 5 0.95 0 1 70.689 2.793 1.00
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Table A2: The performance measures are calculated for the acceptable results of the perforated beam example which is

controlled by the modified κ control.

Analysis name Psm[×10+3] Psp[×10−3] Prob

Mκ L 5 1.00 1 0 7.734 6.135 1.00

Mκ L 5 1.00 1 1 5.917 4.274 0.50

Mκ L 5 1.00 1 2 8.636 4.717 0.50

Mκ L 5 1.00 1 3 14.363 4.292 0.33

Mκ L 5 0.70 0 1 4.511 3.268 0.25

Mκ L 5 0.80 0 1 7.516 3.802 1.00

Mκ L 5 0.95 0 1 44.967 0.916 0.14

Mκ G I 1 25 3.350 5.917 0.50

Mκ G I 1 50 4.054 5.208 0.33

Mκ G I 1 100 4.095 4.926 0.33

Mκ G I 10 1 2.970 6.849 1.00

Mκ G I 25 1 3.292 6.250 0.50

Mκ G I 50 1 3.292 6.250 0.50

Mκ G I 100 1 2.858 7.463 1.00

Mκ G II 1 1 3.552 5.128 0.33

Mκ G II 1 10 12.924 1.916 0.06

Mκ G II 1 25 7.568 1.742 0.06

Mκ G II 1 50 39.037 2.070 0.13

Mκ G II 1 100 29.639 1.675 0.09

Mκ G II 10 1 3.126 5.025 0.25

Mκ G II 25 1 3.274 6.211 0.50

Mκ G II 50 1 3.282 6.250 0.50

Mκ G II 100 1 2.858 7.463 1.00
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Table A3: The performance measures are calculated for the acceptable results of the perforated beam example which is

controlled by the modified κ–ω control.

Analysis name Psm[×10+3] Psp[×10−3] Prob

Mκω L 5 1.00 1 0 7.243 4.016 1.00

Mκω L 5 1.00 1 1 7.804 3.497 1.00

Mκω L 5 1.00 1 2 10.264 3.345 0.50

Mκω L 5 1.00 1 3 7.877 3.436 0.50

Mκω L 5 0.70 0 1 3.057 4.926 1.00

Mκω L 5 0.80 0 1 3.230 4.149 1.00

Mκω L 5 0.95 0 1 37.262 1.675 0.50

Mκω G I 1 1 2.770 5.682 1.00

Mκω G I 1 10 3.505 5.376 1.00

Mκω G I 1 25 5.199 5.465 1.00

Mκω G I 1 50 3.695 5.076 1.00

Mκω G I 1 100 2.687 5.000 1.00

Mκω G I 10 1 3.620 5.618 1.00

Mκω G I 25 1 3.620 5.618 1.00

Mκω G I 50 1 3.620 5.618 1.00

Mκω G I 100 1 3.620 5.618 1.00

Mκω G II 1 1 6.092 5.405 1.00

Mκω G II 1 10 9.826 3.311 1.00

Mκω G II 1 25 15.200 2.381 1.00

Mκω G II 1 50 30.332 1.866 1.00

Mκω G II 1 100 65.587 1.323 0.33

Mκω G II 10 1 3.652 5.556 1.00

Mκω G II 25 1 3.820 5.525 1.00

Mκω G II 50 1 3.526 5.618 1.00

Mκω G II 100 1 3.620 5.618 1.00
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Table A4: The performance measures are calculated for the acceptable results of the masonry wall example which is

controlled by the energy release constraint.

Analysis name Psm[×10+3] Psp[×10−3] Prob

En L 5 1.00 1 0 0.089 2.370 0.17

En L 5 1.00 1 1 0.151 2.577 0.20

En L 5 1.00 1 2 0.208 2.294 0.20

En L 5 1.00 1 3 0.138 2.907 0.33

En L 5 0.70 0 1 0.081 2.169 0.17

En L 5 0.80 0 1 0.103 1.949 0.20

En L 5 0.95 0 1 1.032 0.849 0.25

Table A5: The performance measures are calculated for the acceptable results of the masonry wall example which is

controlled by the modified κ control.

Analysis name Psm[×10+3] Psp[×10−3] Prob

Mκ L 5 1.00 1 0 2.871 2.710 0.33

Mκ L 5 1.00 1 1 0.536 2.632 0.33

Mκ L 5 0.80 0 1 0.176 2.370 0.25

Mκ L 5 0.95 0 1 1.083 1.370 1.0

Mκ G I 1 10 0.193 1.992 0.06

Mκ G I 1 100 0.397 2.359 0.17

Mκ G I 10 1 0.199 1.984 0.05

Mκ G II 1 1 0.442 1.812 0.05

Mκ G II 1 10 1.167 2.037 0.25

Mκ G II 1 25 1.049 1.493 0.20

Mκ G II 1 50 31.128 1.203 0.50

Mκ G II 1 100 5.228 0.001 0.50

Mκ G II 10 1 0.717 1.764 0.04

Mκ G II 25 1 0.071 2.155 0.05

Mκ G II 100 1 0.051 2.174 0.05
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Table A6: The performance measures are calculated for the acceptable results of the masonry wall example which is

controlled by the modified κ–ω control.

Analysis name Psm[×10+3] Psp[×10−3] Prob

Mκω L 5 1.00 1 0 0.104 2.833 0.50

Mκω L 5 1.00 1 1 0.150 2.591 0.50

Mκω L 5 1.00 1 2 0.391 2.433 0.50

Mκω L 5 1.00 1 3 1.666 2.294 0.50

Mκω L 5 0.80 0 1 0.388 2.141 0.20

Mκω L 5 0.95 0 1 0.590 1.072 0.50

Mκω G I 1 1 0.160 1.502 0.03

Mκω G I 1 10 0.324 1.866 0.05

Mκω G I 1 50 0.311 2.105 0.10

Mκω G I 1 100 0.227 1.894 0.17

Mκω G I 10 1 0.084 1.376 0.03

Mκω G I 50 1 0.050 1.815 0.05

Mκω G II 1 1 0.338 2.037 0.07

Mκω G II 1 10 0.155 1.980 0.33

Mκω G II 1 25 0.656 1.300 0.25

Mκω G II 1 50 0.435 1.212 1.00

Mκω G II 1 100 0.838 0.001 0.50

Mκω G II 10 1 0.066 1.439 0.03

Mκω G II 25 1 0.063 1.764 0.04
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