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A B S T R A C T

The linear no-threshold (LNT) risk model is the current human health risk assessment paradigm. This model
states that adverse stochastic biological responses to high levels of a stressor can be used to estimate the response
to low or moderate levels of that stressor. In recent years the validity of the LNT risk model has increasingly been
questioned because of the recurring observation that an organism's response to high stressor doses differs from
that to low doses. This raises important questions about the biological and evolutionary validity of the LNT
model. In this review we reiterate that the LNT model as applied to stochastic biological effects of low and
moderate stressor levels has less biological validity than threshold or, particularly, hormetic models. In so doing,
we rely heavily on literature from disciplines like ecophysiology or evolutionary ecology showing how exposure
to moderate amounts of stress can have severe impacts on phenotype and organism reproductive fitness. We
present a mathematical model that illustrates and explores the hypothetical conditions that make a particular
kind of hormesis (conditioning hormesis) ecologically and evolutionarily plausible.

1. Introduction

The origin of aerobic life is one of the most fascinating and elusive
topics in biology. Certainly, one of the great leaps in the history of life
on earth was the evolution of the capacity to use oxygen to generate
energy [1]. As far as we know, oxygen expanded the metabolic and
biochemical capacities of organisms, possibly contributing to the di-
versification of life [2]. Harnessing oxygen in aerobic metabolism to
generate energy is not without hazards though, the most important
being the generation of reactive oxygen species (ROS). If uncontrolled,
these highly reactive by-products can wreak havoc, attacking all of the
main building blocks from which bodies are made, including DNA, thus
resulting in oxidative stress [3]. As a consequence, the need to evolve
adequate defenses against the generation or accumulation of such da-
mage arose in parallel with the use of oxygen by cells to generate en-
ergy [4]. Aside from oxygen metabolism, there have been numerous
other potential sources of stress, such as changes in abiotic conditions.

Diversification of life and the spread of species into new and dif-
ferent environments meant that organisms faced new challenges, such
as adaptation to new thermal regimes, fluctuations in water availability

or salinity, variation in natural background ionizing radiation and in
ultraviolet light. The nature of, and the interplay between, the costs and
benefits involved in balancing offspring or energy generation against
damage mitigation is a major area of research that cuts across many
biological disciplines and levels of enquiry. What this research has
taught us so far is that, while substantial molecular and higher-level
damage can be detrimental for the organism, exposure to tiny amounts
of such damage or to mild doses of environmental stressors (e.g., heat
stress, ROS, radiation) may be essential for the organism [5–18].

In this review, we discuss current evolutionary thinking on the costs
and benefits of stress exposure with a special reference to ionizing ra-
diation, but also relying on examples of other environmental stressors.
Although these examples include endpoints spanning the molecular to
the organism level, the main focus is on reproductive fitness (or output)
because to be successful in evolutionary terms an organism must pass
its genes to the next generations, without mutations detrimental for
fitness. To further explore these concepts, we present a novel mathe-
matical model that explores and tests the hypothetical conditions that
make a particular kind of hormesis (conditioning hormesis) ecologically
and evolutionarily plausible.
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2. Dose–response models in toxicology and stress physiology

Axioms such as ‘forewarned is forearmed’ and ‘that which harms
often teaches’ are cemented into our society, but not necessarily into
our science. It is often assumed for an individual that the health or
reproductive fitness declines (or e.g., cancer risk increases) as an LNT
function of the dose of the stressor (e.g., chemical toxicant, abiotic
stressor). This LNT decline which differs for different individuals is
assumed to impact the risk of a given stochastic health effect (e.g.,
cancer), which is also characterized by an LNT model and can be jus-
tified on the basis of a Poisson distribution of cancer cases when there is
a linear decline in health fitness.

The LNT model for characterizing the risk (or related endpoint such
as relative risk) of a specific health effect has traditionally been a
leading concept in several core disciplines (e.g., toxicology, radiation
biology), but in recent years its validity has increasingly been ques-
tioned because it failed to accurately predict organism responses and
outcomes (stochastic) related to low-dose stressor exposure [19–23].
The main reason for this is that knowledge about an individual's re-
sponse to high doses has proven insufficient to predict its response to
low doses, which raises important questions about the validity in evo-
lutionary biology of the LNT risk model as it is currently used [e.g.
[14,24,25]].

This research along with other research in this Special Issue and
prior published work [e.g. [14]] shows that the LNT model is in most
cases considered not biologically realistic. According to the threshold
model, there is no significant effect (e.g., cancer induction) until the
dose reaches a given threshold value (termed the ‘No Observed Adverse
Effect Level’ in the toxicological literature), above which reproductive
or other fitness traits decline (or physiological stress level increases)
linearly or non-linearly with dose. Often, the dose-response relationship
is biphasic, with low doses eliciting a stimulatory or beneficial or-
ganism response and high doses causing inhibition or toxicity, respec-
tively. This form of biphasic dose-response is characteristic of hormesis
[e.g. [5,19]].

In the following paragraphs, we review the findings of a number of
ecological and evolutionary studies that show how the LNT model is
less accurate than threshold and hormetic models, and present a hy-
pothetical mathematical model that explores the conditions that make a
particular kind of hormesis [termed “preconditioning hormesis” by Ref.
[26]] evolutionary plausible.

3. Is the LNT model evolutionarily realistic and compatible with
the need of DNA integrity maintenance?

DNA is the repository of genetic information in each organism. Its
integrity and stability are both essential to life. DNA is also not inert
because it is open to damage when an organism is being exposed to an
environmental stressor. The premise of the LNT model is that the im-
pact of some forms of environmental stressors, be it ionizing radiation
or heat stress, on a biological endpoint, like DNA damage and con-
sequent mutation frequency and cancer incidence, is directly propor-
tional to the dose. Implicit in the assumptions of the LNT model is that
an observable detrimental biological effect becomes evident when the
magnitude of a given environmental stressor an organism is exposed to
increases relative to a control situation (e.g., no radiation, no heat
stress) and that the frequency of such a biological effect increases lin-
early with the dose. The assumptions justifying the LNT model are ir-
reconcilable with current evolutionary theory for several reasons.

First, life on earth appeared and evolved in highly stressful en-
vironments where, for example, levels of ionizing radiation were much
higher than background radiation levels today [27]. Thus, selection
favoured evolution of numerous adaptive molecular mechanisms to
deal with constant exposure to natural background radiation and other
stressful conditions that organisms retain at present, such as those re-
pairing damage to DNA. Consequently, any detrimental effects on

reproductive or other fitness traits would be expected to be evident only
above certain stress levels.

Second, all life on earth is exposed to background radiation with
highly variable absorbed doses ranging from 0.01 to 260mGy y−1 in
humans [28,29]. Epidemiological and physiological studies did not find
consistent differences in endpoints like DNA damage, cancer markers or
chromosome aberrations between people living in areas with high
naturally occurring background radiation and those living in areas with
low background radiation [e.g. [28,30–32]].

Third, if organisms have adapted to thrive in the presence of ra-
diation, how would they react to a significant decrease in environ-
mental radiation dose? Work on protozoans, bacteria and fruitflies
(Drosophila melanogaster) has shown that exposure to lower-than-
background radiation levels can result in negative effects on fitness-
related traits, compared to individuals exposed to background radiation
[e.g. [33–35]]. Experiments on the protozoan Paramecium tetraurelia
and the cyanobacterium Synechococcus lividus showed that shielding
against background radiation was detrimental and that radiation
hormesis only occurred in a limited range of doses above background
level and disappeared for doses higher than 50mGy y−1 [35]. Follow-
up experiments on other organisms have found similar deleterious ef-
fects for exposure to below-background radiation, including (1) de-
creased protection to mutational damage in Saccharomyces cerevisiae
[36], (2) higher sensitivity to apoptosis and intracellular oxidative
stress in Cricetulus griseus [37], (3) reduction of growth rate in Mus
musculus L5178Y cells [38], and (4) changes in the concentration of
antioxidant enzymes [39] and in the expression of genes regulating
DNA repair and response to oxidative stress in Shewanella oneidensis and
Deinococcus radiodurans [40,41]. Recent work has actually shown that
organisms exposed to lower-than-background radiation experience this
unusual environment as stressful, leading to upregulation of many
genes involved in protection against oxidative stress and down-
regulation of those regulating protection of DNA [42].

Fourth, the LNT model is not accurate or biologically meaningful in
predicting the organism response to low doses of a given stressor be-
cause it ignores the mechanisms that govern the organism's physiolo-
gical adaptive stress responses. Implicit in the LNT model is the as-
sumption that organism responses are elicited passively by
environmental stimuli. Contrary to this outdated view, the organism
more often actively decodes the information content of a given en-
vironmental stimulus and orchestrates a response to it. These potential
responses are wide-ranging, including genetic and epigenetic mechan-
isms and phenotypic plasticity that translate into the activation of
protective mechanisms of molecular integrity or of systems of damage
repair [6–8,11,14–18].

Exposure to chemical toxicants or other kinds of stressors can also
result in selection of resistant phenotypes or genotypes [43–47].
Translocation of these resistant individuals in areas free of that parti-
cular toxicant can cause reduced survival and reproduction [e.g.
[43,44,46]]. This indicates that organisms adapted to a specific stressor
might have developed a need of it, as otherwise the costs of maintaining
protective mechanisms against a particular stressor would be too high
to sustain. This is further supported by studies on phenotypic plasticity,
which is the ability of an organism to change its phenotype [e.g., via
preconditioning and postconditioning hormesis, 26] in response to
changes in the environment.

In rapidly changing environmental conditions, the contribution of
plasticity has critical implications for individuals and the evolution of
populations by allowing adaptive traits to be rapidly introduced within
a single generation [48,49]. This is particularly important when ex-
posure to stress occurs early in life when the conditioning of the phy-
siological system (preconditional hormesis) prepares the organism to
withstand stress later in life [e.g. [16–18,50]]. Conditioning of stress
responses in early life may carry fitness benefits providing the stressor
is then encountered in the adult environment, while there might be a
cost of phenotypic adjustment if there is no subsequent exposure to that
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stressor in adulthood [10]. This may occur when the early life en-
vironment does not match the conditions experienced in adulthood. In
other words, early life exposure to a mild dose of a chemical toxicant or
of another environmental stressor (e.g., radiation, heat stress) might
trigger phenotypic adjustments that would then translate in that in-
dividual being able to tolerate them better than when exposure to a
high amount of the same stressor occurs in later life and, consequently,
to flourish in challenging environments (Fig. 1). In the following
paragraphs, we present further examples of experimental work sup-
porting the idea that the key assumptions of the LNT model are gen-
erally wrong.

4. Evidence against the LNT model

4.1. Genetic evolution

Observational and experimental studies have shown that organisms
can exhibit higher evolutionary rates when living under stressful con-
ditions [e.g. [51,52]]. Earlier experiments on Drosophila melanogaster
showed that genetic recombination (generation of a novel combination
of genetic information that can be passed from the parents to the off-
spring) increases at development temperatures above or below normal
culture temperatures, resulting in a U-shaped curve [53,54]. At near
lethal temperature extremes, however, there is some evidence for a fall
in recombination. Later experiments on Drosophila melanogaster [55,56]
and other species [Neurospora crassa in Refs. [57,58]; Coprinus lagopus
in Ref. [59]; Caenorhabditis elegans in Ref. [60]] found qualitatively
similar results, implying that in mildly stressful environments, varia-
bility generated by recombination may increase. These results suggest
potential for threshold or hormetic responses to facilitate evolutionary
change.

A recent study on Escherichia coli showed that genetic innovations
involving pre-existing DNA repair functions can play a predominant
role in the acquisition of a phenotype resistant to increasing ionizing
radiation [61]. Examples of evolutionary change in a short time can
also be found in wild vertebrates. A recent study of Darwin's finches in
the Galápagos Islands tells us that a complex trait, such as beak size, can
evolve significantly in less than 1 year when the environment is

stressful [62].

4.2. Stress resistance and survival

Some organism responses to radiation described in numerous spe-
cies echo those resulting from some other types of stressors, which
implies that mechanisms underlying threshold or hormetic responses
are highly conserved across a wide range of species and stress agents
(see below). For example, recent work on a bird species (zebra finch,
Taeniopygia guttata) showed that exposure to relatively mild stress may
have long-lasting positive consequences.

In two studies by Refs. [9,10], zebra finches encountering warmer-
than-normal environments in adulthood showed increased resistance to
molecular oxidative damage and long-term survival and resilience.
However, this was observed only when they had been exposed to epi-
sodes of mild thermal stress before reaching sexual maturity. This work
suggests that early-life exposure to mild stress may be beneficial when it
matches (to some degree) the environmental conditions experienced
later in life. When no heat stress was encountered in adulthood, how-
ever, survival was poorer in birds that experienced mild heat stress in
early life than in those that did not, demonstrating a cost of pre-
conditioning hormesis in the absence of a challenge in adulthood.

In another study on the zebra finch [63], showed that repeated
exposure to the stressful conditions caused by unpredictable food
availability (which induced no changes in body mass) was associated
with an increase in lifespan. The birds responded to the unpredictable
food supply by increasing baseline glucocorticoid stress hormones
without any signs of habituation of this hormonal response to the
treatment across time [63]. The increase of plasma concentration of
glucocorticoids induced by the treatment was significant, but relatively
mild, since the baseline glucocorticoid concentrations in the treated
birds were substantially lower than the peak levels that occur during an
acute stress response in this species [63]. These results led the authors
to hypothesize that in a range of nutritional or other mild and un-
predictable environmental stressors, hormetic responses via moderate
stimulation of the Hypothalamic-Pituitary-Adrenal axis (which is re-
sponsible for the secretion of glucocorticoids) may represent an evo-
lutionary conserved mechanism that promotes survival and reduces the

Fig. 1. Environmental conditions experienced while
developing may have long-lasting consequences for
the individual chances of surviving and reproducing.
This illustration shows one hypothetical scenario
about the consequences of developing in either a
toxicant (or stress) free environment (blue nestling)
or a mild polluted (or stressful) environment (red
nestling). In adulthood, the population size of blue
and red birds will be similar in low to mild stressful
environments as long as there is not a cost due to
mismatching between young and adult environ-
mental conditions [e.g., 10]. In contrast, in en-
vironments where there is high pollution or stress
red birds will outperform blue birds because of the
early life conditioning hormesis of mechanisms to
deal with stress. This hypothetical scenario would
apply to species with low vagility, such as those that
cannot rapidly disperse or migrate. Serena Costantini
©.
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rate of ageing [63].

4.3. Variation among co-specific populations and species

Exposure to environmental stressors can contribute to shaping life
diversity, and stress is something all living organisms experience.
However, the intensity of environmental stressors varies in time and
space, as does the coping capacity of populations and species. For ex-
ample, while adverse health effects (e.g., cancer) do not show any ap-
preciable increase in individuals living in areas with high natural
background radiation, some aspects of cell resistance to stress appear to
improve [28,30,64,65].

A recent meta-analysis of studies testing the effect of chronic low
dose radiation on metrics of oxidative status (markers of oxidative
damage, enzymatic and non-enzymatic antioxidants) found significant
heterogeneity in effect size across species and tissues [66]. This con-
clusion suggests that there may be selection that acts on the capacity of
organisms to cope with ionizing radiation (e.g., upregulation of DNA
repair mechanisms, antioxidants). For example, while controlling for a
number of potentially confounding variables, [67] showed that glu-
tathione (an important intracellular antioxidant) levels increased, and
lipid peroxidation and DNA damage decreased with increasing back-
ground radiation in some species of birds. These results might be due to
genetic selection. For example, through directed evolution in the la-
boratory [61], generated populations of Escherichia coli exhibited a new
phenotype characterized by extreme resistance to ionizing radiation
due to increased DNA repair functions. Similarly, [68] suggested that
hormetic mechanisms induced by environmental stressors might drive
the evolution of genes regulating mechanisms that extend longevity.
Alternatively, these results might be due to hormetic preconditioning
[26] of the physiological system in order to tolerate higher levels of
radiation. For example, experiments on genetically similar laboratory
rodents found that individuals chronically exposed to doses of radiation
slightly higher than background level lived longer than those exposed
to background radiation [e.g. [69–71]].

Inter-species variation in tolerance of ionizing radiation might also
be inferred from estimates of local abundance (i.e., number of in-
dividuals of a species living in a given area). The prediction is as fol-
lows: if external and internal exposure from radionuclides has no dis-
cernible impact on the health status of a species, abundance of that
species in a highly radionuclide contaminated site would be expected to
be similar to that in control sites. Although early work has shown ne-
gative effects on local abundance, number of eggs produced, immunity
or body colourations in some bird species living in the highly con-
taminated Chernobyl Exclusion Zone [72], recent evidence suggests
that populations of several mid-to large-sized carnivores, and of Eur-
asian boars, increased within the Chernobyl Exclusion Zone during the
decades after the accident, and that mammal distributions across sites
are uncorrelated with the severity of local radiation contamination
[73,74]. These results suggest that the response of populations to ra-
diation may vary across time, raising a difficulty in predicting responses
in the long-term.

It is clear that it is not straightforward to predict whether in the
long-term a species is going to flourish or perish in areas where there
has been a small increase in background level of radiation. This con-
clusion does not seem surprising given that over the incipient stages of
evolution of life the intensity of natural background radiation was much
higher than it is now [27]. The conservative nature of DNA damage
repair mechanisms in modern organisms suggests that these mechan-
isms evolved in the distant past and that living organisms retain the
capability of efficiently repairing DNA damage from present radiation
levels [27].

It is also important to consider that the biological effects of a given
environmental stressor also depend on the co-exposure of the organism
to additional stressors. For example, when experimentally exposed to
high doses of gamma radiation (200–400 Gy), Caribbean fruit flies

(Anastrepha suspense) suffered reduced survival, but when exposed to a
combination of radiation and anoxic stress, survival of females was
unaffected, while that of males was lower than controls yet significantly
higher than males exposed only to irradiation. Exposure to a combi-
nation of irradiation and anoxic stress also improved resistance to
oxidative stress and mating success of males. The strong tolerance of the
marine tardigrade Echiniscoides sigismundi to radiation is due to mole-
cular mechanisms that have evolved to allow survival of this organism
to extreme dry environments [75]. These results further support the
conclusion that evolution would not have been successful if the LNT
model for stochastic biological effects were valid.

5. Modelling the conditions that make hormesis evolutionarily
possible

Having presented substantial evidence that the LNT model is un-
likely to be a good description of biological reality, we propose math-
ematical simulations to establish a better understanding of the evolu-
tionary implications of hormesis. Relying on a number of realistic
assumptions based on data available in the literature, mathematical
simulations allow us to test relevant concepts without the need to
perform experiments. Simulation models also allow us to formalize
ideas, and have the added benefit of forcing us to define the most es-
sential aspects of stress-response mechanisms. Although it would be
possible to build a detailed model based upon empirical data on a well-
studied model organism, we deliberately chose a general approach
because the aim is to improve understanding at a conceptual level. Such
models are a highly useful first step towards understanding the poten-
tial effects of environmental stressors on reproductive fitness [76].

Here, we present a simple hypothetical model that investigates the
conditions under which mechanisms that allow preconditional horm-
esis [26] experienced during development can be expected to persist in
a population. We focus on preconditional hormesis because much em-
pirical research on stress physiology or longevity has provided con-
vincing support for the biological relevance of this kind of hormesis and
its applicability to many kinds of environmental stressors [e.g., 9–10].

More specifically, we investigate (i) how the degree of stress pre-
dictability during early and late life stages (stress (mis)match) is ex-
pected to affect the reproductive fitness of individuals in a population
that have hormesis potential (HP), and (ii) how this reproductive fitness
is affected by trade-offs between the benefits and costs of having HP.
With use of the term HP we allow for genetic and epigenetic mechan-
isms driving hormetic responses to environmental stressors [77]. For
example, [78] investigated the genetic variation of hormetic effects on
lifespan induced by heat stress and the associated quantitative trait loci
in various strains of Caenorhabditis elegans. Wild type CB4856 worms
exposed to heat stress survived 18% longer than controls of the same
strain. Using recombinant inbred lines (RILs) derived from a cross be-
tween wild types N2 and CB4856, [78] also found natural variation in
stress-response hormesis in lifespan. More than one quarter (28%) of
the RILs displayed a hormetic effect in lifespan induced by heat stress.
Importantly, the ability to recover from heat-shock mapped to a sig-
nificant quantitative trait locus (QTL) on chromosome II. The QTL was
confirmed by infiltrating relatively small CB4856 regions into chro-
mosome II of N2.

The model builds on realistic numbers of offspring that many bird
and mammal species can generate at each reproductive event. It si-
mulates a population of a generic species in which all individuals go
through a young and an adult stage, after which they produce a certain
number of offspring and die (i.e., no overlapping generations). We
allow via our modelling for young stage individuals of a given species to
experience three levels of stress (none, mild, severe), while during the
adult stage they can experience two (none, severe).

While it would be possible to implement a range of stress levels
experienced during adulthood, stress levels were intentionally limited
to two in order not to make the final number of potential outcomes too
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large, as this would make result interpretation unnecessarily difficult.
For instance, the addition of a mild stress level during adulthood would
generate a number of intermediate results between those generated by
no or severe stress, but our interest lies in developing a conceptual
understanding of the most extreme scenarios.

Exposure to a given stressor affects the number of offspring gener-
ated, but within the same species, individuals with HP are affected
differently from those that are hormesis negative (HN, i.e., unable to
generate an hormetic response): HP individuals can develop resistance
against stress experienced during adulthood, but only if they were ex-
posed to mild stress levels early in life. All model scenarios (which in-
clude a number of simulations) include a cost for being HP, which

reflects the expected trade-off between investing in hormesis potential
(self-maintenance) and in other traits (e.g., growth, reproduction). The
model is based on a simple set of rules, described in Table 1, that de-
termine how HP and HN offspring numbers are affected each genera-
tion, using a reference offspring number of 6 individuals (but note that
the exact value is irrelevant and can be any number). For example, if
individuals experience mild stress when young, and severe stress when
adults, the number of offspring for HP individuals will be as follows: 6
(reference offspring number) −1 (rule 1: cost for being HP) −1 (cost of
mild stress when young) −0.5 (cost for activating hormetic con-
ditioning) −2.5 (cost of severe stress when adult) +1.5 (benefit of
standard plasticity) +3.5 (benefit of hormetic conditioning), which
adds up to a final offspring number of 6. Under the same conditions, the
number of offspring for HN individuals will be: 6 (reference) −1 (cost
of mild stress when young) −2.5 (cost of severe stress when adult)
+1.5 (benefit of standard plasticity), adding up to a final offspring
number of 4. In this situation, hormetic conditioning potential therefore
yields a higher reproductive fitness. Table 2 shows the final offspring
numbers for all possible stress combinations.

Each model run consists of 30 generations, where all individuals
(starting with 50% HP and 50% HN) in each generation go through a
young stage and an adult stage. At the start of a model run, one of three
stress levels (none, mild, severe) is randomly chosen to be experienced
by young individuals. Next, a stress level is generated for the following
adult stage, according to a certain ‘stress match probability’ (SMP)

Table 1
Model conditions based on a set of simple rules. Each row describes a rule, the stage (young or adult) and stress condition (none, mild and severe for the young stage,
and none or severe for the adult) at which it is applied, which individual class it applies to (Hormesis potential – HP and/or Hormesis negative – HN individuals), and
the effect size by which it changes the number of offspring. The final number of offspring for each individual class at the end of a generation (young + adult stage) is
calculated by summing each rule that was applicable for the conditions experienced during the young and adult stages.

Rule Stage Stress Level Affects HP Affects HN Effect

1. Cost for being HP [Assumes that there is a cost for having hormesis potential, regardless of the experienced stress
conditions]

Young Any X – −1

2. Cost of stress Young Mild X x −1
3. Cost of stress Young Severe X x −3
4. Cost of hormetic conditioning activation [Assumes that there is a cost for activating hormetic conditioning

mechanisms]
Young Mild X – −0.5

5. Cost of stress Adult Severe x x −2.5
6. Benefit of standard plasticity in case of mild stress during youth and severe stress during adulthood [Assumes that all

individuals, regardless of whether they have hormetic conditioning potential, still develop a low level of resistance
against future stress if they were exposed to mild stress in early life]

Adult Severe x x 1.5

7. Benefit of hormetic conditioning in case of mild stress during youth Adult Severe x – 3.5
8. Benefit of standard plasticity in case of severe stress during youth and adulthood [Assumes that all individuals,

regardless of whether they have hormetic conditioning potential, still develop a low level of resistance against future
stress if they were exposed to severe stress in early life]

Adult Severe x x 1

Table 2
Resulting total number of offspring for the different combinations of stress
conditions, based on the standard set of rules described in Table 1.

Condition while
young

Condition
while adult

Final offspring
number for HP
individuals

Final offspring
number for HN
individuals

No stress No stress 5 6
No stress Severe stress 2.5 3.5
Mild stress No stress 3.5 5
Mild stress Severe stress 6 4
Severe stress No stress 2 3
Severe stress Severe stress 0.5 1.5

Fig. 2. Mean final proportion of HP individuals in the population for a range of stress match probabilities, under different combinations of mild stress cost values
during youth and HP benefit values in the case of mild youth stress followed by adult stress. Benefit values shown in decreasing order from top (green line) to bottom
(blue line). All other model values are the same as those shown in Table 1. The horizontal line indicates the transition where the reproductive fitness of HP is higher
than that of HN.
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value that is selected for that given model run. This value between 0
and 1 gives the probability of experiencing the same environmental
conditions as those that were present during the young stage. For ex-
ample, if the SMP is 1, the subsequent stress situation will always be the
same as that during the previous stage. If the SMP is 0.7, there is a 70%
chance that the subsequent situation will be the same, and a 30%
chance that it changes. If the SMP is 0, the stress situation will always
change. This means that for SMP values above 0.5 the stress level is
more likely to be the same as the previous one, while for values below
0.5 the stress level is more likely to be different. The model goes
through 30 generations, and the proportion of HP individuals in the
population at the end of the 30th generation is used as a proxy for HP
reproductive fitness (i.e., evolutionary success). Thirty generations
were chosen because this is sufficiently long to lose the influence of
initial model stochasticity, and choosing a higher number of genera-
tions would not have affected the results (not shown).

A next step is to investigate which environmental stress conditions
enable hormesis to persist in the population. We approach this question
by analysing a number of model situations: (i) the effect of a range of
stress match probabilities on HP reproductive fitness, (ii) the effect of
the magnitude of the benefit offered by hormetic conditioning relative
to the cost of mild stress during youth, (iii) the effect of the magnitude
of the cost of being a HP individual. For each model situation, a set of
cost and benefit values was chosen (based on the values shown in
Table 1), and for each SMP value (all values from 0 to 1, in steps of 0.1)
1000 model runs were performed. This procedure was necessary be-
cause each model run is a random and stochastic outcome of the model.
For each model run, the final proportion of HP individuals was re-
tained, and the mean was calculated so that each model scenario had
one single value of reproductive fitness.

The most important pattern that emerged from the simulations is
that in most situations HP individuals can only survive in the popula-
tion if stress conditions did not change too often. For all tested com-
binations of mild stress cost and hormetic conditioning benefit (Fig. 2),
we observe a threshold behaviour, where HP individuals can only
survive in the population at SMP values of 0.3 or higher, regardless of
the magnitude of stress cost (Fig. 2a vs 2b vs 2c). In other words, if

there is a low probability of stress conditions remaining the same, the
benefit of conditioning never exceeds the cost of stress, even for high
benefit values. It is also interesting to note that when stress occurrence
is completely random (SMP=0.5), there is always a proportion of HP
individuals that can survive in the population (Fig. 2), except when the
cost of being HP is high (Fig. 3). The cost of being HP has strong effects
on HP reproductive fitness (Fig. 3): when there is no cost, HP in-
dividuals can always survive in the population and reproductively
outperform HN individuals in most cases except when stress conditions
are very likely to change (SMP<0.2). As soon as there is a cost,
however, HP reproductive fitness decreases rapidly, although there
always seem to be some conditions of high stress predictability that
allow a proportion of HP individuals to survive together with HN in-
dividuals.

6. Conclusions

Our review provides both empirical and theoretical evidence to
conclude that the LNT model is not only invalid but also biologically
unrealistic as compared to either threshold or hormetic models. It is
beyond dispute that evolution has taken place in a number of extra-
ordinarily stressful environments with simultaneous exposure to ra-
diation, chemicals and abiotic factors (e.g., heat stress). This complex
process has resulted in the appearance and positive selection of a
number of stress response mechanisms (including mechanisms of da-
mage repair), most of which are now highly conserved across species
and underlie many of the threshold or hormetic responses to environ-
mental stressors (including ionizing radiation) characterized to date.
Our simulation models allowed us to define the most essential aspects
of stress-response mechanisms underlying hormesis. It will be im-
portant to validate or refine our models using empirical data collected
from well-defined experiments.

In conclusion, based on a large body of empirical data, in addition to
theoretical assumptions, it is logical to conclude that if LNT were a
biologically valid dose-response model, the evolution of life on Earth
would not have been possible.
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