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a b s t r a c t 

Behavioral epidemiology, the field aiming to determine the impact of individual behavior on the spread of 

an epidemic, has gained increased recognition during the last few decades. Behavioral changes due to the 

development of symptoms have been studied in mono-infections. However, in reality, multiple infections 

are circulating within the same time period and behavioral changes resulting from contraction of one of 

the diseases affect the dynamics of the other. 

The present study aims at assessing the effect of home isolation on the joint dynamics of two in- 

fectious diseases, including co-infection, assuming that the two diseases do not confer cross-immunity. 

We use an age- and time- structured co-infection model based on partial differential equations. Social 

contact matrices, describing different mixing patterns of symptomatic and asymptomatic individuals are 

incorporated into the calculation of the age- and time-specific marginal forces of infection. 

Two scenarios are simulated, assuming that one of the diseases has more severe symptoms than the 

other. In the first scenario, people stay only at home when having symptoms of the most severe disease. 

In the second scenario, twice as many people stay at home when having symptoms of the most severe 

disease than when having symptoms of the other disease. 

The results show that the impact of home isolation on the joint dynamics of two infectious diseases 

depends on the epidemiological parameters and properties of the diseases (e.g., basic reproduction num- 

ber, symptom severity). In case both diseases have a low to moderate basic reproduction number, and 

there is no home isolation for the less severe disease, the final size of the less severe disease increases 

with the proportion of symptomatic cases of the most severe disease staying at home, after an initial 

decrease. This counterintuitive result could be explained by a shift in the peak time of infection of the 

disease with the most severe symptoms, resulting in a smaller number of people with less contacts at 

the peak time of the other infection. When twice as many people stay at home when having symptoms 

of the most severe disease than when having symptoms of the other disease, increasing the proportion 

staying at home always reduces the final size of both diseases, and the number of co-infections. 

In conclusion, when providing advise if people should stay at home in the context of two or more 

co-circulating diseases, one has to take into account epidemiological parameters and symptom severity. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Jointly modeling the dynamics of two or more infectious

iseases with or without similar transmission routes can provide

ew insights in the interaction among these different pathogens

 Hens et al., 2008; Merler et al., 2008; Shrestha et al., 2013; Restif

t al., 2008 ). For airborne diseases, deterministic compartmen-

al models described by ordinary differential equations (ODEs)

ave been proven to provide a suitable mathematical framework
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or studying such interactions ( Merler et al., 2008; Restif et al.,

008 ). Such ODE-based co-infection models typically describe the

ransmission dynamics of two (or more) infectious diseases, and

he flow of individuals between different com partments or states

e.g., susceptible, infected, recovered), in function of calendar time.

lternatively, age-specific effects could be studied, at least when

ssuming endemic equilibrium for the infections at hand similarly

 Hens et al., 2012; Rohani et al., 1998 ). 

Apart from calendar time, age is also an important factor

nfluencing the dynamics of infectious diseases. Within the same

alendar year, transmission parameters can differ for people of var-

ous ages, e.g., for childhood diseases the infection risk tends to be
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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lower for adults and elderly as compared to children. Hence, com-

partmental models including both calendar time and age effects

provide a straightforward extension of the aforementioned models.

The flow of individuals in such models is then described using a

system of partial differential equations (PDEs) in time and age. Age

structure can be included in the model via contact or mixing ma-

trices, including social contact rates among individuals in different

age categories, the population age distribution and age-specific

mortality rates ( Hens et al., 2012; Castillo-Chavez et al., 1989 ). 

In addition to age and calendar time effects, im plicitly decom-

posing the population in various subgroups, one can decompose

the subpopulation of infectious individuals further into symp-

tomatic and asymptomatic cases, which makes sense if for the

pathogens under study the occurrence of asymptomatic infections

is agreed upon. While most individuals change their social contact

behavior when experiencing symptoms ( Eames et al., 2010 ), at

least when these symptoms are moderate to severe, by staying

at home, asymptomatic individuals will show similar contact

patterns as compared to individuals who are uninfected (either

susceptible or immunized). Furthermore, symptomatic individuals

are presumed to be more contagious than asymptomatic individ-

uals, which has been demonstrated in the context of influenza

by Van Kerckhove et al. (2013) . Behavioral epidemiology has the

aim to determine the effect of individual behavior on the spread

of infectious diseases and has become a growing field during the

last few decades ( Manfredi and D’Onofrio, 2013 ). It’s increasingly

recognized that human behavior affects the spread of infectious

diseases, which has led to an increasing trend in incorporating hu-

man behavior into infectious disease modeling ( Wang et al., 2015;

Verelst et al., 2016 ). Behavioral changes due to the development of

symptoms and differences in contagiousness between symptomatic

and asymptomatic people have recently been implemented and

the effects thereof have been studied using compartmental models

for mono-infections ( Santermans et al., 2017 ). More specifically,

using general practitioner data, these authors ( Santermans et al.,

2017 ) showed that in case of influenza, the total number of cases

can be reduced by 39% or 63% when 50% or all symptomatic

individuals, respectively, would stay at home immediately after

the onset of symptoms. 

The present study extends the work by Santermans

et al. (2017) in the sense that our approach incorporates so-

cial contact matrices for both symptomatic and asymptomatic

individuals, together with differences in infectiousness among

those two groups, in an age- and time-structured co-infection

model for two diseases which is described using a system of

PDEs. We assume that there is no cross-immunity induced for

the diseases at hand. First, we have studied the effect of staying

at home when having symptoms for one disease on the final

size of the other infection. More specifically, we studied how

the following infectious disease parameters influence this effect:

basic reproduction numbers, infectious period, fraction of symp-

tomatic cases, number of contacts and the delay between the

two epidemic outbreaks. Second, we studied two diseases with

different sym ptom severity, where twice as many people stayed

at home when having symptoms of the most severe disease

than when having symptoms of the other disease. Both the basic

reproduction number and the proportion staying at home were

varied. 

The paper is organized as follows. In Section 2 , we describe the

co-infection model configuration, parameter settings, and the sce-

narios and model variations considered. In Section 3 , the results

from investigating the effect of behavioral changes due to having

symptoms on the model output are presented. Section 4 discusses

our main findings and summarizes our conclusions and recom-

mendations for further research. 
f  
. Methods 

.1. Co-infection model setup 

The co-infection model used in this paper is an age-structured

usceptible-Infected-Recovered (SIR) compartmental transmission

odel, describing the joint disease dynamics with regard to two

mmunizing infections conferring lifelong humoral immunity. The

odel was implemented in R3.1.1 and R3.3.2 using the deSolve

ackage ( Soetaert et al., 2010 ). In total, the co-infection model con-

ists of 9 different compartments or states, which are described in

etail in Table 1 . Fig. 1 shows a schematic diagram depicting the

ifferent com partments and the flow of individuals between the

tates in the model. 

In particular, these flows can be described using a system of

artial differential equations (PDEs), in age (a) and time (t): 

∂S 12 ( a, t ) 

∂a 
+ 

∂S 12 ( a, t ) 

∂t 
= −( λ1 ( a, t ) + λ2 ( a, t ) + μ( a ) ) S 12 ( a, t ) 

∂ I 1 S ( a, t ) 

∂a 
+ 

∂ I 1 S ( a, t ) 

∂t 
= λ1 ( a, t ) S 12 ( a, t ) 

− ( μ( a ) + λ12 ( a, t ) + ν1 ) I 1 S ( a, t ) 

∂ I S2 ( a, t ) 

∂a 
+ 

∂ I S2 ( a, t ) 

∂t 
= λ2 ( a, t ) S 12 ( a, t ) 

− ( μ( a ) + λ21 ( a, t ) + ν2 ) I S2 ( a, t ) 

∂ I 12 ( a, t ) 

∂a 
+ 

∂ I 12 ( a, t ) 

∂t 
= λ21 ( a, t ) I S2 ( a, t ) + λ12 ( a, t ) I 1 S ( a, t ) 

− ( ν1 + ν2 + μ( a ) ) I 12 ( a, t ) 

∂ I 1 R ( a, t ) 

∂a 
+ 

∂ I 1 R ( a, t ) 

∂t 
= λ1 ( a, t ) R S2 ( a, t ) + ν2 I 12 ( a, t ) 

− ( μ( a ) + ν1 ) I 1 R ( a, t ) 

∂ I R 2 ( a, t ) 

∂a 
+ 

∂ I R 2 ( a, t ) 

∂t 
= λ2 ( a, t ) R 1 S ( a, t ) + ν1 I 12 ( a, t ) 

− ( μ( a ) + ν2 ) I R 2 ( a, t ) 

∂R 1 S ( a, t ) 

∂a 
+ 

∂R 1 S ( a, t ) 

∂t 
= ν1 I 1 S ( a, t ) − ( λ2 ( a, t ) + μ( a ) ) R 1 S ( a, t ) 

∂R S2 ( a, t ) 

∂a 
+ 

∂R S2 ( a, t ) 

∂t 
= ν2 I S2 ( a, t ) − ( λ1 ( a, t ) + μ( a ) ) R S2 ( a, t ) 

∂R 12 ( a, t ) 

∂a 
+ 

∂R 12 ( a, t ) 

∂t 
= ν2 I R 2 ( a, t ) + ν1 I 1 R ( a, t ) − μ(a ) R 12 ( a, t ) 

here λ1 ( a, t ), λ2 ( a, t ), λ12 ( a, t ) and λ21 ( a, t ) are the age- and

ime-dependent marginal and conditional forces of infection (FOI);

( a ) is the age-dependent natural death rate; ν1 and ν2 are the

ecovery rates which are assumed to be constant. 

Put I 1 = I 1 S + I 12 + I 1 R and I 2 = I S2 + I 12 + I R 2 . The age- and

ime-dependent forces of infection are give by Anderson and

ay (1992) : 

λ1 ( a, t ) = 

∫ ∞ 

0 

β1 

(
a, a ′ 

)
I 1 
(
a ′ , t 

)
da ′ 

λ2 ( a, t ) = 

∫ ∞ 

0 

β2 

(
a, a ′ 

)
I 2 
(
a ′ , t 

)
da ′ 

λ12 ( a, t ) = 

∫ ∞ 

0 

β12 

(
a, a ′ 

)
I 2 
(
a ′ , t 

)
da ′ 

21 ( a, t ) = 

∫ ∞ 

0 

β21 

(
a, a ′ 

)
I 1 
(
a ′ , t 

)
da ′ 

here β1 ( a, a ′ ), β2 ( a, a ′ ), β12 ( a, a ′ ), β21 ( a, a ′ ) are the transmis-

ion rates, i.e. the average per capita rates at which a susceptible

ndividual of age a makes effective contact with an infected indi-

idual of age a’, per unit time; I 1 ( a 
′ , t ) and I 2 ( a 

′ , t ) denote the total

umber of infected individuals of age a’ at time t. If the popula-

ion is divided into K age categories, the age- and time-dependent

orces of infection are given by (discretized version of the
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Table 1 

Compartments in the SIR model used in this study. 

State Meaning 

S 12 Susceptible for both infections 

I 1 S Infected by pathogen 1, susceptible for infection by pathogen 2 

I 1 Sa : asymptomatic infection; I 1 Ss : symptomatic infection 

I S 2 Infected by pathogen 2, susceptible for infection by pathogen 1 

I S 2 a : asymptomatic infection; I S 2 s : symptomatic infection 

I 12 Co-infection 

I 12 aa : asymptomatic; I 12 as : only symptoms of disease 2; 

I 12 sa : only symptoms of disease 1; I 12 ss : symptoms of both diseases 

I 1 R Infected by pathogen 1, recovered from infection by pathogen 2 

I 1 Ra : asymptomatic infection; I 1 Rs : symptomatic infection 

I R 2 Infected by pathogen 2, recovered from infection by pathogen 1 

I R 2 a : asymptomatic infection; I R 2 s : symptomatic infection 

R 1 S Recovered from infection by pathogen 1, susceptible for infection by pathogen 2 

R S 2 Recovered from infection by pathogen 2, susceptible for infection by pathogen 1 

R 12 Recovered from both infections 

Fig. 1. Schematic diagram of the SIR model used in this paper. Model parameters are μ: natural mortality rate; λ1 : the marginal force of infection for infection 1; λ2 : the 

marginal force of infection for infection 2; λ12 : the force of infection for infection 2, conditional on infection 1; λ21 : the force of infection for infection 1, conditional on 

infection 2; ν1 : the recovery rate for infection 1; ν2 : the recovery rate for infection 2. 
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quations above) Hens et al. (2012) 

λ1 ( k, t ) = 

K ∑ 

k ′ =0 

β1 

(
k, k ′ 

)
I 1 
(
k ′ , t 

)

λ2 ( k, t ) = 

K ∑ 

k ′ =0 

β2 

(
k, k ′ 

)
I 2 
(
k ′ , t 

)

12 ( k, t ) = 

K ∑ 

k ′ =0 

β12 

(
k, k ′ 

)
I 2 
(
k ′ , t 

)

21 ( k, t ) = 

K ∑ 

k ′ =0 

β21 

(
k, k ′ 

)
I 1 
(
k ′ , t 

)

here β1 ( k, k ′ ), β2 ( k, k ′ ), β12 ( k, k ′ ), β21 ( k, k ′ ) are the transmission

ates, i.e. the average per capita rates at which a susceptible indi-

idual in age category k makes effective contact with an infected

ndividual in age category k’, per unit time; I 1 ( k 
′ , t ) and I 2 ( k 

′ , t )

enote the total number of infected individuals in age category k’

t time t. 
.2. Parameter configuration 

.2.1. Population and age structure 

In this study, simulations were run for the Belgian population

ged 0–85 years in 2012 (population size = 10,785,904, of which

2% are school-aged children (0–18 years) and 78% are adults

19–85 years)) FOD (Federale overheidsdienst economie afdeling

tatistiek (2017) . Because of model simplicity, we assume type I

ortality and a life expectancy of 85 years. This means that every-

ne survives up to the age of 85 years and then immediately dies.

herefore, the maximum age in the model is 85 years. Type I mor-

ality is a reasonable approximation of the mortality function for

igh-income countries ( Anderson and May, 1992 ). 

In the simulations, individuals in the population with ages

anging from 0 to 85 years in the different compartments are di-

ided into one year age categories. Model parameters are assumed

o be age-specific and are allowed to differ by calendar time (see

lso next paragraph). The main results are illustrated for two wide

ge classes: school-aged children (0–18 years) and adults (19–85

ears). The division into these two age categories is driven by the

mportant, but different role these two age classes have in the
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spread of influenza. While children mainly spread the epidemic by

their high contact rates at school, adults mainly do this by com-

muting and traveling ( Apolloni et al., 2013; De Luca et al., 2018 ). 

2.2.2. Social contact matrices 

The age- and time-specific marginal and conditional forces of

infection (FOI) λ1 ( a, t ), λ2 ( a, t ), λ12 ( a, t ), and λ21 ( a, t ), were related

to the social contact data using the mass action approach by

Wallinga and colleagues (2006) . The corresponding values of the

FOI were calculated for various hypothesized values of the basic

reproduction number for each of the two infections, that is, the av-

erage number of secondary infections produced by a single ‘typical’

infectious individual during his/her entire infectious period when

introduced in a fully susceptible population. When describing a

co-infection model, the system is driven by two basic reproduction

numbers R 0,1 and R 0,2 . The basic reproduction numbers do not

depend on the number of co-infections, since co-infections are

rare at the start of an epidemic. In this study, four different mixing

matrices were constructed based on social contact survey data: 

• C aa : asymptomatic mixing matrix describing the age-specific

mixing behavior of asymptomatic individuals; 
• C sa and C as : mixing matrix for individuals only having symp-

toms of disease 1 resp. disease 2; 
• C ss : mixing matrix when having symptoms of both diseases

under study. 

Data from the social contact survey studied in Van Kerck-

hove et al. (2013) were used to construct 2 × 2 contact matrices

C A , C S and C S 
h 

for the two age categories defined previously. C A 

is the asymptomatic contact matrix, which is assumed to be the

same as the contact matrix for ‘healthy’ individuals (i.e., ‘healthy’

with regard to the infections at hand). Furthermore, C S is the

contact matrix for symptomatic individuals not staying at home

and C S 
h 

the contact matrix for symptomatic individuals staying

at home. The contact matrices, describing the daily age-specific

contact rates, are given by: 

 

A = 

(
7 . 418 e − 07 1 . 070 e − 07 

8 . 839 e − 08 1 . 609 e − 07 

)
, 

 

S = 

(
1 . 203 e − 07 6 . 830 e − 08 

4 . 438 e − 08 5 . 636 e − 08 

)
, 

 

S 
h = 

(
8 . 698 e − 08 5 . 650 e − 08 

4 . 012 e − 08 3 . 677 e − 08 

)
. 

If we compare the contact matrices, we can derive that hav-

ing symptoms decreases the contact rates with 36%- 84%. Staying

at home decreases the symptomatic contact rates with 10%–34%. 

Let p 1 and p 2 represent the proportions of individuals staying

at home when having symptoms of disease 1 and 2, respectively,

and let p 12 be the proportion of individuals staying at home when

having symptoms of both diseases. In the first scenario, where peo-

ple only stay at home for the most severe disease, we assume that

p 12 = p 1 . In the second scenario, where people stay at home for

both diseases, we assume that p 12 will be larger than p 1 and p 2 . In

this study, we define p 12 as p 1 + p 2 − p 1 p 2 , so that p 12 is always

the largest of the three proportions p 1 , p 2 and p 12 . According to

the aforementioned notation, the social contact matrices are given

by: C aa = C A ; C sa = p 1 C 
S 
h 

+ ( 1 − p 1 ) C 
S ; C as = p 2 C 

S 
h 

+ ( 1 − p 2 ) C 
S ; and

 ss = p 12 C 
S 
h 

+ ( 1 − p 12 ) C 
S . 

When φ1 (resp. φ2 ) is the proportion of symptomatic cases
of infection 1 (resp. infection 2), then the age-specific transmis-
sion rates can be calculated from the mixing matrices as follows
( Wallinga et al., 2006 ) 
β1 

(
k, k ′ 

)
= ( 1 − φ1 ) q 1 a C aa 

(
k, k ′ 

)
+ φ1 q 1 s C sa 

(
k, k ′ 

)
β2 

(
k, k ′ 

)
= ( 1 − φ2 ) q 2 a C aa 

(
k, k ′ 

)
+ φ2 q 2 s C as 

(
k, k ′ 

)
β12 

(
k, k ′ 

)
= ( 1 − φ1 ) ( 1 − φ2 ) q 2 a C aa 

(
k, k ′ 

)
+ ( 1 − φ1 ) φ2 q 2 s C as 

(
k, k ′ 

)
+ φ1 ( 1 − φ2 ) q 2 a C sa 

(
k, k ′ 

)
+ φ1 φ2 q 2 s C ss 

(
k, k ′ 

)
21 

(
k, k ′ 

)
= ( 1 − φ1 ) ( 1 − φ2 ) q 1 a C aa 

(
k, k ′ 

)
+ φ1 ( 1 − φ2 ) q 1 s C sa 

(
k, k ′ 

)
+ ( 1 − φ1 ) φ2 q 1 a C as 

(
k, k ′ 

)
+ φ1 φ2 q 1 s C ss 

(
k, k ′ 

)
here q 1 a , q 1 s , q 2 a and q 2 s are disease-specific proportionality

actors for asymptomatic infection 1, symptomatic infection 1,

symptomatic infection 2 and symptomatic infection 2. 

.2.3. Model variations and scenarios 

In a first baseline scenario, simulations were run for two

nfections starting at the same time which both have an infec-

ious period of 7 days. For both infections 60% of infections were

ymptomatic and symptomatic cases were supposed to be three

imes as infectious as asymptomatic cases. The basic reproduc-

ion numbers R 0,1 and R 0,2 were equal for both diseases and

 0 = R 0 , 1 = R 0 , 2 was varied between 1.5 and 6.5, with steps of

ize 1. The percentage of individuals staying at home when having

ymptoms of disease 1 was varied between 0% and 100%, with

teps of size 5%. People were supposed not to stay at home when

aving symptoms of the second disease. The following model

ariations were applied to this scenario: 

• infectious period of both infections respectively 14 days and

21 days; 
• infectious period of one of the infections respectively 14

days and 21 days (and the other 7 days); 
• for both infections symptomatic cases are six times (respec-

tively nine times) as infectious as asymptomatic cases; 
• for one infection symptomatic cases are six times (respec-

tively nine times) as infectious as asymptomatic cases (and

for the other three times as infectious); 
• for both infections 90% (respectively 30%) of the infected in-

dividuals are symptomatic; 
• for one infection 90% (respectively 30%) of the infected in-

dividuals are symptomatic (and for the other 60% are symp-

tomatic); 
• asymptomatic individuals would have the same mixing pat-

terns as symptomatic individuals not staying at home ( C A =
C S , both matrices are equal to the symptomatic contact ma-

trix); 
• a difference of 0.3 between the basic reproduction numbers

of the two diseases; 
• a delay of one month between the two diseases. 

As a second scenario, two infections were studied, for which

he proportion staying at home when having symptoms of the

ess severe disease was half of the proportion staying at home

hen having symptoms for the other disease. For all scenarios in

hich both infections are introduced simultaneously, the model

as initialized with 1 co-infected person of 10 years old and the

emainder of the population was considered susceptible for both

nfections. For the scenarios with a delay between the starting

imes of the two infections, the start of infection 1 (resp. infection

) was initialized with 1 person of 10 years old, mono-infected by

athogen 1 (resp. pathogen 2) and still susceptible for the other

nfection. 

.3. Solving the system of PDEs – Method of lines 

In order to numerically solve the system of PDEs for the co-

nfection model presented in Fig. 1 , we rely on the method of

ines ( Schiesser, 2012 ) in which the age dimension is discretized
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Fig. 2. Final size of co-infection (as a proportion of the total population) against the percentage staying at home when having symptoms of disease 1 for different values of 

R 0 = R 0 , 1 = R 0 , 2 . The parameters used are those of the first baseline scenario. 
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nd only the time dimension remains continuous. Consequently,

he method of lines leads to a system of ODEs that can be solved

y means of a numerical method for initial value ODEs. For more

etails regarding the method of lines, we refer to Schiesser (2012) .

. Results 

In this section, we discuss the results of our simulation ap-

roach. First, we investigated the effect of staying at home when

aving symptoms of one disease on the dynamics of the other

nfection. Second, the influence of the following model parame-

ers on the observed effect was studied: the basic reproduction

umber, the infectious period, the infectiousness of symptomatic

ersus asymptomatic individuals, the proportion of cases being

ymptomatic, the number of contacts and delays between the

tart of the two infections. Third, the effect of staying at home

or two diseases where twice as many people stay at home when

aving symptoms of the most severe disease compared to the

ther disease was investigated. 

The observed results are explained by comparing the dynamic

rofiles of the infections, including the peak time of infection. 

.1. Influence of home isolation when having symptoms of one 

isease 

Changes in contact behavior by staying at home when having

ymptoms of the most severe disease (disease 1) induces the final

ize of co-infection to decrease ( Fig. 2 ). 

Fig. 3 graphically depicts the effect of R 0 on the total number

f co-infections for a range of R 0 values between 1 and 1.5. Here,

e observe that staying at home counteracts the natural increase

f the final size of co-infections with increasing R . 
0 
For infection 2, different scenarios can be observed, depending

n the value of the basic reproduction number. Fig. 4 depicts the

nal size of infection 2 for varying percentages of individuals stay-

ng at home when having symptoms of disease 1 ( p 1 ranges from

% up to 100% in steps of size 5%), and varying values of the ba-

ic reproduction number ( R 0 ranges from 1.5 up to 6.5 in steps of

ize one). For small to moderate values of R 0 ( R 0 = 1 . 5 − 5 . 5 ) the

nal size of infection 2 initially decreases with an increasing per-

entage ( p 1 ) of people staying at home for disease 1 (for R 0 = 1 . 5 ,

ee also Fig. 5 ). After reaching a minimum, the final size of infec-

ion 2 increases with increasing p 1 . The value of p 1 corresponding

ith the minimal final size of infection 2 increases with increasing

 0 . However, for high R 0 values, hence, more contagious pathogens,

he final size of infection 2 decreases with increasing p 1 values. 

Fig. 6 shows the results of Fig. 4 , stratified in the age classes 0–

8 years (school-aged children) and 19–85 years (adults) for R 0 =
.5, 3.5 and 6.5. The qualitative effects of home isolation are similar

or both age classes. 

From Fig. 7 (upper panel), it can be observed that staying

t home when having symptoms of the most severe infection

infection 1) leads to a shift of the peak time of new infections

ith pathogen 1. When we define R h ,1 as the value of R 0,1 after

he introduction of staying-at-home behavior, this shift can be

xplained by R h ,1 < R 0,1 (e.g. for R 0 , 1 = 1 . 5 , the value of R h ,1 in

he basis scenario is 1.44, 1.39, 1.33 and 1.28 for 25%, 50%, 75%

nd 100% of individuals with symptoms of disease 1 and staying

t home respectively). The shift of the peak time increases with

ncreasing p 1 values. As a consequence, at the peak time of the

ess severe disease (infection 2), which equals the peak time

f infection 1 in case of no home isolation (solid line Fig. 7 ,

pper panel), the number of symptomatic cases of infection 1

ecreases with increasing p 1 (middle panel). Furthermore, the
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Fig. 3. Final size of co-infection (as a proportion of the total population) against the percentage staying at home when having symptoms of disease 1 for R 0 = R 0 , 1 = R 0 , 2 
varying between 1 and 1.5. In contrast to Fig. 2 , the same scale is used on the vertical axis. The parameters used are those of the first baseline scenario. 

Fig. 4. Final size of infection 2 (as a proportion of the total population) against the percentage staying at home when having symptoms of disease 1 for different values of 

R 0 = R 0 , 1 = R 0 , 2 . The parameters used are those of the first baseline scenario. 
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Fig. 5. Final size of infection 2 (as a proportion of the total population) against the percentage staying at home when having symptoms of disease 1 for R 0 = R 0 , 1 = R 0 , 2 = 1 . 5 

and percentages staying at home ranging from 0% up to 25% in steps of size 5%. The parameters used are those of the first baseline scenario. 

Fig. 6. Final size of infection 2 against the percentage staying at home when having symptoms of disease 1 for different values of R 0 = R 0 , 1 = R 0 , 2 . Left: R 0 = 1 . 5 , middle: 

R 0 = 3 . 5 , right: R 0 = 6 . 5 . Upper panel: school-aged children (0–18 years), as a proportion of the total number of children, lower panel: adults (19–85 years), as a proportion 

of the total number of adults. The parameters used are those of the first baseline scenario. 
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Fig. 7. Influence of home isolation for disease 1 only, for school-aged children (age class 0 − 18 years, left figures) and adults (age class 19 − 85 years, right figures) in case 

of two infections with an infectious period of 7 days and R 0 = R 0 , 1 = R 0 , 2 = 1 . 5 . The parameters used are those of the first baseline scenario. Solid line: 0% at home, dashed 

line: 25% at home, dotted line: 50% at home, dotdashed line: 75% at home, longdashed line: 100% at home. Upper panel, left: proportion of newly infected school-aged 

children with pathogen 1. Because there is no home isolation for disease 2, the number of new infections with pathogen 2 coincides with the solid line; middle panel, left: 

proportion of symptomatic cases of infection 1 in school-aged children ; lower panel, left: proportion of school-aged children staying at home. Upper panel, right: proportion 

of new infections with pathogen 1 in adults. Because there is no home isolation for disease 2, the proportion of new infections with pathogen 2 coincides with the solid 

line; middle panel, right: proportion of symptomatic cases of infection 1 in adults; lower panel, right: proportion of symptomatic cases of infection 1 staying at home in 

adults. 
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number of people staying at home at the peak time of infection 2

decreases with increasing p 1 (lower panel). This means that, as p 1 
increases, the number of symptomatic individuals with infection

1 (who, whether they stay at home or not, have fewer contacts

than healthy or asymptomatic individuals) around the peak of

infection 2 decreases. As a consequence, people will have on av-

erage more contacts and will have a higher probability to acquire

infection 2. This explains the increasing trend in the final size of

infection 2. 

When comparing the left with the right figures in Fig. 7 , it can

be observed that similar scenarios occur for both age classes. 

For larger values of R 0 (e.g. R 0 = 3 . 5 ), the shift of the peak

time of new infections with pathogen 1 becomes smaller (compare

Fig. 7 with Fig. 8 ). At the peak time of infection 2, the decrease of

the number of people staying at home occurs over a smaller inter-

val (compare Fig. 7 with Fig. 8 ). As a consequence, the increasing

part of the graph of the final size of infection 2 in Fig. 4 becomes

smaller with increasing R 0 values. 

3.2. Influence of model parameters on the observed effects 

The following model parameters have little or no influence

on the qualitative effects observed in Section 3.1 when varied

together for both infections : the infectious period, the infec-

tiousness of symptomatic versus asymptomatic cases, the fraction

of symptomatic cases (see Supplementary Material, Figs. S1-S3).

Furthermore staying at home for disease 1 has limited or no effect

on disease 2 when the diseases have infectious periods that differ
ne or more weeks (see Figs. S6-S7). Varying the infectiousness

f symptomatic versus asymptomatic cases for only one disease,

r varying the percentage of symptomatic cases for disease 2 has

imited effect on the qualitative effects observed in Section 3.1 (see

igs. S8, S9 and S11). The effects observed in Section 3.1 increase

ith an increasing percentage of symptomatic cases for disease 1

see Fig. S10). 

If asymptomatic cases had the same mixing patterns as symp-

omatic cases of infection 1 not staying at home, the final size

f infection 2 would never be higher when staying at home than

ithout home isolation. The interval that shows an increasing

nal size of infection 2 with increased home isolation becomes

maller (compare Figs. 4 and 9 , especially for R 0 = 1.5 and 2.5).

his smaller effect of staying at home, compared to the basis

cenario, can be explained as follows. When C A = C S , we still have

 h ,1 < R 0,1 and the peak shift of infection 1. However, while in

he basis scenario there were two groups having fewer contacts

han healthy individuals (symptomatic cases of disease 1 staying

t home and symptomatic cases not staying at home), in this

cenario we have only one group with fewer contacts than healthy

ndividuals (symptomatic cases staying at home). So the average

umber of contacts will also increase around the peak of infection

 because of the shift in peak of infection 1, but to a lower

xtent. 

When R 0 of pathogen 1 is smaller (resp. larger) than R 0 of

athogen 2, a decrease of the final size of infection 2 with p 1 starts

o occur at higher (resp. lower) values of R 0 for pathogen 2, com-

ared to two pathogens with equal R 0 (compare Figs. 4 and 10 ). 
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Fig. 8. Influence of home isolation for disease 1 only, for school-aged children (age class 0–18 years, left figures) and adults (age class 19–85 years, right figures) in case of 

two infections with an infectious period of 7 days and R 0 = R 0 , 1 = R 0 , 2 = 3 . 5 . The parameters used are those of the first baseline scenario. Solid line: 0% at home, dashed 

line: 25% at home, dotted line: 50% at home, dotdashed line: 75% at home, longdashed line: 100% at home. Upper panel, left: proportion of newly infected school-aged 

children with pathogen 1. Because there is no home isolation for disease 2, the number of new infections with pathogen 2 coincides with the solid line; middle panel, left: 

proportion of symptomatic cases of infection 1 in school-aged children; lower panel, left: proportion of school-aged children staying at home. Upper panel, right: proportion 

of new infections with pathogen 1 in adults. Because there is no home isolation for disease 2, the proportion of new infections with pathogen 2 coincides with the solid 

line; middle panel, right: proportion of symptomatic cases of infection 1 in adults; lower panel, right: proportion of symptomatic cases of infection 1 staying at home in 

adults. 
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In case infection 1 starts earlier (resp. later) than infection 2, a

ecrease of the final size of infection 2 with p 1 starts to occur at

maller (resp. larger) R 0 ( Fig. 11 ), compared to two infections with

qual starting time. 

.3. Influence of symptom severity 

A more realistic setting, in which twice as many people stay at

ome when having symptoms of the most severe disease (disease

) than when having symptoms of the less severe disease (disease

)( p 1 = 2 · p 2 ), was simulated. More specifically, the following sce-

ario was studied in detail: 

• Based on the 2009 A/H1N1pdm influenza epidemic, we as-

sume that he percentage staying at home when having

symptoms of the most severe disease ( p 1 ) is 70% (Kim Van

Kerckhove, personal communication). 
• The percentage staying at home when having symptoms of

the less severe disease ( p 2 ) is 35%. 
• Symptomatic individuals are three times as infectious as

asymptomatic individuals ( Van Kerckhove et al., 2013 ). 
• For both diseases, 66% of the infections are symptomatic

( Van Kerckhove et al., 2013 ). 
• Both diseases have R 0 = 1 . 5 , an infectious period of 7 days

and start at the same time. 

Fig. 12 (left figures) shows that for infection 1, the numbers

f susceptible and infected are almost equal when not staying at
ome compared to the situation in which 35% of symptomatic

ndividuals having disease 2 stay at home (and there is no home

solation for disease 1). This suggests that the impact of staying

t home for disease 2 on the dynamics of infection 1 is negligible.

 higher number of susceptible and a lower number of infected

ndividuals are observed for infection 1 when 70% of symptomatic

ndividuals with disease 1 stay at home (and there is no home

solation for disease 2). This means that staying at home for

isease 1 has a large positive effect on the spread of epidemic 1.

urthermore, the peak time of infection shifts to the right (the

eak of epidemic 1 is delayed). A similar scenario is observed

hen 70% of symptomatic individuals with disease 1 and 35%

f symptomatic individuals with disease 2 stay at home, again

uggesting that home isolation for disease 2 has limited effect on

he dynamics of infection 1. For disease 2, Fig. 12 (right figures)

hows that the proportion of susceptible (resp. infected) is a

it lower (resp. higher) when 70% symptomatic individuals with

isease 1 stay at home (and there is no home isolation for disease

) than when there is no home isolation for both diseases. This

eans that staying at home for disease 1 has a very small but

egative effect on the spread of epidemic 2. A significantly higher

resp. lower) proportion of susceptible (resp. infected) for infection

 is observed when 35% of symptomatic individuals with disease

 stay at home (and there is no home isolation for disease 1). This

uggests that staying at home for disease 2 has a large positive

ffect on the spread of epidemic 2. Furthermore, the peak time of

nfection shifts to the right (the peak of epidemic 2 is delayed).
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Fig. 9. Influence of contact matrices on the behavior observed in Section 3.1 . Final size of infection 2 (as a proportion of the total population) against the percentage staying 

at home when having symptoms of disease 1 for different values of R 0 = R 0 , 1 = R 0 , 2 when asymptomatic individuals would have the same mixing patterns as symptomatic 

individuals not staying at home ( C A = C S , both matrices are equal to the symptomatic contact matrix). The parameters used are those from the first baseline scenario. 

Fig. 10. Influence of the difference in R 0 between pathogen 1 and pathogen 2 on the behavior observed in Section 3.1 . Dotted line: R 0 , 1 = R 0 , 2 ; dashed line: R 0 , 1 = R 0 , 2 − 0 . 3 ; 

solid line: R 0 , 1 = R 0 , 2 + 0 . 3 . All other parameters were taken from the first baseline scenario. 
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Fig. 11. Influence of the delay between the start of the two infections on the behavior observed in Section 3.1 . Dashed line: infection 1 starts one month earlier than 

infection 2; dotted line: infections start at the same time; solid line: infection 1 starts one month later than infection 2. All other parameters were taken from the first 

baseline scenario. R 0 = R 0 , 1 = R 0 , 2 . 
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hen 70% of symptomatic individuals with disease 1 and 35% of

ymptomatic individuals with disease 2 stay at home, the number

f susceptible (resp. infected) is a bit lower (resp. higher) than

hen only 35% of symptomatic individuals with disease 2 stay at

ome (and there is no home isolation for disease 1). This again

uggests a limited negative effect of home isolation for disease 1

n the spread of epidemic 2. 

Fig. 13 shows the proportion of individuals recovered from in-

ection 1, infection 2 and co-infections. Like mentioned before,

taying at home when having symptoms of only one disease has

 significant positive effect on that disease, and a slightly negative

ffect on the other. When considering co-infections, the most ad-

antageous scenario is staying at home when having symptoms of

he most severe disease, followed by staying at home when having

ymptoms of one of the two diseases. 

Fig. 14 shows that in case twice as many people stay at home

hen having symptoms of the most severe disease than when hav-

ng symptoms of the other, increasing p 1 and p 2 always decreases

he final size of disease 1, disease 2 and co-infections, irrespective

f the value of R 0 = R 0 , 1 = R 0 , 2 . 

. Discussion 

In this paper, we explored various scenarios of altering behav-

or, upon contraction of an infection, using a co-infection model.

ore specifically, we studied the effect of changing social contact

ehavior on the dynamics and final size of emerging infections,

iming at an improved understanding of social interventions

istancing. When studying an influenza-like disease in isolation,

antermans et al. (2017) showed that staying at home leads to

 significant reduction of the final size of the disease. However,
ultiple infectious diseases often circulate within the same period,

r with a delay of only a few months between the peak times of

he infections. Examples are influenza A and parainfluenza which

ave coinciding peaks, and RSV and Mycoplasma pneumoniae with

 delay of about four months between the peaks ( Bollaerts et al.,

013 ). 

Here, we explored two infectious diseases circulating during

he same period, where the symptoms of only one of the diseases

re severe enough to stay at home. The effect of staying at home

or the disease with the severe symptoms on the final size of the

ther infection was studied. For two diseases with a similar basic

eproduction number and a similar infectious period, staying at

ome for the disease with the severe symptoms can cause a small

ncrease in the final size of the other infection in case of low basic

eproduction numbers. This could be explained by a shift in the

eak time of infection of the disease with the severe symptoms,

esulting in a smaller number of people with less contacts at the

eak time of the other infection. This effect was influenced by the

ixing patterns, the timing of the two infections and the differ-

nce in basic reproduction number between the two pathogens. 

The same effects also occur when studying a model with

6 × 86 contact matrices instead of 2 × 2 matrices (see Supple-

entary Material, Fig. S4), which shows that the observed effects

re not an artifact of the model. Moreover, when using 1 × 1

ontact matrices, qualitatively similar effects are observed (see

upplementary Material, Fig. S5), suggesting that the effects ob-

erved in Section 3.1 do not depend on age-specific heterogeneity

n contact behavior. As a consequence, the division into two age

roups does not influence the conclusions of this study. Needless

o say, this implies that we could simplify the current analysis.

owever, we believe it is important to consider two age-classes,
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Fig. 12. Second scenario. First row: proportion of susceptible for disease 1 (left) and disease 2 (right); second row: proportion of infected with disease 1 (left) and disease 

2 (right). Scenarios: no home isolation (solid); 70% symptomatic cases at home for disease 1, no home isolation for disease 2 (dashed); 35% symptomatic cases at home for 

disease 2, no home isolation for disease 1 (dotted); 70% symptomatic cases at home for disease 1, 35% symptomatic cases at home for disease 2 (dotdashed). The parameters 

used are those described in Section 3.3 . In the left figures, the following lines coincide: solid and dotted; dashed and dotdashed, suggesting that staying at home for disease 

2 has limited effect on the dynamics of infection 1. In the right figures, the following lines coincide: solid and dashed; dotted and dotdashed, suggesting that staying at 

home for disease 1 has limited effect on the dynamics of infection 2. 

Fig. 13. Second scenario. Proportion of people recovered from disease 1 (upper panel), disease 2 (middle panel) and co-infection (lower panel). Scenarios: no home isolation 

(solid); 70% symptomatic cases at home for disease 1, no home isolation for disease 2 (dashed); 35% symptomatic cases at home for disease 2, no home isolation for disease 

1 (dotted); 70% symptomatic cases at home for disease 1, 35% symptomatic cases at home for disease 2 (dotdashed). The parameters used are those described in Section 3.3 . 

In the upper panel, the following lines coincide: solid and dotted; dashed and dotdashed. In the middle panel, the following lines coincide: solid and dashed; dotted and 

dotdashed. 
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Fig. 14. Final size of infection 1 (first row), infection 2 (second row) and co-infections (third row) (as a proportion of the total population) against the percentage staying at 

home when having symptoms of disease 1 for different values of R 0 = R 0 , 1 = R 0 , 2 . Left: R 0 = 1 . 5 , middle: R 0 = 3 . 5 , right: R 0 = 6 . 5 . The parameters used are those described 

in Section 3.3 . 
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iven that age-heterogeneity has been proven to be relevant when

odeling influenza (see e.g. Eames et al., 2012 ). 

The outcome observed in this study relies on the assump-

ions that asymptomatic individuals have more contacts than

ymptomatic individuals, and symptomatic individuals have less

ontacts when staying at home than when not staying at home.

hese assumptions are realistic and have been confirmed by social

ontact surveys ( Van Kerckhove et al., 2013; Mossong et al., 2008 ).

Let R 0,1 and R 0,2 represent the basic reproduction numbers of

isease 1 and disease 2 respectively. A larger effect on the change

f the final size of infection 2 with increasing p 1 is observed when

omparing R 0 , 1 = R 0 , 2 with R 0 , 1 = R 0 , 2 + 0 . 3 than when comparing

 0 , 1 = R 0 , 2 with R 0 , 1 = R 0 , 2 − 0 . 3 . This is because the two scenarios

re not symmetric. Increasing R 0,1 by 0.3 and keeping R 0,2 at its

alue of Fig. 4 causes a larger shift of the peak time of infection 1

han decreasing R 0,1 by 0.3. 

Second, we studied two infectious diseases for which the most

evere one induces twice as many symptomatic individuals stay-

ng at home than for the other disease. Here, it was observed that

o matter what the basic reproductive number is, increasing the

roportion staying at home always reduces the final size of both

nfections, and in particular considerably reduces the number of

o-infections. 

Our approach has several limitations. First, variation of immu-

ity, which can have a considerable impact on the attack rates

nd epidemic peaks ( Woolthuis et al., 2017 ), was not taken into

ccount. Second, the study was restricted to a limited number

f model variations and scenarios that were relevant to explain

he effect of staying at home when having symptoms of one

isease on the other, or the effect that twice as many symptomatic

ndividuals stay at home for the most severe disease than for the

ther. Third, the model could be extended to more than two dis-

ases or to other types of compartmental models such as the SEIR

odel (including a latent period) and the SIRS model (assuming a
hort period of immunity instead of life-long immunity). Fourth,

e assumed that people stay at home at the onset of symptoms.

n practice, people feel bad and stay home the day after. Fifth,

ompetition between two pathogens was not taken into account.

ompetition could, among others, be included by assuming partial

ross-immunity, or enhanced susceptibilty to one of the diseases

ompared to the other ( Gao et al., 2016 ). Sixth, the model is

 non-preferential model. This means that we assume that the

nfection risk is the same irrespective of whether a susceptible

ndividual is contacting a symptomatic or asymptomatic individual.

oreover, asymptomatic and symptomatic cases recover at the

ame rate. The model can be extended to a preferential model,

ike described by Santermans et al. (2017) for mono-infections.

eventh, the model is a deterministic one, including age-specific

ontact patterns to describe age-related heterogeneity. The model

ssumes a constant distribution of contacts during the course of an

pidemic. However, it has been reported that the average number

f disease-causing contacts is higher at the start of an outbreak

han in the end ( Bansal et al., 2007 ). This means that our model

ay underestimate the number of infections at the start of the

imulation and may overestimate them at the end. Heterogeneity

n the distribution of contacts and other types of heterogeneity

an be included into stochastic simulations ( Britton, 2010 ). An

nteresting direction for future research is to extend the proposed

odel to a stochastic SIR model. Lastly, contact matrices for the

009 A/H1N1pdm influenza from Van Kerckhove et al. (2013) were

sed. Using contact matrices for other strains or pathogens could

nfluence our conclusions. 

To our knowledge, this was the first study assessing the in-

uence of changes in behavior on the joint dynamics of two

nfectious diseases. We can conclude that the reported effects are

aused by different mixing patterns between asymptomatic and

ymptomatic individuals, and individuals staying at home. Further-

ore, a take home message from this study is that assessing the
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joint dynamics of two or more infectious diseases is important

to give advise on behavioral interventions. From a public health

point of view, it is crucial to include age classes and differences in

mixing patterns between symptomatic and asymptomatic cases in

modeling studies. 
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