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Abstract: Top-down proteomics approaches are becoming ever more popular, due to the advantages 

offered by knowledge of the intact protein mass in correctly identifying the various proteoforms that 

potentially arise due to point mutation, alternative splicing, post-translational modifications, etc. 

Usually, the average mass is used in this context; however, it is known that this can fluctuate 

significantly due to both natural and technical causes. Ideally, one would prefer to use the 

monoisotopic precursor mass, but this falls below the detection limit for all but the smallest proteins. 

Methods which predict the monoisotopic mass based on the average mass, are potentially affected 

by imprecisions associated with the average mass. To address this issue, we have developed a 

framework based on simple, linear models, which allows prediction of the monoisotopic mass based 

on the exact mass of the most abundant (aggregated) isotope peak, which is a robust measure of 

mass, insensitive to the aforementioned natural and technical causes. This linear model was tested 

experimentally as well as in silico, and typically predicts monoisotopic masses with an accuracy of 

only a few parts per million. A confidence measure is associated to the predicted monoisotopic mass 

to handle the off-by-one-Da prediction error. Furthermore, we introduce a correction function to 

extract the ‘true’ (i.e. theoretically) most abundant isotope peak from a spectrum, even if the 

observed isotope distribution is distorted by noise or poor ion statistics. The method is online 

available as a R shiny app: https://valkenborg-lab.shinyapps.io/mind/ 
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1. Introduction 

To a large extent, the spectacular growth observed in the field of mass spectrometry (MS)-based 

proteomics over the last two decades can be viewed as a triumph of bioinformatics. In particular, the 

ability to correlate peptide tandem MS data to protein sequences in databases has been invaluable to 

making bottom-up proteomics a practical technology1-3. In contrast, top-down approaches dispense 

with the use of enzymatic digestion, and instead rely on the isolation and fragmentation of an intact 

protein ion in the gas phase4-6. This is conceptually much more straightforward, and more akin to the 

approach conventionally used for the identification of small molecules. However, more stringent 

requirements are imposed on the type of mass spectrometer used (including transmission of intact 

protein ions, extensive fragmentation, high sensitivity, etc.), explaining why the field of top-down 

proteomics has only recently emerged as more than an academic curiosity7-9. Besides the conceptual 

simplicity of top-down proteomics, the second major benefit is knowledge of the intact protein 

precursor mass. This allows the efficient detection and identification of protein variants, collectively 

known as proteoforms10, resulting from e.g. alternative RNA splicing, post-translational modification, 

truncation, or site-specific mutation. To illustrate this point, a pilot project was recently undertaken, 

in which no fewer than 74 proteoforms of the human histone H4 were identified in a top-down 

workflow6. 

It is beneficial that the aforementioned determination of the precursor mass is performed with a high 

accuracy, as this reduces the ambiguity of identification, particularly for unknown proteoforms. For 

instance, lysine trimethylation and acetylation, two PTMs relevant in histone characterization, lead to 

very similar observed mass differences, just 0.036 Da apart. The same difference also exists between 

a lysine versus a glutamine residue11, a substitution that can be caused by a single A-to-C nucleotide 

mutation. For a typical 11 kDa protein (the approximate size of the aforementioned histone H4), the 

resulting difference in precursor mass can only be discerned at a mass accuracy better than 3.2 parts 

per million (ppm). Also, in intact protein analysis, the concept of ‘precursor mass’ must be further 

specified, as the large number of atoms present leads to the occurrence of broad, complex isotope 

distributions12,13. As such, the monoisotopic and average mass, and the mass of the most abundant 

(aggregated) isotope peak, are three potentially different values even for a medium-sized protein, as 

illustrated in Figure S1. The average mass is experimentally the most easily accessible value (as it can 

be determined even if resolving power is insufficient to separate the isotope peaks) and therefore the 

most used in practice. However, we have recently shown that this value is rather sensitive to both 

natural and technical variations of the elemental isotope definitions14. Ideally, one would prefer to use 

the monoisotopic precursor mass, as this value does not change with fluctuations of elemental isotopic 

abundances. Unfortunately, as is fairly trivial to show, the probability of occurrence of the 

monoisotopic variant is very low even for proteins of intermediate size12, and as such, the 

monoisotopic variant typically falls well below the limit of detection. In the same study where we 

demonstrated the low precision of average protein masses, we also showed that the mass of the most 

abundant (aggregated) isotope peak (henceforth referred to as ‘most abundant mass’ for convenience) 

is considerably more robust, and as such, potentially offers a good compromise between ease of 

detection and reduction of ambiguity14. As mentioned earlier, though, it would be convenient to know 

the monoisotopic mass for ease of identification and database searching. 

In the current work, we present an algorithm which relates the most abundant to the monoisotopic 

mass of a protein. We have named this algorithm MIND (MonoIsotopic liNear preDictor). The method 



was trained and tested in silico on unmodified human protein sequences found in the UniProt database 

(release 2014), in the 8 – 60 kDa mass range. The difference between monoisotopic mass as calculated 

from the molecular formula and predicted by MIND was typically well below one part per million (ppm) 

in these in silico experiments, comparing favorably to existing methods for estimating monoisotopic 

protein mass15. With the exception of ubiquitylation, in silico addition of the ten most commonly 

occurring post-translational modifications16 (PTMs) to these sequences had only a negligible effect on 

the quality of the prediction. 

The greater stability of the MIND-predicted monoisotopic mass, compared to average mass, was 

shown experimentally through the analysis of a set of four proteins. In these experiments, performed 

to simulate the single-scan precursor spectra typically available in top-down LC-MSn experiments, the 

measured average mass consistently fluctuated in a significantly wider range scan-to-scan, and with a 

larger systematic deviation, compared to the predicted monoisotopic mass using MIND. 

In contrast to previously developed averagine-scaling methods, which require that the observed 

isotope distributions match the theoretical ones reasonably well, our method requires only the 

confident selection of the most abundant isotope peak. In case of poor ion statistics (i.e. a low number 

of ions), this might not be the most intense isotopic signal observed. However, we show that while the 

average mass has a high random fluctuation, it operates in a limited range (i.e. this value is measured 

with a high accuracy, but a low precision), whereas poor ion statistics will lead to an error on the most 

abundant mass of a (very nearly) integer number of atomic mass units (i.e. a high-precision, low-

accuracy measurement). By exploiting a correlation between the average and most abundant mass, 

we can therefore confidently identify the ‘true’ most abundant isotope peak with both high-precision 

and high-accuracy. 

As this approach combines the benefits of measurement of the most abundant (sensitivity, robustness) 

and monoisotopic (confident identification, highly interoperable) mass values, we believe this method 

will be of considerable interest to the ever-growing field of top-down proteomics. 

2. Materials and Methods 

2.1. Description of the MIND algorithm 

To develop and test this algorithm, all 95,616 human proteins (78,328 after removing redundant 

elemental compositions) with a mass between 8 – 60 kDa in the UniProt database (release 2014) were 

used. Of the 78,328 unique masses, 10,000 were randomly removed from the training data set and 

used as an independent validation set. While we expect the resulting model to work well for most 

mammalian proteins, the same workflow depicted in Figure 3 can easily be tailored to generate a MIND 

model for different classes of proteins (or other polymers) if necessary. 

The BRAIN algorithm12,17,18 was used to compute the isotope distribution of each unmodified protein. 

In this manner, we obtain the monoisotopic, most abundant, and average masses for each sequence 

(post-translational modifications are only considered at a later stage; see Section 3.3). As already 

suggested by Dittwald et al.17, if we plot the monoisotopic (y-axis) vs. most abundant (x-axis) mass for 

each sequence, an approximately linear relation with intercept () and a slope () just below unity is 

observed, as can be intuitively expected (Figure 1a). This relation is described by Equation 1: 

𝑀𝑚𝑜𝑛𝑜 = 𝛼+ 𝛽 × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏 + 𝜀   [1] 



where Mmono is the monoisotopic mass, and MMostAb is the most abundant mass. After fitting this linear 

model we obtain the following parameter estimates for 𝛼 = 0.6074 and 𝛽 = 0.9994 (Table S1). The 

errors or residuals, depicted by 𝜀, can be calculated for each protein i as the difference between the 

monoisotopic masses 𝑀𝑚𝑜𝑛𝑜 from the training data set and the predicted monoisotopic masses 

𝑀𝑚𝑜𝑛𝑜
̂  using the model in Equation 1. The distribution of the residuals expressed in Da can be 

observed in the inset of Figure 1a. It turns out that for approximately 65% of all proteins, | |  0.5 Da, 

and for 99% of proteins, | |  2 Da. These deviations are too large for practical use and render our 

simple linear model not useful for the accurate prediction of the monoisotopic mass. However, we 

argue that there is a special structure in the residuals of this linear model and we illustrate this 

structure by some straightforward mathematical manipulations applied to the residuals. Consider 

following null addition highlighted in grey and consecutive rearrangements of terms leading to the 

relation in Equation 2 for every protein i: 

𝜀𝑖 = 𝑀𝑚𝑜𝑛𝑜𝑖
−  𝑀𝑚𝑜𝑛𝑜𝑖 

̂ + 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
 − 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖

 

𝜀𝑖 = 𝑀𝑚𝑜𝑛𝑜𝑖
−  𝛼 − 𝛽 × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖

+ 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
 − 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖

 

𝜀𝑖 = (1 −  𝛽) × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
−  𝛼 − 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖

+  𝑀𝑚𝑜𝑛𝑜𝑖
 

𝜀𝑖 = (1 −  𝛽) × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
−  𝛼 − ∆𝑖     [2] 

          with ∆𝑖 = 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
−  𝑀𝑚𝑜𝑛𝑜𝑖

       [3] 

 

 

This relation expresses that for every protein i,  the residual  𝜀𝑖  is a linear function of the most abundant 

mass with a slope of (1- 𝛽) and an intercept that is composed out of two terms being 𝛼 from model [1] 

and ∆𝑖 from equation [3], i.e., the difference between the most abundant mass and the monoisotopic 

mass for that particular protein i. This equation allows us to explain the trends in Figure 1b, where the 

residuals are plotted against the most abundant masses MMostAb. Here, a clear structure can be seen, 

in which the values of the residuals  are found on a limited number of parallel trend lines in the 

residual plot19. The lines indeed have a slope of (1- 𝛽) and the data points on a line have nearly identical 

values for the intercept. The reason why these residuals are concentrated on parallel lines is that the 

∆ value can be categorized in discrete subsets. The discrete nature of the ∆ values can be explained by 

two factors: 

1) when disregarding sulphur, proteins with a similar atomic compositions have a similar isotope 

distribution20, hence proteins within a certain mass range may have a very similar ∆ value.   

2) slight changes in the isotope distribution can induce a change in the denomination of the most 

abundant peak. This shift results in a disruptive change in the ∆ values with a mass of 

approximately 1 Da, i.e., the mass of an average neutron.  

The existence of subsets in ∆ values is illustrated by the vertical lines in Figure S2a that displays the 

residuals  against the ∆ values – only a small scatter on the x-axis can be observed when zooming into 

this plot. For example, the proteins that are composing the parallel trend lines in Figure S2a indicated 

by blue, black and red have nearly identical ∆ value as indicated in panel b by the corresponding colors. 



Moreover, the average ∆ values for the blue, black and red lines are equal to 9.0226, 10.0252 and 

11.0277 Da respectively. The variance associated to these mean values are very small and below 1.5e-

6. Therefore, only a small error is made when replacing the protein’s exact  ∆𝑖 value in Equation 2 by 

its averaged value ∆𝑠
̅̅ ̅ of the proteins belonging to subset s: 

𝜀𝑖 = (1 −  𝛽) × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏𝑖
−  𝛼 − ∆𝑠

̅̅ ̅    [4] 

The model in Equation 4 now defines a set of proteins i that have a constant value for ∆𝑠
̅̅ ̅. This equation 

can now be used to further fine-tune the prediction of the monoisotopic mass from Equation 1 by the 

simple addition of the result from Equation 1 and the prediction from Equation 4. For example, in the 

case of myoglobin with a monoisotopic mass of 16940.965 Da and a most abundant isotope mass of 

16950.992, a vertical (Figure 1b) and horizontal (Figure S2b) line will intersect three of these parallel 

vertical trend lines. As a consequence, for the given most abundant isotope mass there will be three 

corresponding ∆𝑠
̅̅ ̅ values: ∆9

̅̅ ̅= 9.0226, ∆10
̅̅ ̅̅̅= 10.0252 and ∆11

̅̅ ̅̅̅= 11.0277 as depicted in Figure S2a. 

Do note that the index s indicates the nominal mass difference between the most abundant isotope 

mass and monoisotopic mass. Next, Equation 4 yields three possible residual values for myoglobin: 

1.000434 (blue arrow), -0.002109 (black arrow), and -1.004583 (red arrow) depicted in Figure 1b. In 

turn, the three predicted residual values can now be added to the predicted value from Equation 1 

yielding three estimates for the monoisotopic mass: (16940.899 + 1.000434) Da, (16940.899 + 

0.002109) Da, and (16940.899 -1.004583) Da. Note that in previous example only one of the three 

predictions is correct. The procedure to assign a confidence score to the three cases will be explained 

later on, and typically we focus on the predictions for the most likely case.  

In somewhat a similar approach to our method, Tsay et al.15 have described a serendipitously 

discovered method for predicting ∆𝑠
̅̅ ̅ as a function of MMostAb. They have observed that their estimate 

for ∆𝑠
̅̅ ̅ could be off by approximately +/- 1 Da. This off-by-one error can also be observed in the 

averaged values ∆9
̅̅ ̅, ∆10

̅̅ ̅̅̅ and ∆11
̅̅ ̅̅̅. In the case of myoglobin, the correct averaged value is ∆10

̅̅ ̅̅̅ thus 

leading to a difference between the other possible delta values of  ∆9
̅̅ ̅ −  ∆10= ̅̅ ̅̅ ̅̅ ̅ − 1.00254  and ∆11

̅̅ ̅̅̅ −

 ∆10
̅̅ ̅̅̅= 1.00247. It is trivial to see that the differences in the ∆𝑠

̅̅ ̅values will shift the predicted values 

from Equation 4 by exactly the same values. Hence, the predicted values differ by approximately 1 Da.   

The model explained in the previous paragraphs suffers two major drawbacks: 

- In order to estimate the residual value, we need information about the approximate ∆𝑠
̅̅ ̅ value, 

which leads to an improper statistical model. Ideally, the residual values could be estimated 

based on the most abundant mass alone.   

- The off-by-one Da error as a result of ambiguity in the actual i value cannot be avoided (see 

Figure S2b), however, a formal method that could provide confidence in the estimated residual 

is wanted.  

In order to improve the prediction, it would be convenient to have information about which trend line 

or equivalently, which ∆𝑠
̅̅ ̅value is truly associated with a given protein i, but as discussed previously we 

do not have this information and a fortiori, the inclusion of such information would result in an 

improper statistical model. We will demonstrate that, despite these issues, there exists an elegant way 

to avoid the incorporation of the ∆ values such that we can arrive at a comprehensive yet compact 

model. To achieve this goal, for each protein i, we decompose its residual value  into an integer part 

int and a fractional part frac, where  



𝜀𝑖𝑛𝑡 = [𝜀]  and  𝜀𝑓𝑟𝑎𝑐 = 𝜀 − [𝜀]    

with [.], the rounding operator.  For now, we will focus our discussion on the estimation of the 

fractional part frac only. Notice that the blue, black and red dots in Figure 1b are projected on shared 

parallel lines. This projection is shown in Figure 1c, where frac (varying between -0.5 and +0.5 Da) is 

plotted as a function of MMostAb, neglecting the integer part, int. The result is a saw-tooth pattern. 

These saw-tooth parallel lines are easy to model by a piecewise linear model (Table S2), and it has the 

considerable advantage that frac is only a function of the most abundant mass MMostAb: 

𝜀𝑓𝑟𝑎𝑐 = 𝛼𝑝+ 𝛽𝑝 × 𝑀𝑀𝑜𝑠𝑡𝐴𝑏 + 𝜀𝑝  [5] 

with p being a very small remaining error which is not easily corrected for. 

Instead of considering the value of 1.00235 Da for adjacent isotopic peaks reported by Horn21 

presented in Figure S2a and used by Tsay15, we approximate this value as 1 Da by pooling together the 

fractional parts frac. Note that by this simplification, we will introduce only a small (mDa-range) error. 

Disregarding this very small error, a consistent mapping of the residuals   to the fractional part frac is 

achieved. 

To obtain an estimate for the monoisotopic mass, we need to evaluate Equation 1 and Equation 5 

given a most abundant peak mass and add the resulting estimates. However, in this estimation we 

have ignored the integer part of the residual, int , that models the off-by-one-Da error. Indeed, in 

Figure 4b, it can be observed that more than 98% of the proteins yield  values that round off to 0, -1, 

or +1 Da, with only 1.5% of  values rounding off to ±2, and 0.2% rounding off to higher values. The 

question now is whether we can predict int as a function of MMostAb. For this purpose, we apply a 

moving window with a bandwidth of 500 Da and steps of 10 Da across Figure 1c. Every step of the 

moving window evaluates the number of residuals that did not fold back to the zero range and the 

number of residuals where int equals +1 or -1. The resulting plot is displayed in Figure 1d and takes 

the form of a dampened periodic signal in function of the most abundant peak mass. Because of our 

choice to use the rounding operator instead of the floor or ceil function to determine the fractional 

part, the most probable value of int is nearly always zero as indicated by the black line in Figure 1d. 

Averaging the probabilities over the 8 to 60kDa mass range results in the inset histogram in Figure 1d, 

we see that int = 0 Da in 66% of the proteins in the training set. Therefore, the model illustrated in 

Figure 1a and Figure 1c in combination with int of zero is sufficient to allow the prediction of the 

monoisotopic mass with highest probability. However, a few trends can be observed in Figure 1d and 

its close-up presented in Figure 3. First, notice that the probabilities do not have to sum to one, as int 

values outside of the [-1, +1] range are not included in this analysis. Second, in general the probabilities 

for the zero values (black line) decrease for higher masses, whilst the probabilities for the -1/1 values 

(blue/red line) increase with higher masses.  Third, the probabilities can differ locally in function of the 

most abundant mass. Because a user might want a more accurate estimate about these probabilities 

than the average probability, we provide the harmonic signal as a look-up table as Supplementary 

information to estimate the probabilities for int in relation to the most abundant mass. For example, 

when looking at a mass of 16,000 Da, the probability for -1, 0 and 1 is equal to 0.3005, 0.6102 and 

0.0874, respectively. Notice that the zero value has the largest probability, but the -1 value for int has 

also a considerable probability, whilst the +1 value has low probability. A user of the MIND method 



can use this confidence score to allow better decision-making about the correct monoisotopic mass in 

a downstream analysis. 

Once the model is constructed for a given type of analyte (in this case, mammalian proteins), this 

calculation only involves the evaluation of two linear models (i.e. those shown in Figures 1a and 1c for 

which the coefficients are provided in the supplementary Table S2), making the method fast and 

computationally inexpensive. In silico validation of the method, as well as a comparison to the method 

developed by Tsay (which has already been shown15 to outperform those developed by Senko22 and 

Zubarev23), was performed using the 10000 sequences that were removed from the training set used 

to calibrate the MIND method (see Section 3.3). 

2.2. Mass spectrometry 

For the proof-of-concept experiments, spectra were acquired on a Thermo LTQ Orbitrap Velos, 

operated at a resolving power of 100,000 at 400 m/z and 1,000,000 charges were accumulated in the 

LTQ for analysis in the Orbitrap. Immediately prior to infusion of the protein, external calibration was 

performed via an automatic routine, using a standard calibration mix containing n-butylamine, 

caffeine, MRFA, and Ultramark 1621 (Pierce LTQ Velos ESI Positive Ion Calibration Solution, Thermo 

catalog #88323). Bovine insulin (Sigma catalog # I5500; monoisotopic mass 5729.60 Da, average mass 

5733.58 Da), equine cytochrome c (Sigma catalog # C2506; monoisotopic mass 12352.23 Da, average 

mass 12360.21 Da), and equine apo-myoglobin (Sigma catalog #M0630; monoisotopic mass 16940.97 

Da, average mass 16951.50 Da) were acquired from Sigma (St. Louis, MO, USA) and infused at a 

concentration of 1 µM in 49:50:1 H2O/MeCN/HCOOH, without further purification, using nano-ESI with 

an Advion Triversa Nanomate inlet system. The monoclonal antibody adalimumab (Thermo), used for 

the treatment of arthritis, was also used to test the MIND method. The antibody was reduced using 

TCEP, followed by LC-MS analysis using a Dionex Ultimate 3000 RSLC system (Thermo Fisher Scientific, 

Waltham, MA, USA) coupled to a maXis II ETD QTOF (Bruker Daltonik, Bremen, Germany). The isotope 

distributions observed in 61 spectra for the 24+ charge state of the light chain (monoisotopic mass 

23397.61 Da, average mass 23412.32 Da) of the antibody was used as input for the MIND algorithm. 

3. Results and discussion 

3.1. Proof-of-concept experiments on LTQ-Orbitrap and maXis II mass spectrometers 

In order to evaluate both the real-world performance and scan-to-scan stability of the monoisotopic 

mass predicted using MIND, 50 spectra of intact insulin, and 200 spectra of cytochrome c, and apo-

myoglobin were acquired using a Thermo LTQ Orbitrap Velos and processed for each spectrum 

independently. Additionally, 61 spectra of adalimumab were acquired on a Bruker maXis II instrument. 

For each single scan, the monoisotopic mass was calculated using the MIND method. Because no 

spectral averaging was performed (in order to simulate real-world LC-MS conditions), the most intense 

isotope signal did not always match the theoretically most abundant one due to poor ion statistics. A 

remedial measure was found to accommodate poor ion statistics, and will be discussed in Section 3.2. 

We also calculated the average mass for each scan by a weighted sum of the well-resolved isotope 

masses and intensities. Results are summarized as histograms showing count (y-axis) versus mass 

deviation expressed in ppm (x-axes) from the ground truth values and the computed average and 

predicted monoisotopic masses (Figure 4). The scales of the axes are modified for each molecule to 

maximize the information in the figures. 



For the Orbitrap spectra of insulin, cytochrome c, and myoglobin, the observed average protein mass 

fluctuated in a broad range, over 20 ppm wide (over 100 ppm wide for cytochrome c, as spectral quality 

in this case was rather poor). For the maXis II spectra of adalimumab, scan-to-scan variation of average 

mass was less, but still fluctuated in a range about 10 ppm wide. Not only did MAverage consistently show 

significant scan-to-scan variability, but systematic biases between -5 and -150 ppm (the extreme value 

again occurred for the cytochrome c spectra) were also observed. In all four spectra, it is clear that the 

average protein mass could not be confidently determined with an accuracy comparable to the 

instrument specifications (low-ppm mass accuracy for both instruments). 

Applying MIND in all four cases, both the accuracy and precision (i.e. scan-to-scan variability) were 

significantly improved compared to the use of the average mass. The mean mass error over the 

experimental spectra was reduced to less than 5 ppm in all cases, while the variability was consistent 

to within 2 ppm, except for cytochrome c that fell within a range of 10 ppm. For adalimumab, these 

results were more than sufficient to confidently conclude that this was the unmodified sequence, with 

no glycosylation, oxidation, or (significant) deamidation. It is worth noting that although the quality of 

the cytochrome c spectra was rather poor, we could still predict the monoisotopic mass with 

acceptable accuracy and precision. The reason is that the MIND prediction relies on the most abundant 

peak mass that was still of reasonable quality and acceptable signal-to-noise ratio.  

3.2. Further refinement: correction for poor ion statistics 

The workflow outlined in Section 2.1 applies to ‘perfect’ experimental data for which the true most 

abundant mass in known; however, for the processing of real-world experimental data, the possibility 

of data imperfections must be taken into account. Using modern high-performance mass 

spectrometers such as Fourier Transform Ion Cyclotron Resonance (FTICR), Orbitrap instruments or 

time-of-flight instruments, masses for the (aggregated) isotope peaks can easily be measured with 

accuracies on the order of only a few ppm or better. However, for low-abundance analytes a problem 

with poor ion statistics can occur. As a result, it is quite possible that the observed relative isotopic 

abundances differ significantly from those calculated based on the elemental composition such that a 

wrong peak is nominated as most abundant peak. This problem is exacerbated in large ions, which 

exhibit a broad isotope distribution, in which several peaks have theoretical intensities only a few 

percent below that of the most abundant mass. Indeed, in top-down proteomics, it can be shown that 

the probability of the experimentally observed most abundant isotope peak not matching the 

theoretically predicted one, is sufficiently large such that it should not be neglected (vide infra). This 

probability is further increased by the introduction of a small amount of noise, which can also cause a 

minor distortion of the relative intensities of isotope peaks. 

Neither poor ion statistics, nor the presence of a degree of electronic noise will significantly influence 

the measured m/z values for the individual isotope peaks, and thus their masses are still measured 

with an error of at most a few ppm. As isotope peaks are by definition spaced approximately 1 Da 

apart, erroneously selecting a peak adjacent to the theoretically most abundant one introduces an 

error of 106/MMostAb ppm. In the precursor range between 10 – 100 kDa, typical for top- and middle-

down proteomics, this would therefore introduce an error of 10 – 100 ppm, and is thus a much more 

significant source of error than the mass accuracy of the instrument in a ‘naive’ MIND implementation, 

in which the peak for which the highest intensity is observed, is assumed to be the theoretically most 

abundant one. 



By contrast, the observed scan-to-scan variability of the average mass will be much greater than that 

of the masses measured for the individual isotope peaks, but (particularly for large molecules) will not 

display any sudden ‘jumps’ by plus or minus 1 Da (i.e. this value will consistently be relatively accurate, 

if less precise than that of the most abundant isotope peak). It is easy to see that MAverage is relatively 

insensitive to limited random fluctuations in the abundance of different isotope peaks, as these tend 

to largely cancel each other out. Thus, we want to combine the robust, but imprecise measurement of 

the average mass with the precise, but less accurate most abundant isotope mass to reliably identify 

the ‘true’ most abundant isotope peak, even for a low number of ions and relatively poor ion statistics. 

The procedure in Figure 5 illustrates the simple strategy that combines the computed average mass 

with the observed most abundant mass to in order to denominate the theoretical most abundant 

mass. Note that the average mass is always consistently higher than the theoretical most abundant 

mass (assuming naturally occurring isotope abundances); therefore, the difference between both 

values should lie in a well specified mass range between 0.1 and 1.1 Da. As the candidates for MMostAb 

are by definition spaced 1 Da apart, this mass range is in most cases sufficient to uniquely identify the 

theoretical most abundant peak from a single spectrum. In other words, if the difference between the 

average and most abundant mass is outside the range of 0.1 and 1.2 Da a correction of the most 

abundant peak is applied as explained in the next paragraph. This correction function was used in the 

MIND analysis of the protein spectra discussed in Section 3.1. on, e.g., the myoglobine data. 

A histogram of the number of spectra in which each signal between 16949 and 16954 Da occurred as 

the base peak in our myoglobin data set is shown in Figure 5. It is clear from this figure that, although 

the signal at approximately 16950.9 (i.e. the theoretically most abundant aggregated isotope peak) 

occurs as the experimentally most intense peak in a majority of the spectra, the experimentally most 

abundant peak is located 1 or 2 Da away from the theoretical value in nearly 50% of cases. As expected, 

however, the measured average mass from the single spectra is relatively constant between scans, 

and only fluctuates in a range of approximately 20 ppm (0.36 Da) wide. As a result, a histogram of the 

values of (MAverage – MMostAb) shows clear clusters, around -1.5, -0.5, +0.5, +1.5, and +2.5 Da. As these 

correspond to selection of MMostAb+2, MMostAb+1, MMostAb, MMostAb-1, and MMostAb-2, it is trivial to correct 

for a discrepancy between the experimentally and theoretically most abundant peak due to poor ion 

statistics, by selecting the next or previous peaks. The result of this correction is shown in Figure 5, 

were essentially the same value for MMostAb is consistently generated from all 200 spectra. Latter mass 

values are used as an input for our predictive model. 

To evaluate whether the method for accurate most abundant peak selection is robust against very 

poor ion statistics, a simple simulation study was conducted based on the assumptions of a 

multinomial model24. For a particular ion number (x-axis in bottom-right panel of Figure 5) 5000 

isotope distribution were simulated based on the theoretical distribution of myoglobin. Our robust 

selection method is then applied. If the difference of the average mass minus the most abundant mass 

is situated in the bin between 0.1 and 1.1 Da, we leave the selection of the most abundant mass 

unchanged. If is lies left or right of this bin, we apply a correction by selecting the previous or next 

peak, respectively. Since this is a simulation study, we know the exact most abundant mass and can 

compute the accuracy of our selection method. An accuracy of 100% means perfect selection of the 

most abundant peak, 0% means complete failure to select the most abundant peak mass. In Figure 5, 

we report the accuracy based on the 5000 simulations for varying ion statistics. It can be seen that the 

naive approach, i.e., just selecting the most intense peak, even with relatively good ion statistics (10000 

ions) fails to correctly select the theoretical most abundant peak mass in many cases. Our correction 



method operates perfectly until we have fewer than 1000 ions in the trap. The reason for this 

breakdown is that the uncertainty on the average mass becomes larger than 1 Da, so that the 

discrimination of the mass bins becomes unclear. 

3.3. In silico validation and effect of post-translational modifications 

Encouraged by the good performance of MIND under real-world conditions, we decided to perform a 

more in-depth test using a data set of 10,000 human protein sequences not used to calibrate the 

prediction model (see Materials and Methods). We also compared the performance of MIND to that 

of the method developed by Tsay et al.15 (Figure S3 and Table S1). For these 10,000 sequences, we 

find that MIND predicts the monoisotopic value with an accuracy better than 0.5 ppm in 66.5% of 

cases. The probability for the 0 Dalton error was always the largest for the 10,000 sequences, 

therefore, 31.9% of cases, an error of ±1 Da is made. This error corresponds to the percentages 

observed when constructing the model, as can be seen from the histogram in Figure 1d (see Materials 

and Methods). It should be noted, however, that these percentages represent averaged values for the 

entire mass range of the model. Upon inspecting the look-up table in Figure 1d and Figure 3, one can 

conclude that the frequencies related to the off-by-one-Da error changes in function of the most 

abundant mass. However, it is clear that the 0 Da bin represents the majority case and the  -1 and +1 

bins describe the tail of the distribution.  Nevertheless, for larger molecules the difference in these 

frequencies becomes smaller.  Therefore, the lookup table can be used to provide more accurate 

confidence measures for the off-by-one Da error if desired for the three cases A smoothed version of 

the look-up table can be found in the Supplementary Information. For the 66.5% of cases where the 

ppm error is around zero, we find the median error is 0.008 ppm, with 95% of values in the interval 

between -0.125 and +0.118 ppm (interval width 0.243 ppm). Meanwhile, for the Tsay method, the 

mass error is close to 0 ppm in only 50.2% of cases, and an error of -2 Da is far more common than 

when using MIND (4.6% versus 0.6% of cases). For those values close to zero, 95% of values occur in a 

range 0.275 ppm wide, similar (albeit slightly wider) to MIND. In contrast to MIND, however, we find 

that there is a small, but systematic bias in the results using the Tsay method, as the median error is 

+0.100 ppm rather than +0.008 ppm (Supporting Figure S3). 

As mentioned before, the main advantage of knowledge of the intact protein mass is the ease with 

which different proteoforms can be detected. One of the most common ways in which different 

proteoforms can arise, is the occurrence of post-translational modifications (PTMs). It is therefore 

worthwhile to consider to which extent the monoisotopic masses predicted by the MIND algorithm 

are affected by the presence of one or more PTMs, as the model was developed considering only 

unmodified protein sequences. We therefore investigated the effect of the ten most commonly 

occurring post-translational modifications16, by introducing a single instance of these modifications in 

each of the sequences in our validation sets, and predicting the monoisotopic masses with MIND as 

well as the Tsay method. As before, we then again determined the proportion of sequences for which 

the prediction was ‘close to’ the actual monoisotopic mass (i.e. not off by ca. 1 or 2 Da), the median 

accuracy within this ‘near 0 Da’ cluster, and the interval width containing 95% of the sequences in this 

cluster. Do note that we are using the MIND method that was trained on unmodified protein 

sequences. Nevertheless, for 9 of the 10 PTMs, the effect on each of these PTMs on the performance 

characteristics was negligible for both the MIND and Tsay methods. The exception to this is 

ubiquitination, which resulted in a somewhat decreased size and width of the ‘near 0 Da’ cluster, and 

an increased median deviation (Supporting Table S1). As this effect occurs using both methods, we 



conclude that the ease of use and the benefits of MIND over existing methods for predicting the 

monoisotopic mass are consistent and independent of PTM state. 

4. Conclusion 

As the use of top-down mass spectrometry methods for the identification and quantification of known 

and unknown proteoforms becomes more widespread, the demand for methods to accurately and 

reliably determine precursor mass will only increase. Due to the low probability of occurrence of the 

monoisotopic variant of an intact protein, as well as significant fluctuation of the average mass due to 

natural and technical causes, it is unlikely that this solution will be provided by improvements in mass 

spectrometry technology alone. In this work, we have described a simple yet powerful computational 

method that relates the observed most abundant isotopic variant mass to the true monoisotopic mass, 

showing low-ppm precision and excellent mass accuracy compared to the average mass. Undoubtedly, 

this method will prove to be of value to the ever-growing top-down proteomics community and is 

made available as a shiny app in the R software framework. 
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Figures 

Figure 1: (a) approximately linear correlation observed between monoisotopic and most abundant 

mass of human proteins in the training data set (ca. 68000 human protein sequences). The histogram 



(inset) shows the deviation from this simple linear model across the entire set. (b) Plot of the residuals 

() versus MMostAb, revealing a structure in this deviation, with the fractional part of  (frac) shown in 

Panel (c). Panel (d) shows periodicity in the nearest integer value to , allowing prediction of the integer 

part of  (int). The inset in Panel (D) shows the frequency of int values of -1, 0, and +1 Da, across all 

68000 sequences in the training set. The vertical line across all four panels is located at 17 kDa, 

illustrating the case of human apo-myoglobin. 

  



 

 

 

 

 

 

 

 

 

 

Figure 2: Close-up of Panel d) from Figure 1. In this plot it can be clearly seen that the confidence score 

related to predicted monoisotopic mass will fit in the majority case (i.e., 0 Da) or tail cases (-1, 1 Da) 

changes in function of the most abundant mass.  
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Figure 3: Flow chart illustrating the main steps in the MIND methodology and in silico validation.  

 



 

 

Figure 4: Summary of the results from spectra of bovine insulin, equine cytochrome c, equine apo-

myoglobin (all acquired using an LTQ Orbitrap Velos instrument), and light chain adalimumab (on a 

maXis II ETD). The first column shows the individual isotopically resolved signals that were detected 

(50 individual spectra for the top three rows, and 61 for adalimumab); the second column shows 

histograms of the deviation of the experimental vs. actual MAverage, while the third column shows the 

deviation of Mmono, calculated using the MIND algorithm. The probabilities for the -1, 0, and 1 Da error 

are Insulin = [0.2899, 0.5208, 0.1892], Cytochrome c = [0.0854, 0.9128, <0.001], Myoglobin = [0.0732, 

0.8844, 0.0405], Adalimumab = [0.1265, 0.8102, 0.0617]. Notice that Insulin is outside the mass range 

for which the model was trained (8-60 kDa), but still gives good results when extrapolating.  
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Figure 5: Workflow to find the ‘true’ most abundant mass in case of poor ion statistics. Subtracting the 

‘true’ most abundant mass from the average mass, always (for the ca. 78000 protein sequences in our 

training and validation data sets) yields a value between 0.1 and 1.2 Da. Therefore, in the vast majority 

of cases, when this value is greater than 1 Da, the signal to the left of the ‘true’ most abundant isotope 

peak was inadvertently selected, and the next peak in the series needs to be used as input for the 

MIND algorithm. Similarly, a value below 0 indicates that the selected peak is too heavy, and the 

previous peak in the isotope distribution needs to be chosen. In terms of concrete implementation, 

this is equivalent to simply taking the floor function of [MAverage – MMostAb (‘naively’ based on the most 

intense observed signal)], and adding the resulting integer (-1, 0, or 1) to the index of the most intense 

peak. 
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