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Pathogen spillover between different host species is the trigger for many infec-

tious disease outbreaks and emergence events, and ecosystem boundary areas

have been suggested as spatial hotspots of spillover. This hypothesis is largely

based on suspected higher rates of zoonotic disease spillover and emergence

in fragmented landscapes and other areas where humans live in close vicinity

to wildlife. For example, Ebola virus outbreaks have been linked to contacts

between humans and infected wildlife at the rural-forest border, and spillover

of yellow fever via mosquito vectors happens at the interface between forest

and human settlements. Because spillover involves complex interactions

between multiple species and is difficult to observe directly, empirical studies

are scarce, particularly those that quantify underlying mechanisms. In this

review, we identify and explore potential ecological mechanisms affecting

spillover of pathogens (and parasites in general) at ecosystem boundaries.

We borrow the concept of ‘permeability’ from animal movement ecology as

a measure of the likelihood that hosts and parasites are present in an ecosys-

tem boundary region. We then discuss how different mechanisms operating

at the levels of organisms and ecosystems might affect permeability and

spillover. This review is a step towards developing a general theory of

cross-species parasite spillover across ecosystem boundaries with the eventual

aim of improving predictions of spillover risk in heterogeneous landscapes.

This article is part of the theme issue ‘Dynamic and integrative approaches

to understanding pathogen spillover’.
1. Introduction
Zoonotic infectious disease outbreaks in humans are triggered by the spillover

of pathogens from animals, and locations where humans and animals meet fre-

quently are potential spillover hotspots [1]. Alongside factors such as human

population density, living conditions and environment characteristics, proxi-

mity to ecosystem boundaries is suspected to mediate rates and risks of

infectious disease spillover events [2,3]. Many past outbreaks of Ebola virus,

for example, have been traced back to contacts with infected bushmeat carcasses

near the edges of tropical evergreen forest or following perturbation caused by

recent deforestation [4–6], while multiple vector-borne diseases such as zoonotic

malaria, yellow fever, chikungunya and Zika are caused by parasite spillover from

a primate-driven sylvatic cycle to humans and other animals at the boundary

between rural and natural ecosystems [7–10].

Despite the speculation that ecosystem boundaries act as potential hotspots

of parasite spillover between species [2], there has been relatively little effort
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Box 1. Definitions.

Bridge host: a host species that acts as a bridge or link in an interspecies transmission chain, meaning they act as recipient

host for one spillover event, and consequently as source host for another onwards spillover event [15]. Bridge vectors fulfil an

analogous functional role by transmitting between two different host species.

Ecosystem interior: the part of the ecosystem that is not under the influence of edge effects. We acknowledge that this is a

highly simplified definition and that this will be species-specific, but it should be appropriate for the broad purposes of the

description of mechanisms and theory relating to spillover.

Ecosystem boundary: the divide between adjacent ecosystems, also called ‘edge’ [16].

Parasite: throughout the text, we use the term parasite to describe all organisms that infect, and are transmitted between,

hosts. This includes pathogenic as well as non-pathogenic microparasites and macroparasites. This encompasses a wide

range of characteristics, and the mechanisms described in this article are likely to affect different parasites in different ways.

Permeability: a concept used in movement and landscape ecology, where it is defined as the degree to which an organism

is able or willing to cross a given habitat [17]. Applied to spillover across ecosystem boundaries, it can be used to represent

how likely a host species is to enter or cross the boundary. Permeability also applies to the parasite, in which case it is deter-

mined by permeability for the source and recipient hosts, as well as by the parasite’s ability to survive outside a host and to

passively or actively move into/across the boundary.

Recipient host: a species that is infected by a parasite originating from a different host species.

Source host: a species responsible for shedding the parasite and causing a spillover exposure event, either by shedding the

parasite into the environment or through direct contact with the recipient host.

Spillover: the transmission of a parasite from one host species to another, regardless of whether onwards transmission in

the recipient host is successful. This definition forces a focus on spillover only, although we acknowledge that onwards trans-

mission is a crucial component of pathogen persistence and outbreaks, especially in the case of emerging infectious diseases

in humans [1]. In this article, a distinction has been made between spillover rate (the total number of spillover events for a

given host-parasite system) and spillover diversity (the total number of parasite species spilling over).
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directed towards determining whether this is a general bio-

logical pattern, or when and where we might expect it to

hold true (but see [2,11,12]). Should we expect to see higher

rates of cross-species spillover near ecosystem boundaries

than in ecosystem interiors? A compelling reason to expect

this is that ecosystem boundaries form the occurrence limits

of many species, which implies that contacts between species

occupying adjacent ecosystems should occur within these

transition zones. Furthermore, the ecological theory of edge

effects predicts increased biodiversity at ecosystem bound-

aries, including the existence of boundary-specific species

[13]. Both of these factors should correspond to an increase

in spillover risk [1,14], owing simply to greater opportunities

for cross-species contacts, yet empirical evidence about

their precise effects on spillover risk remain sparse and

context-dependent. Additionally, several other interacting

mechanisms could influence spillover rates near ecosystem

boundaries. A first step towards understanding the role of

ecosystem boundaries in shaping spillover risk is to identify

and describe potential underlying mechanisms.

In this article, we critically explore the biological mechanisms

that could alter spillover at ecosystem boundaries. Our goal is to

address three questions: (i) are ecosystem boundaries likely to be

spillover hotspots? (ii) which mechanisms are expected to

contribute to spillover near ecosystem boundaries? and (iii) can

we borrow from existing ecological theory to develop a better

understanding of spillover near ecosystem boundaries?

Section 2 of the paper describes the application of an

existing ecological concept (permeability) to spillover across

ecosystem boundaries, as a way to integrate distinct mechan-

isms driving host and parasite presence. Sections 3 and 4

describe the most important of these mechanisms, divided

into mechanisms operating at the organism level (§3) and

the ecosystem level (§4). Section 5 goes into existing concepts

and theories from different fields that might be useful for
advancing our understanding of spillover across ecosystem

boundaries. The article will not be restricted to zoonotic

spillover to humans, but will rather address mechanisms

that might drive spillover between any host species, with

the aim of advancing general ecological theory on parasite

spillover. Note also that this review focuses on ecological

mechanisms only, and does not address other crucial factors

such as immune defence, host competence or host/parasite

phylogeny that determine host–parasite compatibility.

Throughout our discussion of drivers of spillover, we dis-

tinguish between spillover rate (the number of spillover events

for a single host–parasite system) and spillover diversity (the

number of parasite species spilling over). Certain drivers

such as host species richness will be more important for

spillover diversity, while other drivers such as population

abundance are expected to be more important for the

number of spillover events. Definitions of these and other

key concepts used in this article are provided in box 1.
2. Towards a general framework for spillover
across ecosystem boundaries

The rate of spillover across ecosystem boundaries depends on

the likelihood that source and recipient hosts, as well as the

parasite (box 1), are present in or near a boundary region.

This likelihood can be represented by a boundary’s per-
meability (box 1), a concept used in landscape and

movement ecology to describe an organism’s ability or will-

ingness to move through a certain habitat [17]. Applied to

spillover, this concept can be used to characterize how

likely a parasite is to spill over across ecosystem boundaries

(figure 1). Spillover of a parasite across an ecosystem bound-

ary requires boundary permeability for at least one of the

three actors involved in spillover, i.e. source host(s), recipient
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near the boundary

permeability determined by vector
abundance, competence, biting rates,
and by host abundance in the
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when bridge hosts are boundary-
specific, spillover can only occur
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parasite survival and transport

spillover risk will be highest where the
density of hosts is highest. This may be
the case in/near boundaries, as this is
where species living in different
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Figure 1. Conceptual model of how host and parasite characteristics affect boundary permeability to spillover. Non-exhaustive list of different ways in which general
ecological mechanisms can affect parasite spillover across ecosystem boundaries. Purple and yellow background colours represent adjacent ecosystems, and the region
of overlap represents their boundary. Red lines illustrate spillover rate at the different locations (ecosystem interiors and boundary). Grey boxes indicate the spatial
extent of source, bridge/vector, and recipient hosts, as well as the parasite. (Online version in colour.)
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host(s) or parasite. The interactions between the levels of

boundary permeability for each of these components will

determine spillover rate for a given system.

Permeability for hosts will depend on host traits, and all fac-

tors that influence behaviour and abundance near the boundary.

For example, boundaries will have high permeability for species

whose home ranges extend into both ecosystems [23] (figure 1).

Some animals cross the aquatic-terrestrial boundary on a daily

basis for foraging, such as the American mink (Mustela vison)

or the Eurasian otter (Lutra lutra) [24]. On the other hand,

highly habitat-specialized species such as the bamboo lemur

(Hapalemur sp.) will be more likely to remain in their ecosystem

interior, and experience low boundary permeability [25–27].

Permeability for parasites will depend on permeability for

their hosts and vectors, as well as their abilities to persist inde-

pendently outside the host on either side of the boundary, and

possible physical transport in the environment (figure 1). Section

3 (below) reviews how host, vector and parasite characteristics

might affect permeability.

For many host and parasite species, permeability will relate

to the contrast between adjacent ecosystems [28]. Ecosystems

that share many characteristics are more likely to facilitate

cross-boundary movement, while boundaries dividing distinct

ecosystems sharing few characteristics will more likely have

low permeability for most species [29]. Ecosystem contrast

can also influence the directionality of permeability, where

organism movement occurs more easily from one type of eco-

system to another than vice versa. Water-borne organisms, for

example, often follow the flow of water in the landscape, which

means that both hosts and parasites can more easily cross from

a terrestrial to an aquatic ecosystem than in the opposite direc-

tion, as is the case for Toxoplasma gondii transmission from

terrestrial felids to sea otters [19]. Such directional permeability

is also a well-known phenomenon for agricultural pest species,

where cultivated areas near natural ecosystems tend to attract
arthropod pests when productive [30,31]. This has direct conse-

quences for pathogen spillover across ecosystem boundaries,

as pest species can carry parasites across boundaries [32]. An

important question that is relevant for the risk of spillover to

humans is whether anthropogenic boundaries are less

permeable to host and parasite movement than natural bound-

aries, owing to the stark ecosystem contrasts often created by

anthropogenic boundaries. Section 4 expands on this, detailing

ecosystem and boundary characteristics that can influence per-

meability for hosts and parasites.

3. Hosts, vectors and parasites near ecosystem
boundaries

(a) Hosts and vectors near ecosystem boundaries
Host traits that increase the probability of occupying or cross-

ing ecosystem boundaries may lead to such host species

functioning as bridge hosts (box 1) that link different host

species occupying distinct ecosystems [15]. Bridge host

traits can include being a generalist consumer, having high

tolerance to different habitats, or being an edge-habitat

specialist. The presence of bridge hosts can be particularly

important for spillover between two other host species for

which the boundary has low permeability [33]. This may,

for example, be the case for small mammals that transport

Ixodes ricinus ticks between pasture and woodlands, thereby

enabling them to feed on hosts that are unlikely to cross the

ecosystem boundary, and hence potentially to vector infec-

tions across the boundary [34]. In turn, arthropod vectors

themselves can often act as crucial bridge species (figure 1).

For example, arthropod vectors are known to be responsible

for spillover of important zoonoses such as Chagas disease,

transmitted by Rhodnius pallescens kissing bugs that move

readily between habitats and feed on multiple host species
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[35], or the transmission of West Nile virus between wild

birds and humans across the forest-settlement boundary [36].

Hosts with broad environmental tolerance and generalist

resource use are more likely to be able to cross ecosystem

boundaries than specialists [37]. Examples of generalists occu-

pying a wider range of ecosystems than specialists are

plentiful (e.g. dung beetles along forest-plantation boundaries

[28], small mammals in a grassland-forest matrix [38]). Ecosys-

tem boundary areas may, therefore, support a larger proportion

of generalist species than ecosystem interiors. Additionally, as

generalists will tend to move through a more diverse range

of ecosystems than specialists, they may be more likely to

encounter, and become infected with, a wider range of para-

sites [39], thereby elevating both spillover diversity and

spillover rate near boundaries [12]. Alternatively, some host

species specialize in edge habitat [13], and the presence of

such edge-specific hosts might make them disproportionately

more likely to be involved in spillover near ecosystem bound-

aries [33] (figure 1). For example, pinnipeds such as seals,

whose life-history entails spending roughly half their time

hauled out on land, can carry canine distemper virus from

terrestrial to marine mammals [40].
80344
(b) Parasites near ecosystem boundaries
The mode of transmission of a parasite is likely to affect

which host traits and ecosystem conditions will be important

for boundary permeability. Directly transmitted parasites

require individuals of two different host species to come

into close contact, which means that the conditions determin-

ing host movement and presence in the boundary will drive

permeability for the parasite (figure 1). Parasites with a free-

living stage or ectothermic host will be more sensitive to

abiotic conditions, and spillover risk in the boundary will

depend on conditions affecting parasite survival as well as

those affecting host presence; furthermore, passive transport

in the environment can lead to spillover even between

host species that have no overlap in habitat use (figure 1).

Permeability for vector-borne parasites depends on the pres-

ence of suitable vectors and may be less dependent on factors

determining host abundance because of the movement and

host-seeking behaviour of vectors.

Parasite host-specificity and tolerance to environmental

conditions are probably linked to the probability of being pre-

sent near ecosystem boundaries. Generalist parasites are able

to infect a wider range of host species, thereby increasing the

chances of infecting a host that is able to enter or cross the

ecosystem boundary. Similarly, broad tolerance to environ-

mental conditions will allow a parasite to survive in a

wider range of ecosystems, which can increase the opportu-

nities for encountering new host species in adjacent

ecosystems or boundaries. This may, for example, be the

case for parasites that can form stable environmental persist-

ence stages such as spores (e.g. Bacillus anthracis [41]) or

biofilms (e.g. Vibrio cholerae [42]). Generalist parasites may

be particularly gregarious with respect to host breadth near

ecosystem boundaries. For example, in a host–parasitoid

system, generalist parasitoids infected a wider variety of

host species than would have been expected at random,

creating a disproportionately hyperconnected food-web

specific to the boundary between natural and managed

forests [26,37].
4. Properties of ecosystem boundaries
(a) Edge effects
Ecological edge effects shape host species richness and popu-

lation densities [43], both of which can influence the

prevalence and environmental availability of parasites to

infect other host species, or ‘pathogen pressure’ as defined

in Plowright et al. [1]. Host species richness at ecosystem

boundaries tends to be higher than in the adjacent ecosystem

interiors [44–47], although some systems exhibit the opposite

pattern [48] (table 1). Higher species richness may result in

more direct or indirect contacts between different species,

thereby increasing spillover opportunities and spillover

diversity [55]. Although the complex interplay between

species diversity and parasite transmission within a given

host species has been studied in some depth, and can be

negative or positive depending on the context [56,57], less

is known about how species diversity affects transmission

between species [14]. All else being equal, a positive relation-

ship between biodiversity and spillover diversity has been

proposed [3,14,49,53,58], as parasite diversity is expected to

increase with host diversity [59].

Host population densities are also expected to change near

ecosystem boundaries, but whether they increase or decrease

is species- and context-specific [16]. Certain species are

known to exhibit increased densities near low-permeability

edges as a result of animal movement being forced alongside

the boundary, which can result in disproportionately high fre-

quencies of interspecific contacts, both with other resident

species and species from the other ecosystem for which the

boundary is permeable [16,50].
(b) Ecosystem dimensions
Ecosystem patch size and shape will determine the pro-

portions and sizes of ecosystem boundary and interior,

which can have significant ecological consequences. While

total ecosystem patch area (i.e. interior plus boundary) can

drive host population size, density and parasite prevalence,

boundary area can drive contacts between species in different

ecosystems [1].

The perimeter-to-area ratio (PAR; ratio of ecosystem patch

perimeter length to total patch area) is a key concept in island

biogeography theory [60] (figure 2), and is used in research

on the ecological effects of habitat fragmentation [3,32]. In

particular, the concept has been applied extensively in the

context of marine resource subsidies onto islands, which

can be crucial for island ecosystem productivity [61]. In a dis-

ease ecology context, PAR is expected to correlate positively

with rates of spillover across ecosystems, at least for plant

pathogens [52] but likely also for animal parasites [2]. A

strong indication that PAR is important for animal parasite

spillover can be found in habitat fragmentation research,

where spillover rate is expected to increase with the degree

of fragmentation (and therefore with PAR) [2,11]. This is

driven by an increase in exposure opportunities between

organisms present in the two ecosystems (figure 2).
(c) Temporal variability near ecosystem boundaries
The presence of parasites near ecosystem boundaries is not

static, and should be expected to vary over time owing to

source host dynamics impacting pathogen release,
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increasing opportunities for cross-boundary spillover

ecosystem 1 ecosystem 2

Figure 2. For a given ecosystem patch area, a higher perimeter-to-area-ratio
corresponds with increased boundary length. This corresponds with increased
potential for spillover across ecosystem boundaries. (Online version in colour.)
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microclimate effects on parasite survival and spread, and

recipient host dynamics on exposure [1]. Here, we will

focus on mechanisms that can cause temporal variation in

parasite pressure near ecosystem boundaries, while noting

that this variability can also be affected by multiple mechan-

isms that are not boundary-specific, such as host population

size or the presence of other host species in the ecosystem

interior.

Host movement near or across boundaries can vary regu-

larly at short (e.g. daily foraging) or long (e.g. seasonal

migration) time intervals [62,63]. For example, human move-

ment across ecosystem boundaries often varies regularly, as

in daily hunting forays from villages into forests [64] or sea-

sonal ecotourism [65], both of which are known risk factors

for spillover of zoonoses [66,67]. Alternatively, movement

can be triggered by changes in both ecosystem edge and

interior areas. Deciduous plants in edge habitat, for example,

can start to lose leaves earlier than those in the interior owing

to microclimatic differences [68], with potential consequences

for the transmission of parasites (e.g. earlier air-borne spread

of fungal plant pathogens) [69]. Seasonal changes in the eco-

system interior can have direct effects on host and parasite

movement across ecosystem boundaries [70].

Environmental conditions near boundaries can vary more

strongly than conditions in the ecosystem interior, and this

can have important consequences for both host and parasite

species. For example, relative humidity and ultraviolet

exposure are important determinants of the survival of

many parasites, and can vary dramatically at ecosystem

boundaries [16,71]. Environmentally mediated movement of

parasites across ecosystem boundaries can also vary regularly

or irregularly. Seasonal rainfall, for example, can result in

seasonal transport of parasites across ecosystems [72].

In conclusion, it is clear that hosts and parasites are affected

by multiple sources of variation specific to the boundary area,

on top of the ‘normal’ boundary-independent variation.

Increased variation in factors known to affect spillover is likely

to result in contact opportunities between a higher diversity of

hosts and parasites, thereby increasing the overall diversity of

potential spillover events near ecosystem boundaries.
5. Parallels with existing ecological theory
Boundary permeability is a key determinant of spillover near

ecosystem boundaries, as it is the integration of different mech-

anisms driving spillover dynamics. It relates closely to theory on
ecological resource flow across ecosystems, particularly the con-

cept of resource subsidies in island biogeography theory [51,61].

Parasite flow shares conceptual similarities with resource flow,

while resource subsidy theory focuses specifically on the move-

ment of resources (typically nutrients and microorganisms)

across ecosystem boundaries, with a historic focus on marine-

terrestrial subsidies [61]. Despite known limitations to applying

island biogeography theory to terrestrial-only habitat islands

(ecosystem patches) owing to the ‘softer’ boundaries [60],

lessons might be learned that are relevant for spillover across

ecosystem boundaries. For example, research on the PAR of

literal as well as conceptual ecological islands provides an excel-

lent context for developing hypotheses on the effect of the PAR

on the number and diversity of spillover events near ecosystem

boundaries, as discussed above.

Other opportunities to borrow theory relevant to cross-

boundary spillover arise in the fields of movement ecology

and landscape ecology, which both provide theory on how ani-

mals move across ecosystems [73]. Movement ecology focuses

on individuals, and provides a well-developed conceptual and

mathematical framework for studying why, how, when and

where organisms move [74]. Landscape ecology is a broader

field that focuses on a larger spatio-temporal scale than the

individual level. At its core is a patch-corridor-matrix approach

that is particularly relevant for understanding mechanisms

behind spillover near ecosystem boundaries, connectivity of

host populations, and biodiversity patterns at larger scales

[75]. As landscape-level connectivity of different host popu-

lations will be a strong determinant of transmission and

spillover, landscape ecology provides a solid theoretical and

methodological foundation for advancing our understanding

of spillover across ecosystem boundaries.

Landscape genetics offers crucial concepts and tools for

understanding parasite transmission in general, and provides

methods that could help quantify boundary permeability

through formal testing of the existence of landscape resistance

against host and parasite gene flow [76]. Similarly, phylogeo-

graphy and phylodynamics have been used successfully for

estimating cross-species transmission, and can easily be repur-

posed to cross-boundary systems [77]. Invasion biology has

previously been proposed as a source of theory for under-

standing pathogen emergence [78], and can provide theory

on directional permeability, as it by definition focuses on the

spread of an organism from a source to a target ecosystem [79].
6. Discussion
This review explores and synthesizes potentially important

mechanisms affecting cross-species spillover of parasites

across ecosystem boundaries, as a step towards developing

a general theory of spillover associated with ecosystem

boundaries. Developing theory on spillover is particularly

relevant for the spillover of zoonotic pathogens, and directly

addresses the longstanding but untested hypothesis that

areas where ecosystems meet are hotspots for the emergence

of zoonotic pathogens [2].

Table 1 summarizes the most important mechanisms and

how they are expected to affect spillover near boundaries.

While all of these mechanisms are important in shaping spil-

lover dynamics, many are not well suited for making robust

generalizations about when cross-boundary spillover is

expected to be higher or lower than in ecosystem interiors.
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A few general predictions do emerge, however. For example,

higher biodiversity tends to be observed in edges [74], which

is expected to increase spillover risk through an increased

diversity of host and parasite species available for potential

spillover events [2,3]. Another factor that could consistently

increase spillover opportunities near boundaries is the expec-

tation of increased ecological variability at edges, which

should result in increased contact opportunities between a

wider range of different host and parasite species, thus

increasing spillover diversity.

Despite the complexity and scarcity of empirical data on

this topic, it is possible to make a number of further predic-

tions that can be the focus of future empirical work.

Spillover near ecosystem boundaries is expected to increase

relative to ecosystem interiors when bridge hosts/vectors

and edge specialists are present or abundant, when the pro-

portion of generalist hosts and parasites is high, or when

there are high levels of biodiversity, host density, and species

interactions. We have argued that these factors can be inte-

grated into an overall measure of boundary permeability,

which governs spillover risk. It is less clear how temporal

variability in ecological conditions and host/parasite pres-

ence should affect spillover rates; while increased variability

is expected to result in a higher spillover diversity, it may sim-

ultaneously lower the total number of spillover events of

focal host-parasite systems. At this point, we believe it is

not yet possible to make more refined predictions on general-

izable patterns of spillover at ecosystem boundaries. Key

factors in this determination are that (i) edge effect research

has revealed a high variety in responses to different con-

ditions, as a result of general ecological complexity and
stochasticity, and (ii) there is little to no empirical research

that focuses specifically on comparing cross-species spillover

near ecosystem boundaries with spillover in ecosystem

interiors, especially in animal hosts.

While the theoretical framework for spillover is maturing,

this exists in stark contrast with the relative scarcity of field

studies and data on the determinants of spillover [1], especially

across diverse ecosystems. There is a pressing need for funda-

mental research on spillover in multi-host, multi-parasite

systems, and this review highlights that it might be worthwhile

for some of that research to focus on spillover across ecosystem

boundaries. Ideally, this is done in a model-driven synergistic

context where conceptual and mathematical models of

spillover inform, and are in turn informed by, field and exper-

imental work [80], aided by the recent technological leaps in

genetic sequencing and movement tracking.
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