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Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system

(CNS) characterized by heterogeneous clinical symptoms including gradual muscle

weakness, fatigue, and cognitive impairment. The disease course of MS can be classified

into a relapsing-remitting (RR) phase defined by periods of neurological disabilities,

and a progressive phase where neurological decline is persistent. Pathologically, MS

is defined by a destructive immunological and neuro-degenerative interplay. Current

treatments largely target the inflammatory processes and slow disease progression at

best. Therefore, there is an urgent need to develop next-generation therapeutic strategies

that target both neuroinflammatory and degenerative processes. It has been shown that

elevating secondmessengers (cAMP and cGMP) is important for controlling inflammatory

damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied

extensively in a wide range of disorders as they breakdown these second messengers,

rendering them crucial regulators. In this review, we provide an overview of the role of PDE

inhibition in limiting pathological inflammation and stimulating regenerative processes

in MS.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disorder of the central
nervous system (CNS) affecting more than 2.5 million people worldwide, making it the most
common neurodegenerative disease in young adults (1). Although the exact etiology remains
unknown, MS is thought to develop due to an interplay between susceptibility genes and
environmental factors that are yet to be fully elucidated (2). The clinical course of MS is
characterized by various clinical symptoms, including gradual muscle weakness, fatigue, and
cognitive impairment, which arise in either episodic periods or progress during the disease course
(3). Current FDA-approved treatments modulate the prominent immune responses of MS, but are
unable to halt disease progression (4). Hence, there is an urgent need for the development of new
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therapeutic strategies. In recent decades, phosphodiesterase
(PDE) inhibitors have shown to exhibit immunomodulatory and
neuroprotective functions rendering them interesting candidates
for the management of MS disease.

Clinically, MS can be divided in three distinct classifications:
relapsing remittingMS (RRMS), primary progressiveMS (PPMS)
and secondary progressive MS (SPMS). RRMS is the most
frequent subtype, affecting approximately 85% of MS patients
and can be recognized by periods of remittance (5–7). This
early stage of MS is characterized by the presence of active,
inflammatory lesions characterized by perivenular infiltration
of myelin-reactive lymphocytes and macrophages, resulting in
demyelination of the axonal branches (5–7). These inflammatory
relapses are followed by the activation of an endogenous
repair mechanism called remyelination, resulting in a period
of functional recovery (5–7). Fifty percent of RRMS patients
undergo a transition to the progressive form of the disease
within a period of 15 years, labeled SPMS (8, 9). Additionally,
∼15% of MS patients are classified as PPMS and endure
gradual accumulation of disability from disease onset without
experiencing an initial relapsing course (10). Despite a decrease
in frequency of new lesion activity during these chronic stages,
there is an accumulation of chronically demyelinated lesions
accompanied by an increase in neurological deficits, and a
gradual decline in motoric and cognitive function (9). These
chronically demyelinated lesions are characterized by a reduced
number of oligodendrocytes, as well as the formation of
astrogliotic scar tissue and prominently demyelinated axons,
subsequently leaving axons vulnerable to axonal transection (11).

The pathogenesis of MS is thought to be driven by the massive
extravasation of myelin-reactive T and B lymphocytes into the
CNS across the blood-brain barrier (BBB) (12). Perivenular
infiltration of these auto-reactive lymphocytes disturb the
homeostatic immune balance in the brain, leading to a pro-
inflammatory microenvironment and subsequent CNS damage
(13). Despite this, phagocytes are the principle effector cells
during the neuroinflammatory and neurodegenerative processes
of MS and include infiltrated monocyte-derived macrophages
and brain resident microglia and macrophages (14). In MS, the
disturbed homeostatic balance in the CNS skews the activation
status of macrophages and microglia, subsequently fueling
the neuroinflammatory response, or ceasing the inflammatory
process through exerting neuroprotective functions (15).
However, in the early course of MS, neuroinflammation not
only induces demyelination but, it also activates remyelination.
Early remyelination in active MS lesions is characterized by
the expansion and mobilization of oligodendrocyte precursor
cells (OPCs) (5–7, 16–19). Despite the presence of sufficient
numbers of OPCs in the vicinity of pathological lesions,
endogenous repair mechanisms gradually fail when disease
progresses, resulting in chronically demyelinated axons
embedded in gliotic scar tissue (20–24). When remyelination
is not initiated, loss of myelin disrupts axonal function in
addition to compromising the physical integrity of axons by
increasing susceptibility to inflammatory mediators, glutamate
mediated toxicity, and the disrupted trophic support provided by
myelinating oligodendrocytes (25). It follows that, axonal ovoids,

a hallmark of transected axons, are profoundly present in MS
tissue (26).

Interestingly, cyclic nucleotide signaling pathways, such as
cyclic 3′-5′ adenosinemonophosphate (cAMP) and cyclic 3′-
5′ guanosinemonophosphate (cGMP) have been shown to be
responsible for a variety of intracellular processes involved
in both neuroinflammation and CNS repair processes (27–
31). Therefore, orchestrating cellular responses by altering the
intracellular balance of cyclic nucleotides can be considered an
important therapeutic strategy to modulate the pathogenesis of
MS (27, 32). Upon an extracellular trigger, cyclic nucleotides are
formed as second messengers to amplify the incoming signal,
subsequently activating protein kinases, and ion channels. Cyclic
nucleotides orchestrate divergent key cellular processes such as
cellular differentiation and maturation (33). cAMP and cGMP
are synthesized by adenylyl cyclase (AC) and guanylyl cyclase
(GC), respectively. AC converts adenosine 5′-triphosphate (ATP)
into cAMP while guanosine 5′ triphosphate (GTP) is the
substrate for GC to synthesize cGMP. In contrast, intracellular
cyclic nucleotide levels are spatiotemporally regulated by the
presence of PDEs (27). PDEs comprise a superfamily of enzymes
that catalyze the hydrolysis of intracellular cyclic nucleotides.
PDEs can be categorized into eleven PDE families (e.g., PDE1-
11) that jointly cover 21 PDE genes (e.g., PDE4A-PDE4D) (33–
35). Interestingly, each of these genes codes for different isoforms
(e.g., PDE4B1-5), yielding a total of at least 77 different protein-
coding isoforms. PDE gene families, genes, and isoforms can be
distinguished based on their subcellular distribution, enzymatic
activity, kinetic properties, and substrate specificity (36, 37).
Five PDE families have a dual substrate specificity, meaning
they can hydrolyze and inactivate both cAMP and cGMP (PDE
1, 2, 3, 10, and 11) (34). The remaining six PDE families
specifically and exclusively hydrolyze cAMP (PDE 4, 7, and 8) or
cGMP (PDE 5, 6, and 9). The cell type-specific PDE expression
of the isoforms yields a specific fingerprint that provides an
incentive to develop custom-made PDE-targeting strategies (35,
38, 39). Different small molecules directed against specific PDE
families, genes, or isoforms have been tested in the context of
neurodegeneration, neuroinflammation, and CNS repair (29–
31, 40, 41). In this review, we discuss experimental studies and
clinical implications regarding PDE inhibition as a strategy for
inflammatory damage control and stimulation of related repair
processes in MS (Figure 1).

INFLAMMATORY DAMAGE CONTROL IN
ACTIVE MS LESIONS BY INHIBITING PDEs

Ceasing the inflammation that drives the neuroinflammatory
and neurodegenerative responses in MS is considered a valuable
therapeutic strategy. PDEs have been extensively studied for
their anti-inflammatory properties. Several processes can be
targeted to diminish the inflammatory response. PDE inhibitors
are of interest due to their potential to (1) strengthen the BBB
to prevent peripheral lymphocyte accumulation in the CNS,
(2) restore the balance between pro-inflammatory and anti-
inflammatory mediators including lymphocytes and phagocytes,
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FIGURE 1 | The effects of PDE inhibition on different cell types in inflammatory damage control (active lesion) and neuroprotective repair processes (chronic

demyelinated lesion). Upon disruption of the blood-brain-barrier (BBB), patrolling immune cells (monocytes, T- and B-lymphocytes) extravasate into the central

nervous system. Here, the immature cells differentiate and elicit their functions in the inflammatory environment. A broad spectrum of pro- (red) and anti-(green)

inflammatory cytokines are found in the active lesion. Inhibition of PDEs has been found to positively influence BBB integrity, B-cell functioning and T-cell expression

patterns, skewing them toward an anti-inflammatory phenotype. The inflammatory environment causes activation of microglia and infiltrating macrophages, which

contributes to excessive neuronal loss. Inhibition of PDEs counteracts this inflammatory activation and promotes neuronal survival. In chronic demyelinated lesions,

the inhibition of PDEs has been found to ameliorate remyelination, thus supporting endogenous repair mechanisms. Furthermore, PDE inhibition counteracts

astrogliosis by halting activation and apoptosis of astrocytes. Finally, inhibition of a multitude of PDEs has been found to promote neuronal plasticity and skew

microglia and infiltrating macrophages toward an anti-inflammatory phenotype. Images were modified from Reactome icon library and Servier Medical Art, licensed

under a Creative Common Attribution 3.0 Generic License (42).

and (3) prevent astrogliotic scar formation. Each of these
potential aspects is further detailed below.

Blood-Brain Barrier
The BBB is comprised of smooth muscle cells, endothelial
cells, pericytes, and astrocytic endfeet, functioning as a barrier
to restrict the entrance of peripheral immune cells and toxic
molecules into the CNS (12). In early MS development, pro-
inflammatory lymphocytes activate the endothelial cells of the
BBB. Endothelial activation leads to an upregulation of cell
adhesion molecules that promote the massive infiltration of
myelin-reactive lymphocytes into the CNS (13, 43). Endothelial
cells are linked by multiprotein complexes called tight junctions,
which become dysfunctional in early MS development.
Therefore, restoring the loosened tight junctions, and stabilizing

the BBB can prevent further infiltration of immune cells into the
CNS, subsequently halting or reducing disease progression.

The involvement of cAMP in endothelial barrier functions has
been extensively studied. cAMP analogs, such as dibutyryl cAMP
(dbcAMP), can decrease junctional permeability and therefore
diminish trans-endothelial transport of both small and large
molecules (44). Nevertheless, it is compartmentalized cAMP
generation rather than the general accumulation of intracellular
cAMP that coordinates barrier preservation or destabilization
(45). Vascular permeability is enhanced when cytosolic cAMP
is increased, while barrier integrity is maintained when cAMP
accumulates in cellular vacuoles (45). In contrast to cAMP,
the outcome of directly increasing cGMP levels on endothelial
barrier function is yet to be elucidated. However, indirectly
raising intracellular cGMP levels, by increasing NO signaling
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has been shown to induce vascular smooth muscle relaxation,
increase BBB permeability, and inhibit endothelial cell apoptosis
(46, 47). Based on these results, increasing cGMP signaling does
not seem to be a suitable therapeutic strategy for restoring BBB
integrity during inflammatory relapses in MS. Therefore, solely
cAMP or dual-substrate PDE inhibitors are discussed here as a
therapeutic strategy for reducing BBB disruption.

In particular, the cAMP-specific PDE4 inhibitors have
been evaluated for their potential to strengthen the BBB.
In experimental autoimmune encephalomyelitis (EAE), a
neuroinflammatory animal model for MS, the pan PDE4
inhibitor rolipram (2mg/kg, i.p injected twice a day)modified the
cerebrovascular endothelial permeability and thereby restored
BBB function (48). The same protective features of rolipram
were observed in an animal model for stroke, where treatment
preserved the expression of the tight junction proteins occludin
and claudin-5 (49). Furthermore, the inhibition of PDE4D is
of particular interest for altering BBB permeability since it co-
localizes with the endothelial marker RECA-1 and the vascular
smooth muscle cells α-SMA (50). However, the exact role of
PDE4D in restoring BBB integrity remains to be elucidated.
Both cAMP-specific PDE inhibitors and dual-substrate PDE
inhibitors have been proposed as potential therapeutic targets.
As such, administration of the PDE3 inhibitor cilostazol to a
murine model for age-related cognitive impairment (1.5% w/w)
over a 3 months period increased the amount of zona occludens
protein 1 (ZO-1) and occluding, subsequently improving BBB
integrity (51). Therefore, PDE inhibitors acting on the cAMP
pathway are predicted to strengthen BBB functionality. Due
to the opposing outcomes upon elevating cAMP in different
subcellular compartments, elucidating which PDE enzymes are
present in endothelial vacuoles and absent in the cytosol can
hold the key for identifying which PDE needs to be targeted for
restoring BBB integrity. Unraveling essential signaling peptides
during translation will become indispensable for determining
PDE compartmentalization.

Lymphocytes
Disrupted BBB integrity in MS patients facilitates peripheral
immune cell infiltration. The two main subsets of infiltrating T
lymphocytes in MS are CD4+ and CD8+ T cells (52). Various
subsets of CD4+ T helper cells have been identified based on
their cytokine secretion profiles. In particular, CNS Th1 and
Th17 cell frequencies are increased in RRMS patients compared
to healthy controls. Cytokines secreted by the different T cell
subsets are critical mediators of the neuroinflammatory response.
Upon activation, Th1 cells aggravate the neuroinflammatory
response by secreting pro-inflammatory cytokines [e.g., tumor
necrosis factor α (TNFα), interleukin 1β (IL-1β), and interferon-
γ (IFN-γ)], subsequently promoting cellular infiltration and
activation of phagocytes and B cells (53). Th17 cells are mainly
characterized by their production of interleukin 17 (IL-17), but
exert a polyfunctional phenotype depending on their overall
cytokine secretion profile. Pathogenic Th17 cells aggravate
inflammatory processes by producing high levels of the pro-
inflammatory cytokine IFN-γ, whereas non-pathogenic Th17

cells produce more protective cytokines such as IL-10 (54). IL-
17 levels are elevated in the serum and cerebrospinal fluid (CSF)
of MS patients and are correlated with MS disease severity,
consequently suggesting a pathogenic role of Th17 cells in MS
(55, 56). Moreover, regulatory CD4+ T cells (Tregs) from the
peripheral blood of RRMS patients show a reduced suppressive
capacity, suggesting Treg dysfunction in early MS stages (57).
Treg formation is the result of activation of the dominant
transcription factor forkhead box P3 (Foxp3) and by producing
immunosuppressive cytokines [e.g., transforming growth factor
β (TGF-β) and IL-10], Tregs inhibit auto-aggressive T cell
responses (58). In addition to CD4+ T cells, autoreactive
cytotoxic T cells (CD8+ T cells) are actively involved in MS
pathogenesis. CD8+ T cells are found in large numbers in MS
lesions in close proximity to damaged oligodendrocytes (59, 60).
Therefore, halting MS disease progression can be accomplished
by modulating lymphocyte responses through the restoration of
second messenger levels using PDE inhibitors.

In the context of T lymphocyte proliferation, differentiation
and activation, cAMP is the most extensively studied second
messenger. Increasing cAMP levels attenuates the T lymphocyte-
mediated immune response by reducing the production of
pro-inflammatory cytokines (e.g., IFN-γ, TNF-α, and IL-1β),
T cell proliferation and T cell activation (61–63). Increased
levels of cAMP further drive the development of Tregs to
maintain immunological homeostasis by suppressing the innate
immune responses (63). Recently, it has been reported that anti-
CD3/CD28 stimulation to activate naïve CD4+ T cells increased
the enzymatic levels of PDE7, particularly the expression of the
PDE7A1 isoform (64, 65). Accordingly, in EAE mice where T
cells are highly activated, the PDE7 inhibitor TC3.6 was shown
to increase mRNA levels of FoxP3 and augment the production
of IL-10. Additionally, PDE7 inhibition was accompanied by
decreased levels of IL-17 and reduced T cell proliferation (66).
Conversely, PDE7A knockout mice did not show a difference in
T cell activation and cytokine production, obfuscating the role
of PDE7 in T cell-mediated immune responses and raising the
possibility of an indirect effect of the PDE7 inhibitor TC3.6 (67).
PDE4 is the most extensively studied cAMP-specific PDE in the
context of modulating pro-inflammatory processes. As observed
with TC3.6, inhibiting PDE4 decreased T cell proliferation and
reduced the production of pro-inflammatory cytokines (TNF-α
and IL-17) while increasing the production of anti-inflammatory
cytokines (IL-10) in EAE mice (29, 66). Symptomatic treatment
with 2.5 mg/kg of the PDE4 inhibitor rolipram decreased
the number of perivascular inflammatory infiltrates and was
accompanied by a reduction of clinical symptoms in EAE mice
(29, 66). Interestingly, upon anti CD3/CD28 co-stimulation of
either human CD4+ naive or memory T cells, the enzymatic
activities of PDE4A and PDE4D alone were upregulated,
although mRNA levels of PDE4A, PDE4B, and PDE4D were
increased (68). Furthermore, knockdown of PDE4D in these
activated human CD4+ T cells, using siRNA reduced their
proliferation rate and inhibited the secretion of IFN-γ (68). In
EAE mice, mRNA levels of the PDE4B2 isoform were increased
in infiltrating T cells in the CNS (30). This increase in PDE4B2
was positively correlated with FoxP3 and TGF-β mRNA levels,
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suggesting a modulatory role for PDE4B2 in Treg regulation (30,
66, 69). Based on these findings, cAMP-specific PDE inhibition
in T cells can lower the inflammatory cytokine production by
acting directly on Th1 and Th17 cells or by regulating the
immune response through Treg cells. Furthermore, the dual
substrate PDE3 inhibitor cilostazol has been shown to ameliorate
encephalitogenic specific T cell responses in EAE mice by
reducing lymphocytic proliferation and IFN-γ production in
the CNS (70). These findings are consistent with the previous
observations using cAMP-specific PDE inhibitors. Despite this,
an involvement of cGMP in T cell regulation cannot be excluded
as cGMP has been shown to be highly expressed in the cytoplasm
of T cells (71–73). Upon NO treatment, T cell adhesion to
ICAM-1 and PECAM-1 on endothelial cells of the human brain
microvasculature is reduced in a cGMP-dependent manner (74).
Accordingly, increasing both cAMP and cGMP by inhibiting
specific PDEs can be considered as a potential therapeutic
strategy to limit T cell activation by either lowering the pro-
inflammatory cytokine production by Th1 and Th17 cells, or by
enhancing the suppressive capacity of Tregs.

Although the perivenular infiltration of B cells is less
prominent compared to T cells in MS, their contribution to
the pathogenesis is highlighted by the anti-CD20 monoclonal
antibody therapy that induces B cell depletion and subsequently
limited the number of relapses in RRMS patients (75, 76).
B cells exert a central role in the pathogenesis of MS by
their antibody-independent functions that can either activate
or suppress inflammatory responses (77). However, not much
is known about second messenger signaling in B lymphocytes.
Opposing results were reported depending on the nature of
second messengers in B cell cycling (78). Treating murine B
lymphocytes with the neurotransmitter acetylcholine indirectly
increased the intracellular cGMP levels by stimulating the
NO/cGMP pathway, consequently stimulating B cells to enter
the cell cycling stages (78, 79). In contrast, adrenaline-induced
intracellular cAMP inhibited the entry of B lymphocytes into
the DNA replication stage of the cell cycle (78). The latter is
consistent with the observations that forskolin, an activator of
AC in the plasma membrane, arrested human B lymphocytes
in the G1 phase of cell cycling and thereby inhibited B cell
growth (80). Furthermore, forskolin promoted apoptosis in
human resting B cells (80). However, there is little evidence that
PDE inhibitors are able to modulate B cell responses. The PDE4
inhibitors apremilast, rolipram and Ro 20-1724 did not affected
B cell differentiation, however they did inhibit IgE production in
human PBMCs after IL-4 stimulation (81, 82). This decrease in
IgE production was not observed upon PDE3 or PDE5 inhibition,
which can be explained by the marginal PDE3 activity and lack
of PDE5 activity in healthy B lymphocytes (81, 83, 84). While
there is currently little evidence for a direct effect, indirect effects
of PDE inhibitors on B cell responses in the pathogenesis of MS
cannot be ruled out.

Phagocytes
Another strategy to control the inflammatory process in MS
involves modulating the response of phagocytes in the CNS. In
the CNS, phagocytes actively survey the CNS microenvironment

in search of harmful pathogens and damage signals (85). In order
to retain CNS homeostasis, phagocytes orchestrate different
processes including synaptic pruning, shaping neurogenesis,
and clearance of cellular debris and apoptotic neurons (86,
87). Depending on the environmental stimuli, phagocytes
cover a divergent spectrum of activation states. Upon classical
activation (e.g., IFN-γ as activation stimulus), macrophages
and microglia polarize toward a more pro-inflammatory
phenotype. These classically activated phagocytes contribute
to the inflammatory response by producing pro-inflammatory
cytokines and chemokines (e.g., TNFα and IL-1β) and therefore
mediate tissue damage (15). In contrast, upon alternative
activation (e.g., IL-4 as activation stimulus), phagocytes polarize
toward a more anti-inflammatory phenotype. These alternatively
activated phagocytes are characterized by the production of
anti-inflammatory cytokines (e.g., TGFβ and IL-10) and growth
factors (e.g., IGF and BDNF). Additionally, anti-inflammatory
phagocytes facilitate the clearance of cellular debris which enables
the initiation of repair processes (15). It is postulated that
persistent neuroinflammatory processes create an imbalance
between pro-and anti-inflammatory phagocytes, resulting in
neurotoxicity and subsequent neurodegeneration (88).

Interestingly, murine studies using EAE have demonstrated
that a phenotypic switch of phagocytes from the pro- to the
anti-inflammatory phenotype is associated with milder clinical
scores (89). Moreover, after focal LPC-induced demyelination,
pro-inflammatory phagocytes seem to drive OPC proliferation.
However, it is the later switch to the pro-reparative phenotype
that is necessary for OPC differentiation into mature myelinating
oligodendrocytes that establish functional remyelination
(89). Additionally, anti-inflammatory phagocytes are critical
contributors in ceasing the inflammatory response and allowing
CNS repair (89). Balancing the levels of cAMP and cGMP in
phagocytes is considered critical for orchestrating phagocyte
polarization and organizing phagocytosis (90). However,
abnormally high levels of cAMP inhibit myelin phagocytosis
in vitro, even though increasing cAMP skews the polarization
toward an anti-inflammatory phenotype characterized by high
levels of arginase 1 (Arg1) (90, 91). Furthermore, cGMP has
been reported to be associated with the actin cytoskeleton
in phagocytes (64, 65, 92, 93). Stimulating the cGMP-PKG
pathway dramatically reorganized the actin cytoskeleton of
microglia, giving them a phagocytosis-promoting morphology
and subsequently enhanced clearance of apoptotic cells
and cell debris (94, 95). In MS, internalization of myelin
debris by phagocytes at the lesion site is crucial for allowing
endogenous remyelination. Therefore, increasing intracellular
cAMP or cGMP levels in phagocytes can either alter the
inflammatory responses in the CNS or promote clearance of
debris, respectively, and can be considered a potential therapeutic
strategy for MS.

In murine monocytes and macrophages, the PDE4B gene
in particular has been related to inflammatory responses
(96). Accordingly, PDE4B inhibition enhanced the secretion
of the anti-inflammatory IL-1 receptor antagonist (IL-1Ra) in
PDE4B−/− macrophages, at least partially through promoting
the phosphorylation and subsequent activation of signal
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transducer and activator of transcription 3 (STAT3) (97).
Furthermore, a positive correlation between PDE4B2 in APC
cells (e.g., microglia and macrophages) and the clinical scores
of EAE mice was observed (30). Transcriptional upregulation
of PDE4B2 is predicted to mediate the activation of the toll
receptor-4 pathway, characterized by the production of the pro-
inflammatory cytokine TNF-α (98–101). Multiple studies suggest
that peripheral inflammation is linked to the development of
neuroinflammation (102, 103). In both humans and mice, spinal
cord injury (SCI) triggered the expansion of the proteobacteria
phylum, leading to an increased systemic endotoxemia that
allows LPS from intestinal bacteria to enter the bloodstream,
subsequently activating peripheral monocytes and macrophages
(103–105). Subsequently, when inducing SCI in PDE4B knockout
mice, inflammatory responses, and endoplasmic reticulum (ER)
stress were significantly decreased within the spinal cord
(SC) of these mice, suggesting the critical involvement of
PDE4B in (neuro) inflammatory responses potentially occurs by
suppressing monocyte and macrophage activation (103). As with
SCI, alcohol consumption induces endotoxemia and subsequent
peripheral monocyte activation (106). In mice, alcohol-induced
endotoxemia induced PDE4B expression in both peripheral
monocytes and CNS resident microglia. This induced PDE4B
expression was characterized by a decrease in cAMP levels and
subsequent glial activation, indicating a potential pathogenic role
of Pde4b in alcohol-induced neuroinflammation (106). Besides
PDE4, PDE5 inhibitors sildenafil, and vardenfil have been studied
for their effects on macrophage phenotype and CNS infiltration.
Sildenafil treatment (10 mg/kg, daily s.c injected) improved
clinical scores in EAE mice and increased the expression of
Ym-1, a canonical anti-inflammatory macrophage marker in
the SC of these mice. In addition, PDE5 inhibition promoted
phagocytosis of myelin debris (89). Therefore, by inhibiting
cAMP-specific PDEs, this pro-inflammatory response can be
diminished and disease progression can be halted. In contrast,
inhibition of cGMP-specific PDEs does not actively suppress
the pro-inflammatory responses of infiltrating macrophages, but
rather increases the phagocytosis rate, thereby promoting CNS
repair processes.

Moreover, the role of PDEs in macrophage responses has
been studied independently of pathological MS processes.
For example, PDE3B has been implicated in regulating
inflammasome activation of infiltrating macrophages in white
adipose tissue (WAT). As such, PDE3B knockout mice displayed
reduced serum levels of pro-inflammatory cytokines such as IL1β
and TNFα in a peripheral lipopolysaccharide (LPS) challenge.
PDE3B ablation significantly reduced macrophage infiltration in
WAT of high fat diet-induced obesity mice (107). Additionally,
PDE4 inhibition has been shown to reduce clinical symptoms
of inflammatory diseases including arthritis and psoriasis by
shifting the phenotypic balance of phagocytes (108–110). PDE4
inhibition with apremilast reduced dermal fibrosis by interfering
with the release of IL-6 by anti-inflammatory macrophages. This
resulted in a decreased fibroblast activation and collagen release
in a skin fibrosismousemodel (111). The beneficial effects of PDE
inhibition by macrophages that infiltrate the peripheral tissues
give rise to multiple implications that are potentially exploitable

in those that infiltrate the CNS. Understanding the role of PDE3B
ablation as well as the inhibition of PDE4 and PDE5 in promoting
macrophage phenotypic shifts in other pathological contexts can
be implicated for controlling the phagocyte-related inflammatory
responses in MS pathogenesis.

In microglia, PDE4 is the predominant negative regulator of
cAMP (112). Roflumilast-mediated PDE4 inhibition increased
the mRNA and protein levels of Arg1, skewing polarization
of an anti-inflammatory phenotype in myelin-laden microglia,
subsequently promoting repair processes in aged rats subjected
to chronic cerebral hypoperfusion (113). Inhibiting PDE4
suppresses LPS-mediated release of TNF-α and NO by activated
microglia (99). However, this reduction in NO production is
abolished when co-culturing microglia with neurons, casting
doubt upon this mechanism in vivo (99). Furthermore,
the novel PDE4 inhibitor FCPR03 suppressed the release
of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in
vitro in LPS stimulated BV2 microglia, and in vivo in the
hippocampi and cortices of mice peripherally treated with an
LPS bolus (114). Interestingly, inhibition of neuroinflammation
was abolished when BV2 microglia were pretreated with
a PKA inhibitor H89 (114), indicating that the cAMP-
downstream PKA/CREB signaling pathway may be responsible
for the suppressed production of pro-inflammatory cytokines
upon FCPR03 treatment (114). Moreover, the cAMP/PKA
signaling pathway inhibits NF-κB, thereby further suppressing
neuroinflammation (114). The novel PDE4 inhibitor roflupram
enhanced autophagy in both BV2 microglia and in microglia
of mice peripherally injected with LPS (115). Autophagy is
a process critically involved in maintaining homeostasis as it
modulates inflammasome activation and IL-1β production by
removing damaged mitochondria (116). Damaged mitochondria
are an important source of ROS production that subsequently
activates NLRP3-mediated inflammasome activation and IL-1β
production (116). By inducing autophagy, roflupram suppressed
inflammasome activation, and IL-1β, consequently reducing
neuroinflammatory responses in LPS challenged mice (115).
Similar effects on autophagy and inflammasome activation
were observed when PDE4B was specifically knocked down in
primary microglia cells (115). The likely involvement of PDE4B
in suppressing inflammatory responses is reinforced by the
observation that ABI-4, a PDE4D-sparing PDE4 inhibitor, has
been shown to reduce the release of TNF-α in LPS stimulated
primary murine microglia (117). Likewise, pre-symptomatic
treatment with the PDE7 inhibitor TC3.6 reduced microglial
activation in an animal model for PPMS by decreasing a
wide range of mediators of the neuroinflammatory processes
including IL-1β, TNF-α, IFN-γ, and IL-6 in the SC (118).
Furthermore, increasing intracellular cGMP levels by inhibiting
PDE5 after LPS stimulation decreased microglial NO, IL-1β
and TNF-α production (119). In line with this, the PDE5
inhibitor sildenafil alleviates hippocampal neuroinflammation
by normalizing microglial morphology and reducing microglial
activation as shown by a diminished IL-1β production (120–
122). Moreover, the highly selective PDE10A inhibitor TP-
10 reduced the number of CD11b+ reactive microglial cells
in the striatum and thereby ameliorated brain pathology in
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an animal model for Huntington’s disease, demonstrating its
therapeutic potential in MS pathology (123). Furthermore,
10µM ibudilast, a non-selective PDE inhibitor targeting multiple
PDE families (e.g., PDE4 and PDE10), suppressed TNF-α
production in activated microglia but lacked efficacy in lowering
other pro-inflammatory mediators such as IL-1β or IL-6 (124).
Therefore, inhibiting PDEs independently of their substrate
specificity in microglia diminishes pro-inflammatory responses
and microglia reactivity.

Taken together, different PDE inhibitors can be considered
a powerful therapeutic option for ceasing the inflammatory
response in MS by altering the balance between cytotoxic
and reparative phagocytes. Particularly PDE4B was shown
to be critically involved in neuroinflammatory responses,
making it an interesting target for developing MS therapies.
Furthermore, PDE4B is upregulated in phagocytes following
peripheral inflammation, and subsequently aggravates
neuroinflammatory responses; a key process in the pathogenesis
of MS. Therefore, interfering with this peripheral-central
immunological cross-talk by inhibiting specifically PDE4B is an
interesting strategy for treating RRMS patients that needs to be
explored further.

Astrocytes
Astrocytes are the most abundant cells of the CNS and exert
pleiotropic functions to protect and support other CNS cell
types (125, 126). Due to their ideal position in the brain
microvasculature, astrocytes can directly respond to infiltrating
immune cells during the initial processes occurring in MS
(127). Astrocytes produce growth factors and metabolites in
order to maintain the homeostatic balance in the brain, but
also ensure synaptic and BBB integrity (125, 126). However,
during profound CNS injury, astrocytes become highly activated
and undergo morphological and functional changes, yielding
astrogliosis (128).

In an attempt to investigate whether PDEs are implicated
in astrogliosis, it was shown that TLR signaling induced an
upregulation of PDE4B, and more specifically increased the
protein level of the PDE4B2 isoform (129). Accordingly, twice
daily administration of ibudilast (20 mg/kg), a non-specific PDE
inhibitor with preferential affinity for PDE4, reduced astroglial
activation in an animal model for Parkinson’s disease (130).
The same results were observed in a rat model for ocular
hypertension, in which a decrease in gliosis was accompanied by
decreased levels of pro-inflammatory mediators and enhanced
neuroviability (131). Interestingly, ibudilast treatment was also
demonstrated to prevent astrocyte apoptosis by increasing
cGMP levels, suggesting a potential protective role for cGMP-
specific PDE inhibitors (132). In line with this hypothesis,
PDE5 inhibition by administering 10µM sildenafil was shown
to restore LPS-induced inflammation in astrocytes in vitro, as
demonstrated by de Santana Nunes et al. (133). In relation
to BBB disruption and immune cell infiltration, it is known
that astrocytes express lymphocyte adhesion molecules such as
ICAM-1 and VCAM-1 in inflammatory states (134). Elevation
of intracellular cAMP levels counteracts the inflammatory
activation of astrocytes, resulting in a downregulation of

these adhesion molecules (135). As such, astrocytic cAMP
signaling plays a prominent role in the prevention of peripheral
lymphocyte infiltration. Aforementioned studies show that PDEs
are greatly involved in the inflammatory aspect of astrocyte
biology and that inhibition of selected PDE isoforms can result
in the attenuation of astrogliosis.

INHIBITING PDEs TO BOOST REPAIR IN
CHRONICALLY DEMYELINATED MS
LESIONS

Neuroinflammation and axonal demyelination associated with
MS render neuronsmore vulnerable to degeneration. Stimulating
repair in chronically demyelinated MS lesions is a promising
strategy for treating progressive MS patients. The main processes
to be addressed for boosting this repair include the stimulation
of OPC differentiation into myelinating oligodendrocytes,
remodeling of the existing neuronal circuits by enhancing
neuro-plasticity/-protection to strengthen axonal conduction,
and resolving inflammation that allows for phagocytic growth
factor secretion (discussed above).

Oligodendrocytes
In the CNS, the myelinating cells responsible for remyelination
are oligodendrocytes which function to maintain neuronal
integrity, and facilitate signal conduction in the brain and
spinal cord (136, 137). However, oligodendrocytes are known
to be extremely vulnerable to damaging signals, such as
neuroinflammatory attacks, or ischemic episodes (138, 139). Loss
of oligodendrocytes can result in axonal damage and ultimately
leads to demyelination and subsequent neurodegeneration. In
an attempt to restore this loss of oligodendrocytes, newly
myelinating cells can be formed by differentiation of OPCs into
mature myelinating oligodendrocytes (137).

cAMP is a key driver of OPC differentiation (140). In vitro
treatment of OPCs with cAMP analogs, such as dbcAMP or
8-bromo cAMP, support OPC differentiation based on the
number of myelin basic protein (MBP) positive cells (141). A
similar level of differentiation is observed when using forskolin
(142). Accordingly, cAMP-specific PDE inhibitors are thought
to stimulate oligodendrocyte development. Treatment of human
OPCs with the PDE7 inhibitors TC3.6 or VP1.15 promotes
their survival and accelerates their differentiation into mature
myelinating oligodendrocytes by stimulating the ERK signaling
pathway (143). In parallel, the potent PDE4-inhibitor rolipram
(0.5µM) was shown to boost rat OPC differentiation in vitro
by increasing the percentage of MBP+ cells (140). Furthermore,
based on G-ratio analysis, rolipram (0.5 mg/kg/day) enhanced
remyelination in the caudal cerebellar peduncle following focal
ethidium bromide-induced demyelination in vivo (140). In the
presence of myelin-associated inhibitors, OPC differentiation is
impaired in vitro due to an impairment in Erk1/2, p38MapK
and Creb1 phosphorylation. However, 0.5µM of rolipram
treatment overcame the inhibitory effects of myelin protein
extracts in vitro and relieved the induced differentiation
block (140). Interestingly, daily administration of 0.5 mg/kg
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rolipram (by means of s.c. placed minipump) also appeared to
protect oligodendrocytes from secondary cell death following
experimental SCI, thereby highlighting its multifaceted mode
of action during neurodegeneration (144). In relation to
oligodendroglial cell death following ischemia, Nobukazu
Miyamoto et al. administered 0.1% of a PDE3 inhibitor mixed
in regular chow diet up to 28 days to rats suffering from
chronic cerebral hypoperfusion. At a cellular level, this resulted
in a strong increase of newly generated oligodendrocytes and
a subsequent enhanced rate of remyelination in hypoperfusion-
induced white matter lesions after bilateral common carotid
artery ligation. Even though PDE3 is classified as a dual
cAMP/cGMP hydrolyzing enzyme, Miyamoto and colleagues
solely investigated the PDE3 inhibition-mediated increase
of cAMP and therefore attributed the positive effects on
ischemic white matter injury mostly to a cAMP/PKA-mediated
pathway (145). Nevertheless, a role for cGMP involvement
cannot be excluded in oligodendrocyte differentiation processes.
In particular, an increase in nitric oxide (NO)-induced
cGMP signaling has been shown to be directly related to
oligodendrocyte maturation as determined by an increased
MBP and MOG protein expression level (146). The observed
increase of maturation supports the rationale that cGMP-
specific PDE inhibitors can also exert a positive effect
on oligodendrocyte-mediated repair mechanisms. Accordingly,
treatment of organotypic cerebellar brain slices with the
widely known PDE5 inhibitor, sildenafil (1µM) for 10 days
enhanced the level of remyelination (89). Additionally, in
the SC of EAE mice, treated with 10 mg/kg sildenafil
once a day for 15 consecutive days (subcutaneous injection),
oligodendrocyte maturation was induced in a cGMP-NO-protein
kinase G (PKG)-dependent manner (89). Furthermore, sildenafil
appeared to have a protective effect in a mouse model for
demyelination, as demonstrated by a preserved myelin, and
axonal ultrastructure (147). Yet, these protective features of
sildenafil are inconsistent with the findings of Muñoz-Esquivel
and colleagues. Here, it was reported that sildenafil treatment
diminished myelin expression and increased the expression of
negative regulators of myelin (Id2 and Id4), which was consistent
with the decreased myelination capacity of sildenafil treated
oligodendrocytes (148).

Opposing results regarding the in vitro effects of sildenafil
on OPC differentiation can be potentially attributed to the
difference in inhibitor concentrations. In a later study conducted
by Muñoz-Esquivel and colleagues, an inhibition in myelin
protein expression was observed after 7 days of 50µM sildenafil
treatment. The myelination-promoting effects of sildenafil in
organotypic cerebellar brain slices were observed after 1µM
treatment for 10 days. Furthermore, the diminished expression
of myelin proteins after sildenafil treatment was observed in
pure primary rat OPC cultures, while organotypic cerebellar
brain slices contain multiple cell types. Therefore, an indirect
effect of sildenafil for promoting remyelination cannot be
ruled out. This difference in treatment regimens is a potential
explanation for the observed differences and underscore the
importance of cGMP fine-tuning. Altogether, both cAMP and
cGMP specific PDE inhibitors have been shown to be promising

stimulators for OPC differentiation that boosts CNS repair in
MS. However, validating these findings in multiple in vitro
and in vivo models for remyelination is essential before further
clinical development.

Neurons
The lack of myelin in both acute and chronically demyelinated
lesions has profound pathophysiological consequences. For
instance, Na+ channels are redistributed over the demyelinated
axolemma as a final compensatory mechanism of neurons
in order to maintain nerve conduction although the myelin
sheath is lost (149). Progressive axonal and neuronal loss
associated withMS eventually causes weakening of neural circuits
leading to cognitive and motor impairments (150). Therefore,
neuroprotection or repair of neuronal damage may delay, halt,
or counter disease progression.

Stimulation of cyclic nucleotide signaling has been shown
to increase neuronal resilience by promoting neuroplasticity.
Inhibition of PDEs may therefore be an appropriate strategy
to induce neuroprotection in MS. Inhibition of specific PDEs
is found to enhance neuroplasticity, subsequently increasing
neuronal resilience. Vinpocetine, a selective PDE1 inhibitor,
can limit oxidative stress, and neuronal damage in a model
of vascular dementia (151). PDE2 inhibition was found to
improve neuronal plasticity, as observed by an increase in
hippocampal long term potentiation (LTP), which is regarded
as the underlying physiological correlate of memory (152). The
increase in LTP was accompanied by improved object memory
performance, both in rats and mice (153). After induction
of brain ischemia (154) or in animal models using chronic
unpredictable stress (155), the PDE2 inhibitor Bay 60-7550
attenuated the pathological decrease in neuroplasticity related
proteins (e.g., BDNF), thereby enhancing neuroplasticity and
subsequently neuroprotection. Cilostazol, a PDE3 inhibitor,
mediates neuronal repair after induced neuronal loss in
the dentate gyrus through an increase in pCREB-mediated
hippocampal neural stem cell proliferation (156). The potential
of PDE4 inhibition to stimulate neuroplasticity has been
studied extensively in the context of learning and memory
(37, 157, 158); both non-specific inhibition of the PDE4 gene
family (159), as well as targeting of individual PDE4 genes
(160), or isoforms (161) are able to increase neuroplasticity
and memory functioning. Moreover, neuroprotective and
neuroregenerative effects by inhibition of PDE4 have been
shown after different types of insults, including SCI (28, 162,
163), striatal neurotoxicity (164–166) and mouse models of
Huntington’s disease (166, 167). Similarly, PDE5 inhibition by
sildenafil and vardenafil can not only improve object memory
(168, 169), but also protect against striatal degeneration by
stimulation of neuronal surviving pathways, including BDNF
and p-CREB expression (170). Interestingly, sildenafil treatment
(15 mg/kg administered orally) reduces oxidative stress in mice
exposed to noise stress through an increase in free radical
scavengers such as super oxide dismutase (SOD) 1, SOD2
and SOD3 (171). Additionally, PDE7 inhibition was found
to induce neuroprotective and anti-inflammatory activities in
a rat model of Parkinson’s disease (172). A reduction in

Frontiers in Immunology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 1727

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schepers et al. PDE Inhibition in MS

hippocampal apoptosis was also observed after PDE7 inhibition
in an Alzheimer mouse model (173). Alzheimer-associated
decreases in dendritic spines and plasticity can be counteracted
by PDE9 inhibition (174). Finally, PDE10 inhibition increases
neuronal survival in a transgenic mouse model of Huntington’s
disease (175).

As described above, neuroprotective treatment strategies can
be achieved by targeting distinct PDE families or isoforms, given
the wide applicability of PDE inhibitors to suppress damaging
signals such as neuronal apoptosis and oxidative stress, but also to
stimulate neuronal survival and repair. Furthermore, inhibition
of these PDEs is primarily associated with an improvement in
cognitive performance including memory and learning. This
latter aspect makes PDE inhibition even more interesting,
considering cognitive decline is one of the major symptoms
of disease progression in MS (176). However, while inhibition
of different types of PDE enzymes has been shown to be
beneficial in several models, the exact mechanisms underlying
its neuroprotective effects are yet to be elucidated in the context
of MS.

PDE INHIBITORS IN CLINICAL TRIALS AS
A THERAPY FOR MS

It is clear that PDEs are involved in numerous and different
processes in MS. Currently, the majority of MS therapies
are focused on reducing disease severity by preventing the
infiltration or activation of immune cells in the CNS. However,
these therapeutics are unable to halt or reverse disease
progression. Therefore, there is an urgent need for the
development of new therapeutic strategies. The multimodal
effects of PDE inhibitors makes them highly interesting for
clinical use to treat MS patients. However, most research
regarding PDE inhibitors to date has been performed at the
preclinical level and very few clinical trials have been conducted
to assess their clinical potential (Table 1).

In early 2001, a Phase I/Early Phase II clinical trial was
designed to test the dose, tolerability, and efficacy of the PDE4
inhibitor, rolipram as a treatment against CNS inflammation
for MS patients (177). In the first stage of the study, six MS
patients were enrolled to assess the optimal and safe dose of the
compound. Two additional patients withmoderate inflammatory
brain activity were recruited for the second stage of the study.
Even though no difference in clinical disability was observed,
rolipram was not well tolerated by the patients. Adverse events
such as nausea, vomiting, gastroesophageal reflux, and insomnia
were common during the therapy. Moreover, rolipram treatment
was accompanied by the unexpected side-effect of an increase
in the total amount of contrast enhanced lesions (CEL) per
patient when compared to their baseline state demonstrating it
has no clinical benefit. As this was the predetermined primary
outcome of the study, the trial was terminated in an early
phase (177).

Similarly, a double blind, placebo-controlled phase II trial was
conducted to evaluate the safety and effects of Ibudilast as a
treatment strategy for RRMS patients (178). As discussed above,

ibudilast is a non-selective PDE inhibitor that also inhibits the
macrophage migration inhibitory factor and toll-like receptor 4
(179, 180). Patients who enrolled in the study received either
30mg, 60mg ibudilast, or a placebo every day for 1 year. No
difference in lesion activity was observed between the different
groups, resulting in an unmet primary endpoint. However,
ibudilast treatment seemed to slow brain atrophy, a measure of
permanent tissue injury and disease progression in MS (178).
Consequently in 2013, the SPRINT-MS phase II clinical trial
was established to assess the efficacy and tolerability of ibudilast
as a treatment for progressive MS patients (181). Both PPMS
and SPMS patients were recruited in the study and received
either 50mg ibudilast or a placebo, twice daily for 96 weeks. The
recently published results show that upon ibudilast treatment,
the rate of brain atrophy was slowed by 48%. However, as
with rolipram, treatment with ibudilast was accompanied by
adverse events such as gastrointestinal symptoms, headaches and
depression (181).

In 2004, a pilot study was initiated to investigate whether
the PDE5 inhibitor, sildenafil citrate, improves cerebral blood
perfusion inMS patients (182).MS patients frequently experience
a compromised cerebral blood flow which can lead to neuronal
cell death. Therefore, it was hypothesized that blood flow
perfusion can be increased in these patients through treatment
with sildenafil citrate. Both MS patients and healthy volunteers
were recruited for this study. MRI scans of the cerebral arteries
were taken at baseline prior to treatment, as well as 1 h after
sildenafil citrate administration (182). Even though the study was
completed within 2 years, the results and outcomes of the trial are
yet to be disclosed.

At present, ibudilast is the only PDE inhibitor that has yielded
positive results in a clinical setting. The ongoing SPRINT-MS
study will validate whether the observed effects of ibudilast on
brain atrophy are reproducible, and if it is associated with slower
disease progression (181). However, even though ibudilast targets
different PDE families, it preferentially targets PDE4 (183). As
seen with rolipram, targeting PDE4 in humans is associated
with strong adverse effects such as nausea and vomiting, which
can compromise the potential use of such inhibitors in clinical
settings. There is therefore an urgent need to develop and assess
the beneficial effects of PDE isoform inhibitors for their beneficial
effects in clinical trials for MS.

PDE INHIBITORS IN OTHER
NEURODEGENERATIVE DISORDERS:
RELEVANCE FOR TREATING MS

Neuroinflammation and neurodegeneration are central processes
involved in a wide range of CNS disorders. Based on the
aforementioned cellular effects, it is not surprising that PDE
inhibitors have been extensively studied in the context of
disorders other than MS. Therefore, multiple lessons can
be drawn from studies conducted in other disorders and
may be implemented when devising therapeutic applications
of PDE inhibitors in MS. Although neuroinflammatory and
neurodegenerative processes are identical in many disorders, the
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TABLE 1 | Overview of (pre-)clinical studies with PDE inhibitors for the treatment of MS.

Drug name Indication Route of administration Mode of action Target Status

AP-1 MS Oral Immune modulation PDE7 and GSK3B Preclinical

Ibudilast PPMS; SPMS Oral; ophthalmic Anti-inflammatory; neuroprotective Non-selective PDE inhibitor Phase II

Revamilast MS Oral Immune modulation PDE4 inactive

Rolipram MS Oral Facilitates neural transmission; immune modulation PDE4 Inactive

Sildenafil RRMS/SPMS Oral Increase blood flow PDE5 Phase II

Small molecules to inhibit PDE7 MS Oral Immune modulation PDE7 Inactive

TDP-101 MS / Immune modulation PDE4B Preclinical

MS multiple sclerosis; RRMS relapse remitting MS; PPMS primary progressive MS; SPMS secondary progressive MS; PDE phosphodiesterase; GSK3B glycogen synthase kinase 3

beta GSK3B (GlobalData extraction 25/05/2019).

underlying pathological causality is highly diverse. Therefore,
relevant findings supporting the role of PDE inhibitors in other
CNS disorders do not provide conclusive results, but rather show
the potential of PDE inhibitors in treating MS. Here we will
briefly discuss the potential of PDE inhibitors for treating CNS
trauma and Alzheimer’s disease (AD), and their relevance for
treating MS.

After CNS trauma such as SCI, a chronic neuroinflammatory
response occurs that impairs neuroregeneration. PDE4 inhibition
has been shown to reduce inflammatory processes in monocytes
and lymphocytes (184). Considering the role of these infiltrating
immune cells in the pathophysiology of SCI, there have been
many studies further investigating the effect of PDE4 inhibition.
It was demonstrated that PDE4 inhibition increases axonal
regeneration using the PDE4 inhibitor rolipram (144). Moreover,
Whitaker et al. found that rolipram protected oligodendrocytes
against secondary cell death. Furthermore, it was shown that
spinal cord oligodendrocytes express PDE4A, B, and D, while
microglia predominantly express PDE4B (144). Bao et al. have
also demonstrated that PDE4 inhibition decreased white matter
damage, oxidative stress, and leukocyte infiltration, resulting
in cellular protection and locomotor improvements after SCI
(184). In addition to PDE4, PDE7 inhibition was also studied
in the context of SCI. PDE7 is expressed on both macrophages
and neurons (185, 186). Paterniti et al. sought to determine
the effect of PDE7 inhibition on secondary processes after
SCI. Their data demonstrated that PDE7 reduced spinal cord
inflammation, tissue injury, neutrophil infiltration, oxidative
stress, and apoptosis after SCI (186). Cognitive impairment is an
additional effect of neurodegeneration. PDE4 inhibition can also
affect cognitive behavior after trauma. This was demonstrated
after traumatic brain injury (TBI), where rolipram rescued
the cognitive impairment in rats with TBI, an effect that
might be attributable to increased CREB activation during
learning (187). The promising results of PDE inhibition in CNS
trauma are consistent with the previously described potential of
these inhibitors in MS treatments. Reduced neuroinflammatory
responses, increased axonal regeneration and decreased oxidative
stress levels upon PDE4 inhibition can all halt or prevent disease
progression of MS. Furthermore, PDE4 inhibition additionally
rescued cognitive impairment in pathological circumstances.

Given that 40–65% of MS patients experience cognitive
impairments (188), PDE4 inhibition would not only reduce
pathological hallmarks in the CNS of MS patients, but would also
directly reduce a prominent MS-related symptom.

Neuroinflammation is a major hallmark of AD. The
pathological proteins amyloid-beta (Aβ) and tau have also
been closely linked to inflammatory responses in the brain
(189). In AD, an innate immune response is triggered in
the brain when aggregated or misfolded proteins bind to
pattern recognition receptors on astrocytes and microglia
(190). Subsequent secretion of inflammatory mediators (e.g.,
TNF-α and IL-1β) aggravate AD pathogenesis and contribute
to disease progression. Moreover, neuroinflammation may also
be a risk factor or mediator in the onset and/or progression
of AD (191). Therefore, modulation of neuroinflammatory
and/or neuroprotective processes by general or cell type-
specific targeting of PDEs may hold therapeutic potential in
the context of treating AD. The effect of PDE modulation on
neuroinflammation and neurodegeneration has been studied
in multiple in vitro and in vivo AD models. Inhibition of
PDE4 was shown to exhibit anti-inflammatory effects in
transgenic AD mice (192, 193). More specific inhibition of the
PDE4D isoforms PDE4D4 and PDE4D5 was able to decrease
Aβ-induced expression of NFκB, TNFα, and IL-1β (194). In
microglia, it was found that Aβ induced increased expression of
PDE4B, resulting in higher TNFα release. Inhibition of PDE4B
was shown to counter upregulation of TNFα by up to 70%
(195). Moreover, ferulic acid, a putative PDE4B2 inhibitor,
alleviated increased TNFα and IL-1β levels induced by Aβ (196).
Inhibition of the entire PDE4 gene family as well as specific
PDE4 genes and isoforms seems to hold anti-inflammatory
and neuroprotective potential. Cytotoxicity induced by Aβ

was found to be attenuated upon PDE4, PDE5, PDE9, but not
PDE3 inhibition in a neuroblastoma cell line (197). Further
in vivo studies involving intraperitoneal administration of
10 mg/kg PDE5 inhibitor sildenafil to transgenic AD mice
resulted in decreased neuroinflammation (122). Protective
effects by PDE9 inhibition are supported by the observation
that PDE9 inhibition reduced Aβ-induced oxidative stress in
transgenic AD mice (198). In addition to anti-inflammatory
effects induced by PDE inhibition, functional improvements in
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memory deficits associated with transgenic AD mouse models
have been shown for the inhibition of several PDEs. Chronic
treatment with the PDE2 inhibitor BAY60-7550 (0.3 mg/kg
for 8 weeks) improved spatial memory in transgenic AD mice
(199). Similarly, addition of the PDE3 inhibitor cilostazol to
food pellets of Tg-SwDI mice improved cognition as reflected
by grooming behavior (200). PDE4 inhibition by rolipram or
FFPM restores memory performance in APP/PS1 transgenic
mice as well as cognitive impairments induced by streptozotocin
or natural aging (193, 201, 202). Specific inhibition of PDE4D
(daily subcutaneous injections with GEBR-7b (0.001 mg/kg)
for 3 weeks) improved spatial memory in APPswe/PS1dE9
mice (203). In APP/PS1 mice, memory improvements were
found after PDE5 inhibition using administration of sildenafil
or icariin (122, 204, 205). Daily treatment with the PDE7
inhibitor S14 (5 mg/kg, intraperitoneally) for 4 weeks improved
memory performance in APP/PS1 mice (173). PDE9 inhibition
using the inhibitor BAY-73-6691 improved memory deficits
in tg2576 mice and mice subjected to intracerebroventricular
injection of Aβ25-35 (174, 198). Additionally, the combination
of subefficacious doses of a PDE4 (roflumilast) and PDE5
(vardenafil) inhibitor could improve memory in transgenic
APPswe mice (206). These preclinical findings indicate that
neuroinflammatory and memory-associated processes can be
modulated through inhibition of different PDE gene families.
As both the signaling cascades involving cAMP and cGMP
seem to be affected in AD patients (207–210), inhibition of
cAMP- and cGMP-specific PDEs holds potential as therapeutic
strategy. However, clinical studies investigating the memory-
enhancing potential of PDE inhibitors show inconsistent
effects (157, 211). Several changes in PDE expression have
been observed in AD brains which seem to be dependent on
brain region, cell-type and disease progression (33). Since
neuroinflammatory processes may partially mediate initiation or
progression of AD, PDE inhibition may provide an exploitable
strategy to interfere with these processes. Both in AD and MS,
PDE4B(2) has shown to be critically involved in mediating
the pro-inflammatory responses of phagocytes in the CNS.
Also, inhibition of specific PDE4D isoforms has been shown to
possess anti-inflammatory properties in AD, demonstrating the
potential of these inhibitors to be explored in the pathogenesis
of MS. Apart from direct effects on neuroinflammation,
inhibition of PDEs may decrease neuroinflammation and
neurodegeneration by influencing AD pathology and
neuroplasticity. However, these indirect effects are beyond
the scope of this review. Therefore, it would be best if future
studies will indicate the expression regulation and role of PDEs
per cell type in order to more specifically target cellular processes
underlying neuroinflammation and neurodegeneration in both
AD and MS.

CONCLUDING REMARKS

The role of PDE inhibitors to modulate neuroinflammatory and
neuroreparative processes has gained tremendous interest over
the last several years. It is becoming clear that targeting of
PDE families can modify multiple cellular key players involved

in a variety of processes involved in MS pathogenesis. Due
to this multifactorial effect, inhibiting a single PDE family is
often accompanied with severe side effects, hampering their
translation for a clinical application. Nevertheless, different PDE
families are shown to be beneficial in different phases of MS.
For example, in the initial phase of MS when BBB integrity
is lost, not cGMP but rather cAMP-specific PDE inhibitors
are considered a viable therapeutic strategy. Elevating cAMP
levels in endothelial cells increased the expression of tight
junctions, while elevating cAMP levels in astrocytes decreased
the expression of adhesion molecules, subsequently creating a
synergistic effect that prevents peripheral lymphocyte infiltration
into the CNS via the BBB. During RRMS, there is already an
ongoing active pro-inflammatory response. Therefore, disease
progressionmay be halted through the use of cAMP-specific PDE
inhibitors to either directly modulate Th1 and Th17 responses or
to increase Treg populations to regulate immune homeostasis.
Elevating cAMP levels in phagocytes diminishes the secretion
of pro-inflammatory cytokines and subsequently lowers the
pro-inflammatory phenotype of these cells. Before CNS repair
can be initiated in MS patients, myelin debris needs to be
internalized at the lesion site by these phagocytes. However,
the phagocytic properties of these cells are not stimulated
by the increase of intracellular cAMP levels, but rather by
the increase of cGMP levels specifically. Therefore, cGMP-
specific PDE inhibitors are considered a potential therapeutic
strategy for promoting repair processes in later stages of
MS. In the context of OPC differentiation, both cAMP and
cGMP specific PDE inhibitors have shown their potential.
However, these findings require replication be validated and the
potential of the inhibitors should be explored further in the
context of progressive MS. Finally, enhancing neuroplasticity
is considered a possible strategy for promoting functional
recovery in MS patients. Multiple PDE inhibitors have been
shown to be neuroprotective and to enhance neuroplasticity in
vitro and in vivo, however their efficacy in the context of MS
remains unexplored.

Although promising results were obtained in pre-clinical
studies, contradictory results were observed in PDE KO animals
compared to pharmacological inhibition. However, directly
comparing these findings is difficult given the developmental
differences in these animals due to the permanent absence of
the PDE enzyme throughout the animal’s life. Compensatory
mechanism are potentially being activated early in the life of
PDE KO animals causing an increased expression of other PDE
families, genes or isoforms. The development of conditional
KO animals can therefore lead to new promising results to
confirm the involvement of specific PDEs in pathological
conditions. Furthermore, clinical studies using PDE inhibitors
often show severe side effects due to the multifactorial effects
of PDE inhibitors on multiple cellular processes. PDE isoforms
show specific cellular compartmentalization, creating distinct
signalosomes within different cells. Therefore, identifying which
PDE genes and isoforms underlie distinct pathogenic processes
in MS can create a more targeted approach for modifying specific
key players during different phases of MS. As such, targeting
specific PDE isoforms can further lower the occurrence of
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adverse events. Taken together, identifying the key PDE families,
genes and isoforms involved in specific phases and processes
may lead to the development of a tailor-made approach for
treating MS.
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