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ABSTRACT.

Purpose: To assess the use of deep learning (DL) for computer-assisted

glaucoma identification, and the impact of training using images selected by

an active learning strategy, which minimizes labelling cost. Additionally, this

study focuses on the explainability of the glaucoma classifier.

Methods: This original investigation pooled 8433 retrospectively collected and

anonymized colour optic disc-centred fundus images, in order to develop a deep

learning-based classifier for glaucoma diagnosis. The labels of the various deep

learning models were compared with the clinical assessment by glaucoma

experts. Data were analysed between March and October 2018. Sensitivity,

specificity, area under the receiver operating characteristic curve (AUC), and

amount of data used for discriminating between glaucomatous and non-

glaucomatous fundus images, on both image and patient level.

Results: Trained using 2072 colour fundus images, representing 42% of the

original training data, the trained DL model achieved an AUC of 0.995,

sensitivity and specificity of, respectively, 98.0% (CI 95.5%–99.4%) and 91%

(CI 84.0%–96.0%), for glaucoma versus non-glaucoma patient referral.

Conclusions: These results demonstrate the benefits of deep learning for

automated glaucoma detection based on optic disc-centred fundus images. The

combined use of transfer and active learning in the medical community can

optimize performance of DL models, while minimizing the labelling cost of

domain-specific mavens. Glaucoma experts are able to make use of heat maps

generated by the deep learning classifier to assess its decision, which seems to be

related to inferior and superior neuroretinal rim (within ONH), and RNFL in

superotemporal and inferotemporal zones (outside ONH).
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Introduction

Glaucoma is currently responsible for
approximately 12% of all cases of irre-
versible vision loss (Kapetanakis et al.
2006). The number of patients is
expected to increase in our ageing soci-
ety. Predictions indicate that over 110
million people worldwide may be diag-
nosed with the disease by 2040 (Tham
et al. 2014). Glaucoma is a neurodegen-
erative disease characterized by retinal
ganglion cell loss as a result of multiple
factors, including high intraocular pres-
sure, optic nerve ocular blood flow
dysregulation and neurotoxicity. Pro-
gressive optic nerve fibre damage leads
to visual field (VF) loss, which often
remains unnoticed by the patient
because the initial VF loss is peripheral
and is compensated by the overlapping
VF of the contralateral eye as well as by
a compensatory ‘filling-in’ of these
zones by the brain. The resulting lack
of early symptoms implies that a signif-
icant number of individuals remain
undiagnosed, even in high-income coun-
tries. Besides VF testing, structural
assessment of the optic nerve head
(ONH) and retinal nerve fibre layer
(RNFL) is crucial in the diagnosis and
follow-up of glaucoma. Optical coher-
ence tomography (OCT) and fundus
photography are two complementary
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imaging modalities, with the latter
allowing qualitative analysis like disc
haemorrhages and colour changes.Gen-
eral population screening for glaucoma
is currently not common practice (Ervin
et al. 2012), as there is no sufficient
evidence of its cost-effectiveness to date
(Tuulonen 2011; Burr et al. 2014). With
the prospect of a growing population
affected by glaucoma, a thorough
reassessment of glaucoma care is war-
ranted.

Ophthalmology is pioneering with
future possible application of artificial
intelligence (AI) (Ting et al. 2019).
Gulshan et al. (2016) developed a con-
volutional neural network (CNN) for
the detection of diabetic retinopathy
(DR) from fundus images, scoring
areas under the receiver operating
characteristic curves (AUCs) of 0.991
and 0.990 on two validation sets. More
recently, van der Heijden et al. (2018)
reported an AUC of 0.94 on a referral
task for DR in a prospective study with
nearly 900 patients. This pivotal study
led to FDA clearance of the first
commercial automated grading tool
for referable DR using deep learning.
Automated detection of age-related
macular degeneration from colour fun-
dus images using a pretrained deep
learning encoder on the large public
AREDS data set was independently
described by Burlina et al. (2018) and
Grassmann et al. (2018).

Automated glaucoma detection
from fundus imaging has been actively
studied prior to deep learning, with the
majority of techniques relying on hand-
crafted features, such as the vertical
cup-to-disc ratio, extracted from fun-
dus images. Deep learning architec-
tures for glaucoma have been reported
on topics including optic disc and cup
segmentation (Fu et al. 2018), VF pre-
diction (Wen et al. 2018), and auto-
mated glaucoma detection using small
data sets (Matsopoulos et al. 2008;
Asaoka et al. 2016; Maheshwari et al.
2017; Muhammad et al. 2017; Ahn
et al. 2018; Shibata et al. 2018). In
2015, the first results on glaucoma
classification with deep learning were
published, using two data sets (<2000
images) (Chen et al. (2015). More
recently, Li et al. (2018a,b) described
automated glaucoma detection using
48 116 fundus images from an Asian
population, reporting high sensitivity
(95.6%), specificity (92.0%) and AUC
(0.986) on a validation set of more than

8000 images using pretrained deep
learning encoders. The main strength
of their work is the recruitment of a
large number of trained ophthalmolo-
gists, who graded the entire set of
fundus images for signs of glaucoma.

The current paper reports on the
development of a glaucoma prediction
model. Optic disc changes are initially
subtle andcanbechallenging todetectby
a human grader. Our access to glauco-
matous fundus images – labelled based
on a complete ophthalmologic examina-
tion (tonometry, OCT or confocal scan-
ning laser ophthalmoscopy) – allows the
deep learning encoder to learn subtle
features in fundus images of early/mod-
erate stage glaucoma patients. Hence,
the first objective of this study was to
develop and validate a deep learned
glaucoma classifier using colour fundus
images from a patient population, mea-
sured against clinical diagnosis.

The second objective was to explore
the added-value of active learning (Set-
tles 2009) on top of deep learning for
automated glaucoma detection. Active
learning is a special case of semi-
supervised learning that aims to lever-
age uncertainty information from an
unlabelled set in order to predict from
which unlabelled images the classifier
would benefit the most if they would
become labelled. True labels, especially
in the medical community, can be
difficult to obtain. By employing an
active learning system that maximizes
classification performance, while mini-
mizing the number of required labels,
data sets and labelling efforts can be
used more efficiently.

The third and final objective was to
inspect the trained model’s decision
process using interpretable heat maps.
Deep learning (DL) models learn con-
cepts from the data itself, omitting the
need for manual feature extraction,
and leading to state-of-the-art results,
but lower transparency in understand-
ing the classifier’s decision process.
Heat maps that visualize the image
areas that contributed the most
towards glaucoma classification might
assist in opening the black box of the
trained deep learning system.

Methods

Image and label acquisition

All 30° optic disc-centred colour fun-
dus images of 1620 9 1444 resolution

were captured with a Zeiss VISUCAM
(Carl Zeiss Meditec, Jena, Germany)
and used retrospectively in the current
study. The glaucomatous fundus
images (6651) originate from 1353
unique patients (�4.9 images per
patient) imaged at the glaucoma clinic
of the University Hospitals Leuven
(Belgium) during several consultations
between 2009 and 2017. Over 60% of
patients went to follow-up consulta-
tions, leading to images taken at dif-
ferent points in time, which can differ
due disease progression, hence useful
for the model. The vast majority of
fundus images (1614) from 403 non-
glaucoma (normal) individuals (�4
images per individual) stem from a
data set collected at three different
locations in the context of an aware-
ness campaign during the World Glau-
coma Week 2018 that took place
between 11th and 17th March. Screen-
ing sessions were organized at different
Belgian hospitals (Brussels, Leuven
and Bruges) and were aimed at raising
public awareness on the disease, with
eligible participants restricted to age 40
or above. The images of the healthy
subjects at the screening sessions were
taken at the same time and show no
signs of retinal changes. However, they
do hold additional information because
of small changes due to focus, lighting,
eye movement etc. Additionally, a set
of normal fundus images (168) from 88
individuals (�1.9 images per individ-
ual, both eyes when applicable) were
sourced from a 2016 glaucoma screen-
ing program at the University Hospi-
tals Leuven. This resulted in a total set
of 1782 images of 491 non-glaucoma
individuals. For all images, informa-
tion provided to data processor was
limited to an anonymized patient iden-
tifier and glaucoma type. The glau-
coma diagnoses (following ICD
standards) linked with the fundus
images were obtained through a full
ophthalmologic examination. Patients
were subjected to neuroretinal rim and
nerve fibre layer analysis using either
OCT (Spectralis OCT; Heidelberg
Engineering, Heidelberg, Germany) or
confocal scanning laser ophthal-
moscopy (Heidelberg retinal tomogra-
phy; HRT; Heidelberg Engineering,
Heidelberg, Germany), tonometry
(Goldmann Applanation Tonometry;
Haag-Streit AT900; K€oniz, Switzer-
land) and visual field testing (Hum-
phrey Visual Field Analyzer; Carl Zeiss
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Meditec, Jena, Germany). The glau-
coma experts are aware of the so-called
red and green disease surrounding
OCT results and do verify the actual
images to look for any artifacts or
other sources of misinterpretation and
check the reliability of the analysis. The
transition HRT to Spectralis OCT
device rolled out in 2015. Patients that
were followed up prior to the switch
are still imaged with HRT to ensure
consistent progression analysis. Visual
field testing at the glaucoma clinic of
UZ Leuven is achieved through Hum-
phrey or Octopus standard automated
perimetry. Clinicians look for typical
glaucomatous visual field defects such
as wedge shape defects, steps or nasal
breakthrough. The glaucoma experts at
UZ Leuven incorporated progression
analysis when available, to ensure
accurate glaucoma diagnosis. The
images sourced from the screening
program were evaluated by two glau-
coma experts without the aid of OCT
and VF tests, but did include a slit
lamp biomicroscopic examination
including fundoscopy by a glaucoma
expert.

Image preprocessing

All 8433 images were manually
inspected by two independent retinal
image experts to control for quality,
omitting images without visible optic
disc. Because of the high-quality glau-
coma labels based on a full ophthal-
mological examination, even poor
images can be used during training, to
increase the robustness of the deep
learning model. This quality control
does not match the quality that human

experts require for diagnosis, hence the
task being carried out by retinal image
experts with experience in deep learn-
ing in ophthalmology. Quality assessed
images deemed fit for analysis were
initially centre cropped to a square of
1016 9 1016, removing any risk of
influence caused by the image border,
and subsequently resized to 224 9 224
to match the input layer of the ResNet-
50 (He et al. 2016) neural network
architecture.

Colour fundus images are character-
ized by a large intra-image variance in
intensity levels mainly due to the cur-
vature of the retina. Therefore, the
images were convolved with a Gaus-
sian kernel (30 9 30) to estimate its
background, and this was deducted
from the original image. The result is
a data set of standardized fundus
images, as illustrated in the top left of
Fig. 2.

In this study, data augmentation was
implemented to artificially increase the
number of original images used to train
the CNN. Augmentation techniques
included in the training process of the
final model were: horizontal flip,
brightness shift and minor elastic
deformation. All image augmentations
were randomly generated at the start of
each mini-batch, as can be seen in the
top right of Fig. 2.

Transfer learning

This study used the publicly available
Keras (v2.2.0, TensorFlow v1.4.1 back-
end) ResNet-50 encoder pretrained on
ImageNet (Deng et al. 2009), followed
by additional layers to increase regu-
larization. The complete deep neural

network counted 182 layers of mathe-
matical operations including convolu-
tions and batch normalization (see
supplementary material for full net-
work details). During training, all pre-
trained encoder layers were frozen,
except for the last 12 layers, to allow
the model to learn features relevant for
glaucoma detection. Standard binary
cross-entropy was used as cost func-
tion, and the Adam (Kingma & Ba
2015) optimizer was used with a con-
stant learning rate of 0.0001.

Active learning

The employed ResNet-50 encoder fea-
tures over 25 million parameters,
requiring a high amount of unique
training data to reach its full potential.
This study opted for uncertainty sam-
pling as the active learning criterion
because of its widespread application in
image classification (Joshi et al. 2009).

Uncertainty sampling refers to
selecting new samples based on their
close distance to the decision boundary
set by the classification system, which
corresponds to a higher uncertainty. By
querying these labels first, the classifier
is expected to reduce its uncertainty on
these data, more quickly converging to
a stable solution. To benchmark the
performance of this heuristic, this study
also conducted an experiment in which
data to be labelled are sampled at
random (see Fig. 1 and supplementary
material for sampling details).

Saliency maps

The Keras Visualization Toolkit
(Kotikalapudi 2017) was used to

Fig. 1. Top: Overview of data used, effect of image quality control, and subdivision in training, validation and test set.
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generate saliency maps. Saliency maps
for deep learning accentuate the pixels
(coloured reddish) that contribute the
most to the classification output, that is
if that pixel were to change, the clas-
sification output would be likely to
change as well (Simonyan et al. 2014).
The generated saliency maps of (i)
randomly selected images classified
correctly by the trained model, and
(ii) the false positives (FP) and false
negatives (FN) were subsequently
examined by two blinded glaucoma
experts.

In order to reveal a pattern, saliency
maps of thirty oculus dextrus fundus
images were manually aligned and
averaged. The average saliency map
was divided into six zones commonly
used in ONH analysis, with differences
in saliency intensity quantified.

Evaluation metrics

All predictions by the deep learning
models were evaluated against the
ground truth label provided by the
University Hospitals Leuven. Area
under the receiver operating character-
istic curve (AUC) was selected as main
performance metric, with specificity
and sensitivity also reported. The eval-
uation phase was conducted using the
SciPy Python library (Jones et al.
2001).

Results

A total number of 7038 images (83.5%
of originally pooled number of images)
of 1775 patients passed the manual
image quality assessment and were
further used in this study. Selected
images of 1775 patients were allocated
to training (70%; 1244 patients; 4935
images), validation (10%; 177 patients,
679 images), and test set (20%; 354
patients, 1424 images), based on anon-
ymized patient identifier, ensuring that
all images from the same patient were
to be found in the same class. All
glaucoma detection experiments were
evaluated on the validation set of 679
images as proxy to select the optimal
state of trainable parameters.

Final results are reported on the
independent test set of 1424 unique
images, corresponding to 354 individ-
uals. For patient level prediction, all
glaucoma predictions of images
belonging to the same patient are
averaged and then classified based on

the 0.5 cut-off. Results on the patient
level were considered more appropriate
for interpretation of the results, as
referral decisions would be made on
the patient level. Table 1 outlines clas-
sification results for glaucoma detec-
tion (glaucoma vs non-glaucoma,
abbreviated by GLC and NO) for the
active learning experiments and base-
line model with all training images and
labels included at start of the training
process. Confusion matrix and perfor-
mance metrics are given, computed
over the original image with test-time
augmentation (TTA). The latter corre-
sponds to randomly augmenting the
image tenfold, using the same tech-
niques as in training, followed by
averaging the prediction probabilities
in order to decrease prediction uncer-
tainty. The use of TTA led to reduc-
tions in AUC error up to 14%.

Final models for the two active
learning experiments were selected at
2072 training images, due to the
marginal improvements when using
additional data (Fig. 2, graph bottom
right). After seeing 42% (2072 images)
of the training data, the model follow-
ing the active learning strategy
achieved an AUC of 0.995, with sensi-
tivity at 98% and specificity at 91% on
the test set, clearly benefitting from the
employed heuristic that leveraged
uncertainty information (Table 1).

The performance gap is the most
prominent when comparing the speci-
ficity of both models, with the random
sampling technique yielding a modest
84% on patient level.

The baseline model trained with all
original 4935 training images (accom-
panied by a large set of artificial images
following data augmentation) obtained
an AUC of 0.996 on patient referral
level. Sensitivity and specificity reach
99.2% and 93%, respectively, corre-
sponding to a low number of false
negatives (2) and false positives (7).
The grouping of images at the patient
level led to a reduction in misclassifi-
cation. Images of misclassified patients
were reviewed by two ophthalmologists
specialized in glaucoma. False positives
could be grouped into (1) subpar image
quality due to blurriness or artefacts
like eyelashes (n = 4) and (2) signs of
other ocular diseases like macular
drusen (n = 1) and (3) peripapillary
atrophy (n = 2). The fundus image of
one false negative patient did not
display any clear signs of glaucoma
onset, while the other one was a true
FN.

The saliency analysis, aimed at
explaining the classifier’s decision pro-
cess, is given in Fig. 3. Careful analysis
of over 500 saliency maps by two
glaucoma experts revealed a recurrent
pattern of elevated saliency in

Table 1. Glaucoma detection with transfer and active learning – quantitative results.

Model Confusion matrix Metrics

Uncertainty sampling (2072 training

images; 42% of training set)

Image True Predicted

NO GLC Sensitivity 96%

NO 324 47 Specificity 87%

GLC 42 1011 AUC 0.983

Patient True Predicted

NO GLC Sensitivity 98%

NO 91 9 Specificity 91%

GLC 5 249 AUC 0.995

Random sampling (2072 training

images; 42% of training set)

Image True Predicted

NO GLC Sensitivity 96%

NO 305 66 Specificity 81%

GLC 46 1007 AUC 0.972

Patient True Predicted

NO GLC Sensitivity 98%

NO 84 16 Specificity 84%

GLC 5 249 AUC 0.986

Baseline ResNet-50 CNN (4935

training images, complete training

set)

Image True Predicted

NO GLC Sensitivity 96%

NO 346 25 Specificity 93%

GLC 42 1011 AUC 0.986

Patient True Predicted

NO GLC Sensitivity 99%

NO 93 7 Specificity 93%

GLC 2 252 AUC 0.996
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inferotemporal and superotemporal
zones, either within (early/moderate
stage, remaining neuroretinal rim) or
outside (late stage, complete thinning)
the ONH. This recurrent pattern was
subsequently confirmed through the
averaging of thirty optic disc-aligned
saliency maps.

Discussion

This study resulted in an accurate deep
learning-based glaucoma classifier,
achieving patient referral AUC of
0.995 on 1424 test images from 354
individuals, with only 42% (2072
images) of the complete training set
(4935 images) used. The joint forces of

transfer and active learning foster
potential in the domain of glaucoma
classification from fundus images,
allowing model training with a 58%
reduction in labelling requirements.

The development of a baseline
model trained with all available train-
ing data (4935 images) and transfer
learning yielded an AUC of 0.996,
sensitivity and specificity of 99.2%
and 93%, on the test set. The merits
of transfer learning in the field of
automated glaucoma detection using
fundus images have been illustrated
using both small (Ahn et al. 2018;
Shibata et al. 2018) and large (Christo-
pher et al. 2018; Li et al. 2018a,b)
(>5000 images) data sets. Li et al.

(2018a) trained a CNN for glaucoma
classification using a data set of 48116
images, reporting AUC, sensitivity and
specificity of 0.986, 95.6% and 92%,
respectively. While the efforts to reach
a labelled data set of this size are to be
commended, one could question
whether the same performance can be
reached in a more cost-effective man-
ner, with significantly less labelled fun-
dus images used during training.
Annotated medical image data are
hard to gather, with images and asso-
ciated glaucoma diagnosis employed in
this study generated over several years.
The field of active learning encom-
passes a set of techniques that acceler-
ate training by querying experts for

Fig. 2. Top: Overview of image preprocessing (ROI extraction, background subtraction) and data augmentation (horizontal flip, elastic deformation

and brightness shift). Bottom: Overview of active learning process. 1: 14 preprocessed and augmented fundus images were used to finetune a CNN

with pretrained ImageNet weights. 2: After convergence (no improvement of validation accuracy for two epochs), the model was validated on 679

images, with the results of each active learning iteration visualized in 3. 4: The model was also evaluated on an unlabelled set of (non-)glaucomatous

images, with the 14 most uncertain samples (or random samples) transferred to the training set (5). This process was repeated until the unlabelled set

was depleted.
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labels that would benefit the classifica-
tion system the most. In this study, the
addition of an active learning compo-
nent resulted in a model with 42% of
the data used, while still attaining an
AUC of 0.995 on patient referral.

Two trained glaucoma clinicians
analysed more than 500 saliency maps,
accompanied by the original glauco-
matous images, and indicate a recur-
rent pattern of salient regions in the
inferotemporal and superotemporal
zones neighbouring the ONH. These
regions likely correspond to the RNFL
areas that are affected as a result of
glaucoma. The hypothesis of a recur-
rent pattern of elevated saliency in
inferotemporal and superotemporal
regions was supported by a statistical
analysis using the manually aligned
average of 30 randomly selected sal-
iency maps (Fig. 3). The centre part
(disc area) of the average saliency map
provides additional evidence on a sig-
nificant concentration of salient regions
in the inferior, temporal and super-
otemporal region of the ONH. The
latter partly matches the findings
described by Christopher et al. (2018),
who used an occlusion-based strategy
to reveal salient regions in inferior and
superior zones within the disc. This
study is the first to indicate that regions
outside the ONH could be valuable in
glaucoma classification using deep
learning. We aim to further investigate
the importance of RNFL defects in

glaucoma classification from fundus
images in future work.

Manual image quality assessment
led to 83.5% of available fundus
images being actually of sufficient qual-
ity for analysis in this original investi-
gation. Two retinal image experts
graded each image, omitting those with
an excessive presence of camera arte-
facts or missing optic nerve head.
Image quality is essential to ensure
proper functioning of the convolu-
tional neural network. In this study,
the latter is backed up by the analysis
of false positives and false negatives by
two ophthalmologists (performed in a
blind manner), who indicated subpar
image quality to be the culprit in
several cases.

This study has several limitations.
The class distribution, with over 70%
glaucomatous images, is far from the
real-life prevalence one would encoun-
ter at screening sessions. The selected
data imbalance is due to the small
availability of non-glaucomatous
images, which are often not stored in
hospitals. In addition, a large set of the
glaucoma images are intermediate or
late stage (based on neuroretinal rim
assessment), while an important appli-
cation of glaucoma classification with
deep learning could be early detection.
Finally, the models trained and vali-
dated in this study used images of
mainly Caucasian patients that were
captured with a fundus camera device

from one vendor. To overcome this
limitation, we are extending our work
by validating and refining our current
model using heterogenous data sets
obtained through international collab-
orations, with the goal to develop a
model suitable for global screening.

Conclusions

This study achieves state-of-the-art
results for automated glaucoma refer-
ral with a 60% decrease in labelling
cost through the combination of trans-
fer learning, careful data augmenta-
tion, and uncertainty sampling, a
heuristic commonly used in the domain
of active learning. Our iterative sam-
pling process provides novel evidence
that deep learning can achieve excellent
performance in glaucoma classifica-
tion, even when using a limited amount
of labelled training data. These findings
should motivate research groups that
have access to less data to help to
advance the field of artificial intelli-
gence applied to ophthalmology.
Finally, this study provides novel
insights into the decision-making pro-
cess of the trained deep learning glau-
coma classifier through the averaging
of saliency maps, which seem to be
highlighting inferior and superior neu-
roretinal rim thinning (within ONH) as
well as RNFL defects in superotempo-
ral and inferotemporal zones (outside
ONH).

Fig. 3. (A) Average saliency map of thirty aligned oculus dextrus images split into six sectors, with reddish colour corresponding to high saliency

(important area for glaucoma classification); optic disc is contained inside the inner circle. (B) Quantification of average saliency in the six zones

outside the disc area (complementary to A).
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