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Abstract

Neurological recovery can not be assessed accurately by physical examination before
72 hours[3]. Bispectral index monitoring (BIS), originally designed to determine
the depth of anesthesia, has been found a user friendly and widespread EEG-
monitoring, to test its usefulness as a prognostic tool for neurological outcome in
the out-of-hospital cardiac arrest patients.
To address this topic, we used data collected on 77 patients over 36 hours. The
given dataset has 30% missingness values and thus some missingness technique
had been employed in order to handle the observed missing pattern. We used the
complete deletion case for the assessment and one set of the five dataset obtained
from Multiple imputation technique, to conduct the sensitivity analysis.
Five different prediction techniques had been used, to evaluate the highest accu-
racy, specificity, sensitivity and the time at which these metrics values are obtained.
Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Neural Net-
work (NN), Joint Modeling (JM) technique with Linear Mixed Effect model for the
first sub-model and with Logistic Regression as second sub-model and then the
second Joint Model with Neural Network as second sub-model. The Linear Mixed
Effect model was fitted with BIS as continuous response variable and time as main
covariate.
As a result, we obtained the best accuracy value for BIS alone at hour 9 and all
metrics give 100% as value at hour 24 for the full model. While losing a little
sensitivity and keeping the specificity at 100%, we gain in predicting an earlier
neurological outcome status for hour 9 with 75% Sensitivity, 90.91% accuracy and
100% Specificity.
Thus, based on the JM-NN results, BIS values measured continuously can be used
to predict poor neurologic outcome status for OHCA patients.

Keywords: Cardiac arrest, Bispectral index, Prediction, support Vector Machine,
Neural Network, Joint model, complete case deletion, Single Imputation.
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1 Introduction

Cardiac arrest (CA) is an abrupt loss of heart functioning [1]. It is a major a major
cause of disability and death. Emergency medical services respond to 375,000 cardiac
arrest cases, each year in Europe[10]. Although some progress had been made, in care,
out-of-hospital cardiac arrest (OHCA) remains a devastating event, with an overall mor-
tality above 90% [23]. Understanding the chronobiology of OHCA is important to clarify
the immediate precipitants of sudden cardiac death, develop preventive strategies, and
to optimize resource planning for the prehospital and in hospital response to CA[2].
Nowadays, neurologic recovery cannot be assessed accurately by physical examination
until at least 72 hours after return to normothermia due to the neurophysiologic effects
of hypothermia, sedatives, and muscle relaxants. Therefore, a generally applicable pre-
diction model supporting the early decision to continue with full supportive treatment
or to remain conservative would be of major interest during the critical hours following
resuscitation. Clinicians have noted the paucity of data to help identify patients early in
the course of care that will not recover from cerebral anoxia[6]. Initial bispectral index
(BIS) may help to identify patients who will awaken during therapeutic hypothermia
after CA [21]. The BIS is a processed EEG signal that was initially developed to mea-
sure anesthetic depth but is used in some intensive care units (ICU) to monitor patients’
brain activity and titrate sedatives. Several studies already showed that BIS scores and
sedation requirements during therapeutic hypothermia may reflect neurologic function
and could be used to clinically predict neurologic recovery. This study aimed to predict
poor neurological outcome as early as possible using BIS values and other clinical and
demographic characteristics.

The theoretical framework is presented in Section 2, the data description in section 3,
the methodology in Section 4; thereafter the results and discussion are shown in Sections
5 and 6 respectively.
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2 Theoretical framework

2.1 General Objective

The aim of the current study, is to understand the possibility of using BIS index monitor
in OHCA to differentiate a good neurological Outcome from a poor.

2.2 Specifics Objectives

1. Find the best performance in predicting poor neurological outcome based on con-
tinuous measure BIS values;

2. Predict the appropriate time point for predicting poor neurological outcome using
BIS values alone and in combination with demographical covariates.

2.3 Hypotheses

1. We could build a model with high discriminant performance in predicting poor
neurological outcome based on continuous measure BIS values;

2. We could predict the appropriate time point for poor neurological outcome using
BIS values alone and in combination with demographical covariates.

3 Data description

The dataset given is composed of 77 subjects in whom BIS, SR and EMG values were
measured over the first 36 hours after admission to the ICU. The total number of observa-
tions in the dataset is 2,772 for 13 variables. PatientID, neurological outcome, Bispectral
Index Score (BIS), Gender, Age, Initial Rhythm, Initial Lactate, Initial pH, SR, EMG
NSE 24 and NSE 48. There are two type of variables, variables measures one time (Pa-
tientID, Outcome, Gender, Age, Initial Rhythm, Initial Lactate, Initial pH, NSE 24 and
NSE 48) and those measured continuously over 36 hours (BIS, SR and EMG). Hence,
the transposition of the data set gives 77 subjects and 118 variables. After removing the
missing values, we end up with 50 observations.

Figure 1: Structure of the data set
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3.1 Missingness in the data

An important difficulty when streaming statistical data collected from the field occurs
when, not all planned measurements are observed. This results into a reduction of the
study subjects leading to a decreasing sample size, hence, increasing variability which
in turn leads to loss in efficiency in the validity of statistical inference. Rubin (1976)
and Little and Rubin (1987) classified these mechanisms into three possible categories,
namely data missing completely at random, at random, or not at random. The missing
pattern had been explored, to determine the completer, dropouts as well as those with in-
termittent missing patterns. In attempting to handle missingness patterns in this project
many techniques such as weighted estimating equations, direct likelihood approach could
be employed since Verbeke and Molenberghs (2005)[19] argued that likelihood based
inference for instance is valid, whenever missingness is in covariates, the mechanism is
Missing at random (MAR) and provided that the parameters describing the non-response
mechanism are distinct from measurement model parameters (ignorable). According to
Rubin (2004), Multiple imputation is a useful mechanism to handle missing data that
occur in more than one variables. Multiple imputation is more credible when missing
data mechanism is Missing At Random (MAR). A comprehensive knowledge about these
mechanisms can be gotten from excellent books by (Little, 1992; Little and Rubin, 2014;
Schafer, 1997; Rubin, 1976). Hence, we chose to conduct a multiple imputation technique
([22] [24]), after applying the Complete Case (CC) analysis technique, that is deleting all
rows that have missing values.

3.2 Missingness handling Mechanism: Multiple Imputation

Multiple imputation (MI) was formally introduced by Rubin (1987) [22]. This technique
replaces each missing value with two or more acceptable values representing a distribu-
tion of possibilities. Each missing value is replaced by a set of m plausible values (m
being the number of imputations, m ≥ 1). The missing values are filled in m times to
generate m complete data sets. These are generated from a plausible model which is
based on a plausible set of parameters drawn from a sampling distribution of the pa-
rameter estimates. The m values are ordered in a sense that the first components of the
vectors when substituted for the missing values result in one data set, the second com-
ponents also result in a second data set, and so forth. These imputed values are stored
in an auxiliary matrix with one row for each missing value and m columns. These m
complete data sets are analyzed by using standard procedures. Results from the analyses
are combined for the inference. This process results in valid statistical inferences that
properly reflect the uncertainty due to missingness, that is, valid confidence intervals for
parameters (Rubin, 1987). For this data set with MAR missing data mechanism, the R
package MICE (Buuren et al., 2015) was applied. MICE, is a parametric method which
assumes that the missing data are MAR that can handle mixed data type [25]. In prac-
tice, after 5000 iterations, ran using the function ”maxit” in R to ensure convergence
within a reasonable time, five (05) samples were generated from which we used the fifth
in this study for the sensitivity analysis.
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4 Methodology

4.1 Exploratory Data Analysis

The exploratory data analysis (EDA) methods was used to illustrate the structures in the
data set [13]. The EDA was conducted by plotting individual and mean profiles together
with the variance function and correlation structure in order to get preliminary insight
and a better understanding of how the bispectral index score evolved over time and also
to identify unrevealed structures in the data.

4.2 Statistical data analysis

The applied methodology cover two types of data set, the dataset obtained using complete
deletion case and the one obtained from the multiple imputation technique that will serve
for sensitivity analysis. As presented by the figure below, we made use of classification
methods such as LDA, SVM, NN Joint Models applied using BIS as only covariate and
the full model composed of BIS and demographic covariates.

Figure 2: Working methodology steps
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4.3 Prediction models

In order to classify patients into survivor group (patients with good neurological out-
come) and into non survivor group (those with poor neurological outcome), using their
demographics and clinical characteristics, the data set was first split into two parts. The
training set, was 80% of the observations and 20% for the test set. The test set was kept
aside, in order to assess the accuracy of the prediction made by the model. This model
was built under three different classification methods plus two joint models, namely:

1. Support Vector Machine (SVM);

2. Linear Discriminant Analysis (LDA);

3. Neural Network (NN);

4. Joint Model with Logistic Regression (JM LR);

5. Joint Model with Neural Network (JM NN).

In the following lines, we will briefly describe each of these procedures and how they are
applied to our data.
This principle lead to many efficient and effective classifiers. It is applied to most learning
machines such as Linear Discriminant Analysis (LDA), Neural Networks (NN) and most
instance-based methods.
In practice, the procedure had been applied in two (02) steps, the training step and the
test step.

Figure 3: Schema of prediction modeling steps
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Step one: Training
The model was fitted on the training data set, using forward model building technique
and taking into account the clinical relevance of different covariates. Using a forward
selection procedure, we started by a model with one covariate (BIS) then added Age,
Gender and other three clinically relevant variables (Initial Rhythm, Initial Lactate and
Initial pH) of the patient.

Each model was improved, using tune function that allow for the choice of the best pa-
rameters in order to get the most accurate prediction from the fitted model.

Step two: Test
We conducted an accuracy test on the fitted model, using the test dataset, and interpreted
the results.
As result, this technique allows us to generate a confusion matrix.

Figure 4: Confusion matrix for diagnostic testing

The confusion matrix is a 2 by 2 contingency table that contains in columns the actual
class of the response variable (Outcome in our case) and in rows, the prediction result
also known as test outcome. Each of them have two (02) levels positive and negative (no
or yes) in our case, survivors (0) and non survivors (1).
Indeed, the first column and first row contains the True Positive – the model predicted
”+” (non- survivor) and the true class of the patient is ”+” (non-survivor). The second
column and second row contains the True Negative - the model predicted ”-” (survivor)
and the true class of the patient is ”-” (survivor). The second column, first row contains
the False Positive - the model predicted ”+” (non-survivor) and the true class of the
patient is ”-” (survivor) (Type I error). The first column and second row contains the
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False Negative - the model predicted ”-” (survivor) and the true class is ”+” (non-
survivor) (Type II error).

4.3.1 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are a fairly new technique for general (nonlinear)
classification, regression and outliers detection with an intuitive model representation
according to Chang & Lin (2001), developed by Cortes & Vapnik (1995) for binary
classification[18]. They have been applied to many different problems, and have been
very successful in areas such as face recognition[5], text-categorization ([20], [12]), time-
series prediction[14], and hand-written digit recognition [17]. In many of these areas,
SVMs have shown to out-perform well-established methods such as Neural Networks and
Radial Basis Functions [11].
The SVM[9] in two-class classification problem could be stated as follows:

1. Given a data set D of N pairs: (x1, y1), (x2, y2), ...., (xN , yN), with xi ∈ Rp and
yi ∈ 0, 1 . Each pair is composed of a training example xi of length M, with
elements xi = (x1, x2, ...., xM).

2. Define a hyperplane by x : f(x) = xTβ + β0 where β is a unit vector: ‖β‖ = 1. A
classification rule induced by f(x) is G(x) = sign[xTβ + β0]

3. f(x) gives the signed distance from a point x to the hyperplane.

4. f(x) = xTβ + β0 = 0. The classes are separable, we can find a function.

5. f(x) = xTβ + β0 with yif(xi) > 0 ∀i, there exist an hyperplane that creates the
biggest margin between the training points for class 1 and 0.

6. The goal is to find a classifier with decision function, f(x), such that f(xi) =
yi,∀(xi, yi) ∈ D.

7. The performance of such a classifier is measured in terms of the classification error
defined in equation:

error(f(x), y) =

{
0, if f(x) = y

1, if otherwise

Consider a learning machine with a set of adjustable parameters α. Given the above
binary classification task, the machine seeks to find α such that it learns the mapping
x 7→ y. This will result in a possible mapping x 7→ f(x, α) that defines the machine.
The performance of the machine is measured by the empirical risk error:

Remp(α) =
1

N

N∑
i=1

error(f(xi, α), yi)

where N is the size of the training set and α the set of adjustable parameters. This risk
minimization principle is called Empirical Risk Minimization (EMP) [11].
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4.3.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a fundamental tool for classification that classify
new observation into the class with closest centroid. LDA method is used in statistics,
pattern recognition and machine learning to find a linear combination of features that
characterizes or separates two or more classes of objects or events. The resulting combi-
nation may be used as a linear classifier, or, more commonly, for dimensionality reduction
before later classification.
LDA is related to analysis of variance (ANOVA) and regression analysis, which also
attempts to express one dependent variable as a linear combination of other variables [16]
[7]. However, ANOVA makes use of categorical independent variables and a continuous
dependent variable, whereas discriminant analysis has continuous independent variables
and a categorical dependent variable [26]. Logistic regression and probit regression appear
to be more similar to LDA as compared to ANOVA. Indeed, they explain a categorical
variable by the values of continuous independent variables. These methods are preferable
in applications where it is not reasonable to assume that the independent variables are
normally distributed, which is a fundamental assumption of the LDA method. The LDA
function[9] is as follow:

δk(x) = xTΣ−1µk −
1

2
µT
k Σ−1µk + log(πk)

The unknown parameters of the Gaussian distributions will be estimated using the train-
ing data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T/(N −K)

• G(x) = argmaxkδk(x).

4.3.3 Neural Network

Neural Network (NN) is a network of neurons that is composed of the nonlinear functions
of two or more a nonlinear, parameterized function of its input variables. Neural networks
(NN) have attracted much attention for their ability of solving a numerous difficult
problems in various areas, such as dynamic modeling, pattern recognition and system
control involving uncertainty parameters. NN is a version of the additive model (Hastie
and Tibshirani, 2016). In practice, there are two approaches, the Backward Propagation
(BP) algorithm and the multilayer feed forward NN. Normally the optimization problem
is usually handled using the Backward Propagation (BP) algorithm in which the error
evaluated at output layer is propagated back through the hidden layers (Chen et al.,
2003). However, the common NN structure is the multilayer feed forward NN, which
is proven to be a universal approximator of non-linearity. Here, the outputs of nodes
in one layer are inputs to the next layer. At each node, NN modifies the inputs, using
the logistic function. Υ(Z) = 1

1+e−Z
where Z is the weighted linear combination. The
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functional form[9] of such model is as follow: Zj = βj +
∑n

i=1wi,jXi. The parameters
β1, ....βj and w1,2, ..., wi,j, are learned from the training set.

4.3.4 Joint modeling

In addition to these prediction techniques, we also used a joint modeling technique con-
sisting of two sub-models to cross check the previously obtained results. The use of
this latter is again justified by the fact that, the BIS (despite its covariate nature) was
measured over time on the same subjects (assuming a longitudinal scheme for the con-
tinuous data BIS). As such, measurement time (Hour) could have an unknown influence
on the predictive ability of BIS. In such case, more complicated methods could be used.
For instance, a summary measure that collapses the longitudinal information over time
(e.g. overall average, change score, slope, intercept, maximum, minimum, achievement
of a threshold, measurement on a particular day, etc.) could be used as a covariate in
a logistic regression. However, it may be difficult to decide which summary measure to
use, and as there are many candidate measures, there is perhaps a problem of multiple
comparisons. Furthermore, if the longitudinal measurements are non-linear in time, it
may be difficult to come up with a single summary measure. Generalized Estimating
Equations (GEE) can be used to estimate the effect of a time-varying covariate on a
time-varying multi-dimensional response; in our application however, the response has a
single dimension, so GEE is not appropriate. Hence, the fitted joint model consist of:

• a first sub-model which is a linear mixed model with BIS as continuous response
variable and time as covariate and patient ID as random component;

• a second sub-model which is a Generalized Linear Model (GLM) for the primary
outcome (which in our application is a binary outcome predicting poor neurological
outcome), using the random intercept and slope obtained from the first stage as
covariate, in addition to all other demographic and clinical variables previously
used in the classification models (see Laird and Ware 1982).

4.3.5 The first sub-model: Linear Mixed Model

Mixed modeling has become a major area of statistical research, including work on com-
putation of maximum likelihood estimates, non-linear mixed effect models and missing
data in mixed effects models. Mixed models are applied in many disciplines where mul-
tiple correlated measurements are made on each unit of interest or where measurements
are made on clusters (here time point measurement) of related statistical units (here
patient ID). They are prominently used in research involving human and animal subjects
in fields ranging from medical research to business administration research (marketing)
fields, and have also been used in industrial statistics.
As with all statistical problems, the method to use in data analysis depends on the
type of data at hand. Perhaps the easiest data to work with due to the availability of
extensive methods for analysis, especially in software implementation, is the continuous
type of data. This stemmed from the fact that with continuous data, even if not normally
distributed, transformations to attain normality are available and henceforth, the elegant
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properties of the normal distribution can be used. A nice property also of normally
distributed data is that, integrating the mixed model over the random effects produces
a marginal model. As such, regression parameter estimates of the Linear Mixed Model
have marginal interpretation and the random effects contribute in a simple way to the
variance-covariance structure (Verbeke and Molenberghs, 2000).
Let Yij = (Yi1, Yi2, ...., Yimi

) represent the continuous longitudinal measurement (BIS)
for individual i, i= 1,2,....,n (n = 77), at measurement times (Hour) Xij = xi1, ...., ximi

,
mi = 36. Individuals were measured approximately at the same time. The sub-model
for the longitudinal data can be written as:

Yij = α0 + α1Xij + Zi + εij

Where, α0 is the overall mean BIS value at time (Hour = 1), α1 is the effect of time on
the BIS value. Zi is a q x 1 vector of unknown random-effects and εij = (εi1, ..., εimi

) is
a vector of measurement errors for individual i. We assume that:

Zi ∼ N(0,Σ) and εij ∼ N(0, σ2Imi
)

and that Z1,.....,Zn, ε1,....., εn are independent, where Σ is a q x q covariance matrix for
the random effects and Ik indicates the k x k identity matrix. For example, letting the
jth row of Xi equal (1,xij) for j = 1, ....,mi, so that Zi = (Zi1, Zi2)

T corresponding to the
random intercept and slope for subject i, and with:

Σ =

(
σ2
1 σ12
σ12 σ2

2

)
we obtain a random slopes and intercepts model introduced by Laird and Ware (1982)
as sub model in a joint modeling.

4.3.6 The second sub model: Generalized Linear Model

The sub model for the primary endpoint (neurological outcome), Ri, is assumed to be a
Generalized Linear Model (GLM) as described previously.
The second applied GLM, fitted a logistic regression model, using the random intercept
and slope obtained from the first sub-model, added as covariates to all other relevant
independents variables.
Logistic regression models are the most prominent, from the numerous distribution func-
tions proposed for use in the analysis of a dichotomous outcome variable from contin-
uous and/or discrete explanatory variables measured at a single point in time (Hosmer
Jr, Lemeshow, and Sturdivant, 2013). The rational for this choice stand in two points,
a mathematical point of view, as it is an extremely flexible and easily used function,
and an easy clinically meaningful interpretation. More so, logistic regression easily ac-
commodates the binary nature of the response. On the other hand, it uses the method
of maximum likelihood for parameter estimation which has better statistical properties
(James et al., 2013). For notation simplicity, π(x) = E(R|x) which is the conditional
mean of the Neurological outcome given patients characteristics for a logistic function.
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Precisely, it expressed the probability that individual i died (non survivor) given to his
BIS value and other characteristics. The distribution of Ri is a binary indicator in our
application, assumed to belong to the exponential family of distributions. The logistic
regression makes use of logistic function that takes only two values (0 and 1). It is a
classification model of two categories response. As such, and likewise all classification
models, it predicts the neurological outcome using one or more independent variables.
The independent variables can be either categorical or numerical. Replacing the depen-
dent variable of the logistic function with a linear combination of dependent variables
we intend to use for regression, we arrive at the formula for logistic regression as in the
following equation:

logit(pi) = β0 +Xβ + Zγ

Where, x1, ..., xp are the p patients characteristics in the model, Zγ, the Random in-
tercept and Random slope estimates obtained from the Linear Mixed Effect Model and
β0, β1, ..., βp are unknown parameters which are estimated based on the training data.
We can interpret π(x) as the probability p(R = 1|x). That is, the probability of a given
neurological outcome, given the patients BIS and other characteristics.

This logistic regression fits a maximum likelihood model to the data. That is a
model that supplies probabilities for each patient and the product of all the predicted
probabilities is least surprising (close as possible to their true probabilities of neurological
outcome) (Friedman, Hastie, and Tibshirani, 2001; Kutner et al., 2005). The maximum
likelihood model fitted to the data is of form:

π(x) =
1

1 + e−(βTx+ zγ)

Where, βTx = β0 +β1x1 + ....+βpxp, L(β) is the likelihood of neurological outcome, and
p(Xi) = p(Ri = 1|Xi) is the probability of a patient neurological outcome given patient
characteristic.
Since the neurological outcome predicted probabilities value range from 0 to 1 and in the
validation data is binary, The predicted probabilities had to be dichotomized in order to
get the prediction accuracy as in the formula:

R̂i =

{
0, if predicted probability ≤ 0.5

1, if otherwise

Where, R̂i is the Neurological Outcome prediction of the ith patient in the train data. If
the predicted probability is greater than 0.5, the patient is classified in the class of those
having a neurological outcome (1, non-survivor) otherwise the patient is classified as
survivor (0, survivor). The class predictions were cross-tabulated with the gold standard
in a confusion matrix from which the false positive rate, false negative rate, sensitivity,
specificity, and predictive values are computed.
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4.4 Software

The statistical software used for the statistical analysis of the current data are R 3.4.0,
with different R-packages appropriated to each procedure and SAS 9.4.
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5 Data analysis and interpretation of results

5.1 Exploratory data analysis

As a first step of the analysis, the data were explored in different ways in order to get
details that may help to make decision in the subsequent steps of the analysis.

5.1.1 Descriptive statistics

The table below present the Summary statistics at baseline per group (survivor and Non-
survivor) for continuous covariates Age, Initial Lactate and Initial pH.

Table 1: Summary statistics at baseline per group

Variable Mean Median Mode Std Dev Minimum Maximum

Outcome = 1 (Non-survivors)
Age 67 67 61 12.97 38 89
Initial lactate 6.55 5.85 2.5 3.9 1.35 18.5
Initial pH 7.2 7.2 7.17 0.11 6.91 7.43

Outcome = 0 (Survivors)
Age 60.58 61 53 12.74 28 91
Initial lactate 5.53 4.55 5 4.29 0.9 20
Initial pH 7.24 7.26 7.26 0.16 6.74 7.62

The study include 77 patients. The outcome is composed of 38 survivors and 39 non
survivors.
The mean survivors group age is 60.58 against 67. At a first stage, the analysis, was
performed using a complete deletion case of missingness pattern handling. Hence, pa-
tients with missing values were discarded from the analysis that were performed on the
evolution of BIS values in the remaining 50 patients (24 survivors and 26 non-survivors)
during the first 36 hours of their stay.
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5.1.2 Individual Profiles

The score of bispectral index was recorded every hour. All over the study period, the
recorded scores were higher and relatively stable in survivors group as compared to non
survivors’.

Figure 5: Mean profile plot

In another hand, the variability of BIS values was lower in survivors patients as compared
those with poor neurological outcome (figures 4 and 5).

Figure 6: Variance structure plot
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5.1.3 Correlation analysis

The data analysis show a high correlation between BIS and EMG (0.59) and SR (-0.91)
as presented in the correlation matrix at baseline. The relevance of BIS as compared to
over covariates allows us to discard EMG and SR from a model that contain already, BIS.

Table 1: Correlation coefficients (P-value)

Outcome BIS.1 EMG.1 SR.1 NSE24.1 NSE48.1

Outcome 1.00 -0.20(0.11) 0.12(0.35) 0.37(0.00) 0.22(0.05) 0.12(0.29)

BIS.1 1.00 0.59(0.00) -0.91(0.00) -0.21(0.09) -0.12(0.33)

EMG.1 1.00 -0.39(0.00) 0.02(0.86) 0.06(0.64)

SR.1 1.00 0.21(0.08) 0.15(0.21)

NSE24.1 1.00 0.70(0.00)

NSE48.1 1.00

5.1.4 Data Pattern

The first plot, is a histogram which clearly depicts the influence of missingness values in
each variable of the dataset.

Figure 7: Missingness pattern of the original dataset
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The second figure shows the missingness pattern in the dataset. Each cell represents an
observation. The red color indicates the missing observation per variable. Hence, the
first observation which is the first row from below, do not have any red color, indicating
that there were no missing value. However, the overall pattern shows the presence of a lot
of missing values. Indeed, there are 41.9% values in the data set with no missing value.
There are 18.9% missing values in NSE24 and NSE48, 2.7% missing values in EMG,
and in BIS. A proportion of around 1.4% of missing values was found in the remaining
variables. Therefore, there is a need of missing handling technique application in the
current study.

This figure present the missing pattern in the dataset obtained from the imputation pro-
cess ran at 5000 iterations.

Figure 8: Missingness pattern of the imputed dataset

After 5000 iterations with 5 maxit, we obtain a dataset containing some missing values
for the two variables NSE24 and NSE48. A little comparison of the figure 7 and 8 show
that the imputation process allow us to have more completed dataset. This will be
confirmed by the figure 9 that presents the convergence plot of the dataset obtained from
the imputation process. This plot shows quite an acceptable convergence of the data,
leading for less deviation from the observed values, thus less bias.
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Figure 9: Convergence plot at 5000 iterations and 5 maxit
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5.2 Predictive Models

This first part of the current report, was conducted using a complete case analysis miss-
ingness handling technique. A second sensitivity analysis was done using the fifth dataset
obtained from the multiple imputation process. Discrimination measures used are accu-
racy, specificity and sensitivity obtained from the test set prediction. The most relevant
right after Accuracy that give the global performance of the model, is Specificity since
it allow us to predict rightly the poor neurologic outcome of OHCA patients. The R
function confusion- Matrix() in the caret library was used to compute these values ([4],
[8], [15]).

5.2.1 Support Vector Machine results

Using SVM procedure, for a model fitted with BIS alone as covariate, the first time
response appears to be hour 27 with accuracy of 90.91%, a specificity of 85.7% and
a sensitivity of 100%. But at hour 3, we recorded a performance of 81.82% accuracy,
for the same Specificity (85.7%) while sacrificing a little sensitivity (75%). One could
also noticed that stopping treatment after only three hours could be too short for an so
important decision and hence, check on the next best performance that raised at Hour
21 with the same metrics values as Hour 3 (table 6).
Using SVM procedure, for a model fitted with BIS and all other covariates, the first time
response appears to be hours 6 and 11 with accuracy of 81.82%, a specificity of 85.7%
and a sensitivity of 75%. Hour 27 comes as second, with the same values for accuracy,
specificity 71.4% and sensitivity 100% (table 7).
However, other techniques had been conducted to appreciate the already obtained results.

5.2.2 Linear discriminant analysis results

Using LDA procedure, for a model fitted with BIS alone as covariate, the first time
response appears to be hour 2 with accuracy of 63.64%, a specificity of 71.5% and a
sensitivity of 50%. Hour 12 comes as second, with 54.55% as accuracy, specificity 85.7%
and sensitivity 0%, followed by hour 17 which specificity is a bit lower but with a little
gain in term of sensitivity as shown by table 8.
Using LDA procedure, for a model fitted with BIS and all other covariates, the first time
response appears to be hour 27 with accuracy of 72.73%, a specificity of 71.4% and a
sensitivity of 75% as one can see from the table 9.
The linear discriminant analysis technique conducted gives quite mitigated results. Thus,
for a model including only BIS, the highest meaningful accuracy was obtained at hours
12 (54.55%) and 18 (54.6%) against a model including all other covariates at hour 27
(72.73%). However, it comes to confirm the prediction of hour 27 obtained from the SVM
method.
Hence, including other covariates in the model help improving the prediction accuracy.

19



5.2.3 Neural Network results

As a third classification procedure conducted in this study, the Neural Network allows
the appreciation of the predictability faculty of BIS for neurological status of patients.
Using Neural Network procedure, for a model fitted with BIS alone as covariate, the first
time response appears to be hour 27 with accuracy of 90.91%, a specificity of 85.7% and
a sensitivity of 100%. Hour 6 comes next in terms of performance, with an accuracy
of 81.82%, a very good specificity of 100% but a sensitivity reduced by half (50%) as
compared to the one of the best time predicted by the model (hour 27) as presented in
table 10. One should noticed that hour 27 is still confirmed here also, but disappeared
in the full model, which results are presented in table 11, where hour 13 appears as the
best time predicted by that model followed by hours 3, 6 and 21 already predicted by
the SVM models among the five first time response.
Using Neural Network procedure, for a model fitted with BIS and all other covariates,
the first time response appears to be hour 13 with accuracy of 90.91%, a specificity of
100% and a sensitivity of 75.0%.

5.2.4 Joint Modeling with logistic regression

The Joint model fitted on BIS alone, make use of the random effect component intercept
and slope estimates obtained from the linear mixed effect model as BIS values in the
logistic regression model fitted on BIS alone. The fitted model helps to predict the
neurological status of the patients from the test set with 63.6% accuracy, 85.7% specificity
and 25% sensitivity at time 17 as first time (table 12).
From the joint model fitted using the logistic regression model as second sub model on BIS
and all covariates, it had appeared that, hour 17 is still the best with an accuracy of 81.8%,
a specificity of 100% and a sensitivity of 75%. Then, follows hour 13 already predicted
by the Neural Network model but with less percentage of accuracy and specificity but a
better sensitivity (75%) as presented in table 13.
Thus, adding other covariates improves the accuracy of the prediction method.
Hence, combined with the Generalized Linear Model (GLM), we obtained more accurate
results with high significance for the mean BIS (intercept of the random component)
for hours 1 to 17. Indeed, BIS appears significant with a P-value of 2.7% less than
5% significance level. All others covariates in the model appear non significant except
Age that while forcing, in order to explain the source of the gain in accuracy we could
indicated it as significance at 10% level. This result is summarized in table 2.
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Table 2: Analysis of Maximum Likelihood Estimates of full model fitted over 17 hours

Parameter Estimate
Standard Wald

Pr > ChiSq
Error Chi-Square

Intercept 56.0771 39.6568 1.9996 0.1573

Rand. intercept -0.0498 0.0225 4.9039 0.0268

Rand. Slope -0.4878 0.3601 1.8344 0.1756

Gender -0.549 1.376 0.1592 0.6899

Age 0.0557 0.0315 3.1283 0.0769

initial rhythm -0.0077 0.0298 0.0667 0.7961

Initial lactate -0.0306 0.148 0.0429 0.8359

Initial pH -8.1641 5.4194 2.2694 0.1319

Thus, Age appears as significant covariates at 10%, indicating that a patient’s poor
neurological outcome is age related. From the negative sign of the parameter estimate,
we can say that old patients have higher probability to decease.
The regression methods, logistic regression, did well as compared to LDA. This is most
likely due to their ability to handle nonlinear class boundaries.

5.2.5 Joint Modeling with Neural Network

The joint modeling technique allows us to appreciate given to time spent before waking
up or death of the patient, the effect of the bispectral index score (BIS) on his neurological
status.
The final model retained for the analysis is a joint model build with a linear mixed
effect model as first sub-model to handle time varying covariate (BIS) and then the best
classifier identify from the model evaluation process as second sub-model. While fitting
such joint model, the result appears quite convincing. Hence, trained on the training
set, this model correctly classifies 34 patients over 39 with an accuracy of 87.18% while
the test set prediction gives an accuracy of 72.73% showing that the model is stable
since the difference between these two accuracy is 14.45%, less than 20%. The prediction
capability of the model had improved with tune function.
Indeed, with the parameter tuning of ‘nnet’, the 10-fold cross validation sampling method
gives size 4, decay- 0.0015 as best parameters and a best performance of 0.3220708 as
error.
Under all those consideration, we found that the fitted model is more accurate than all
previous technique used. Thus for BIS alone, the accuracy obtained is 90.91%, with a
specificity of 100% and a sensitivity of 75% at time 9 (Hour at which the patient died or
wake up). The classification by the model prediction defaulted by 1 misclassified patients
over 11 (table3).
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With the parameter tuning of ‘nnet’, the 10-fold cross validation sampling method gives
size 5, decay- 0.0015 as best parameters and a best performance of 0.2843488 as error,
while fitting BIS (Intercept and slope values obtained from the linear mixed model with
all other demographic and clinical characteristics covariates, the model get the most
best performance that could be expected in terms of prediction accuracy that rise to
100%, specificity, (100%) and sensitivity (100%) at hour 24. The model rightly predicted
correctly all patients into their observed categories. Then predicted hour 12 as second
best performance as one can see from table 15.

Table 3: Confusion matrix from JM-NN with BIS alone at hour 9

Neurologic Outcome
Total

Non Survivor Survivor

Predicted
Non Survivor 3 0 3

Survivor 1 7 8

Total 4 7 11
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5.3 Evaluation of the best prediction method

5.3.1 BIS alone

While assessing prediction methods performance on the model fitted with BIS alone, we
noticed that Joint model with NN as sub-model recorded the first high level performance
followed by NN and SVM that recorded a test set accuracy value of 0.9091. The joint
model fitted with logistic regression as sub model comes next (0.636) and finally, the
Linear Discriminant Analysis recorded 0.5455 (table 4).

5.3.2 BIS with all other covariates

The prediction methods performance on the model fitted with BIS and all other covariates
show clearly a better performance for JM-NN, followed by NN then SVM in third position,
JM-LR in fourth rank and finally Linear Discriminant analysis in last. Thus, driving
all other methods, JM-NN produced a prediction with 100% accuracy followed by NN
(90.91%), SVM (81.82%), then joint model of Logistic regression recorded 81.8% and
lastly, LDA (72.73%). In terms of Specificity values, this order is quite similar with the
JM-LR coming right after NN followed by SVM and ended by LDA as summarized in
table 4. The late metrics values gave the incentive of choosing NN as second sub-model
instead of the Logistic regression in order tho make use of the good performance recorded
from NN on our data, while accounting for time influence on BIS values.

Table 4: Table Summarizing Method’s Evaluation

Classifier Models Sensitivity Specificity Accuracy Kappa Time Best classifier

SVM

BIS 1 0.857 0.9091 27 2ex

Full mod. 0.75 0.857 0.8182 0.6071 11 3

LDA

BIS 0 0.857 0.5455 12 5

Full mod. 0.75 0.714 0.7273 0.4407 27 5

NN

BIS 1 0.857 0.9091 27 2

Full mod. 0.75 1 0.9091 0.7925 13 2

JM LR
BIS 0.25 0.857 0.636 17 4

Full mod. 0.5 1 0.818 17 4

JM NN
BIS 0.75 1 0.9091 0.7925 9 1

Full mod. 1 1 1 1 24 1

From all above, we noticed that hour 27 appears more frequently and could be taken as
the best compromise from all three classification techniques (SVM, LDA and NN), for a
model of only BIS and a model including all other covariates. However it does not show
off at all in the two joint models fitted.
From table 4, while assessing the best prediction model, it appears relevant to check on
the performance of a JM-NN, using a Linear Mixed Effect Model as first sub-model and
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Neural Network as second sub-model to predict poor neurological outcome of the patients
involved in this study.
Applying JM-NN technique appears moreover relevant since SVM and NN predicted hour
27 as the first time while using BIS alone as covariate, but gives different others hours (11
for SVM and 13 for NN) in their full models while JM-LR predicted hour 17 consistently
from the two models BIS alone and full model one could expect such consistency from
JM-NN.
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5.4 Sensitivity analysis

In order to assess the sensitivity of the different results obtained we conducted the same
process using the fifth dataset obtained from the MICE multiple imputation. This data
set allow the usage of all 77 patients, randomly split with the same ratio (80%: 20%) in
training set of size 62 and test set of size 15 patients.

5.4.1 Sensitivity analysis: SVM, LDA, NN and the two Joint models

The model fitted on BIS alone using SVM method gives hour 7 as best test set accuracy
(80%) and a specificity of 85.7%, followed by hour 6 with same accuracy but specificity
decreases to 71.4%. These results are presented in table 16 in appendices.
In table 17, the results of the SVM technique obtained from the full model are presented.
This place the best response hour at 23 with an accuracy of 73.33%. It also show hour
7 already predicted by the model fitted using BIS alone. but do not confirm none of the
time observed from the complete case.
A model fitted with BIS alone as covariate while applying linear discriminant analysis
technique gives hour 17 as the best response time with an accuracy of 80%, followed by
hours 16 and 12 with less accuracy value but same specificity of 71.4%. This method
confirm actually hours 12 and 17 with a little improvement of accuracy and specificity
values. hence, for the same specificity value, one could sacrifice 0.2 point of base in
accuracy value, to gain five hours prediction while choosing to stop OHCA care at hour
12 (table 18).
Using the imputed data, we noticed that the full model with Neural Network classifier
method gives hour 35 as best response time, which could be seen as a very late response
time, while BIS alone in table 20, gives an very early response time of hour 7 at the
same accuracy level, but perform less in specificity which drop at 85.7%. The full model
confirm hours 6 and 21 predicted previously in the complete case part. This comes out
with less accuracy value measured on the test set but better specificity value (100%) for
hour 21 these can be seen in table 21 in appendices.

5.4.2 Sensitivity analysis for the joint models

The table 22 presents the sensitivity analysis result of JM-LR fitted on BIS alone. This
gives hour 3 as the best response time with an accuracy of 60%, confirmed by the full
model. None of the models fitted with this method confirm hour 17 previously predicted
in complete case. Across methods, hours 7 and 21 are still showing off but this high
changes could inspired a need of more data.
From table 24 which presents the sensitivity analysis result of JM-NN fitted on BIS alone
hour 21 appears as the best response time with an accuracy of 73.33%, followed by hour
24.

5.4.3 Sensitivity analysis: Method evaluation

From the table 5 below it can be seen that Joint Model with does no longer appear as
the best classifier. The best classier from the sensitivity analysis predictions is Neural
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Network followed by SVM, then LDA followed by JM-NN and JM-LR comes last. The
order seen in complete case stayed for the three classifiers (Neural Network is still the best
method followed by Support Vector Machine and Linear Discriminant Analysis). However
using Neural Network as second sub-model here does not improve the performances as
obtained from the complete case. Hence as our data set is becoming more informative,
the effect of time get weak, by having less influence on the prediction performances.
Hour 7 in this part of the work appears more frequently while make an across method
consideration, same as hour 27 obtained previously in the complete case.

Table 5: Method evaluation table using imputed data

Classifier Models Sensitivity Specificity Accuracy Kappa Time Best classifier

SVM

BIS 0.75 0.857 0.8 0.6018 7 1ex

Full mod. 0.5 1 0.7333 0.4828 23 2

LDA

BIS 0.875 0.714 0.8 0.5946 17 3

Full mod. 0.75 0.714 0.7333 0.4643 7 3

NN

BIS 0.75 0.857 0.8 0.6018 7 1

Full mod. 0.625 1 0.8 0.6087 35 1

JM LR
BIS 0.625 0.29 0.533 7 5

Full mod. 0.375 0.571 0.467 8 5

JM NN
BIS 0.75 0.714 0.7333 0.4643 21 4

Full mod. 0.625 0.714 0.6667 0.3363 3 4
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6 Discussion, Conclusion and recommendation

From all above, we noticed a lot of changes in the results obtained from complete case
and sensitivity analysis, leading to a need of more data. A lot of changes in the results
produced by the different classification methods used (SVM, LDA, NN, JM-LR and JM-
NN) and by models fitted with BIS alone and the full model.

Although, some similarities appear usually, across methods, across models.

The three classifiers NN, SVM and LDA predicted Hour 27 as best time with high level
of 90.91% accuracy and 85.7% specificity. While the prediction results obtained from
the imputed dataset mostly predicted hour 7 as the best time, with less accuracy value
(80%) but the same specificity value of 85.7%. When saying the earlier the better, one
could just conclude on hour 7 to stop care for OHCA patients however a caution most
be held.
Across complete case and imputed dataset consideration, the different performances
recorded putted Neural Network and the Joint model with the Neural Network as the
best techniques to predict using BIS the neurological status of Out-hospital cardiac arrest
patients.
In this regard, we can conclude this discussion, based on the JM-NN results, since hour
24 appears with all metrics values at 100% which place it as the best time response.
However, the prediction of hour 9 with less than 20% loss of accuracy while keeping
specificity high at 100%, could be also seen as a very good result. Moreover, hour 9 had
been already predicted by the model fitted using BIS alone as best time as presented
in table 4. This lead to an earlier prediction of poor neurologic outcome, based on BIS
values measured continuously on the same patients.

The prediction result for hour 9 while using BIS alone shows a good compromising be-
tween metrics values. The rate of specificity is stable at 100% in the reduced and full
model (tables 14 and 15).

Hence, we can use BIS values measured continuously over time, to predict poor neurologic
outcome for OHCA patients. As recommendation, which also account for limitation for
the present work, one could take into account for next study a larger sample size, adding
additional clinical relevant covariates such as BIS of 0, Status Epilepticus (SE), NSE 24
and NSE 48.
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Appendices

A Complete case: Metrics measures results

Table 6: Five first hours result for the SVM model with BIS alone

Order SVM BIS Sensitivity Specificity Accuracy Hour

1 BIS.27 1.000 0.857 0.9091 27

2 BIS.30 1.000 0.857 0.9091 30

3 BIS.3 0.750 0.857 0.8182 3

4 BIS.21 0.750 0.857 0.8182 21

5 BIS.22 0.750 0.857 0.8182 22

Table 7: Five first hours result for the SVM full model

Order SVM Sensitivity Specificity Accuracy Kappa Hour

1 BIS.6 0.750 0.857 0.8182 0.6071 6

2 BIS.11 0.750 0.857 0.8182 0.6071 11

3 BIS.27 1.000 0.714 0.8182 0.6452 27

4 BIS.28 1.000 0.714 0.8182 0.6452 28

5 BIS.29 1.000 0.714 0.8182 0.6452 29

Table 8: Five first hours result for the LDA model with BIS alone

Order LDA BIS Sensitivity Specificity Accuracy Hour

1 BIS.2 0.500 0.714 0.6364 2

2 BIS.12 0.000 0.857 0.5455 12

3 BIS.1 0.000 0.857 0.5455 1

4 BIS.18 0.250 0.714 0.5455 18

5 BIS.17 0.250 0.714 0.5455 17
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Table 9: Five first hours result for the LDA full model

Order LDA Sensitivity Specificity Accuracy Kappa Hour

1 BIS.27 0.750 0.714 0.7273 0.4407 27

2 BIS.26 0.750 0.571 0.6364 0.2903 26

3 BIS.29 0.750 0.571 0.6364 0.2903 29

4 BIS.30 0.750 0.571 0.6364 0.2903 30

5 BIS.35 0.750 0.571 0.6364 0.2903 35

Table 10: Five first hours result for the NN model with BIS alone

Order NN: BIS alone Sensitivity Specificity Accuracy Kappa Hour

1 BIS.27 1.000 0.857 0.9091 0.8136 27

2 BIS.30 1.000 0.857 0.9091 0.8136 30

3 BIS.6 0.500 1.000 0.8182 0.5600 6

4 BIS.3 0.750 0.857 0.8182 0.6071 3

5 BIS.29 0.750 0.857 0.8182 0.6071 29

Table 11: Five first hours result for the NN full model

Order NN Sensitivity Specificity Accuracy Kappa Hour

1 BIS.13 0.750 1.000 0.9091 0.7925 13

2 BIS.3 0.500 1.000 0.8182 0.5600 3

3 BIS.6 0.500 1.000 0.8182 0.5600 6

4 BIS.7 0.750 0.857 0.8182 0.6071 7

5 BIS.21 0.750 0.857 0.8182 0.6071 21
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Table 12: Joint Logistic regression on complete deletion case for model with BIS alone

Order LR alone Sensitivity Specificity Accuracy Hour

1 BIS.17 0.250 0.857 0.6360 17

2 BIS.18 0.250 0.857 0.6360 18

3 BIS.19 0.250 0.857 0.6360 19

4 BIS.20 0.250 0.857 0.6360 20

5 BIS.21 0.250 0.857 0.6360 21

Table 13: Joint Logistic regression on complete deletion case for the full model

Order LR Full Sensitivity Specificity Accuracy Hour

1 BIS.36 1.000 1.000 1.0000 36

2 BIS.17 0.500 1.000 0.8180 17

3 BIS.13 0.750 0.714 0.7270 13

4 BIS.28 0.250 0.714 0.5450 28

5 BIS.34 0.250 0.714 0.5450 34

Table 14: Joint Model with NN: Complete case deleted BIS alone

Order JNN BIS Alone Sensitivity Specificity Accuracy Kappa Hour

1 BIS.9 0.750 1.000 0.9091 0.7925 9

2 BIS.33 0.750 1.000 0.9091 0.7925 33

3 BIS.34 0.750 1.000 0.9091 0.7925 34

4 BIS.12 0.750 0.857 0.8182 0.6071 12

5 BIS.30 0.750 0.857 0.8182 0.6071 30
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Table 15: Joint Model using Neural Network with all covariates

Order JNN Full Sensitivity Specificity Accuracy Kappa Hour

1 BIS.24 1.000 1.000 1.0000 1.0000 24

2 BIS.12 0.750 1.000 0.9091 0.7925 12

3 BIS.13 0.750 1.000 0.9091 0.7925 13

4 BIS.9 0.500 1.000 0.8182 0.5600 9

5 BIS.10 0.500 1.000 0.8182 0.5600 10
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B Sensitivity analysis: Metrics results obtained

Table 16: Sensitivity analysis for SVM on model with BIS alone

Order SVM : BIS Sensitivity Specificity Accuracy Kappa Hour

1 BIS.7 0.750 0.857 0.8000 0.6018 7

2 BIS.35 0.750 0.857 0.8000 0.6018 35

3 BIS.6 0.875 0.714 0.8000 0.5946 6

4 BIS.20 0.500 1.000 0.7333 0.4828 20

5 BIS.33 0.750 0.714 0.7333 0.4643 33

Table 17: Sensitivity analysis for SVM on full model

Order SVM Sensitivity Specificity Accuracy Kappa Hour

1 BIS.23 0.500 1.000 0.7333 0.4828 23

2 BIS.7 0.750 0.714 0.7333 0.4673 7

3 BIS.5 0.500 0.857 0.6667 0.3478 5

4 BIS.33 0.500 0.857 0.6667 0.3478 33

5 BIS.3 0.625 0.714 0.6667 0.3363 3

Table 18: Sensitivity analysis using LDA for model of BIS alone

Order LDA : BIS Sensitivity Specificity Accuracy Kappa Hour

1 BIS.17 0.875 0.714 0.8000 0.5946 17

2 BIS.16 0.750 0.714 0.7333 0.4643 16

3 BIS.12 0.500 0.714 0.6000 0.2105 12

4 BIS.8 0.625 0.571 0.6000 0.1964 8

5 BIS.11 0.375 0.714 0.5333 0.0870 11
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Table 19: Sensitivity analysis using LDA for the full model

Order LDA Sensitivity Specificity Accuracy Kappa Hour

1 BIS.7 0.750 0.714 0.7333 0.4643 7

2 BIS.9 0.500 0.857 0.6667 0.3478 9

3 BIS.25 0.500 0.857 0.6667 0.3478 25

4 BIS.32 0.500 0.857 0.6667 0.3478 32

5 BIS.36 0.500 0.857 0.6667 0.3478 36

Table 20: Sensitivity analysis using NN for the model of BIS alone

Order NN: BIS Sensitivity Specificity Accuracy Kappa Hour

1 BIS.7 0.750 0.857 0.8000 0.6018 7

2 BIS.31 0.750 0.857 0.8000 0.6018 31

3 BIS.35 0.750 0.857 0.8000 0.6018 35

4 BIS.20 0.500 1.000 0.7333 0.4828 20

5 BIS.33 0.750 0.714 0.7333 0.4643 33

Table 21: Sensitivity analysis using NN for the full model

Order NN Sensitivity Specificity Accuracy Kappa Hour

1 BIS.35 0.625 1.000 0.8000 0.6087 35

2 BIS.21 0.500 1.000 0.7333 0.4828 21

3 BIS.36 0.500 1.000 0.7333 0.4828 36

4 BIS.6 0.625 0.857 0.7333 0.4737 6

5 BIS.31 0.625 0.857 0.7333 0.4737 31
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Table 22: Sensitivity analysis for joint logistic regression model on BIS alone

Order LR alone Sensitivity Specificity Accuracy Hour

1 BIS.3 0.625 0.571 0.6000 3

2 BIS.4 0.625 0.571 0.6000 4

3 BIS.7 0.625 0.429 0.5330 7

4 BIS.15 0.500 0.429 0.4670 15

5 BIS.6 0.375 0.429 0.4000 6

Table 23: Sensitivity analysis for full joint logistic regression model

Order LR Full Sensitivity Specificity Accuracy Hour

1 BIS.3 0.750 0.714 0.7330 3

2 BIS.8 0.375 0.571 0.4670 8

3 BIS.5 0.500 0.429 0.4670 5

4 BIS.7 0.500 0.429 0.4670 7

5 BIS.21 0.500 0.429 0.4670 21

Table 24: Joint model with NN : BIS alone

Order JNN BIS Sensitivity Specificity Accuracy Kappa Hour

1 BIS.21 0.750 0.714 0.7333 0.4643 21

2 BIS.24 0.750 0.714 0.7333 0.4643 24

3 BIS.22 0.625 0.714 0.6667 0.3363 22

4 BIS.34 0.750 0.571 0.6667 0.3243 34

5 BIS.35 0.750 0.571 0.6667 0.3243 35
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Table 25: Joint Model with NN: Full model results on sensitivity analysis

Order JNN Full Sensitivity Specificity Accuracy Kappa Hour

1 BIS.3 0.625 0.714 0.6667 0.3363 3

2 BIS.16 0.625 0.714 0.6667 0.3363 16

3 BIS.17 0.625 0.714 0.6667 0.3363 17

4 BIS.20 0.625 0.714 0.6667 0.3363 20

5 BIS.21 0.625 0.714 0.6667 0.3363 21
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