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Abstract

Sugar beet breeding programs aim at creating stable and dependable varieties of

sugar beets that give an optimized yield of white sugar per unit area as a function

of the cost of production and meet the requirements of the environment, growers

and sugar factories. This study aimed at comparing the predicted genetic breeding

values of traits obtained from various univariate and multivariate methods. Data

used in the analysis was obtained from a series of sugar beet field trials carried out

in several countries around Europe. Exploratory showed that there is a high corre-

lation amongst the derived traits. The principal analysis was done using the mixed

models approach taking care of within-field trial variability as well as the genotype

× environment interaction. Estimated breeding values were obtained from the mod-

els as Best Linear Unbiased Predictions. The analysis showed that similar genetic

rankings were obtained from different univariate methods; hence, predictions of the

breeding values are robust to model selections. A multivariate model was aimed

at jointly modeling the traits and estimation of the breeding values and assess any

potential gain in prediction. The results showed small differences in rankings and

estimated values from the multivariate and the univariate procedures. The study

established that one potential gain that the breeders gain from a multivariate model

is the possibility of estimating the genetic and phenotypic correlations from the vari-

ance covariance matrix of random effects.

Keywords: Field trials, Genotype×Environment interaction, Multivariate,Series,

Trait, Univariate.
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1 Introduction

1.1 Background

Hundreds of plant species are cultivated across the globe as food crops, among these are sug-

arcane and sugar beets which are the most two common sources of sugar (the common name

for sucrose). Sugar beet is a specialized agricultural crop targeted at the refined sugar indus-

try. The roots of the beets contain a high percentage of sucrose, the primary input for sugar

processing; hence, sugar beet directly competes on a global scale with sugar cane (Dillen and

Demont). Sugar beet is a common crop in more temperate and colder climatic regions around

the world such as Europe and parts of North America where it is an essential agricultural crop

(Draycott et al., 2006). Specific properties of sugar beet and its importance in industrialized

countries with strong institutions and commercially oriented farmers makes it an interesting

crop to be targeted by the biotechnology sector. The main characteristics of high quality beet

are large concentrations of sugar (about 12%-21% of the sugar beet’s total weight) and small

concentrations of naturally- occurring constituents of the sugarbeet root, referred to as impuri-

ties i.e amino nitrogen (N), potassium (Na) and sodium (K) which obstruct sucrose extraction

during routine factory operations (Campbell and Fugate, 2015). It is however believed genetic

variance is essential in determining the variation in the relative levels of these sugar beet traits.

There is a need to maintain the competitiveness of the beet sugar industry hence a need for a

continued and coordinated research efforts in all different areas related to sugar beet growing

and processing. On the other hand, an increase in demand to adapt to less input-intensive and

pesticide-dependent agriculture has led to the increased importance of sugar beet breeding for

the past decades. The goals of sugar beet breeding programs are to create stable, dependable

varieties that give the highest possible yield of white sugar per unit area in relation to cost

of production and meet various other requirements of the environment, growers and sugar fac-

tories (Draycott et al., 2006). Sugar beet breeding has contributed mostly to improvements

in the productivity of the crop, yield and chemical properties of the root hence an increase in

the amount of white sugar extracted at the processing factories. Campbell (2002) asserts that

there is a negative association between root yield and sucrose concentration, interactions among

impurity components and between impurity components and sucrose concentration that com-

plicates breeding efforts. These interactions are brought about by genetic variability in many of
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the beet quality attributes, and considerable influence of environmental and agronomic factors,

especially on the concentrations of amino nitrogen and sodium. In general, the quality of beet

delivered to factories dramatically affects the efficiency and economics of the factory process.

Several formulae and indices have been developed that weight the impurities in beet according

to their influence on factory operations and the extractability of white, crystalline sugar (Har-

vey and Dutton, 1993).

In the process of sugar beet breeding, big data are generated, the most common type of data

is the multi-trait and multi-environment data. Statistics offer methods to exploit these data

in order to accelerate the breeding process as well as to understand the underlying biological

mechanisms, i.e., the relationship between genotypes and phenotypic data and generate pro-

ductive varieties improved for one variety (Balzarini, 2002).

Best linear unbiased predictions from the linear mixed models are commonly used for predic-

tions and estimations of genetic merit of tested materials in plant breeding (Balzarini, 2002).

Methods for analyzing plant breeding traits are grouped into two main categories based on the

number of traits analyzed, univariate-trait and multivariate-trait models for one and at least

two traits respectively (Montesinos-López et al., 2018). When there are many traits, breeders

need Multivariate models in order to maximize the necessary information from the data. Uni-

variate trait models involve single independent models that are trained separately for each trait;

hence, they eliminate the possibility of modeling the complicated inter-dependencies between

the traits. When genetic selection is based on many traits that are genetically correlated and

analyzed separately, selection biases may arise (Volpato et al., 2019). This has resulted in the

popularity of the Multivariate-Trait models which are concerned with simultaneously modeling

of two or more traits based on a standard set of explanatory variables. The Multivariate trait

models were designed to more efficiently capture the correlations between traits thus it is be-

lieved that these models give more accurate parameter estimates, better predictions and have

more statistical power than the univariate trait models (Isik et al., 2017). In a comparative

study by Guo et al. (2014), it was concluded that single trait models give inferior results in the

presence of missing data compared to multi-trait models

Apart from the data being multi-trait these data are taken from field trials that are carried out

at different agricultural areas across Europe in two years with different soil and meteorological

2



conditions, management choices and the incidence of abiotic and biotic stresses. New crop vari-

eties are evaluated over many locations and years; hence, they are called Multi-Environmental

trials (METs). Having experiments from different environments allows the investigation of

sugar yield, yield stability, and other quality characteristics of the sugar beets to predict future

genotype (seed variety) performance across different environments (Friesen et al., 2016). Sev-

eral scholars have also studied the possibility of increasing these univariate and multivariate

trait model predictive power by incorporating genotype by environment (G × E) interaction

to model relationships between environments (Ward et al., 2019). Early studies traditionally

performed in plants typically used multi-environment ANOVA models to calculate adjusted

means for genotypes. Critically, an ANOVA model fit in this context ignores G × E Interac-

tion by assuming a uniform covariance between pairs of environments (Isik et al., 2017). This

study adopts the mixed models approach that allow for heterogeneity of genetic variances and

correlations across environments.

SESVANDERHAVE has been using univariate models to analyze trait data on sugar beet yields.

However, it is believed that breeding decisions based on these univariate methods may not al-

ways be correct since they neglect the interrelationship among the sugar beet trait variables.

Therefore it is hypothesized that more information may be found in the correlation pattern

and not in the individual variables. Henceforth, the use of multivariate methods of analysis

allows obtaining a complete and detailed analysis of the effect of seed varieties (genotypes) and

environment on sugar yield. It is in this view that the study seeks to compare univariate and

multi-trait models in estimating the genetic effect of different seed varieties of sugar beets using

traits data.

This thesis has the following sections. In this section, we provide an introduction to the research

problem. Description of the methods used for analysis is given in Section 2, while Section 3

give the results of the analysis are given. Section 4 elaborates the discussion and conclusion.

1.2 Objectives

The project aims to develop a multivariate statistical model for the calculation of white sugar

yield and comparison of the proposed model with the currently used univariate approaches.

This aim is achieved through the following objectives:
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1. development of a multivariate statistical model for the calculation of white sugar yield,

2. validation of the proposed statistical model in a limited number of advanced series,

3. comparison of the proposed multivariate model with the currently used univariate models.

1.3 The Data

1.3.1 Experimental design and layout

The data analyzed in this research comes from designed sugar beet field trials. The primary

treatment of interest factor is the genotype (represented by an object identifier) with different

levels depending on the series of experiments under consideration. The experiments were im-

plemented in several field trials across main sugar beet growing areas in 13 countries in Europe

these include Belgium, Czech Republic, Denmark, France, German, Great Britain, Hungary,

Italy, Netherlands, Poland, the Soviet Union, Spain and Sweden for a period of two years 2017

and 2018. In a field trial, the number of genetic lines tested are laid out using an Alpha design.

Alpha designs described by Patterson and Williams (1976) consist of incomplete blocks nested

within full blocks called replicates. The total number of plots for a field trial is the product of

the number of lines to be tested and the number of replicates. A series represents a collection

of lines which are to be tested in different locations. In other words, a typical series consists of

multiple yield trials in different countries and includes a set of common checks. Field specialists

monitor the different plots for emergence, pests and disease tolerance, bolting tolerance, and

other plant characteristics throughout the growing season. At the end of the growing season, re-

search staff harvests the field trials with specially-designed research harvesters to measure each

variety for root yield (Net weight per plot (KG/PL)). Two samples are taken from each plot,

and these samples are identified using a unique plot number. One of these samples is analyzed

in the laboratory where four traits are measured these include the percentage of sugar (%S),

Potassium (mM k), Sodium (mM Na) and Nitrogen (mM N). The other sample is only analyzed

in case of an unusual(outlying values) measurement values are observed (quality checks).

1.3.2 Sugar yield and yield quality traits

The main trait of interest is the recoverable sucrose percentage, which is referred to as total

recoverable sugar percent denoted (%S). The other traits of interest are the impurities that are
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Potassium (mM k), Sodium (mM Na), and Nitrogen (mM N) measured in Moles. The other

traits of interest are derived from the ones mentioned previously these include:

1. Netweight per Hactare (T HA) which a Net weight per plot (KG/PL) corrected for the

field trial and is calculated as: T HA = KG/PL×correction of field trial×correction of plot.

In most cases these correction factors are equal to 1 hence T HA == KG/PL

2. Sugar yield (S HA) which is the tonnage of sugar beets per hectare(T HA) multiplied by

the amount of sugar (%S
100 ) calculated as: S HA = T HA×%S

100

3. Percentage of white sugar (%WS) calculated as total recoverable sucrose percent (%S)

corrected for the impurities. %WS = %S−[(0.14×(mM k)+mM Na)+(0.25×mM N)+0.5]

4. white sugar yield (WSY) calculated is the percentage white sugar corrected for tonnage

per hectare(T HA) i.e. WSY =
(T HA×%WS)

100
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2 Methodology

2.1 Exploratory Data Analysis

Exploratory data analysis (EDA) is a crucial step of analysis in this research where we visu-

alize, plot, and manipulate data without making any assumptions. The primary aim of the

exploratory analysis is to examine the data for distribution and anomalies to assess the quality

of the data and come up with a better strategy for model building (Komorowski et al., 2016).

EDA techniques adopted for this paper include graphical techniques, box plots with a quanti-

tative techniques, correlation analysis. Box plots of trait against field trials to show variation

in phenotype data within field trials and between field trials in the same series. Measures of

central tendency and dispersion were also calculated as part of the descriptive statistics for

each trait. For bivariate relationships, correlation analysis was done to give an overview of the

interdependences among the traits.

2.2 Correlation Analysis

Relationship strength between the traits was assessed in the correlation analysis. This enables

us to establish if there is a possible association between variables (Chan, 2003). A Pearson

correlation coefficient quantifies the correlation of two traits denoted as ρ for the population

correlation and the sample correlation r(yi,yj) calculated as:

r(yi,yj) =
cov(yi, yj)√

V ar(yi).V ar(yj)
(2.1)

Where yi and yj are any two phenotypic variables and r(yi,yj) ranges from [−1; 1], the direction

of the relationship is indicated by the sign. Hypotheses tests for the significance of the linear

relationship between traits i.e., H0 : ρ = 0 vs. H1 : ρ 6= 0 were also performed at 5% level of

significance. Results from correlation analysis presented in correlation matrices.

2.3 Modelling in plant breeding experiments

Models adopted in plant breeding trials are usually ANOVA models, which takes into account

the design of the field trial experiments. In this section, the two major types of models the

fixed effects model and mixed effects model are described highlighting the significant differences

between them. Furthermore, a description of the use of these two types of models in the analysis

of the univariate and multivariate traits in sugar beet field trials.
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2.3.1 Fixed effects model

In the fixed effects framework, all levels of a fixed factor are included in the model experiment,

and inference is specific to these treatment levels. The interest of the researcher is testing the

difference in means between treatments (Van Eeuwijk et al., 2011). Furthermore, the fixed

effects model is based on the assumptions that the error terms are random, independent, and

normally distributed with mean zero and have constant variances. The general form of a fixed

effect model is given as:

Y = Xβ + ε (2.2)

where

ε ∼ N(0,σ2I)

Y is a matrix of response observations (trait), X is a design matrix i.e a matrix of the predictor

variables, β = (β0, β1, · · · , βp)′ is a vector of fixed parameter estimate

In this study, a fixed effects model is the one that treats the genotype, and any other design

effects as fixed effects. However, design factors impose restrictions on randomization that in-

duce correlations for example, observations made within the same random block, where this

block is one out of a population of blocks, are correlated (Van Eeuwijk et al., 2011). Such

correlations should be included in the model to make valid inferences. Related genotypes and

field heterogeneity also impose a correlation, and on top of these, there might be a correlation

between environments (Gutierrez, 2012). Correlations within trial genetics and error variances

are affected by the environment; therefore, different variances are also common in field exper-

iments. The fixed effects linear model using the ordinary least squares estimation procedures

is, therefore, too restrictive to perform adequate data analyses for data from most breeding

programs because of the independence assumption. In the real world experiments, the error

structure is generally a lot more complex than used in standard linear models for ordinary data

analysis (Stroup, 1989). In this thesis, a fixed effect model is considered under the randomized

complete block design analysis in the first stage of the two-stage analysis i.e., the genotype and

the repetition effect are fixed.
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2.3.2 Mixed effect models

In contrast to the fixed effect model mixed model analysis applies to research involving factors

with a few levels that usually can be controlled by the researcher (fixed) as well as factors

with levels that are beyond the researcher’s control (random). Levels of the random factor

are considered as a random sample from a population of factor levels and inference is about a

population of factor levels. In the case of random treatment effects, the researcher’s interest is

in testing the population variance of a treatment (Van Eeuwijk et al., 2011). The general linear

mixed model can easily accommodate covariances among observations i.e., correlated data by

including random effects and estimating their respective variance components to model vari-

ability in addition to the residual error (Balzarini, 2002) and (Wolfinger and Tobias, 1998). In

Multi-Environment Trials, mixed models facilitate the modeling of heterogeneity of genetic vari-

ances and correlations between environments on top of modeling the design features and spatial

trends in individual trials (Van Eeuwijk et al., 2016). Furthermore, mixed model approaches

are preferred to the ordinary ANOVA models because of the estimation procedures usually

involved can overcome the troubles for handling unbalanced and incomplete data (Balzarini,

2002). The Mixed model formulation is given as:

Y = Xβ + Zb + ε (2.3)

where Y,X,β and ε are in that order the vector of continuous responses, the design matrix of

predictors, the vector of fixed effects and the vector of residual error terms. Whereas Z and b

are the matrix of covariates and corresponding vector of random effects.b

ε

 ∼ N
0

0

 ,

G 0

0 R


G and R are the variance-covariance matrices of the random effects and the random residual

error terms, respectively. The simplest form for G and R arise from independence and con-

stant variances of the random effects and the error terms (the independent variance-covariance

structure). Another form of these covariance matrices is the unstructured model in which all

the elements of the matrices can be different. Intermediate structures of G and R (e.g., the

compound symmetry) are mostly used since they allow modeling correlations with a smaller

number of covariance parameters than the unstructured one. Generally, genetic correlations

are introduced into the model trough G and the off-diagonal elements of R model experimental
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correlations among observations. When data are indexed in space, the covariances in R may

reflect correlations due to the spatial arrangement of the experimental units (Balzarini, 2002).

In this thesis, all the other models except the first-stage RCBD model are mixed effects models.

The breeding programme uses estimated breeding values to select genotypes for crossing, and

monitor genotype performances with the aim of producing genetically improved varieties. The

mixed model offers an ideal platform for both estimating genetic variances as well as predicting

the breeding values of individual genotypes (Littell et al., 2002). Plant breeding based on mixed

models, use Best Linear Unbiased Predictors (BLUPs) to predict breeding values. BLUPs are

obtained by averaging over levels of fixed effects β in the model, average over interactions be-

tween the random effect level of interest and all levels of other fixed effects, while ignoring other

random effects, and include the intercept (µ) plus the effect prediction for a level of the random

factor (Isik et al., 2017). A conditional BLUP, which is predicted for a specific set of random

factor levels is a more useful type of BLUP in plant breeding. Thus the BLUP is a conditional

expectation of the random effects given the data BLUP = µ+ E(bi|y) (Littell et al., 2002).

Robinson et al. (1991) postulates that the BLUP-based selection method gives more accurate

predictions of the genetic effects than the Best Linear Unbiased Estimates (BLUEs) -based

methods. BLUEs are the predicted marginal mean value of a fixed effect is obtained as a least

square mean. The least square mean for a level of a factor is an average over levels of other fixed

factors and interaction effects involving the factor level in the model. The gain in accuracy by

BLUPs is a result of the shrinkage property that is the individual genetic means are shrunken

towards the overall mean according to their information (Piepho et al., 2008). The amount

of shrinkage is also influenced by environmental variation. If BLUPs are used then there is

shrinkage of genetic effects.

2.4 Within-Trial Variation

A trial location is seldom uniform across its whole area. Soil variation and the interactions of

genotypes with that variation are primary factors that breeders need to accommodate (Kemp-

ton et al., 2012). Plant breeders try as much as possible to select homogeneous field sites for

experiments through blocking, but some fields may show some heterogeneity due to differences

in soil type, fertility, water retention capacity, among others. As the number of genotypes

10



becomes larger, the partitioning of the experimental fields into blocks of homogeneous experi-

mental units turns out to be more difficult. The Incomplete block designs like the alpha design

were developed to handle this situation. However, the Incomplete block designs introduce un-

balance into the experimental design, which can be well handled by mixed models’ analysis that

simultaneously estimates the effects of random complete blocks and incomplete blocks along

with the random or fixed treatment effects (Isik et al., 2017). The efficiency of incomplete block

designs is high, given that the experimental units within an incomplete block are homogeneous,

but there is no guarantee that this will be the case in most field experiments.

The incomplete block designs are usually less likely to capture the heterogeneity of the exper-

imental fields. Row-column design allows for two-dimensional blocking hence simultaneously

control two sources of variability (Van Eeuwijk et al., 2011). An additional source of variability

in the fields is induced by the plot to plot interference i.e spatial variation (Kempton et al.,

2012). In this study, the within-field trial variation was modeled in different forms, and a model

that optimally model the non-genetic variance in the field experiments was chosen to give an

improved estimation of the genetic means.

2.4.1 Randomized Complete Block and Row-Column Designs

The randomized complete block design approach helps in handling heterogeneity in the exper-

imental units by fitting the main effects of blocks in the analysis. The degree to which plots

in several repetitions(complete-blocks) are different is on average attributed to the complete-

block effects, and the variation explained by the block effects is accounted for in the model

itself, and so reducing the residual error variance compared to an analysis that ignores block

effects. Incomplete block and row-column designs extend this concept further, absorbing addi-

tional variation due to the effects of incomplete blocks within repetitions or complete blocks,

at an expense of more parameter estimates (Isik et al., 2017). Hence these incomplete block

and row-column design effects were included in the analysis of field trials designed to evaluate

breeding values or genetic values of the sugar beet. The models are explained below:

Models 2.4 is a randomized complete block design model; all components of this model are fixed.

On the other hand, 2.5 is an Alpha (Incomplete block) design model with random incomplete

blocks nested within replicates hence, it is a mixed effects model. These two models consider

11



one a dimensional blocking structure.

yij = µ+Gi + rj + εij (2.4)

yik(j) = µ+Gi + rj + bk(j) + εijk (2.5)

where yik(j) is the trait observation of the ith object in kth incomplete block placed within jth

repetition (Complete super-block) , µ is the intercept term, Gi is the ith object effect of the

genetic line, rj is the effect of the jth repetition, bk(j) is the kth incomplete block effect within

jth replicate. The error terms are random and normally distributed i.e εij ∼ N(0, σ2) The

random block analysis is a generally preferred analysis it allows an additional use of inter block

information(Van Eeuwijk et al., 2011). This imposes additional assumptions on the model, the

extra assumptions are that the random block effects bk(j) ∼ N(0, σ2b ) and the random blocks

effects are independent of the error terms cov(bj , εij) = 0.

In addition to the models described above, we also consider correcting for the row-column

design. Model 2.6 is developed to account for the likely two-dimensional ( in row and column

direction) variation on the field.

yirl = µ+Gi +Rr + Cl + εirl (2.6)

yirl is the phenotypic observation of the ith object placed within the rth incomplete row of the

lth incomplete column. Rr is the rth incomplete row effect, the Cl is the lth incomplete column

effect. These two factors Cl and Rr are assumed to be random. The error term (εirl) for Model

2.6, just like models 2.4 and 2.5, is assumed to be normally distributed N(0, σ2).

2.4.2 Spatial Variation

A model with random blocks implies that the plots in each block are uniformly correlated

i.e., the yields are correlated in the same way irrespective of distance apart, this assumption

is less likely to be practical (Negash et al., 2014). Agronomists have argued that in a field

trial plots adjacent to each other share the same factors that generate micro-environments,

therefore, yield and other traits of plots close together in rows or columns are likely to be more

highly correlated than plots further apart hence the elements of the residual (ε) are correlated

(Rodŕıguez-Álvarez et al., 2016). This correlation is usually a function of the distance between
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plots; hence, the model usually used in this case is an autoregressive correlation structure (AR)

model (Kang, 2002). An AR(1) model requires that the yield of a plot is more affected by the

yield of its neighboring plot, but not directly by the yield of plots further apart. The model

takes into account the natural variation as the direct product of an autoregressive correlation

structure for columns and an AR correlation structure for rows, denoted by AR(1) × AR(1).

This structure is equivalent to a correlation r and c say for two plots side by side, rd for two

plots at a distance d apart along the row direction and cf for plots at distance f apart along

the column direction (Burgueño et al., 2000). An AR(2) model would imply that the direct

influence is from the neighboring plot and the next neighbor. It is necessary to correct for this

spatial variation when estimating genotypic effects hence we fit the spatial model.

yikl = µ+Gi + εikl (2.7)

This model assumes that plots adjacent to each other are correlated i.e an AR(1) model hence

accounts for the spatial trends on the field. The error term in model 2.7 is spatially correlated

which is assumed to follow a normal distribution with mean zero and variance covariance =Aσ2

, where A = φrd ⊗ φcf , φr and φc are the correlation coefficients along the row direction and

column direction respectively, d= number of rows apart and f= number of columns apart.

2.4.3 Genotype Effects

Genotype effects can be fit as fixed or as random effects depending on the goal of the analysis. It

is a fixed factor when the emphasis is on the comparison of tested genetic material for selection

or recommendation. On the contrary, the genotype is random when the aim is to support

decisions regarding elements of a breeding strategy by estimating the variance components,

genetic parameters, and focus on predicting the potential breeding value of genotypes in future

experiments using the BLUPs (Fischer et al., 2009). In the case of random genetic effects, the

genotypes are taken as a representative sample of the relevant genetic base i.e., Gi ∼ N(0, σ2G)

hence they is an additional source of variation. Furthermore Piepho et al. (2008) postulates

that in most analysis of plant breeding trials, genotype effect should be random because the

selection of varieties through rankings rather than comparisons is the main goal in both early

breeding phases or advanced evaluation phases. In this thesis genotypes are taken as fixed when

in the fist stage of the two-stage analysis and random otherwise.
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2.5 Multi-Environment Testing (G× E Interaction)

The main aim of sugar beet breeding programs is to provide farmers with seed genotypes with

an assured superior performance in terms of yield and other quality characteristics across a

range of environments. The final composition of the sugar beets is the collective result of sev-

eral underlying interactions between the genetic make-up of the plant and the conditions i.e.,

environment under which the beets are grown. Environments vary in the amount and quality

of inputs and stimulus that they give to the plant, for example, the amount of water, nutrients,

or sunlight. One major aim of plant breeding is matching genotypes and environments in such

a way that improved quality beets are obtained. Some genotypes perform well across a wide

range of conditions while others do better than others under restricted conditions these are

called adapted genotypes. Adaptation of genotypes is related to the phenomenon of genetic by

environment interaction (G× E) (Malosetti et al., 2013).

Kempton et al. (2012) defines G × E interaction as the differential expression of genotypes

across locations. This interaction reduces the relationship between phenotypic and genotypic

values and may lead to the poor performance of selections from one environment when ex-

posed to another environment. This forces breeders to examine genotypic adaptation. Multi-

environment trials (METs) enable the assessment of the probable yield performance of several

varieties across a range of environments and possibly over years or a combination of the two

as in the case of this study. This allows the researchers to obtain information about whether a

genotype performs well in all environments, or under which environment can it give better yield

and quantify how much can a genotype gain from improving the environment (Gutierrez, 2012).

Analysis of data from METs can be done either by one stage or two stage modeling. Both types

of analysis were done in this paper, and comparisons of the estimated breeding values and their

respective rankings were done.

2.5.1 Two stage approach

First Stage

For the analysis of MET data using a two-stage approach explained by (Van Eeuwijk et al.,

2016), in the first stage individual field trials are analyzed with models including terms of the

design features i.e., the completely randomized design, the alpha design, the row-column design,
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and spatial models described earlier. This stage aims to find one best model for each trial that

best explains the variability within a field trial. Table 1 shows a summarized description of these

for models. The best model is picked using the Akaike’s Information Criterion, and adjusted

genotypic means γit for trial t are estimated. For this thesis, this first stage done through

the selection of the best model is referred to as the best-selection method. Different two-stage

analyses were adopted to fit each of these four models to the field trial data separately and

extracting the BLUEs for use in the second stage these forms of analysis were compared to the

best-selection method.

Table 1: Models for within field trial variation

Model Fixed effects Random effects

2.4 Randomized complete block design genotype + repetition unit

2.5 Alpha design genotype + repetition blocks within repetitions + unit

2.6 Row column design genotype row +columns

2.7 Spatial genotype row(AR(1))⊗ column(AR(1))

Second Stage

In the second stage a weighted analysis is done. Here we fit the mixed model for the METs the

model is defined as follows

γit = µ+Gi + Et +GEit (2.8)

Where γit is trait mean of the ith genetic effect G and the tth trial location E. The Environmen-

tal effect Et is fixed while the genetic effect Gi is considered random i.e Gi ∼ N(0, σ2G). GEit is

the residual term since there is no replication of G×E effects within environment and it follows

normal distribution with mean zero and variance σ2GE . This model produces the BLUPs of the

genotypes i.e., shrunken means which are sensitive parameters for each of the genotypes.

(Möhring and Piepho, 2009) discussed different weighting methods that can be adopted in a

two-stage analysis and further postulates that if a correct weighting is done for the two-stage

analysis, the results will not be statistically different from the ones from a one-stage approach.

In this thesis, we consider an unweighted two-stage analysis and compare the results to those

obtained from each of the one stage analyses. Most scholars prefer the two-stage approach since

a large number of field trials are usually anticipated in plant breeding data; hence, probable
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mistakes are fewer compared to the one stage approach. SESVANDERHAVE use the best-

selection two-stage approach for their analysis since they do not have to wait for all the data

from all field trials to be available before they start to analyze.

2.5.2 One stage approach

In the one-stage approach field-plot data (information from the design of the experiment) and

the G × E interaction are analyzed simultaneously. An extension of each of the four models

described in the first stage of the two-stage approach was done to the one stage approach.

The primary purpose of MET analyses is to find an adequate model for the mean trait (pheno-

typic) responses as a function of genotypes and the environment. Reliable conclusions from the

models are determined by a suitable variance-covariance structure for the GEit. Assumptions

on the variance of the G×E interaction entails the different number of model parameters (Ward

et al., 2019). The assumption of independence of residuals between environments is highly un-

realistic, i.e., this implies that covariance between every pair of different environment random

terms is zero, or in other words, the environments provide independent information. Finding

an appropriate structure for residuals that reflects the difference of genetic variances and corre-

lations is a crucial step towards reliable conclusions on mean genetic effects (Balzarini, 2002).

For compound symmetry variance-covariance structure, each environment has the same genetic

variance that is confounded with G×E variance, and the genetic correlation is uniform between

all pairs of environments. If we assume that each environment has its own genetic variance, and

the genetic correlation can change between any pair of environments then it implies that the

variance-covariance structure is unstructured. Ward et al. (2019) asserts that an unstructured

variance-covariance matrix results in too many parameters i.e., T (T+1)
2 parameters were T is

the total number of trials that need to be estimated which may lead to variance components

estimate failing to converge especially when there is a large number of environments. Thus

since the independence and unstructured suffer from the highlighted disadvantages. This study

adopted a compound symmetry variance-covariance structure.
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2.6 Univariate versus Multivariate Models

We give an overview of the two mixed model types that were fitted to the data i.e., univariate

and multivariate trait models that are adopted in this study with the methods described earlier.

2.6.1 Univariate Trait Models

The univariate trait models independently model each of the eight traits with a separate model.

Hence it assumes that the trait measurements within an individual plot are independent. We

fit the model explained in equation 2.3

Y = Xβ + Zb + ε (2.9)

where Y is the response vector of a trait for a given field trial(location), β and b are vectors

of fixed effects and random effects respectively. X and Z are the design matrices for the fixed

and random components respectively, and ε is a vector of error terms. The univariate trait

models were done using both that two stage and the one stage methods and comparison of the

predicted breeding value rankings from each of these methods were compared. The variations

of models fitted in this thesis under the univariate modeling were the two-stage model using

the best selection method, randomized block design model (RCBD), incomplete block design

(Alpha design) model, spatial model and the row column model. One sage models of these

types were also fitted for comparison purposes.

2.6.2 Multivariate Models

Multivariate analyses are necessary to obtain estimates of genetic associations between traits.

Genetic correlations between traits are an indication that measurements of one trait contain

information about other traits. On the other hand, observed measurements of the traits from

the same plot are often correlated, environmental factors and genetic effects contribute to

observed correlations among traits (Isik et al., 2017). The univariate analyses described before

assume that all correlations between traits are zero. Therefore the univariate models exclude

any opportunity of learning from the potential associations among traits because a single,

independent model is fitted for each trait separately. If the assumption of zero correlation is

not correct, then genetic selection performed and the estimated breeding values based on the

single trait models may be biased. The critical assumption of the multivariate extension is that

trait measurement taken from the same plot are correlated; hence, joint analyses of correlated
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traits utilize information on the association between traits gives more accurate predictions

(Meyer, 1991). We fitted a model of the form:

Y = Xβ + Zb + ε (2.10)

The dimension of the matrices are as follows

Yn×q = Xn×(p+1)β(p+1)×q + Zn×kbk×q + εn×q

n is the number of individual experimental plots, and q is the number of dependent variables

i.e., traits. X is the design matrix with dimensions n× (p+ 1), where p is the number of fixed

predictors for one trait and an additional column is added for the intercept. β is the matrix of

fixed effects to be estimated with dimensions (p+ 1)× q. The rows of β correspond to number

predictor variables and the columns to the number of response variables. The design matrix

Z has dimensions n × k where k is the number of random effects per trait, and b is an k × q

matrix of random effects. Other components of the model are explained under equation 2.3.

Selecting the covariance structure

The structure of variance-covariance matrices of the random effects G and the residuals R in

a multivariate model have different specifications. Many factors were considered in selecting

the structures which include the number of parameters estimated in line with the principle of

parsimony as well as providing answers to some research questions of interest (Kincaid, 2005).

In this thesis we, therefore, start with the most straightforward extensions of univariate models

to the multivariate approach. Of interest also in this study is the genetic variance-covariance

structure estimated by the matrix G. G allows to study and summarize a portion of the varia-

tion in the traits that is due to the genetic variability i.e., pairwise genetic covariances between

characteristics of interest. Pigliucci (2006) asserts that the G matrix describes the degree to

which the genetic architecture determines how a population respond to natural selection. Posi-

tive genetic correlations between traits imply that other factors being constant if selection favors

an increase in one trait the other trait will be indirectly lifted upwards. On the other hand,

a negative genetic correlation any selection favoring an increase in one trait will decrease the

mean response of the other trait. A weak correlation implies the traits respond independently

to selections of each other. On the other side, the R matrix of residuals takes into account

the correlation between the residual effect (Pigliucci, 2006). To correct for correlation between
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the residuals, an unstructured R matrix was chosen i.e., the correlation between traits mea-

surements within each plot is unique for every pair. For a simple method, a simpler covariance

structure for the random effects was chosen. However, to gain information about the genetic

correlations between traits, an unstructured variance structure for the random genotype effects

is needed. On the other hand, to estimate the phenotypic correlations between traits, we need

unstructured covariances of the genotype, G × E and the residual effect between trait pairs

(Isik et al., 2017). genetic correlation between two traits y1 and y2 is calculated as

rG(y1,y2) =
CovG(y1, y2)√

V arG(y1).V arG(y2)
(2.11)

While the phenotypic correlation is given as

rP (y1,y2) =
CovP (y1, y2)√

V arP (y1).V arP (y2)

=
σ2G(y1, y2) + σ2GE(y1, y2) + σ2ε(y1, y2)√

(σ2G(y1) + σ2GE(y1) + σ2ε(y1))× (σ2G(y2) + σ2GE(y2) + σ2ε(y2))

(2.12)

Where σ2G(yi), σ
2
GE(yi) σ

2
ε(yi) are the genotype, G × E interaction and residual covariance

parameters corresponding to trait i.

2.7 Model selection

The analyses of field trial data are aimed at selecting a parsimonious model that accurately

and characterizes the variation effects in the field, and consequently provides the most accurate

and precise estimates of genotype effects. The relevance of component terms in the model is

assessed by procedures such as the likelihood ratio test, Akaike’s information criterion (AIC)

or Schwarz’s Bayesian Information Criteria (BIC) (Piepho and Williams, 2010). In this thesis,

the AIC criterion was used for model selection. AIC is computed as minus twice the restricted

loglikelihood (the so-called deviance), plus a penalty term defined as twice the number of fitted

parameters i.e.,

AIC = −2loglikelihood + 2K

where K is the number of parameters in the model. The penalty term is designed to strike

the right balance between model practicality and parsimony. Burnham and Anderson (1998)

postulates that the philosophy behind the use of AIC is the view that there is no correct model

and the best we can hope for is to find a good working model that is close enough to the correct

underlying model. Minimization of AIC is a strategy to search for an approximating model

19



that shows the smallest discrepancy to the correct model and is parsimonious enough to be

supported by the data (Piepho and Williams, 2010).

2.8 Criteria for comparing models

Different models were used to estimate the breeding values i.e., two-stage models, one stage

models, and the multivariate models described previously. The Spearman’s rank correlation

of the predicted breeding values was used as a performance measure (Zambrano et al., 2015).

The Best-selection two-stage model was used as the benchmark for the assessment. Möhring

and Piepho (2009) postulates that since the main focus of such an analysis is on comparison of

genotypes the Mean Square Prediction Difference (MSPD) of the estimated difference between

estimated breeding values from the benchmark method compared to the other methods.

2.8.1 Spearman’s rank correlation coefficient

This measure was chosen as an attempt to measure the degree of similarity between the rankings

of the genotypes by their breeding values. It is calculated using the equation

rs = 1−
6
∑n

1 (d2)

n3 − n
(2.13)

Where d is the difference in rankings of the genetic values of (yij − yik) order. yij is the ith

genetic value of method j and yik is the ith genetic value of method k, n is the number of

(yij , yik) pairs which is the same as the number of genotypes. A high correlation implies that

ranking is nearly the same regardless of the methods used (Newcom et al., 2005).

2.8.2 Mean Squared Prediction Difference

The MSPD measures the average squared distance between the predicted breeding values of the

benchmark model and the other model being compared to. It helps to measure the goodness

of the estimated breeding values predicted by different approaches to be used as the reasonable

alternative to the currently used best-selection two stage method. MSPD is calculated as:

MSPD =
1

n

n∑
i=1

(yik − yi0)2

where yik and yi0 are the estimated breeding values of genotype i from method k and the

benchmark model n is number of genotypes. The smaller the MSPD the more reasonable the

alternative is.
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2.9 Implementation of data analysis

A database of several datasets was available for analysis and validation of results. Results from

two analyses are shown and the other datasets were used for validation is case of conflicting

results from the two analyses. Analysis was done in SAS version 9.2 using the Proc Mixed

procedure.
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3 Results

The methods explained in section 2 were implemented in providing answers to the research

questions of this study. This section of the thesis is organized as follows the exploratory analysis

of traits is presented first, comparison of various univariate methods of estimating the breeding

values. Lastly, a comparison of the multivariate model with the best-selection two-stage analysis

and the best one-stage model. Since a big database of different series of experiments was

provided, two datasets were used to run parallel analysis. The parallel analysis allows for

consistency checks and robustness of findings to changes in datasets i.e., the genotypes and

field trials under consideration.

3.1 Exploratory Analysis

Two series of experiments considered for the main analysis are series 1111, and series 1131. In

the case of conflicting results, other datasets were taken for analysis and validation of results.

The number of field trials, plots, and genotypes used in each series of experiments is shown in

Table 2

Table 2: Distribution of field trials and genotypes

Series Field trials Plots Genotypes

1111 33 4941 72

1131 9 972 54

3.1.1 Descriptive Statistics

The mean T HA recorded was 89.77t/ha and 79.35t/ha for series 1111 and 1131 respectively the

range of values for T HA were wider for series 1111 (16.3 -137.35t/ha) than series 1131 (33..51

-118.58t/ha). The range of values shows that there are some plots with extremely below average

T HA and some with extremely high T HA. On the other side, the average %S extracted from

the beets is almost the same in the two sets of data i.e., approximately 17.8% and the variation

in the percentage of sugar is small. These are only insights into the distribution of the data in

the two series of experiments. In addition to these box-plots of the traits are shown to give a

pictorial view of the variability within and between field trials.
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Table 3: Summary Statistics

Series 1111 Series 1131

Variable Mean Std Dev Min Max Mean Std Dev Min Max

T HA 89.77 19.21 16.3 137.35 79.35 16.24 33.51 118.58

S HA 15.97 3.52 3.21 24.04 14.00 2.36 6.17 19.99

%WS 16.42 1.26 11.99 21.21 16.21 1.64 12.20 20.35

WSY 14.74 3.28 3.03 22.09 12.69 2.08 5.65 18.37

Mm K 3.58 0.75 2.13 7.89 3.77 0.58 2.46 5.39

Mm Na 0.42 0.24 0.10 1.93 0.56 0.45 0.10 2.75

Mm N 1.25 0.74 0.26 4.40 2.03 1.24 0.55 8.12

%S 17.79 1.19 13.86 22.82 17.83 1.49 13.94 21.70

3.1.2 Box-plots of Traits

Figure 1 displays the boxplots for each trait separately for several field trials included in the

study series 1111. For T HA, the median T HA for various field trials fluctuates around the

grand median value of 97 t/ha. Variation in T HA for plots within the same field trial and

between field trials is small. Field trial 734 has the lowest recorded T HA. On the other hand,

the boxplots shows some variation in the amount of %S among different field trials. Further-

more, the variability in %S between plots within the same field trial differs for different field

trials as shown by the different lengths of the box and whiskers. The boxplots show that T HA,

S HA and WSY are similar as well as that of %S extracted and %WS this suggest that there

may be high inter-dependencies amongst some of these traits. These relationships were further

explored using the Pearson product moment correlation analysis of traits. There seems to be

considerable variability in Mm K content between field trials with some field trials with Mm K

content below the grand meanwhile others are above average. Similarities in variability patterns

for the other impurities (Mm Na and Mm N) i.e., field trials with smaller variation in sodium

also have smaller variation is nitrogen. All in all the boxplots show some outlying plots that

have either low measurements or high measurements of the trait. This variability can be either

due to different environmental and management conditions at different trial locations or most

importantly, due to the effect of the genotypes used.
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Figure 2 shows boxplots from series 1131; however, it still shows the inter-dependencies amongst

T HA, %S, WSY, %WS and S HA. Variability in Mm N content within most field trials is

minimal while for Mm K the variation is quite considerable. The difference in these two series

of experiments is since a different set of experimental genotypes are used.
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Figure 1: Boxplots of the traits series 1111
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Figure 2: Boxplots of the traits series 1131
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3.1.3 The Pearson Correlation Coefficient between traits

Tables 4 and 5 show the Pearson product-moment correlations between the traits and the re-

spective test for significance at a 5% level.

Table 4 shows the correlation of traits for series 1111. The correlation matrix shows a small,

weak negative correlation T HA and %S. The correlation between the %S and S HA is (r =

0.218, p < 0.0001). There is a significant moderate linear relationship between T HA and Mm K

content in the sugar beet roots (r = 0.322), i.e., an increase in Mm K results in a relative in-

crease in T HA . Amount of Mm K in the beets have a non-significant linear relationship with

%S extracted from the beets (r = 0.019, p = 0.6) but have a positive linear relationship with

T HA (r = 0.322, p < 0.001). Hence as the amount of Mm K in the roots increases the T HA

increases relatively, but no significant linear relationship with %S. Mm Na has an inverse re-

lationship with T HA (r = −0.223, p < 0.0001) that is as the amount of Mm Na in the beets

increases the weight of the sugar beet roots decrease proportionately.

On the other hand, Mm N does not have a significant linear relationship with T HA (p =

−0.006, p = 0.4) however it has a negative association with %S extracted (r = −0.177, p <

0.001). As suggested by the box plots there are high positive correlation between %S and %WS

(r = 0.977), S HA and WSY (r = 0.996), T HA and S HA (r = 0.953) and also between

WSY and T HA (r = 0.936). These correlations suggest an almost perfect linear relationship

amongst these traits. There is negative association between %WS and each of the impurities.

Table 4: Matrix of correlations series 1111

Variables 1 2 3 4 5 6 7 8

1. T HA 1

2. %S -0.081* 1

3. S HA 0.953* 0.218* 1

4. %WS -0.096* 0.977* 0.198* 1

5. WSY 0.936* 0.255* 0.996* 0.251* 1

6. Mm K 0.322* 0.019 0.303* -0.138* 0.237* 1

7. Mm Na -0.223* -0.385* -0.324* -0.480* -0.372* 0.083* 1

8. Mm N -0.006 -0.177* -0.061* -0.370* -0.138* 0.479* 0.566* 1

1 * P value < 0.05 i.e., correlations significant at 5% level of significance
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Table 5 show the correlation matrix for series 1131. Results form series 1131 suggest a mod-

erate negative correlation between T HA and %S (r = −0.6094, p < 0.0001). The correlation

between T HA and S HA (r = 0.9136, p < 0.0001) as well as with WSY (0.8662, p < 0.0001)

is high as seen for series 1111 though with differences in magnitude. On the other hand, the

correlations between T HA and Mm Na is moderate (0.3314, p < 0.0001), which implies that

an increase in Mm Na results in a proportionate increase in the T HA. Positive correlations

between T HA and all the impurities, implying an increase in the amount of Mm N, Mm Na

and Mm K in the beets results in a relative increase in T HA.

Table 5: Matrix of correlations series 1131

Variables 1 2 3 4 5 6 7 8

1. T HA 1

2. %S -0.609* 1

3. S HA 0.914* -0.242* 1

4. %WS -0.632* 0.973* -0.285* 1

5. WSY 0.866* -0.160* 0.98364* -0.169* 1

6. Mm K 0.202* 0.122* 0.334* -0.005 0.277 1

7. Mm Na 0.331* -0.541* 0.121* -0.663* -0.026 -0.079* 1

8. Mm N 0.29445* -0.27019* 0.23227* -0.4793* 0.06154 0.3719* 0.7256* 1

1 * P value < 0.05 correlations significant at 5% level of significance

The results from the correlation analysis suggest for a critical look in the genetic correlations

amongst the traits. As the difference in the direction of the correlations may be due to the

different sets of the genotypes used in the two series.

3.2 Univariate Analysis

Various models were fitted to the data to check similarities in the genotype rankings and

estimate of the breeding values. The Best-selection method was used as the benchmark; hence,

all comparisons were made against this model. The aim is to check how sensitive the rankings

and the estimated breeding values are to model selections.
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3.2.1 Two stage analysis

Figure 3 shows how frequent each of the four models explained earlier is picked as the best model

using the Akaike’s information criterion. The Figure shows that the spatial model was often

picked as the best model in explaining the within-field variability for traits like %S, S HA,

WSY, Mm Na and Mm N. On the other hand, row-column models were also picked off the

models explaining the variability in the Mm K content of the beets in various field trials. The

alpha design models were frequently picked in the modeling of the T HA compared to the other

models.

Also, separate two-stage models were fitted to the data and compared to the best-selection

two-stage model comparisons are shown in Tables 6 to Table 9

Figure 3: Frequency of selection of different models

3.2.2 One stage Models

Three models were fitted under the one stage model approach that is the RCBD model, the

alpha design model, and the row-column design model. The extension of the spatial model was

fruitless due to convergence problems. For each trait, the AICs of the models were recorded, and

an aggregated count of which model was mostly picked as the one with the smallest AIC was

recorded. Out of the 24 models fitted separately i.e., three models per trait. The row-column

model was frequently picked as the best.
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3.2.3 Comparison of univariate trait models and the best selection model

The main aim of the analysis was to determine if the rankings of the genotypes as well as the

estimated breeding values from different models are similar. Hence the Spearman correlation

coefficients and the mean square error were used.

Rank Correlations

Table 6 shows the correlation of the rankings for series 1111. For T HA the correlation between

the best-selection two-stage model and the one stage models for the RCBD, Alpha,and the row-

column models were exactly the same(r = 0.987) while, on the other hand the rankings between

the best-selection models and the two-stage models for the alpha design and the row-column

design are almost perfect (r = 0.99). For the ranking of the breeding values for percentage

white sugar all the six models have an almost perfect correlation (r = 0.99) this implies that

there is an almost complete agreement in the order of the ranks of the genotypes’ breeding

values. The correlations of the rankings also depend on the trait under consideration but, this

correlation is larger than 0.95.

Table 6: Spearman rank correlation coefficients for comparison of different models to the

best-selection two stage model series 1111.

Comparison T HA S HA %S WSY %WS Mm K Mm Na Mm N

Best-Selection Two-Stage Versus

One stage RCBD 0.9875 0.9769 0.9943 0.9753 0.9902 0.9832 0.9863 0.9607

One stage Alpha 0.9875 0.9747 0.9941 0.9746 0.9904 0.9837 0.9863 0.9600

One stage R&C 0.9872 0.9757 0.9938 0.9761 0.9902 0.9836 0.9865 0.9605

Two stage RCBD 0.9872 0.9800 0.9947 0.9774 0.9909 0.9866 0.9881 0.9628

Two stage Alpha 0.9944 0.9872 0.9951 0.9854 0.9975 0.9977 0.9927 0.9800

Two stage R&C 0.9930 0.9816 0.9987 0.9760 0.9943 0.9956 0.9969 0.9863

Two stage Spatial 0.9940 0.9935 0.9981 0.9912 0.9949 0.9929 0.9967 0.9944

1 all correlations are significant at α = 0.05 level of significance.

Results in Table 7 show a small change in the magnitude of the correlations. The smallest rank

correlation of 0.924 was observed for the best-selection two-stage model, and one stage row

column model. Like in the analysis for series 1111, the strength of the rank correlation depends

on the trait under consideration.
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Table 7: Spearman rank correlation coefficients for comparison of different models to the

best-selection two stage model series 1131.

Comparison T HA S HA %S WSY %WS Mm K Mm Na Mm N

Best-Selection Two-Stage Versus

One stage RCBD 0.9842 0.9509 0.9789 0.9473 0.9789 0.9826 0.9921 0.9569

One stage Alpha 0.9833 0.9268 0.9784 0.9309 0.9789 0.9818 0.9925 0.9530

One stage R&C 0.9831 0.9345 0.9777 0.9241 0.9784 0.9824 0.9925 0.9539

Two stage RCBD 0.9842 0.9525 0.9797 0.9480 0.9786 0.9826 0.9926 0.9555

Two stage Alpha 0.9847 0.9860 0.9876 0.9842 0.9941 0.9904 0.9965 0.9871

Two stage R&C 0.9878 0.9470 0.9911 0.9559 0.9816 0.9883 0.9970 0.9744

Two stage Spatial 0.9806 0.9592 0.9929 0.9489 0.9896 0.9948 0.9951 0.9845

1 all correlations are significant at α = 0.05 level of significance.

Which shows that the robustness of the analysis depends on the data at hand i.e., for bigger

datasets like series 1111 the difference in ranking for these models is very small and in most

cases, the rankings are robust to the model selection. While for smaller datasets some changes

are anticipated. On the other note, the rank correlations between the benchmark model and

the one- stage models are lower than those between the benchmark model and the two-stage

model. This difference is as a result of the anticipated loss of efficiency when modeling is done

using the two-stage model. This loss in efficiency is more substantial in smaller datasets than

in bigger datasets.

Overall the correlations of the rankings of the genotypes obtained from the different models are

very high and positive, which shows that there are a few re-rankings of the genotypes that may

result from the different models.

3.2.4 Mean Square Prediction Difference

The MSPDs values show small differences in the magnitude of the breeding values estimated

from the best-selection model and those from other models shown in Tables 8 and 9. The

magnitude of the MSPDs differs for each trait as well as the dataset at hand. It is observed

from the tables that the MSPD values for models of the impurities are almost zero for the two

datasets, which shows that the estimations of genetic values are robust to any model selection.

On the other hand, MSPD values for T HA depends on the dataset used and the models being

compared. Smaller values were observed for series 1111 compared to values recorded for series
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1131. The same reasoning as in the correlation is in the loss of efficiency in two-stage models,

the MSPD values between the Best-selection two stage model and the one stage models are

bigger that comparisons to two stage models.

Table 8: MSPD comparison of the Univariate Models to the two stage best-selection model

series 1111.

Comparison T HA S HA %S WSY %WS Mm K Mm Na Mm N

Best-Selection Two-Stage Versus

One stage RCBD 1.2320 0.0448 0.0014 0.0393 0.0021 0.0006 0.0002 0.0014

One stage Alpha 1.2432 0.0466 0.0015 0.0408 0.0022 0.0006 0.0002 0.0014

One stage R&C 1.2656 0.0463 0.0015 0.0405 0.0021 0.0006 0.0002 0.0014

Two stage RCBD 0.0870 0.0027 0.0009 0.0025 0.0012 0.0003 0.0000 0.0004

Two stage Alpha 0.0406 0.0015 0.0031 0.0003 0.0000 0.0000 0.0000 0.0002

Two stage R&C 0.0631 0.0025 0.0007 0.0023 0.0007 0.0000 0.0000 0.0002

Two stage Spatial 0.0612 0.0013 0.0003 0.0011 0.0004 0.0001 0.0000 0.0000

Table 9: MSPD comparison of the Univariate Models to the two stage best-selection model

series 1131.

Comparison T HA S HA %S WSY %WS Mm K Mm Na Mm N

Best-Selection Two-Stage Versus

One stage RCBD 0.1937 0.0078 0.0049 0.0071 0.0051 0.0007 0.0004 0.0013

One stage Alpha 0.2482 0.0165 0.0037 0.0154 0.0058 0.0008 0.0004 0.0019

One stage R&C 0.2292 0.0131 0.0059 0.0120 0.0059 0.0007 0.0004 0.0016

Two stage RCBD 0.1874 0.0047 0.0046 0.0044 0.0045 0.0006 0.0000 0.0014

Two stage Alpha 0.1376 0.0026 0.0020 0.0024 0.0012 0.0003 0.0000 0.0003

Two stage R&C 0.1938 0.0058 0.0033 0.0054 0.0039 0.0000 0.0000 0.0008

Two stage Spatial 0.1656 0.0075 0.0013 0.0065 0.0011 0.0002 0.0000 0.0004

3.3 Multivariate Analysis

3.3.1 Model building

Aim of multivariate analysis is to jointly model traits accounting for the correlation between

them. Extension to the multivariate analysis was done by starting with the simplest possible

model since the univariate modeling showed that all the models are good enough in estimating

the genetic values. Furthermore, since the one stage model is preferred for efficiency, extensions

were done in a single stage approach. Like before modeling is done for the two series to get a
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fair assessment of the multivariate approach.

The correlation matrices in the exploratory data analysis show that the correlation values be-

tween traits are unique for each pair of traits hence suggest the use of an unstructured matrix

of residuals R. Correlations for the derived traits %WS, WSY and S HA and T HA as well as

%S are strong i.e., r ≥ 0.75 showing that much of the variability in these traits is explained

already by the measured traits hence joint analysis was done on the measured traits. On the

covariance structures of the random effects G we started with the simplest and built upon the

model.

Model for series 1111 failed to converge even with the simplest form of G. While on the other

hand convergence was met for series 1131 multivariate extension of the randomized complete

block design RCBD. Results for series 1131 are shown in table 10. There are relatively high

correlations between the rankings from all the models. Higher correlations were observed be-

tween the genotype rankings from multivariate analysis and the one stage and two stage RCBD

models r = 0.9803 for T HA and r = 0.99 for all the other traits. The two-stage best selection

model is still good enough as there still a high correlation for all the traits the lowest being for

rankings on nitrogen with r = 0.96

Table 10: Spearman rank comparison of the multivariate RCBD Model to the Univariate

RCBD and Best selection model series 1131.

Comparison T HA %S Mm K Mm Na Mm N

Multivariate Analysis RCBD Versus

One stage RCBD 0.9803 0.9916 0.9971 0.9988 0.9957

Two stage RCBD 0.9803 0.9918 0.9967 0.9985 0.9952

Two stage Best-selection 0.9710 0.9816 0.9829 0.9922 0.9574

1 all correlations are significant at α = 0.05 level of significance.

Table 11 shows the MSPDs of the breeding values obtained from the multivariate model and

those obtained from the univariate RCBD and two-stage best selection model. The results

of the comparison are consistent with the conclusion from the rank correlations in table 10

small MSPD between breeding values from the one stage RCBD model than with the two-stage

best-selection model.
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Table 11: MSPD for comparison of the multivariate RCBD Model to the Univariate RCBD

and Best selection model.

Comparison T HA %S Mm K Mm Na Mm N

Multivariate Analysis RCBD Versus

One stage RCBD 0.2250 0.0023 0.0000 0.0000 0.0001

Two stage RCBD 0.2494 0.0026 0.0002 0.0003 0.0005

Two stage Best-selection 0.3495 0.0052 0.0007 0.0004 0.0013

3.3.2 Other considerations on multivariate analysis

Due to problems of convergence of the multivariate model when the number of genotypes and

field trials get big. We looked for other reduced models that may be important to the genetic

selections in sugar beet breeding. Two traits of significant concern are T HA and %S, hence, a

bivariate model of these two traits was done. The RCBD extension of the bivariate analysis was

done to allow for consistency in method comparison. Results are shown in Tables 12 and 13.

The rank correlations Table 12, show that there are much re-rankings that may be introduced

by the joint modeling of these two traits. For series 1111 since the exploratory analysis showed

a very small observed correlation r = −0.081 no much gain was obtained from the multivariate

analysis since the variable T HA contain very little information about %S. However a reduction

in the rank correlation for series 1131 shows that the joint modelling brought some changes

to the rankings since for this dataset some of the variability in T HA is explained by %S

r = −0.6093.

Table 13 shows that there are very small differences in the predicted breeding values for T HA

and %S as evidenced by small values of the MSPDs.

Table 12: Spearman rank comparison of the bivariate model to the univariate RCBD and

the Best selection models.

Comparison T HA %S

Bivariate Analysis RCBD Versus:

Series 1111 One stage RCBD 0.9987 0.9997

Two stage RCBD 0.9966 0.9992

Two stage Best-selection 0.9863 0.9942

Series 1131 One stage RCBD 0.9842 0.9952

Two stage RCBD 0.9842 0.9951

Two stage Best-selection 0.9731 0.9812
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Table 13: MSPD comparison of the bivariate models to the univariate RCBD and the Best

selection models.

Comparison T HA %S

Bivariate Analysis RCBD Versus:

Series 1111 One stage RCBD 0.0158 0.0001

Two stage RCBD 1.2301 0.0008

Two stage Best-selection 1.2401 0.0015

Series 1131 One stage RCBD 0.1832 0.0007

Two stage RCBD 0.2087 0.0011

Two stage Best-selection 0.3338 0.0049

Comparison of the multivariate and bivariate models

After reducing the analysis from a multivariate analysis with all the measured traits to a

bivariate analysis we look at the difference in the genetic predicted values and their respective

rankings for the two analyses. The results in Table 14 show that there are small differences in

rankings from the multivariate and bivariate analyses r = 0.99. The difference is due to some

information on T HA and %S that contained in the impurities, Mm K, Mm N, Mm Na.

Table 14: Spearman correlation and MSPD comparison of the bivariate model to the mul-

tivariate RCBD for series 1131.

Comparison T HA %S

Bivariate Analysis RCBD Versus:

Spearman Correlation Multivariate RCBD 0.9938 0.9941

MSPD Multivariate RCBD 0.0399 0.0016

3.3.3 Genetic and Phenotypic correlations

An unstructured G matrix allows the calculations of the genetic and phenotypic correlation

between traits shown in Table 15. These correlations are relevant to the breeders to know the

indirect impact of selections of one trait to another trait. The genetic correlation between T HA

and %S is moderate negative rG = 0.7152 for series 1111 and rG = 0.7906 for series 1131 this

means that an increase in T HA is combined with a decrease in %S extracted. Furthermore, the

phenotypic correlations between tonnes per hectare and percentage sugar are weak negative,
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i.e. rP = −0.2451 for series 1111 and rP = −0.2113 for series 1131 this shows that there is a

significant relationship between T HA and %S induced by the combined effect of genetics and

the environment.

Table 15: Genetic and phenotypic correlations between tonnes per hectare and percentage

sugar

Series 1111 Series 1131

Genetic Correlation -0.7152 -0.7906

Phenotypic Correlation -0.2451 -0.2113
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4 Discussion and Conclusions

4.1 Discussion

The study aimed at comparing various univariate and multivariate models used in the esti-

mation of breeding values for sugar beet field trials. The estimated breeding values are the

predicted means, BLUPs obtained from linear mixed models approach. The comparison was

made using the Spearman rank correlation coefficients and the Mean square prediction differ-

ence (MSPD). Results form the comparisons showed similarities in genetic rankings and the

estimated breeding values obtained from different methods.

Exploratory data analysis, suggested that there is variability in trait measurements for a plot

within field trials as well as between field trials. Furthermore, this within-plot variability may

be due to different aspects of the experimental design while the between field-trial variability

is due to different environmental and management factors. The magnitude of the correlations

was different for tonnes per hectare and percentage sugar in the two data-sets a weak negative

correlation was observed in series 1111, and a moderate negative correlation in series 1131. This

difference in correlation suggested a need to look at the genetic correlation between these two

traits as well as the phenotypic correlations to be able to give a meaningful conclusion on the di-

rection and magnitude of the relationship between the two traits using a multivariate approach.

In the first stage of the best-selection two-stage approach four models were fitted for each trial

and one best model was chosen using the Akaike’s Information criterion to estimate the least

square adjusted genetic means, BLUEs used as input in the second stage of the analysis. The

spatial model and the row-column models were the most frequently picked as the best models

for explaining the within-field variation. Many researchers also reached this conclusion and

argued that the models that take into account the two-dimensional variability within the field

trials give more accurate and precise estimates of the genotype effect than the complete or the

incomplete block analysis (Cullis et al., 1998). In the second stage, the variability in adjusted

genetic means was modeled as a function of the genotype, environment and the G×E Interac-

tion.

Additional variations of the two-stage models were also adopted for the study. A separate two-

stage analysis was done for each of the four models to check if the estimated breeding values and
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their rankings are robust to model selections in the first stage of the two-stage analysis. Results

showed that the predictions from these methods are similar to the best-selection approach. The

Spearman rank correlation coefficients showed that the rankings of these models are similar in

at least 95% of the cases regardless of the data. The results were found to be consistent in the

data-sets used thus the estimates of the breeding values obtained from the analyses are robust

to the model selections done in the best-selection two-stage approach.

Though most researchers favor the two-stage methods proposed to reduce the complexity and

increase the computational speed during the modeling process. It also have an advantage in

time gain since the researchers do not have to wait until all the data from all field trials are avail-

able, there has debate throughout literature about the use of the two-stage approach adopted

as some scholars argue that there is loss of efficiency (Monneveux et al., 2014). This thesis also

adopted a one stage modeling approach to compare the estimated breeding values as well as

their respective ranking to the estimates from the two-stage best selection approach. Of the

three one stage approaches done the row-column design, as well as the alpha design models,

were picked frequently picked as the best models in the one stage models for most traits. Com-

parison of results from the one stage analyses and the best selection analysis showed that the

predictions from this analysis are very close and the similar rankings were observed to each other

as evidenced by small values of the MSPD and larger values of the rank correlation coefficients.

Many researchers like Piepho and Möhring (2011) also established this conclusion in their study

on comparison of two stages and one stage models also concluded that the two-stage approach

weighted produce acceptable results when compared to the one stage approach in four data sets.

A multivariate analysis was done on the measured traits only since the exploratory data analysis

suggested that almost all the variability in the derived traits explained by tonnes per hectare,

and the percentage of extracted sugar. The multivariate analysis allows for the joint model-

ing of traits hence makes use of the correlations amongst the traits. A multivariate analysis

requires correctly specified variance-covariance structures for both the residuals and the ran-

dom effects. For computational efficiency, extensions to the multivariate models started with

the simplest model possible, which is the randomized complete block design to build it up

further. An unstructured covariance matrix of residuals as suggested by the correlation ma-

trix and a simple diagonal matrix for variances and covariances of random effects was selected.
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However, convergence attained for series 1131 even with complex unstructured covariance struc-

tures and convergence problems were encountered for series 1111 even with the simple form of

the variance-covariance structure of random effects. Piepho and Möhring (2011) argues that

convergence problems are attributed to the data-set under consideration which explains the dif-

ference in convergence issues when using different data-sets since series 1111 had 72 genotypes

and 33 field trials there are many parameters to be estimated compared to 54 genotypes and

9 environments in series 1131. (Ward et al., 2019) alluded that difficulties in the convergence

of multi-trait, multi-environment trials for several traits highlight practical limitations to the

technique of using mixed linear models with data collected across environments and traits since

as the number of environments increases, so is the number of parameters to be estimated during

model fitting.

On the same note, Stringer (1996) argues that many equations need to be solved in the mul-

tivariate analysis resulting in increased computational demand as compared to the univariate

procedures hence there is need to weigh the values of the gain in accuracy against the cost of

increased computational demand. Therefore this thesis took into account the computation time

and resources as well as the relative importance of the traits in the selection and decided on a

bivariate analysis of the two most essential traits in the selection of sugar beet genotypes. As

asserted by Biancardi et al. (2010) gross sugar yield is the most essential trait for sugar beet

growers and it depends on tonnes per hectare and percentage hence a bivariate analysis was

done on these two traits. Results from the bivariate analysis showed that the estimated breed-

ing values from the joint analysis were not significantly different from the univariate analysis as

shown by large values of rank correlations and small mean square prediction difference. Since

the multivariate takes in additional information from the other trait in the computation of pre-

dictions, the standard errors of predictions are lower than those of the univariate trait models

(Isik et al., 2017). Stringer (1996) asserts that if the traits under consideration are correlated a

correct specification of the genetic and environmental covariance structure amongst traits also

decrease the error variances of the estimated breeding values.

One potential gain obtained from the multivariate analysis allows for a model with unstructured

matrix of random effects G is it allows for the calculation of genetic correlation between any

two given traits (Isik et al., 2017). A negative moderate genetic correlation (r ≈ −0.7) between
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tonnes per hectare and percentage of extracted sugar was observed for both series which suggest

that a genotype selection that favors an increase in weight of the sugar beet roots results in

a proportionate decrease in the amount of extracted sugar. This is consistent with what was

suggested in literature by (Campbell (2002),Biancardi et al. (2010)) who also established that

there is a high correlation between sugar yield and root yield, and selections that increase root

weight tend to lower the sugar content and vice-versa. On the other hand, a smaller phenotypic

correlation between these tonnes per hectare and percentage sugar(r ≈ −0.2), relative to the

genetic correlation shows that there is a relatively more substantial impact of the environment

on the relationship of these two traits. Tenkouano et al. (2002) postulates that if the genetic

correlation and phenotypic correlations are very different in magnitude, it suggests there is

a genotype × environment interaction effect on the phenotypic relationship between the two

traits. Thus in this view it can be concluded that the inheritance of sugar yield is quantifiable

and strongly influenced by the environment (Biancardi et al., 2010). Hence it can be seen that

the negative correlations observed for these two traits in the exploratory analysis are also due

to genetic,environment and residual variations.

Extensions of the spatial model to the one stage analysis as well as the multivariate analysis

became more computationally demanding in SAS hence efforts to extend run such models were

fruitless. It is recommended that extensions of such models are tried out in more computation-

ally efficient software packages like Asreml and Genstat that are specifically made to fit spatial

models in plant breeding (Piepho and Möhring, 2011).

4.2 Conclusion

This thesis was aimed at a comparative study of various univariate models and extensions to

a multivariate approach. The results suggested that there the predicted breeding values from

univariate and multivariate approach are similar and produce the same genetic rankings. One

advantage that comes with the multivariate models is the ability to estimate the genetic and

phenotypic correlations but this comes with a lot of computational cost especially when the

number of parameters to be estimated is larger relative to the data available. Hence overally

weighing the gain from the multivariate analysis and the computational demand as number of

genotypes and environments increase it is recommended to continue with best selection two

stage analysis.
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Piepho, H.-P. and Möhring, J. (2011). On estimation of genotypic correlations and their stan-

dard errors by multivariate reml using the mixed procedure of the sas system. Crop Science,

51(6):2449–2454.

Pigliucci, M. (2006). Genetic variance–covariance matrices: a critique of the evolutionary

quantitative genetics research program. Biology and Philosophy, 21(1):1–23.

Robinson, G. K. et al. (1991). That blup is a good thing: the estimation of random effects.

Statistical science, 6(1):15–32.
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MVZ Córdoba, 20(3):4739–4753.

46



5 Appendix

5.1 Series 1111 top ten rakings

The tables show examples of rankings and respective estimated breeding values produced by

the different univariate models in series 1111

Table 16: Top 10 Genotype Rankings by different Models selecting for Tonnes per Hactare

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

44 97.00 44 95.94 44 96.017 44 96.03 44 96.74 44 96.77 44 96.71

46 95.58 49 94.86 49 94.911 49 94.95 49 95.89 49 95.96 46 95.82

49 95.53 46 94.38 46 94.439 46 94.44 46 95.51 46 95.38 49 95.58

48 95.33 65 94.09 65 94.141 65 94.17 65 95.13 65 95.26 48 94.94

65 95.32 52 94.02 52 94.077 52 94.08 52 95.08 48 95.20 61 94.92

52 95.05 61 93.89 61 93.887 61 93.91 61 94.87 52 95.09 52 94.90

61 94.94 48 93.73 48 93.766 48 93.78 48 94.70 61 95.09 65 94.89

62 94.08 62 93.58 62 93.545 62 93.61 62 94.33 11 94.23 59 94.36

59 93.98 53 93.17 53 93.209 53 93.22 53 94.19 62 94.17 11 94.28

12 93.93 11 93.09 11 93.124 11 93.14 11 94.16 12 94.03 62 93.84

Table 17: Top 10 Genotype Rankings by different Models selecting for Sugar per hectare

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

12 16.7229 62 16.6038 62 16.6009 62 16.6167 62 16.7487 62 16.7287 14 16.7096

14 16.7036 65 16.5079 65 16.5279 65 16.5374 65 16.695 65 16.726 12 16.6774

65 16.693 61 16.4805 63 16.4976 63 16.493 61 16.6572 61 16.7015 65 16.6737

62 16.6846 63 16.4732 61 16.4786 61 16.4871 12 16.6545 12 16.7002 62 16.6698

61 16.657 6 16.4552 6 16.472 6 16.4693 6 16.6515 14 16.697 63 16.6516

52 16.6553 12 16.4535 52 16.466 52 16.4654 14 16.6512 2 16.6691 11 16.6493

6 16.6453 52 16.4524 11 16.4612 11 16.4638 52 16.6494 52 16.6455 6 16.6455

2 16.6042 11 16.4505 12 16.453 12 16.4533 11 16.6478 11 16.6408 52 16.6286

63 16.5871 14 16.4284 14 16.4508 14 16.4318 63 16.6466 6 16.612 61 16.6251

11 16.5531 2 16.4191 53 16.4277 53 16.4308 2 16.6194 53 16.587 2 16.581
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Table 18: Top 10 Genotype Rankings by different Models selecting for Percentage White

Sugar

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

5 17.4708 5 17.4187 5 17.4218 5 17.4217 1 17.4349 5 17.4597 5 17.4477

1 17.4262 1 17.4069 1 17.4116 1 17.4115 5 17.4163 1 17.4347 1 17.4303

22 17.3258 22 17.3492 22 17.3522 22 17.3525 22 17.3685 22 17.3577 22 17.3288

31 17.163 19 17.1048 19 17.113 19 17.1117 31 17.1318 31 17.1849 31 17.1469

70 17.1258 31 17.0996 31 17.1027 31 17.1028 70 17.1233 70 17.1449 70 17.143

19 17.1177 70 17.0756 70 17.0807 70 17.0805 19 17.122 19 17.107 19 17.1298

25 17.0788 25 17.0209 25 17.0155 25 17.022 25 17.0566 50 17.1069 50 17.1025

50 17.0778 50 17.0057 50 17.008 50 17.0081 50 17.0258 25 17.0463 25 17.0758

43 16.97 43 16.9577 43 16.9602 43 16.9604 43 16.9946 43 17.0051 43 16.9704

27 16.9147 71 16.9187 71 16.9212 71 16.9211 71 16.9482 71 16.9344 71 16.9679

Table 19: Top 10 Genotype Rankings by different Models selecting for White Sugar Yield

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

14 15.4405 62 15.3269 62 15.3243 62 15.3388 62 15.468 62 15.4519 14 15.442

65 15.4134 65 15.238 65 15.2568 65 15.2664 65 15.4168 65 15.4489 62 15.4007

62 15.4081 63 15.2191 63 15.2417 63 15.2377 6 15.3973 14 15.4388 63 15.3984

6 15.3791 6 15.21 6 15.2267 6 15.2245 63 15.3853 61 15.4199 65 15.3924

61 15.377 61 15.209 61 15.2062 61 15.2148 14 15.3839 2 15.4028 6 15.3895

12 15.374 14 15.1725 14 15.1946 14 15.1766 61 15.3764 6 15.3566 61 15.3459

2 15.3416 52 15.164 52 15.1765 52 15.176 52 15.3528 12 15.349 52 15.334

21 15.3332 2 15.15 21 15.155 21 15.1542 2 15.3429 52 15.3476 12 15.3239

52 15.3331 21 15.1351 2 15.1531 2 15.1431 11 15.3073 63 15.3258 21 15.3218

63 15.3304 53 15.1217 53 15.1298 53 15.1328 12 15.3069 21 15.3073 2 15.316

Table 20: Top 10 Genotype Rankings by different Models selecting for percentage Sugar

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

5 18.7546 5 18.7039 5 18.7079 5 18.7079 1 18.7222 5 18.7471 5 18.7303

1 18.7043 1 18.7011 1 18.7053 1 18.7052 5 18.7115 1 18.7207 1 18.7248

22 18.674 22 18.6884 22 18.6925 22 18.6926 22 18.7085 22 18.7026 22 18.681

70 18.5646 70 18.5164 70 18.5199 70 18.5196 70 18.5589 70 18.5764 70 18.5829

31 18.4883 31 18.4603 31 18.4633 31 18.4634 31 18.4815 31 18.5086 31 18.4767

19 18.4116 19 18.4189 19 18.4264 19 18.4255 19 18.433 50 18.4248 19 18.4436

50 18.3935 50 18.3381 43 18.3405 43 18.3408 43 18.3671 19 18.4159 50 18.4287

25 18.3718 43 18.338 50 18.3402 50 18.3403 25 18.3536 43 18.3796 25 18.3842

43 18.3598 25 18.3259 25 18.3221 25 18.3273 50 18.3504 25 18.3521 71 18.3483

71 18.3044 71 18.3166 71 18.3191 71 18.3191 71 18.3412 71 18.3169 43 18.3472
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Table 21: Top 10 Genotype Rankings by different Models selecting for Nitrogen

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

63 1.03536 65 1.07123 65 1.06435 65 1.06603 65 1.05113 65 1.03555 63 1.05306

65 1.0503 9 1.08778 9 1.08204 9 1.08211 63 1.06744 4 1.0657 65 1.05641

61 1.068 63 1.09266 4 1.08834 63 1.08819 4 1.07215 61 1.06728 4 1.06513

4 1.07072 4 1.09342 63 1.08847 4 1.08844 61 1.07553 8 1.06861 61 1.07727

19 1.07521 61 1.1012 8 1.09669 8 1.0963 9 1.07649 63 1.07037 62 1.08235

8 1.0753 8 1.10146 61 1.09928 61 1.09768 8 1.07904 62 1.07248 9 1.08695

62 1.08746 62 1.12024 62 1.11675 62 1.11682 62 1.09604 9 1.08216 19 1.09001

9 1.08994 19 1.13265 19 1.12924 19 1.13008 25 1.10952 19 1.10317 8 1.09055

64 1.12821 25 1.1408 25 1.14171 25 1.13892 19 1.11611 64 1.12799 3 1.12898

25 1.13058 33 1.15506 33 1.15215 33 1.15156 33 1.12377 25 1.12915 67 1.13225

Table 22: Top 10 Genotype Rankings by different Models selecting for Sodium

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

50 0.27098 50 0.28257 50 0.28129 50 0.2813 50 0.2812 50 0.27277 50 0.26531

31 0.29456 31 0.3025 31 0.30151 31 0.30144 31 0.2983 31 0.29055 31 0.29278

30 0.30513 30 0.30985 30 0.30875 30 0.30871 30 0.3046 30 0.302 30 0.2999

60 0.32914 16 0.32507 16 0.32401 16 0.32437 16 0.31992 16 0.32253 60 0.32745

51 0.32955 60 0.33051 60 0.33013 60 0.32957 60 0.32569 51 0.323 51 0.32906

16 0.32991 51 0.33298 51 0.33224 51 0.33213 51 0.32766 17 0.32386 16 0.33066

17 0.3314 17 0.33582 17 0.33508 17 0.33495 17 0.32938 60 0.32592 17 0.33209

33 0.33405 39 0.34064 39 0.3398 39 0.34003 39 0.33348 39 0.33839 18 0.33568

18 0.33636 33 0.34982 33 0.34958 33 0.35048 33 0.33951 33 0.34127 39 0.33675

32 0.33753 18 0.35222 18 0.35149 18 0.3516 18 0.34323 32 0.3415 33 0.33692

Table 23: Top 10 Genotype Rankings by different Models selecting for Pottasium

Best-Selection Two stage RCBD One Stage Alpha One Stage One Stage Row-Column Two Stage RCBD Two Stage Alpha Two Stage Row-Column

Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS Rankings BLUPS

0 3.23045 60 3.21557 60 3.20943 60 3.20984 60 3.22808 60 3.21754 60 3.22439

5 3.27739 1 3.27086 1 3.26606 1 3.26678 1 3.28838 5 3.27225 5 3.27839

1 3.28562 5 3.27784 5 3.27331 5 3.27397 5 3.28886 1 3.28334 1 3.29622

23 3.33149 9 3.30912 9 3.30488 9 3.30548 9 3.32987 23 3.33367 9 3.33538

9 3.33179 23 3.32837 23 3.32467 23 3.32518 23 3.34808 9 3.33484 23 3.33794

58 3.37365 58 3.33126 58 3.32715 58 3.32769 58 3.35458 58 3.37151 58 3.37043

50 3.37948 38 3.35764 38 3.35422 38 3.3546 38 3.3812 50 3.38078 40 3.376

38 3.38616 40 3.36518 40 3.36164 40 3.36236 40 3.38259 40 3.39347 38 3.38287

40 3.39784 25 3.37918 25 3.37523 25 3.37408 50 3.3855 38 3.39433 50 3.38597

14 3.42061 50 3.37954 50 3.37643 50 3.37679 25 3.38839 14 3.41204 25 3.41548
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5.2 SAS CODES

PROC IMPORT DATAFILE="E:\Thesis_files\datas\wideformat.csv"

OUT=datawide

DBMS=csv

REPLACE;

Delimiter=’,’;

GETNAMES=Yes;

RUN;

libname proj ’E:\Thesis_files\series 1131’;

/*******SUBSETTING THE DATA FOR ONE SERIES*********/

/* SERIES 1111 2017*/

data proj.series1111;

set datawide;

where series_id=1111 & Year=2017;

run;

/* UNIVARIATE ANALYSIS CODE EXAMPLE FOR ONE TRAIT*/

/**** BEST SELECTION APPROACH*****/

/* RUN MODEL 1 RCBD and Extract AICs*/

/* MODEL 1 */

ods graphics off;

ods exclude all;

PROC MIXED data=proj.out;

BY field_trial_id;

class repetition_id object_id ;

model sugar=object_id repetition_id;

ods output FitStatistics=proj.aic1_sugar (RENAME=(Value=Value1)); *Output fit statistics (AIC, BIC, etc);

quit;

ods exclude none;

/* MODEL 2 INCOMPLETE BLOCK DESIGN */

ods graphics off;

ods exclude all;
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PROC MIXED data=proj.out;

BY field_trial_id;

class repetition_id object_id Block_id;

model sugar=object_id repetition_id;

random block_id(repetition_id);

ods output FitStatistics=proj.aic2_sugar (RENAME=(Value=Value2)); *Output fit statistics (AIC, BIC, etc);

quit;

ods exclude none;

/* MODEL ROW COLUMN DESIGN */

ods graphics off;

ods exclude all;

PROC MIXED data=proj.out;

BY field_trial_id;

class X_coordinate_field Y_coordinate_field object_id ;

model sugar=object_id;

random X_coordinate_field;

random Y_coordinate_field;

ods output FitStatistics=proj.aic3_sugar (RENAME=(Value=Value3)); *Output fit statistics (AIC, BIC, etc);

quit;

ods exclude none;

/* MODEL 4 SPATIAL MODEL*/

ods graphics off;

ods exclude all;

PROC MIXED data=proj.out;

BY field_trial_id;

class X_coordinate_field Y_coordinate_field object_id;

model sugar=object_id;

repeated X_coordinate_field*Y_coordinate_field /subject=int type=sp(powa)(X_coordinate_field Y_coordinate_field);

ods output FitStatistics=proj.aic4_sugar (RENAME=(Value=Value4)); *Output fit statistics (AIC, BIC, etc);

quit;

ods exclude none;

/****** EXTRACTING THE AICS FOR SELECTING BEST MODEL FOR EACH FIELD TRIAL*****/
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data proj.aic_sugar;

MERGE proj.aic1_sugar proj.aic2_sugar proj.aic3_sugar proj.aic4_sugar;

BY field_trial_id;

WHERE Descr = ’AIC (Smaller is Better)’; *Select only AIC values;

array values Value1-Value4;

index = whichn(min(of values[*]), of values[*]); *Get model number with lowest AIC value;

run;

DATA proj.out2_sugar (DROP = Descr Value1-Value4);

MERGE proj.out proj.aic_sugar; *Merge orig data with the model number with lowest AIC value;

BY field_trial_id;

RUN;

/********* FITTING THE BEST MODELS FOR EACH FIELD TRIAL*******/

/******** AND EXTRACT THE ADJUSTED MEANS THE BLUES*********/

/* MODEL1, adj means */

ods graphics off;

ods exclude all;

Proc Mixed data=proj.out2_sugar;

BY field_trial_id;

class repetition_id object_id ;

model sugar=object_id repetition_id /solution;

lsmeans object_id;

WHERE index=1;

ods output LSMeans=proj.adjmean1_sugar;

quit;

ods exclude none;

/* MODEL2, adj means */

ods graphics off;

ods exclude all;

Proc Mixed data=proj.out2_sugar;

BY field_trial_id;

class repetition_id object_id Block_id;

model sugar=object_id repetition_id /solution;
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lsmeans object_id;

random block_id(repetition_id);

WHERE index=2;

ods output LSMeans=proj.adjmean2_sugar;

quit;

ods exclude none;

/* MODEL3, adj means */

ods graphics off;

ods exclude all;

Proc Mixed data=proj.out2_sugar;

BY field_trial_id;

class X_coordinate_field(ref=first) Y_coordinate_field(ref=first) object_id ;

model sugar=object_id /solution;

lsmeans object_id;

random X_coordinate_field;

random Y_coordinate_field;

WHERE index=3;

ods output LSMeans=proj.adjmean3_sugar;

quit;

ods exclude none;

/* MODEL4, adj means */

ods graphics off;

ods exclude all;

Proc Mixed data=proj.out2_sugar;

BY field_trial_id;

class X_coordinate_field Y_coordinate_field object_id;

model sugar=object_id;

lsmeans object_id;

repeated X_coordinate_field*Y_coordinate_field /subject=int type=sp(powa)(X_coordinate_field Y_coordinate_field);

WHERE index=4;

ods output LSMeans=proj.adjmean4_sugar;

quit;
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ods exclude none;

/***************** CReating a dataset for the outputs(Adjusted Means From the first stage of the analysis)******************/

DATA proj.results_sugar1 (KEEP = FIELD_TRIAL_ID OBJECT_ID Estimate StdErr); *Merge adjusted means and se for the 4 models;

SET proj.adjmean2_sugar proj.adjmean3_sugar proj.adjmean4_sugar;

BY field_trial_id;Run;

/**** Check which model was frequently picked****/

proc freq data=proj.aic_sugar;tables index/nopercent;

run;

/*********************************** SECOND STAGE Calculating Estimated breeding vales *******/

/******** the Input are the adjusted mean from each field trial**********/

proc mixed data=proj.results_sugar1;

class field_trial_id object_id;

model estimate=field_trial_id/outp=proj.pred_sugar;

random intercept/ subject=object_id; run;

proc print data=proj.pred_sugar; run;

proc means data=proj.pred_sugar MEAN ;

var pred;

class object_id;

output out=proj.EBVs_sugar ; run;

PROC SORT DATA=proj.EBVS_sugar;

by OBJECT_ID;RUN;

PROC TRANSPOSE DATA =proj.EBVS_sugar OUT=proj.EBVS1_sugar;

BY OBJECT_ID ;

ID _STAT_;

VAR PRED;RUN;

proc print data=proj.EBVS1_sugar;run;

DATA proj.EBVS2_sugar(Keep=object_id Mean std);

SET proj.EBVS1_sugar;

WHERE OBJECT_ID NE .; RUN;

/*****Note that this code can be manipulated for other types of univariate models by using one model at a time for the two stage analysis for each trait*****/

/*****One Stage model EXAMPLES are given for only one trait and the code can be customised for the other traits******/
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/**** Model 1 ************************ BALANCED COMPLETE BLOCK DESIGN*********************************************************/

/******************* T_HA***********************************************************************************************/

proc mixed data=proj.series1111;

class field_trial_id object_id repetition_id ;

model t_ha=field_trial_id repetition_id(Field_trial_id)/outp=proj.one_t_ha ;

random object_id;

random object_id*field_trial_id;

run;

proc means data=proj.one_t_ha MEAN ;

var pred;

class object_id;

output out=proj.EBVsone_t_ha ;

run;

PROC SORT DATA=proj.EBVSone_t_ha;

by OBJECT_ID;

RUN;

PROC TRANSPOSE DATA =proj.EBVSone_t_ha OUT=proj.EBVS1one_t_ha;

BY OBJECT_ID ;

ID _STAT_;

VAR PRED;RUN;

PROC PRINT DATA=proj.EBVS1one_t_ha;

RUN;

DATA proj.EBVS2one_t_ha (Keep=object_id mean std);

SET proj.EBVS1one_t_ha ;

WHERE OBJECT_ID NE .;

run;

/************************************ T_HA***** MODEL 2*** INCOMPLETE BLOCK DESIGN*********************************************/

proc mixed data=proj.series1111;

class field_trial_id object_id repetition_id block_id ;

model t_ha=field_trial_id repetition_id(Field_trial_id)/outp=proj.two_t_ha ;
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random object_id;

random object_id*field_trial_id ;

random block_id(repetition_id*Field_trial_id); run;

proc means data=proj.two_t_ha MEAN ;

var pred;

class object_id;

output out=proj.EBVstwo_t_ha ;

run;

PROC SORT DATA=proj.EBVStwo_t_ha;

by OBJECT_ID;RUN;

PROC TRANSPOSE DATA =proj.EBVStwo_t_ha OUT=proj.EBVS1two_t_ha;

BY OBJECT_ID ;

ID _STAT_;

VAR PRED;RUN;

DATA proj.EBVS2two_t_ha (Keep=object_id mean std);

SET proj.EBVS1two_t_ha ;

WHERE OBJECT_ID NE .;run;

/**** Model 3 *** ROW COLUMN DESIGN*/

/************************************ T_HA********************************************************/

proc mixed data=proj.series1111;

class field_trial_id object_id repetition_id block_id x_coordinate_field y_coordinate_field ;

model t_ha=field_trial_id/outp=proj.three_t_ha;

random object_id;

random object_id*Field_trial_id;

random x_coordinate_field(field_trial_id);

random y_coordinate_field(field_trial_id); run;

proc means data=proj.three_t_ha MEAN ;

var pred;

class object_id;

output out=proj.EBVsthree_t_ha ; run;

PROC SORT DATA=proj.EBVSthree_t_ha;

by OBJECT_ID;RUN;
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PROC TRANSPOSE DATA =proj.EBVSthree_t_ha OUT=proj.EBVS1three_t_ha;

BY OBJECT_ID ;

ID _STAT_;

VAR PRED;RUN;

DATA proj.EBVS2three_t_ha (keep=object_id Mean std);

SET proj.EBVS1three_t_ha;

WHERE OBJECT_ID NE .;run;

/******* These codes can be customized to different types of univariate analysis that were done in this thesis******/

/ * MULTIVARIATE DATA ANALYSIS ***** USED DATA IN TALL FORMAT*******/

PROC IMPORT DATAFILE="f:\project\tall_fomart.csv"

OUT=datawide

DBMS=csv

REPLACE;

Delimiter=’,’;

GETNAMES=Yes;RUN;

libname new1 ’f:\Project\Output_META-R’;

data new1.multivariate;

set datawide;run;

/****** SUBSETTING DATA *******/ SERIES 1131 2018*******/

data new1.series1131;

set new1.multivariate;

where series_id=1131 & Year=2018;

run;

data new1.series1131_twotraits;

set new1.series1131;

where characteristic_id in (5,11,17,19,21); run;

/*** MODEL THE MEASURED TRAITS*****/

/* Three Traits Impurities*/

/*** ALL SERIES 1131 *********/

proc mixed data=new.series1111_twotraits;

class object_id field_trial_id block_id repetition_id plot_id characteristic_id;

model absolute= characteristic_id field_trial_id*characteristic_id repetition_id*Field_trial_id*characteristic_id / outp=new1.kirie;
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repeated characteristic_id /type=un subject=plot_id*object_id;

random characteristic_id/subject=object_id type=un;

random characteristic_id / subject= object_id*field_trial_id type=un;

run;

quit;

/******* THE BREEDING VALUES*********/

proc sort data=new1.kirie;

by characteristic_id;

run;

proc means data=new1.kirie ;

var pred;

class object_id;

by characteristic_id;

output out=new1.kirie1 ; run;

/***This code can be extended o any multivariate analysis my different modifications.

Different datasets were obtaine as output from different modifiactions of the code for different models.

the spearman rank correlations where calculateted for ranks of the genotypes for different models:***/

/************** Correlation Analysis Of EBLUPS spearman*******************/

/*************** TONES PER HACTARE********************/

proc corr data=proj.combined_BLUPS spearman;

var T_HA1 T_HA2 T_HA3 T_HA4 T_HA5 T_HA6 T_HA7 T_HA8;

run;

/*************** SUGAR PER HACTARE********************/

proc corr data=proj.combined_BLUPS spearman;

var S_HA1 S_HA2 S_HA3 S_HA4 S_HA5 S_HA6 S_HA7 S_HA8;

run;

/*************** SUGAR********************/

proc corr data=proj.combined_BLUPS spearman;

var SUGAR1 SUGAR2 SUGAR3 SUGAR4 SUGAR5 SUGAR7 SUGAR6 SUGAR8;

run;

/*************** WS ********************/

proc corr data=proj.combined_BLUPS spearman;
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var WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8;

run;

/*************** WSY ********************/

proc corr data=proj.combined_BLUPS spearman;

var WSY1 WSY2 WSY3 WSY4 WSY5 WSY6 WSY7 WSY8;

run;

/*************** mM_K********************/

proc corr data=proj.combined_BLUPS spearman;

var mM_K1 mM_K2 mM_K3 mM_K4 mM_K5 mM_K6 mM_K7 mM_k8;

run;

/*************** mM_Na ********************/

proc corr data=proj.combined_BLUPS spearman;

var mM_Na1 mM_Na2 mM_Na3 mM_Na4 mM_Na5 mM_Na6 mM_Na7 Mm_Na8;

run;

/*************** mM_N ********************/

proc corr data=proj.combined_BLUPS spearman;

var mM_N1 mM_N2 mM_N3 mM_N4 mM_N5 mM_N6 mM_N7 mM_N8;

run;

####### Mean square Error was calculated in R

####### WE customize the code to get all MSE values needed

EBVS=read.csv(file.choose(),sep=’,’)

head(EBVS)

library(MLmetrics)

MSE(EBVS$WSY1,EBVS$WSY2)

MSE(EBVS$WSY1,EBVS$WSY3)

MSE(EBVS$WSY1,EBVS$WSY4)

MSE(EBVS$WSY1,EBVS$WSY5)

MSE(EBVS$WSY1,EBVS$WSY6)

MSE(EBVS$WSY1,EBVS$WSY7)

MSE(EBVS$WSY1,EBVS$WSY8)
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