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Abstract

Cancer is a disease caused by abnormal growth of cells. In this paper we were interested in

studying colon cancer, a cancer that forms in the tissues of the colon. It is important to study

the simultaneous effects of space and time on a disease rather than studying those effects

separately. Bayesian hierarchical modeling provides a good way to take these two into account

(that is the spatial and temporal dependency). The objective of this study is to investigate

the spatial and spatio-temporal distribution of colon cancer in Limburg from 1996 to 2005,

and to make prediction of the true relative risk of colon cancer in each municipality. The data

used has colon cancer incidence recorded from 1996 until 2005 in 44 Limburg municipalities.

Since most diseases affect people of certain age dis-proportionally, indirect age standardization

was performed to obtain standardized colon cancer incidence rates for comparison purpose.

Bayesian hierarchical models were used in the analysis. To investigating the spatial distribution,

two unstructured heterogeneity and two spatially structured heterogeneity models were fitted.

Four spatio-temporal models were used in investigating the spatio-temporal distribution. We

used WinBUGS software for analysis and MCMC approach with Gibbs sampling techniques for

estimation of parameters in all models. Model selection was done using DIC criterion. Results

show small variations between relative risks of colon cancer in the municipalities in Limburg.

There is no municipality with significant elevated colon cancer risk in Limburg (1996-2005).

Our results also show that, spatially structured heterogeneity dominates than unstructured

heterogeneity in the data. In addition, we found that there is a decreasing time trend for colon

cancer relative risk though this trend is not significant.

Key Words: Disease mapping, Heterogeneity, Hierarchical models, Prior distribution,

Standardization.
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1 Introduction

1.1 Background

Cancer is a disease caused by a group of abnormal cells growing uncontrollably by disregarding

the normal rule of cell division (Hejmadi, 2009). According to WHO (2018), cancer is the second

leading cause of death globally. It is estimated that 9.6 million deaths in the year 2018 was

caused by cancer. Globally, about 1 in 6 deaths is due to cancer. In 2018 the most common

cancers were; lung cancer with 2.09 million cases, breast cancer with 2.09 million cases, colorectal

cancer with 1.80 million cases, prostate cancer with 1.28 million cases, skin cancer with 1.04

million cases, and stomach cancer with 1.03 million cases (WHO, 2018).

Colon cancer is a cancer that forms in the tissues of the colon (NCI, 2016). The colon is an

inverted,U-shaped part of the large intestine and is about 5 to 6 ft long. The large intestine

consists of other parts, the cecum (and appendix) and ano-rectum, which are not included in

the colon (Kapoor and Gandhi, 2018).

It is important to study the simultaneous effects of space and time on a disease rather than

studying those effects separately. This study aimed to investigate the simultaneous effects of

space and time on colon cancer. We are interested to identify areas with elevated risk levels

and to estimate the temporal pattern in disease risk. Using classical analysis in this case, may

not be appropriate because of spatial and temporal dependency in data. Bayesian hierarchical

models can be used in disease mapping to estimates the spatial and spatio-temporal pattern

in disease risk over an extended geographical region, to identify areas with elevated risk levels

(Lee, 2011). Bayesian hierarchical models are models with multiple levels (hierarchical form)

that estimates the parameters of the posterior distribution using the Bayesian method (Allenby

and Rossi, 2006).

1.2 Objectives

This study aimed at investigating the spatial and spatio-temporal distribution of colon cancer

in Limburg from 1996 to 2005, as well as making prediction of the true relative risk of colon

cancer in each municipality.
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2 Data

2.1 Data sources

Data used in this study were collected in the framework of the Limburg Cancer Registry

(LIKAR). The LIKAR database contains the number of new histologically or cytologically

confirmed primary cancers that were observed among male and female inhabitants of the Belgian

province of Limburg within the period of 1996–2005 (Neyens et al., 2012). The area of the

Limburg Cancer Registry consists of the province Limburg, situated in the north-east of Belgium.

The territory covers 2,422 square kilometres which is 7.9 % of the Belgium territory (Lousberg

et al., 2000). The province has 44 towns, with the largest populations centred in the middle

of the province (Neyens et al., 2012). Data were obtained from all pathological laboratories

located in the Limburg province and all pathological departments outside the province examines

samples from Limburg inhabitants (Buntinx et al., 2003). All cancers are classified according to

the International Classification of Diagnosis Oncology (ICDO) (WHO, 2019). In the Limburg

Cancer Registry, data were checked on the completeness of the included information with respect

to demographic and clinical aspects (Lousberg et al., 2000). More details about the Limburg

Cancer Registry (LIKAR) can be found in (Lousberg et al., 2000) and (Buntinx et al., 2000).

2.2 Data description

This thesis focuses on colon cancer. The data-set used has colon cancer incidence counts for all

44 Limburg municipalities recorded for each year from 1996 until 2005 (inclusive). The colon

cancer incidence counts were recorded separately for males and females of 18 categorized age

groups (0 - 4 years, 5 - 9 years, 10 - 14 years, . . .,80 - 84 years and 85 + years). Also the data

set contains a population of the 44 Limburg municipalities for each year separately for males

and females. There were no missing values in the data set.

From 1996 to 2005, 3027 colon cancer incidence were recorded in the 44 municipalities of Limburg.

Among those 3027 incidences, 1635 were recorded from males and 1392 were recorded from

females. Figure 1 shows colon cancer incidence counts in each year in Limburg for both males

and females. The maximum and minimum colon cancer incidence counts for males were 196

and 138 in the years 2005 and 1998 respectively while for females were 156 and 123 in the years

3
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2000 and 1999 respectively.

From figure 1 we can see that colon cancer incidences were increasing with time, especially in

males (red colour). In general, it has been observed that, colon cancer incidence increase with

age. Figure 2 shows males colon cancer incidence counts at different age categories in Limburg.

Figure 1: Colon Cancer Incidence Counts in Limburg from 1996-2005

Figure 2: Males Colon Cancer Incidence Counts by Age in Limburg

In ten years (1996 to 2005), the highest colon cancer incidences was observed in Hasselt (186 in

males and 180 in females) followed by Genk (131 in males, 111 in females), Sint-Truiden (84

in males, 88 in females) and Beringen (77 in males, 64 in females). There was no colon cancer

incidence observed in Herstappe (0 in males, 0 in females) while, Voeren had only two incidences

(1 in males, 1 in females).

4
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2.3 Standardization

Comparing the colon cancer incidence rates among municipalities of Limburg is one of the

objectives of this study. However, most diseases affect people of certain age dis-proportionally.

In general, there is an increasing incidence of cancer with age, thus populations containing

more people in higher age groups tend to have higher summary incidence rates than those of

younger populations. As a result, the incidence rates for two areas may appear different, but

this difference may be due to the difference in age distributions within the areas rather than to

a difference in the underlying age-specific risk of a disease.

To make colon cancer incidence rates from different municipalities comparable, standardization

is required. In addition, colon cancer is a rare disease hence the incidence rates from index

populations (municipalities) may be statistically unstable. In such situation it is better to use

the incidence rates from the standard population. In this study, an indirect standardization

method was used because it uses incidence rates from the standard population rather than index

populations.

The population of Limburg for each year, separately for males and females of 18 different age

groups, was used as standard population. First we computed how many colon cancer incidences

would be expected in each municipality i if it had the same age specific incidence rates as

standard population (Limburg population).

Egi = rsgngi =
ysg
nsg
ngi

where rsg is the observed incidence proportion in age group g in the standard population, ngi is

the number of people at risk in age group g for municipality i. ysg is the number of cases in age

group g for for the standard population. nsg is the number of people at risk in age group g for

the standard population.

Then, a standardized incidence ratio (SIR) for municipality i was computed as the ratio of

observed colon cancer incidence counts for municipality i (yi =
∑18

g=1 ygi) and the overall

expected colon cancer incidence for municipality i (Ei =
∑18

g=1Egi).

SIRi =
yi
Ei

5
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where i = 1, 2, 3, 4, ...44.

Standardized incidence rates (SIRs) were mapped for each of the 44 municipalities and municipalities

with SIR greater than one (SIR > 1) are an indication that there were more colon cancer cases

than expected. Figure 3 a shows the observed colon cancer incidences in Limburg (1996-2005)

for males while figure 3 b shows the map of the SIRs of colon cancer in Limburg(1996-2005) for

males. The maps for SIRs suggest that there is spatial pattern in colon cancer risk.

(a) Observed incidences (b) SIRs

Figure 3: Males observed incidence and SIRs of colon cancer in Limburg, 1996-2005
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3 Methods and Materials

3.1 Modeling Unstructured Heterogeneity

To estimate colon cancer relative risks one can use Binomial or Poisson models but the models

have disadvantages for small areas where little information is available. Binomial and Poisson

models use the information only from within the municipality to get the estimate; therefore for

small areas where little information is available the estimates are unstable. In this study we

considered the methods which allow borrowing information across municipalities. The small

municipalities with little information also use information from other municipalities to get a

better estimate. We assume that the relative risk θi comes from a certain distribution. The

relative risk θi can have different distributions, we started by assuming that θi as exchangeable

random effects in the sense that there is no spatial pattern among the θi. In exchangeable

random effects models, Poisson-Gamma models and Poisson-Lognormal models were considered.

3.1.1 Poisson-Gamma Model

The Poisson-Gamma model is a common choice in disease mapping. In the Poisson-Gamma

model we assume that the colon cancer incidence counts yi in each municipality follows a Poisson

distribution and the relative risks θi follows a gamma distribution (random effect, prior). The

assumption of a prior distribution for θi allows over-dispersion or extra variation of the Poisson

model. The Poisson model assumes the same mean and variance but with an assumption of a

prior distribution for θi the variance is allowed to be larger than the mean.

yi ∼ Poisson(eiθi)

θi ∼ Gamma(a, b).

The mean of θi is mθi = a/b and the variance of θi is vθi = a/b2. Assuming a and b are fixed

and known, the relative risk θi has the posterior gamma distribution with parameters a + yi

and b+ ei. The posterior mean of the relative risk θi is a weighted average of the data-based

SIR for the ith municipality, and the relative risk in the overall map (the prior mean mθi). The

7
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posterior mean of the relative risk θi is given by,

E[θ/yi] =
a+ yi

b+ ei
= CiSIRi + (1 − Ci)

a

b

where,

Ci =
ei

(mθi/vθi) + ei

For rare diseases and small areas, Ci is small and the posterior mean tends towards a global

mean a/b, thereby producing a smoothed map. For areas with abundant of data, the posterior

mean of the relative risk is close to yi
ei

(Lawson et al., 2003). Because of the mathematical

convenience due to the conjugacy, the Poisson-gamma model has been one of the most commonly

used models in disease mapping (Neyens et al., 2012).

3.1.2 Poisson-Lognormal Model

The Poisson-Lognormal model is an extension of the Poisson-Gamma model. Instead of using

gamma as a prior distribution for a relative risk, this model incorporate normal random effect

in the linear predictor of a log-relative risk. As in the Poisson-Gamma model, we assume that

the colon cancer incidence counts yi in each municipality follow a Poisson distribution while the

prior distribution for a relative risk is given by;

log(θi) = α+ xiβ + vi

vi ∼ N(0, σ2v),

where α is the overall mean risk, xi are explanatory spatial covariates (at municipality-level)

having parameter coefficients β, and vi is the heterogeneity random effect capturing extra-Poisson

variability in the log-relative risks. It is an exchangeable random effect, it does not take into

account any spatial structure. The parameter vi represents the residual (log) relative risk in

area i after adjusting for known covariates (xiβ) and overall mean risk (α). The variance of the

random effects, σ2v reflects the amount of extra-Poisson variation in the data. Large variance of

a random effect vi means large variability among the relative risks and small variance means

that the relative risks are very similar. Poisson-Lognormal model does not account for spatial

8
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autocorrelation; it can be easily extended with a parameter representing correlated heterogeneity,

resulting in a so-called convolution model (Besag et al., 1991).

3.2 Modeling Spatially Structured Heterogeneity

The models discussed in previous sub-section, the Poisson-Gamma and the Poisson-Lognormal

models do not account for spatial correlation. These models are known as independent prior

models, where the local estimates are a weighted average of area (municipality) data and a global

weighted average of the data from all areas. Models considered in this sub-section (spatially

structured heterogeneity models), can account for spatial correlation. The local estimates are a

weighted average of area data and average of observations in neighbouring areas. In this study,

the Improper Conditional Autoregressive (CAR) Model and the CAR-Convolution models were

considered in modeling spatially structured heterogeneity.

3.2.1 Improper Conditional Autoregressive (CAR) Model

The CAR model starts with the same formulation as on the previous models, the counts yi

follow a Poisson distribution with mean given by the expected number times the relative risk

parameter θ while the prior distribution for a relative risk is given by;

θi = exp(α+ ui),

where ui is a random effect, it has a univariate normal distribution given the other random

effect uj

ui/uj 6=i ∼ N(ūi, σ
2
i ).

The mean of ui is given by a weighted average of of the random effect uj and its variance is

given by a parameter r divided by the weight cij .

ūi =

∑
j 6=i cijuj∑
j 6=i cij

, and

σ2i =
r∑
j 6=i cij

,

9
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where cij are spatial dependence parameters defining which areas j are neighbours of area i.

These parameters form the neighborhood/proximity matrix. The values of cij are larger when

area i and j are close to each other and they are small (close to zero) when area i and j are

far from each other. The cij values define the influence of area j on area i. We set cii equal

to 0 meaning that no area is neighbor of its own. In this model we have used cij equal to 1 if

municipality j is adjacent to municipality i and cij equal to 0 if municipality j is not adjacent

to municipality i. Therefore ;

ūi =

∑
jε δiuj

nδi
,

where δi is the set of neighbours of municipality i, and nδi is the number of neighbors in the set.

The conditional variance σ2i , depends on the number of neighbors and is defined as;

σ2i =
r

nδi
.

The conditional variance σ2i will be small when there are many neighbors and larger for few

neighbors. In the CAR model, the relative risk of an area is smoothed towards the local average

risk in a set of neighbouring areas, with variance inversely proportional to the number of

neighbours (Buntinx et al., 2003).

3.2.2 The CAR-Convolution Model

The convolution model takes into account both spatially unstructured and spatially structured

heterogeneity. The CAR-convolution model combines the Poisson-lognormal model with the

Poisson improper condition autoregressive model. The model starts with the same formulation

as in previous models, the counts Yi follow a Poisson distribution with mean given by the

expected number times the relative risk parameter θi. The prior distribution for a relative risk

θ is given by;

log(θi) = α+ xiβ + ui + vi,

where α is an overall level of the relative risk of colon cancer in Limburg and β is a covariate

effect. In this study, no covariate effect was included in this model therefore there is no parameter

β in the model. The parameter vi is the uncorrelated heterogeneity for municipality i, it is

10
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defined as;

vi ∼ N(0, σ2v).

The parameter ui is the correlated heterogeneity for municipality i. It is specified by a condition

auto-regressive random effect, and defined as;

ui/uj 6=i,τ2u ∼ N(ūi, σ
2
u).

See sub-section 3.2.2 for more details on random effect ui. The parameters σ2u and σ2v measure the

amount spatially structured heterogeneity and unstructured heterogeneity respectively. Small

values of σ2u/σ2v indicates that unstructured heterogeneity dominates than spatially structured

heterogeneity, and a model with unstructured heterogeneity term only may be sufficient. Large

values of σ2u/σ2v indicates that spatially structured heterogeneity dominates than unstructured

heterogeneity, and a model with spatially structured heterogeity term only may be sufficient.

3.3 Spatio-Temporal Modeling

The CAR-Convolution model discussed in the previous sub-section can be modified to incorporate

time effects. The modification allows studying both the space and time (spatio-temporal)

simultaneous effects on a disease. The spatio-temporal models are hierarchically constructed

following set of steps. The counts Yit in municipality i at time (year) t follow a Poisson

distribution with mean given by eitθit.

Yit ∼ Poisson(eitθit)

log(eitθit) = log(eit) + log(θit),

i = 1, 2, 3, ..., N and t = 1, 2, 3, ..., T,

where eit is the expected number of colon cancer incidences in municipality i at time (year) t

while θit is the unknown colon cancer relative risk in municipality i at time (year) t.
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3.3.1 Model 1

The first spatio-temporal models considered in this study assumes the same linear effect of the

covariate time on all municipalities. The second step of the model hierarchy is defined as;

log(θit) = α+ ui + vi + βtimet,

where α is an overall level of the relative risk of colon cancer in Limburg, ui and vi are the random

effects for the spatial structured and unstructured heterogeneity respectively. The parameter β

is the mean linear time trend for all Limburg municipalities. As in the CAR-Convolution model,

the same CAR prior distribution of the spatial random effects ui is assumed in this model,

ui/uj 6=i,τ2u ∼ N(ūi, σ
2
u). Also for the uncorrelated heterogeneity vi, the same prior distribution

as in the CAR-Convolution model was assumed in this model, vi ∼ N(0, σ2v).

3.3.2 Model 2

Model 1 can be modified to accommodate different intercepts for each time period. Model 2 can

be used as an alternative to model 1 for small number of time periods. This model has been

discussed by Ugarte et al. (2009) and Knorr-Held and Besag (1998). The second step of the

model hierarchy is defined as;

log(θit) = αt + ui + vi,

where θit is the effect of year t, and ui and vi have the same definations and prior distributions

as in model 1.

3.3.3 Model 3 (Bernardinelli Model)

Another option is to assume a linear time trend but additionally a space-time interaction. The

model was proposed by Bernardinelli et al. (1995) and discussed by Ugarte et al. (2009). The

second step of the model hierarchy is defined as;;

log(θit) = α+ ui + vi + βtimet + δitimet,
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where δi is the difference between the municipality-specific trend and the mean trend β. A prior

distribution for the random effects δi is assumed to be δi ∼ N(0, σ2δ )

3.3.4 Model 4

Model 3 can be modified to accommodate different intercepts for each time period to increase

flexibility of the model. The second step of the model hierarchy is defined as;

log(θit) = αt + ui + vi + δitimet,

where αt is the effect of year t and δi is the difference between the municipality-specific effect

and the time effect αt.

3.4 Estimation

3.4.1 Bayesian Estimation

Unlike the frequentist hierarchical models in which the fixed and random effect can be

distinguished, the Bayesian hierarchical models assumes prior distributions to all parameters

and all parameters are random (Lesaffre and Lawson, 2012). The Bayesian approach takes

automatically into account all uncertainty in the model parameters. In this study, all model

parameters were estimated using the Markov Chain Monte Carlo (MCMC) approach in WinBUGS.

The MCMC approach solves statistical modelling problems which are difficult or even impossible

to solve with maximum likelihood procedures (Lesaffre and Lawson, 2012). The MCMC approach

gives flexibility in relaxing the strong parametric assumptions prevalent in most frequentist

hierarchical models (Lesaffre and Lawson, 2012). The Gibbs sampler introduced by Geman and

Geman (1984) was used as a sampling algorithm. Gelfand and Smith (1990) showed the ability

of the Gibbs sampler to solve complex estimation problems in a Bayesian frame work (Lesaffre

and Lawson, 2012). For more details about MCMC see (Hitchcock, 2003).

MCMC approach need diagnostics measure to assess if the iterative simulations have reached

the Markov chain equilibrium distribution (Lawson et al., 2003). In this study, the MCMC

convergence was investigated visually using history and trace plots. After a burn-in of 20,000
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iterations, 20,000 more iterations were used for each model and there were no problem with

convergence.

3.4.2 Model Comparison

Spiegelhalter et al. (2002) proposed to use Deviance Information Criterion (DIC) as a model

comparison tool in the Bayesian modeling framework. DIC compares a fitted model to a

saturated model. DIC is defined as;

DIC = 2Eθ|y(D) −D(Eθ|y(θ))

where Eθ|y(D) is posterior mean of the deviance and D(Eθ|y(θ)) is the deviance of the posterior

mean of the parameters. Therefore, DIC comparares the average deviance and deviance of

posterior expected parameter estimates. The DIC can be re-written as;

DIC = Eθ|y(D) + pD

where pD = Eθ|y(D) − D(Eθ|y(θ)) is the estimated effective number of parameters which

represents the complexity of the model. In the Bayesian framework, most of the models are

complex and it is less clear how many parameters are in the models. The advantage of DIC is

that it can be directly calculated from an MCMC output and can be applied in a different kind

of models, including hierarchical models, where the number of estimated parameters is unclear

(Ntzoufras, 2009). Generally we prefer the model with smaller DIC.

In this study, two unstructured heterogeneity models, two spatially structured heterogeneity

models and four spatio-temporal models were fitted. One model was selected from the group

of spatially structured and unstructured heterogeneity models and another from the group of

spatio-temporal models. The final models were chosen according to the DIC.

3.4.3 Sensitivity Analysis

Hierarchical models require hyperparameters, and the hyperparameters must have their own prior

distribution (Gelman et al., 2006). In Bayesian approach, the choice of the prior distributions

needs attention (Lesaffre and Lawson, 2012). Sensitivity analysis can be performed to see how
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much does the choice of the prior distributions affect the results. In this study, different choices

of prior distributions for precision parameters were considered as a sensitivity analysis.

3.4.4 Software

WinBUGS version 14, R version 3.5.1 and Microsoft Excel 2010 were used in the statistical

analysis and data management. The Microsoft Excel 2010 was used for standardization of colon

cancer incidences while the R software was used for exploratory data analysis and to convert

the shape file into map file and visualization. WinBUGS software was used to fit all the models

discussed in this study as well as visualization. When fitting the models in WinBUGS, two

chains with different initial values were used. The advantage of using multiple chains is that

they provide evidence for the robustness of convergence across different subspaces (Lawson,

2009).

15
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4 Result

4.1 Model Comparison

4.1.1 Comparison of Spatially Structured and Unstructured Heterogeneity Models

Table 1 displays the DIC results for the two unstructured and two spatially structured

heterogeneity models. Results show that the Poisson-Lognormal has the smallest DIC values

followed by the convolution model. The two models are less than 2 units apart in DIC, therefore

they are equally well fitting to the data. In this case the convolution model is more relevant than

the Poisson-Lognormal model since it takes into account the spatially structured heterogeneity,

therefore it was selected as the best model in the group.

Table 1: Comparison of Spatially Structured and Unstructured Heterogeneity Models

Model Dbar Dhat pD DIC Gender

P-Gamma 282.278 266.602 15.676 297.953 Male
268.679 255.364 13.315 281.994 Female

P-Lognormal 277.08 256.988 20.091 297.171 Male
265.126 248.47 16.656 281.782 Female

CAR 290.954 276.961 13.993 304.947 Male
277.683 268.092 9.59 287.273 Female

Convolution 282.617 265.299 17.317 299.934 Male
270.593 257.498 13.095 283.688 Female

4.1.2 Comparison of Spatio-Temporal Models

Table 2 displays the DIC results for the four different spatio-temporal models. From the table

we can see that, model 3 proposed by (Bernardinelli et al., 1995) yields the lowest DIC than the

other spacio-temporal models. In this case, model 3 was selected as the final spacio-temporal

model which fits well our data.
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Table 2: Comparison of Spatio-Temporal Models

Model Dbar Dhat pD DIC Gender

Model 1 1704.18 1686.09 18.093 1722.28 Male
1548.03 1534.07 13.961 1561.99 Female

Model 2 1711.51 1685.35 26.159 1737.67 Male
1555.08 1533.13 21.956 1577.04 Female

Model 3 1696.02 1673.48 22.533 1718.55 Male
1544.73 1528.48 16.247 1560.98 Female

Model 4 1704.46 1674.48 29.977 1734.44 Male
1551.68 1527.28 24.404 1576.09 Female

4.1.3 Sensitivity Analysis

Sensitivity analysis was performed for the selected models (the convolution model and spatio-temporal

model 3). Three hyper-prior distributions for all the precision parameters, Gamma(0.01 , 0.005),

Gamma(0.001 , 0.0001) and Uniform(0,10000), were compared to Gamma(0.5 , 0.0005). With

those different choices of the hyper-prior distributions, the maps of the relative risks estimates

which are presented on sub-section 4.2 did not change. This sensitivity analysis justifies the use

of the priors used in the final models.

4.2 Model Results

Both selected models (the convolution and spatio-temporal model 3) show that there are small

variations between relative risks in Limburg municipalities. In both populations (male and

female population), all the relative risk estimates are close to one and all the 95% credibility

intervals of the relative risks contain the value zero indicating that there is no difference in

municipality risks from the overall risk in the province of Limburg (see figure 4 (b) and figure 5

(b)). For relative risk estimates of the convolution and spatio-temporal model 3, see table F3,

F4, F5 and F6 in the appendix.

4.2.1 The CAR-Convolution Model

The male population results from the CAR-convolution model shows that, Zonhoven has the

highest relative risk of 1.26 followed by Hasselt which has a relative risk of 1.137. In total there

18



The Spatio-temporal Modeling of Colon Cancer in Limburg

are 24 municipalities with the relative risks less than 1 and 20 municipalities with the relative

risks greater than 1. For the female population, both Meeuwen-Gruitrode and Hasselt have the

highest relative risk of 1.132. In total there are 20 municipalities with the relative risks less

than 1 and 24 municipalities with the relative risks greater than 1. The spatially structured

heterogeneity is 9.646 times the unstructured heterogeneity in male population while for female

population is 11.98 times. This indicates that the spatially structured heterogeneity dominates

than the unstructured heterogeneity. figure 4 and figure 5 shows the maps of relative risks in

males and female population respectively based on the CAR-convolution model.

(a) Posterior Expected Relative Risk (b) Significance of Elevated Relative Risk

Figure 4: Males Relative Risk for Colon Cancer in Limburg, 1996-2005 ( CAR-Convolution
Model)
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(a) Posterior Expected Relative Risk (b) Significance of Elevated Relative Risk

Figure 5: Females Relative Risk for Colon Cancer in Limburg, 1996-2005 ( CAR-Convolution
Mode)

4.2.2 Spatio-Temporal Model (Bernardinelli Model)

Figure 6 shows the maps of relative risks in male population based on the spatio-temporal model

3. Results of this model shows that, Zonhoven has the highest relative risk of 1.121 followed by

Hasselt which has a relative risk of 1.079. As we have seen the results from the CAR-convolution

model, also this spatio-temporal model identifies 24 municipalities with the relative risks less

than 1, and 20 municipalities with the relative risks greater than 1.
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(a) Posterior Expected Relative Risk (b) Significance of Elevated Relative Risk

Figure 6: Males Relative Risk for Colon Cancer in Limburg, 1996-2005 (Spatio-temporal Model
(Bernardinelli et al., 1995) )

Figure 7 shows the maps of relative risks in female population based on the spatio-temporal

model 3. Results of this model show that, Meeuwen-Gruitrode has the highest relative risk of

1.081 followed by Hasselt which has a relative risk of 1.072. There are 21 municipalities with

the relative risks less than 1 and 20 municipalities have the relative risks greater than 1.

(a) Posterior Expected Relative Risk (b) Significance of Elevated Relative Risk

Figure 7: Females Relative Risk for Colon Cancer in Limburg, 1996-2005 (Spatio-temporal
Model (Bernardinelli et al., 1995))
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(a) Males (b) Females

Figure 8: Posterior Expected Temporal Trend for Colon Cancer in Limburg, 1996-2005
(Spatio-temporal Model (Bernardinelli et al., 1995))

Results from the spatio-temporal model 3 show that the mean time trend for colon cancer

relative risk in male population is about 0.999 (exp(−0.000929)) indicating a 0.1% decrease in

relative risk per year during a study period 1996 to 2005. For female population, the mean time

trend for colon cancer relative risk is about 0.998 (exp(−0.00202)) indicating a 0.2% decrease in

relative risk per year during a study period 1996 to 2005. The decrease in the relative risks is

very small (almost zero) and 95% credibility intervals of mean time trend for both male and

female populations show that there is no significant time trend (see table F5 in the appendix).

Figure 8 shows the posterior expected temporal trend for colon cancer in Limburg during the

study period 1996-2005.
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5 Discussion

This study aimed at investigating the spatial and spatio-temporal distribution of colon cancer

in Limburg from 1996 to 2005, and prediction of the true relative risk of colon cancer in each

municipality. Several Bayesian hierarchical models were used to address the objectives of

this study. In investigating the spatial distribution, two unstructured heterogeneity models

(Poisson-Gamma model and Poisson-Lognormal model) as well as two spatially structured

heterogeneity models (Improper CAR model and CAR-Convolution model) were fitted. Four

spatio-temporal models were used to investigating the spatio-temporal distribution of colon

cancer.

In WinBUGS software, MCMC approach with Gibbs sampling techniques was used for estimation

of parameters in all models. One model was selected in the first group of four models (spatially

structured and unstructured heterogeneity models) and another model in the second group of

four spatio-temporal models using the DIC criterion was considered during model selection.

In the first group of models, convolution model which takes into account both spatially structured

and unstructured heterogeneity was selected as the best model to describe the spatial pattern of

colon cancer in Limburg. Further more, this model showed that spatially structured heterogeneity

was more important than unstructured heterogeneity meaning that neighboring municipalities

are likely to have similar colon cancer relative risks. In both populations (males and female

population), there was no municipality with significant elevated colon cancer risk in the province

of Limburg during the study period 1996 to 2005.

Meanwhile, for spatio-temporal models, our data suggested that colon cancer in Limburg can be

modeled by assuming a linear time trend with additional space-time interaction (Bernardinelli

et al. (1995) model). It was found that the mean time trend for colon cancer relative risk is

about 0.999 in male’s population and 0.998 in female population indicating a small decrease of

0.1% and 0.2% in relative risk per year in male and female population respectively. However,

this decrease in mean time trend from both populations are not significant.
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The two selected models were used for prediction of the true relative risk of colon cancer in

each municipality. Both models showed that there are small variations between relative risks in

Limburg municipalities.

In conclusion, our analysis showed that there are no municipalities in Limburg with elevated

colon cancer relative risk. We also found out that there was no significant decrease in the risk of

colon cancers in Limburg. Even if there is no municipality with an elevated colon cancer risk,

people still needs to be encouraged to go for screening. According to (Flanderstoday.eu, 2017),

In the year 2015, of the target population (Males and Females aged between 56 and 74 years)

invited for a colon cancer screening, only 52% responded to the invitation for screening. This

therefore implies alot of cases could have been missed hence posing questions on how our data

approximates the real situation on ground. It was also noticed that there are no studies carried

out on spatial temporal modeling of colon cancers which makes comparison of our results with

other studies to become a challenge.
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6 Appendix

Table F1: Posterior Parameter Estimates for the CAR-Convolution Model

Gender Parameter Mean Sd MC error 2.50% Median 97.50%

Male alpha -0.01313 0.03385 1.20E-04 -0.08235 -0.01236 0.05123
mean 0.9875 0.03335 1.17E-04 0.9209 0.9877 1.053
sigma.u 0.01147 0.02376 3.90E-04 2.01E-04 0.002228 0.08375
sigma.v 0.0163 0.01309 1.57E-04 4.21E-04 0.01398 0.0479
ratio 9.646 48.66 0.6 0.008603 0.1642 98.26
tau.u 988.5 1401 18.69 11.94 448.9 4976
tau.v 291.9 742.1 10.84 20.88 71.51 2373

Female alpha -0.01076 0.0338 1.21E-04 -0.07977 -0.00984 0.05305
mean 0.9899 0.03337 1.18E-04 0.9233 0.9902 1.054
sigma.u 0.01302 0.02254 3.36E-04 2.17E-04 0.003574 0.0785
sigma.v 0.01027 0.01041 1.25E-04 2.86E-04 0.007118 0.03719
ratio 11.98 46.1 0.5322 0.01289 0.5486 111.1
tau.u 814.3 1306 18.48 12.74 279.8 4607
tau.v 517.1 1004 13.21 26.89 140.5 3502

Table F2: Posterior Parameter Estimates for Spatio-temporal Model (Bernardinelli et al., 1995)

Gender Parameter Mean Sd MC error 2.50% Median 97.50%

Males α -0.00775 0.05353 7.38E-04 -0.1135 -0.00764 0.09594
β -9.29E-04 0.009204 1.22E-04 -0.01902 -9.23E-04 0.01719
mean 0.9937 0.05316 7.30E-04 0.8927 0.9924 1.101
τδ 1028 1089 30.49 181.5 661 4186
τu 1106 1475 49.3 19.98 550.8 5262
τv 705.9 1132 40.86 28.64 234 4062

Females α -0.00279 0.05621 7.91E-04 -0.1148 -0.00229 0.1057
β -0.00202 0.01008 1.36E-04 -0.02184 -0.00207 0.01778
mean 0.9988 0.05607 7.86E-04 0.8916 0.9977 1.111
τδ 1621 1382 37.66 299.6 1193 5412
τu 1164 1512 53.34 23.26 594.6 5418
τv 851.1 1264 41.5 36.24 349.4 4464
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Table F3: Relative Risk Estimates for Males in Limburg, 1996-2005: The CAR-Convolution
Model

Municipality mean sd MC_error val2.5pc median val97.5pc

ALKEN 0.9665 0.1191 2.62E-04 0.7388 0.9642 1.214
AS 0.97 0.121 2.71E-04 0.7392 0.9677 1.226
BERINGEN 0.9932 0.08676 1.58E-04 0.8292 0.9905 1.173
BILZEN 0.9424 0.09084 2.46E-04 0.7649 0.9427 1.124
BOCHOLT 0.9934 0.1128 2.21E-04 0.7811 0.9893 1.234
BORGLOON 0.9024 0.1104 5.40E-04 0.6787 0.9067 1.111
BREE 1.094 0.127 4.24E-04 0.8797 1.08 1.38
DIEPENBEEK 1.012 0.1106 2.53E-04 0.8072 1.006 1.25
DILSEN-STOKKEM 0.9557 0.1012 2.85E-04 0.7563 0.9563 1.159
GENK 1.056 0.07934 1.96E-04 0.9103 1.051 1.222
GINGELOM 1.053 0.1253 3.03E-04 0.8352 1.041 1.336
HALEN 0.923 0.1166 4.44E-04 0.6917 0.9252 1.152
HAM 0.9364 0.1138 5.19E-04 0.7075 0.9392 1.16
HAMONT-ACHEL 0.9724 0.1033 2.85E-04 0.7718 0.9718 1.184
HASSELT 1.137 0.08096 4.46E-04 0.9912 1.133 1.305
HECHTEL-EKSEL 1.049 0.1292 2.87E-04 0.8219 1.038 1.337
HEERS 1.037 0.1291 2.64E-04 0.8089 1.025 1.326
HERK-DE-STAD 0.9917 0.111 2.33E-04 0.7814 0.9881 1.228
HERSTAPPE 0.9979 0.1423 3.34E-04 0.734 0.9911 1.311
HEUSDEN-ZOLDER 1.022 0.09579 2.73E-04 0.8476 1.016 1.228
HOESELT 0.924 0.1138 4.89E-04 0.6931 0.9278 1.144
HOUTHALEN-HELCHTEREN 1.016 0.09569 1.72E-04 0.8371 1.011 1.219
KINROOI 1.063 0.1255 4.05E-04 0.8495 1.049 1.348
KORTESSEM 1.037 0.1289 2.92E-04 0.808 1.025 1.326
LANAKEN 0.8273 0.102 5.89E-04 0.6281 0.8276 1.021
LEOPOLDSBURG 0.9123 0.103 5.04E-04 0.7019 0.9168 1.107
LOMMEL 0.9803 0.09013 1.52E-04 0.8085 0.9782 1.167
LUMMEN 1.051 0.1191 5.01E-04 0.8445 1.039 1.317
MAASEIK 1.062 0.1055 3.21E-04 0.8768 1.053 1.293
MAASMECHELEN 0.8934 0.08824 3.69E-04 0.7189 0.8947 1.062
MEEUWEN-GRUITRODE 1.079 0.13 5.92E-04 0.8662 1.063 1.38
NEERPELT 0.9335 0.1054 3.20E-04 0.7259 0.9346 1.143
NIEUWERKERKEN 1.071 0.1391 5.75E-04 0.8423 1.053 1.396
OPGLABBEEK 1.026 0.1266 3.05E-04 0.8018 1.014 1.31
OVERPELT 0.9653 0.1062 2.14E-04 0.7596 0.9643 1.185
PEER 1.017 0.1118 2.07E-04 0.8121 1.01 1.259
RIEMST 0.8869 0.1034 4.80E-04 0.6785 0.8899 1.081
SINT-TRUIDEN 0.9674 0.0805 1.70E-04 0.8123 0.9664 1.131
TESSENDERLO 0.8939 0.1044 4.25E-04 0.6845 0.8966 1.093
TONGEREN 0.922 0.08521 3.48E-04 0.7535 0.9232 1.087
VOEREN 0.872 0.1309 7.73E-04 0.6008 0.8795 1.111
WELLEN 1.032 0.1206 3.82E-04 0.8205 1.017 1.314
ZONHOVEN 1.26 0.1653 0.001031 0.9886 1.244 1.624
ZUTENDAAL 1.162 0.1887 0.001112 0.879 1.13 1.617
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Table F4: Relative Risk Estimates for Females in Limburg, 1996-2005: The CAR-Convolution
Model

Municipality mean sd MC_error val2.5pc median val97.5pc

ALKEN 1.026 0.1193 3.01E-04 0.8075 1.017 1.29
AS 1.001 0.1112 2.53E-04 0.7862 0.9979 1.239
BERINGEN 1.011 0.0871 1.64E-04 0.8463 1.008 1.195
BILZEN 0.9399 0.09072 4.29E-04 0.7546 0.9439 1.111
BOCHOLT 1.033 0.1085 2.65E-04 0.838 1.024 1.277
BORGLOON 0.9846 0.0997 3.37E-04 0.7837 0.9861 1.187
BREE 0.9604 0.1041 3.46E-04 0.7495 0.9633 1.166
DIEPENBEEK 0.9989 0.1019 1.97E-04 0.8023 0.9967 1.214
DILSEN-STOKKEM 1.044 0.1011 2.88E-04 0.861 1.035 1.269
GENK 1.031 0.07642 2.40E-04 0.8879 1.028 1.191
GINGELOM 0.9688 0.1038 4.34E-04 0.7533 0.9732 1.172
HALEN 1.005 0.1132 4.63E-04 0.7875 1.002 1.247
HAM 0.9753 0.1045 3.15E-04 0.762 0.9779 1.185
HAMONT-ACHEL 1.076 0.111 4.44E-04 0.8906 1.062 1.334
HASSELT 1.132 0.08191 5.25E-04 0.9904 1.127 1.306
HECHTEL-EKSEL 1.037 0.1241 4.93E-04 0.8148 1.027 1.317
HEERS 1.021 0.1161 2.59E-04 0.8074 1.014 1.279
HERK-DE-STAD 1.004 0.103 3.45E-04 0.8037 1.002 1.223
HERSTAPPE 1.006 0.1222 3.40E-04 0.7703 1.002 1.271
HEUSDEN-ZOLDER 0.9642 0.08812 2.70E-04 0.7865 0.966 1.138
HOESELT 0.955 0.107 5.85E-04 0.729 0.9616 1.158
HOUTHALEN-HELCHTEREN 1.034 0.09246 3.09E-04 0.8627 1.028 1.236
KINROOI 1.02 0.1083 3.69E-04 0.817 1.014 1.256
KORTESSEM 1.08 0.1276 5.46E-04 0.8738 1.061 1.383
LANAKEN 0.9515 0.09627 3.22E-04 0.7592 0.9534 1.142
LEOPOLDSBURG 0.979 0.09262 2.17E-04 0.7958 0.9788 1.172
LOMMEL 1.076 0.09957 4.28E-04 0.9073 1.065 1.301
LUMMEN 0.9865 0.1016 2.76E-04 0.7923 0.984 1.203
MAASEIK 1.051 0.09961 3.19E-04 0.8791 1.041 1.276
MAASMECHELEN 1.053 0.09272 3.08E-04 0.8892 1.045 1.258
MEEUWEN-GRUITRODE 1.132 0.1471 9.46E-04 0.9247 1.103 1.495
NEERPELT 0.9648 0.09994 4.11E-04 0.7683 0.9651 1.17
NIEUWERKERKEN 0.9207 0.1082 5.94E-04 0.6953 0.9268 1.124
OPGLABBEEK 1.013 0.1126 2.87E-04 0.8105 1.005 1.267
OVERPELT 0.9363 0.09777 4.21E-04 0.7339 0.9408 1.124
PEER 0.9278 0.1016 6.51E-04 0.7221 0.9312 1.125
RIEMST 0.892 0.1006 6.28E-04 0.6817 0.8984 1.072
SINT-TRUIDEN 1.018 0.08533 5.51E-04 0.8635 1.013 1.203
TESSENDERLO 0.9189 0.1026 5.32E-04 0.7034 0.9257 1.107
TONGEREN 0.8598 0.09433 7.43E-04 0.6677 0.8638 1.027
VOEREN 0.8867 0.1183 8.39E-04 0.6352 0.8957 1.098
WELLEN 1.019 0.1014 3.18E-04 0.8386 1.008 1.26
ZONHOVEN 0.8984 0.1085 8.47E-04 0.6734 0.9045 1.098
ZUTENDAAL 1.068 0.1569 5.62E-04 0.815 1.046 1.445
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Table F5: Relative Risk Estimates for Males in Limburg, 1996-2005: Spatio-temporal Model 3
(Bernardinelli et al., 1995)

Municipality mean sd MC_error val2.5pc median val97.5pc

ALKEN 0.9969 0.09859 7.65E-04 0.7993 0.995 1.215
AS 0.9971 0.09277 6.95E-04 0.8103 0.9959 1.199
BERINGEN 1.014 0.08404 8.07E-04 0.8573 1.008 1.201
BILZEN 0.9954 0.08277 7.91E-04 0.8304 0.9943 1.173
BOCHOLT 1.002 0.08851 6.62E-04 0.8288 0.9991 1.197
BORGLOON 0.9615 0.08899 0.001408 0.7594 0.9724 1.121
BREE 1.051 0.1045 0.001764 0.8841 1.032 1.307
DIEPENBEEK 1.005 0.08836 7.11E-04 0.8351 1 1.207
DILSEN-STOKKEM 0.9905 0.08256 7.00E-04 0.8185 0.9916 1.164
GENK 1.056 0.09009 0.001565 0.9107 1.04 1.272
GINGELOM 1.039 0.09778 0.001362 0.8796 1.023 1.282
HALEN 0.9719 0.09569 0.001187 0.7648 0.9779 1.161
HAM 0.9694 0.08775 0.001133 0.7723 0.9772 1.137
HAMONT-ACHEL 0.9946 0.08259 6.47E-04 0.825 0.9948 1.172
HASSELT 1.079 0.08842 0.002209 0.95 1.061 1.29
HECHTEL-EKSEL 1.023 0.1046 0.001123 0.8358 1.011 1.269
HEERS 1.022 0.09979 0.001013 0.8454 1.011 1.26
HERK-DE-STAD 0.9998 0.08578 5.15E-04 0.8286 0.9979 1.188
HERSTAPPE 1.004 0.1009 6.33E-04 0.8067 0.9993 1.234
HEUSDEN-ZOLDER 1.02 0.08307 9.24E-04 0.87 1.011 1.213
HOESELT 0.9613 0.08781 0.001254 0.7597 0.9719 1.123
HOUTHALEN-HELCHTEREN 1.012 0.07646 5.96E-04 0.8674 1.006 1.188
KINROOI 1.027 0.09524 0.001255 0.8636 1.014 1.262
KORTESSEM 1.025 0.09654 9.26E-04 0.8565 1.013 1.256
LANAKEN 0.9136 0.101 0.002409 0.6865 0.9292 1.079
LEOPOLDSBURG 0.9592 0.08224 0.001411 0.77 0.9709 1.104
LOMMEL 0.9834 0.07695 6.64E-04 0.8247 0.9851 1.144
LUMMEN 1.032 0.09668 0.001384 0.8668 1.018 1.264
MAASEIK 1.035 0.08773 0.001231 0.8896 1.022 1.249
MAASMECHELEN 0.9349 0.08367 0.001741 0.748 0.9462 1.076
MEEUWEN-GRUITRODE 1.047 0.102 0.001753 0.8925 1.027 1.305
NEERPELT 0.9696 0.08542 0.001061 0.7838 0.9769 1.135
NIEUWERKERKEN 1.049 0.1087 0.001767 0.8836 1.028 1.324
OPGLABBEEK 1.02 0.09658 9.18E-04 0.8456 1.009 1.249
OVERPELT 0.9966 0.0836 6.44E-04 0.8263 0.9963 1.175
PEER 1.021 0.09015 8.66E-04 0.8575 1.012 1.232
RIEMST 0.9577 0.08671 0.001508 0.7612 0.9685 1.113
SINT-TRUIDEN 1.012 0.07841 8.01E-04 0.8628 1.007 1.189
TESSENDERLO 0.9452 0.08953 0.001665 0.7403 0.9577 1.1
TONGEREN 0.9719 0.07713 0.001095 0.803 0.978 1.121
VOEREN 0.9409 0.1044 0.002236 0.6928 0.9583 1.117
WELLEN 1.024 0.08865 0.001011 0.8713 1.01 1.245
ZONHOVEN 1.121 0.1452 0.00378 0.9323 1.084 1.49
ZUTENDAAL 1.07 0.1425 0.002569 0.8633 1.04 1.436
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Table F6: Relative Risk Estimates for Females in Limburg, 1996-2005: Spatio-temporal Model 3
(Bernardinelli et al., 1995)

Municipality mean sd MC_error val2.5pc median val97.5pc

ALKEN 1.008 0.09141 7.35E-04 0.8343 1.003 1.214
AS 0.9995 0.08323 6.57E-04 0.8341 0.9974 1.184
BERINGEN 1.011 0.07571 6.63E-04 0.8677 1.006 1.183
BILZEN 0.9644 0.07632 0.00117 0.792 0.9723 1.105
BOCHOLT 1.015 0.08267 8.89E-04 0.8647 1.008 1.21
BORGLOON 0.9896 0.07562 6.59E-04 0.8293 0.9919 1.146
BREE 0.9733 0.08149 9.15E-04 0.7949 0.9795 1.131
DIEPENBEEK 0.9968 0.07901 5.85E-04 0.8368 0.9958 1.168
DILSEN-STOKKEM 1.026 0.07992 9.75E-04 0.8864 1.016 1.216
GENK 1.016 0.07187 7.94E-04 0.8846 1.01 1.18
GINGELOM 0.9812 0.07791 7.66E-04 0.8089 0.9864 1.134
HALEN 0.9983 0.08714 8.05E-04 0.8223 0.9969 1.189
HAM 0.9851 0.07869 6.56E-04 0.8135 0.9885 1.145
HAMONT-ACHEL 1.044 0.08766 0.001399 0.9094 1.028 1.265
HASSELT 1.072 0.08031 0.002026 0.9575 1.055 1.269
HECHTEL-EKSEL 1.018 0.09436 9.59E-04 0.8464 1.01 1.238
HEERS 1.014 0.08686 6.76E-04 0.8551 1.007 1.218
HERK-DE-STAD 1.007 0.07848 6.22E-04 0.8542 1.003 1.183
HERSTAPPE 1.005 0.08832 6.04E-04 0.8338 1.002 1.202
HEUSDEN-ZOLDER 0.9901 0.07217 5.54E-04 0.8393 0.9917 1.14
HOESELT 0.9751 0.0804 0.001033 0.788 0.9833 1.125
HOUTHALEN-HELCHTEREN 1.02 0.07279 7.88E-04 0.8882 1.012 1.19
KINROOI 1.014 0.08213 7.24E-04 0.8609 1.007 1.204
KORTESSEM 1.05 0.09964 0.001743 0.9026 1.029 1.305
LANAKEN 0.9858 0.08179 7.46E-04 0.8143 0.9878 1.154
LEOPOLDSBURG 0.9994 0.07262 4.73E-04 0.8535 0.9978 1.16
LOMMEL 1.045 0.08355 0.001457 0.9148 1.029 1.251
LUMMEN 1.007 0.08048 6.21E-04 0.8537 1.002 1.191
MAASEIK 1.038 0.08249 0.001274 0.9067 1.024 1.243
MAASMECHELEN 1.031 0.07833 0.001113 0.898 1.02 1.22
MEEUWEN-GRUITRODE 1.081 0.117 0.00282 0.9379 1.048 1.393
NEERPELT 0.9978 0.07929 6.93E-04 0.8385 0.9959 1.173
NIEUWERKERKEN 0.969 0.08218 0.001162 0.7819 0.9778 1.123
OPGLABBEEK 1.018 0.0857 8.14E-04 0.8664 1.009 1.223
OVERPELT 0.9775 0.07598 8.80E-04 0.8059 0.9833 1.126
PEER 0.9799 0.07922 0.001064 0.8093 0.9836 1.139
RIEMST 0.9535 0.08061 0.001541 0.7653 0.9656 1.09
SINT-TRUIDEN 1.043 0.08178 0.001474 0.9127 1.029 1.241
TESSENDERLO 0.9617 0.08143 0.001323 0.771 0.9721 1.108
TONGEREN 0.9311 0.08117 0.002019 0.7408 0.9461 1.056
VOEREN 0.9521 0.09069 0.001724 0.7357 0.9659 1.107
WELLEN 1.018 0.07766 8.02E-04 0.8827 1.007 1.211
ZONHOVEN 0.9683 0.08848 0.001473 0.7701 0.9757 1.137
ZUTENDAAL 1.047 0.1226 0.001801 0.8589 1.026 1.355
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Figure F1: History plots for parameters in the Spatio-temporal Model 3 after 20,000 iterations.

6.1 WinBUGS codes

#Poisson-Gamma Model

model

{

for (i in 1 : N)

{ # Poisson likelihood for observed counts

O[i] ~ dpois(mu[i])

mu[i] <- E[i]*theta[i]

# Relative Risks

theta[i] ~ dgamma(a, b)

}

# Vague prior distributions

a ~ dexp(0.01)

b ~ dexp(0.01)

# Additional estimates

m <- a/b

var <- a/pow(b,2)

}

# Initial values for Poisson Gamma Model
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list(theta=c(

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1),a=1,b=1)

list(theta=c(

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8),a=1,b=1)

# Poisson-Lognormal Model

model {

for (i in 1 : N) {

# Poisson likelihood for observed counts

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha + v[i]

# Heterogeneity random effects

v[i] ~ dnorm(0, tau.v)

# relative risks

theta[i] <- exp(alpha + v[i])

}

# Vague prior distribution for intercept

alpha ~ dnorm(0.0, 1.0E-5)

# Hyperprior distibutions on inverse variance parameter

tau.v ~ dgamma(0.01, 0.01)

var.v <- 1 / tau.v

}

34



The Spatio-temporal Modeling of Colon Cancer in Limburg

# Initial value for Poisson-Lognormal model

list(v=c(

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,

1,1,1,1),alpha=1,tau.v=1)

list(v=c(

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,

0.8,0.8,0.8,0.8),alpha=1,tau.v=1)

# Conditional-Autoregressive Model

model {

for (i in 1 :N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha + u[i]

RR[i] <- exp(alpha + u[i])

}

# CAR prior distribution for random effects:

u[1:N] ~ car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

# Other priors:

alpha ~dflat()

mean <- exp(alpha)

tau.u ~dgamma(0.5, 0.0005)
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sigma.u<-1/tau.u

}

# Initial values for Improper CAR Models

list(alpha=0, tau.u=0.5,

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

list(alpha=0.01, tau.u=1,

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

#Convolution model

model {

for (i in 1 :N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i]

RR[i] <- exp(alpha + u[i] + v[i])

v[i] ~ dnorm(0,tau.v)

}

# CAR prior distribution for random effects:

u[1:N] ~ car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

# Other priors:

alpha ~dflat()

mean <- exp(alpha)

tau.u ~dgamma(0.5, 0.0005)
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tau.v ~dgamma(0.5, 0.0005)

sigma.u<-1/tau.u

sigma.v<-1/tau.v

ratio<-sigma.u/sigma.v

}

# Initial values for Convolution model

list(alpha=0, tau.v=0.5, tau.u=0.5,

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

list(alpha=0.01, tau.v=1, tau.u=1,

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

# Spatio-temporal models

# Model1

model

{

for(i in 1:m)

{

for(k in 1:T)

{

#Poisson likelihood for observed counts

O[i,k]~dpois(mu[i,k])
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log(mu[i,k])<-log(E[i,k])+alpha+u[i]+v[i]+beta*t[k]

#Relative risk in each area and period of time

theta[i,k]<-exp(alpha+u[i]+v[i]+beta*t[k])

}

theta_area[i]<-exp(u[i]+v[i])

TT[i]<-exp(beta)

}

# CAR prior distribution for spatial structured heterogeneity

u[1:m]~car.normal(adj[],weights[],num[],tau.u)

#prior distribution for the uncorrelated heterogeneity

for(i in 1:m)

{

v[i]~dnorm(0,tau.v)

}

# weights

for(k in 1:sumNumNeigh)

{

weights[k]<-1

}

#Improper distribution for the mean relative risk

alpha~dflat()

mean<-exp(alpha)

#Hyperprior distributions on inverse variance parameter of random effects

beta~dnorm(0,1.0E-5)

tau.u~dgamma(0.5,0.0005)

tau.v~dgamma(0.5,0.0005)

}

#Initial values for mdel1

list(alpha=0,beta=0,

tau.v=1,

tau.u=1,
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u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

list(tau.u = 1.2, tau.v=1.2, beta=0.01, alpha = 0.01,

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

# Model2

model

{

for(i in 1:m)

{

for(k in 1:T)

{

#Poisson likelihood for observed counts

O[i,k]~dpois(mu[i,k])

log(mu[i,k])<-log(E[i,k])+alpha[k]+u[i]+v[i]

#Relative risk in each area and period of time

theta[i,k]<-exp(alpha[k]+u[i]+v[i])

}

theta_area[i]<-exp(u[i]+v[i])

}

# CAR prior distribution for spatial structured heterogeneity

u[1:m]~car.normal(adj[],weights[],num[],tau.u)
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#prior distribution for the uncorrelated heterogeneity

for(i in 1:m)

{

v[i]~dnorm(0,tau.v)

}

# weights

for(k in 1:sumNumNeigh)

{

weights[k]<-1

}

#Improper distribution for the mean relative risk in the study region

for(k in 1:T)

{

alpha[k]~dflat()

mean[k]<-exp(alpha[k])

}

#Hyperprior distributions on inverse variance parameter of random effects

tau.u~dgamma(0.5,0.0005)

tau.v~dgamma(0.5,0.0005)

}

# Initial values for Model1

list(tau.u =1 tau.v=1 , alpha = c(0, 0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0),v=c(0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

list(tau.u = 1.2, tau.v=1.2, alpha = c(0.02, 0.02

, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02),
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u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

# Mode3 (Bernardinelli et al. 1995)

model

{

for(i in 1:m)

{

for(k in 1:T)

{

#Poisson likelihood for observed counts

O[i,k]~dpois(mu[i,k])

log(mu[i,k])<-log(E[i,k])+alpha+u[i]+v[i]+beta*t[k]+delta[i]*t[k]

#Relative risk in each area and period of time

theta[i,k]<-exp(alpha+u[i]+v[i]+beta*t[k]+delta[i]*t[k])

}

theta_area[i]<-exp(u[i]+v[i])

TT[i]<-exp(beta+delta[i])

}

# CAR prior distribution for spatial structured heterogeneity

u[1:m]~car.normal(adj[],weights[],num[],tau.u)

delta[1:m]~car.normal(adj[],weights[],num[],tau.delta)

#prior distribution for the uncorrelated heterogeneity

for(i in 1:m)

{

v[i]~dnorm(0,tau.v)

}

# weights

41



The Spatio-temporal Modeling of Colon Cancer in Limburg

for(k in 1:sumNumNeigh)

{

weights[k]<-1

}

#Improper distribution for the mean relative risk

alpha~dflat()

mean<-exp(alpha)

#Hyperprior distributions on inverse variance parameter of random effects

beta~dnorm(0,1.0E-5)

tau.u~dgamma(0.5,0.0005)

tau.v~dgamma(0.5,0.0005)

tau.delta~dgamma(0.5,0.0005)

}

#Initial values for # Mode3

list(alpha=0,beta=0, tau.v=1, tau.u=1, tau.delta=1,

delta=c(1, 1, 1, 1, 1, 1, 1, 1 ,1 , 1, 1,1, 1, 1, 1,

1, 1, 1 ,1 , 1, 1,1, 1, 1, 1, 1, 1, 1 ,1 , 1, 1, 1, 1, 1, 1,

1, 1, 1 ,1 , 1, 1, 1, 1, 1),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(tau.u = 1.2, tau.v=1.2, beta=0.01, alpha = 0.01,

tau.delta=0.01,delta=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)

42



The Spatio-temporal Modeling of Colon Cancer in Limburg

# Mode4

model

{

for(i in 1:m)

{

for(k in 1:T)

{

#Poisson likelihood for observed counts

O[i,k]~dpois(mu[i,k])

log(mu[i,k])<-log(E[i,k])+alpha[k]+u[i]+v[i] +delta[i]*t[k]

#Relative risk in each area and period of time

# theta[i,k]<-exp(alpha[k]+u[i]+v[i] +delta[i]*t[k])

}

theta_area[i]<-exp(u[i]+v[i])

# TT[i]<-exp(beta+delta[i])

}

# CAR prior distribution for spatial structured heterogeneity

u[1:m]~car.normal(adj[],weights[],num[],tau.u)

delta[1:m]~car.normal(adj[],weights[],num[],tau.delta)

#prior distribution for the uncorrelated heterogeneity

for(i in 1:m)

{

v[i]~dnorm(0,tau.v)

}

# weights

for(k in 1:sumNumNeigh)

{

weights[k]<-1

}
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#Improper distribution for the mean relative risk

for(k in 1:T)

{

alpha[k]~dflat()

mean[k]<-exp(alpha[k])

}

#Hyperprior distributions on inverse variance parameter of random effects

tau.u~dgamma(0.5,0.0005)

tau.v~dgamma(0.5,0.0005)

tau.delta~dgamma(0.5,0.0005)

}

#Initial values for # Mode4

list( alpha = c(0, 0,0,0,0,0,0,0,0,0), tau.v=1, tau.u=1, tau.delta=1,

delta=c(1, 1, 1, 1, 1, 1, 1, 1 ,1 , 1, 1, 1, 1, 1, 1, 1,

1, 1 ,1 , 1, 1,1, 1, 1, 1, 1, 1, 1 ,1 , 1, 1, 1, 1, 1, 1, 1,

1, 1 ,1 , 1, 1, 1, 1, 1),u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(tau.u = 1.2, tau.v=1.2, alpha = c(0.02, 0.02, 0.02

, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02), tau.delta=0.01,

delta=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

u=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

v=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

)
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