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Fast k-Fuzzy-Rough Cognitive Networks
Wouter Goossens, Quinten Moesen, Carlos Mosquera, Gonzalo Nápoles

Abstract—Fuzzy-Rough Cognitive Networks (FRCNs) are neu-
ral networks that utilize rough information granules with soft
boundaries to perform the classification process. Unlike other
neuronal systems, FRCNs are lazy learners in the sense that we
can build the whole model while classifying a new instance. This
is possible because the weight matrix connecting the neurons is
prescriptively programmed. Similar to other lazy learners, the
processing time of FRCN notably increases with the number of
instances in the training set, while their performance deteriorates
in noisy environments. Aiming at coping with these issues, this
paper presents a new FRCN-based algorithm termed Fast k-
Fuzzy-Rough Cognitive Network. This variant implements a par-
allel approach of building the information granules as computed
by k-fuzzy-rough sets. Numerical simulations on 35 classification
datasets show a notable reduction in the processing time of the
algorithm, while delivering competitive results when compared
to other lazy learners in noisy environments.

Index Terms—parallel granulation, noise, fuzzy-rough sets,
granular cognitive mapping, lazy learners.

I. INTRODUCTION

The continuously growing amount of raw data in our world
has been challenging researchers to come up with better
ways of building inference models able to extract useful
insights from historical data. Pattern classification is one of the
most researched topics in the field of machine learning. The
classification problem consists of identifying the correct label
(decision class) for an unseen object based on the available
data [1]. A wide variety of models has been proposed to solve
problems of these kinds. While often managing to deliver
excellent results, many models lack the ability to explain how
an object is exactly classified. That is why traditional neural
networks are said to behave like black boxes. On the other
hand, granular networks try to overcome this shortcoming
by processing information granules instead of the traditional
numeric representation of a classification problem [2]. The
models discussed in this paper construct these information
granules using either fuzzy sets [3], rough sets [4] or fuzzy-
rough sets [5]. This granulation procedure allows representing
the problem domain in a more concise manner. Yet granular
classifiers are able to obtain competitive results when com-
pared to traditional neural networks [6].

As an example of these granular systems, Nápoles et al. [7]
introduced the Rough Cognitive Networks as a hybridization
between rough sets [4] and fuzzy cognitive maps [8]. This
lazy learner constructs a cognitive network by following a
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predefined set of rules that use the positive, boundary and
negative rough regions for each decision class. One may notice
that only the number of decision classes can enlarge the
topology of the model, the amount of attributes does not have
an influence on the size of the network. Additionally, the use
of rough sets allows the model to cope better with uncertainty
arising from inconsistencies. Despite all the advantages of this
granular classifier, it remains to be sensitive to the value of
the similarity threshold parameter. Therefore, Nápoles et al. [9]
proposed an RCN-based multi-classifier system that does not
require an explicit value for the similarity threshold parameter
but rather induces different granularity degrees by using a
variety of parameter values. However, the algorithm still
constructs hard boundaries for its regions. The introduction
of the Fuzzy-Rough Cognitive Networks (FRCNs) completely
removed the need for an explicit parameter value [10]. This
classifier constructs information granules with soft boundaries
using fuzzy-rough sets.

In real-world problems, most datasets usually contain noisy
instances. This causes the prediction rates of the FRCNs
to degenerate as they utilize the nearest neighbors when
computing the lower and upper approximations. If the nearest
neighbor is a mislabeled sample, the values of fuzzy lower
and upper approximations may be completely contaminated
[11]. On the other hand, the information granulation of the
FRCN model may become quite extensive when the number
of instances increases. This happens due to the fact that for a
dataset comprised of N instances, the algorithm has to execute
the distance function N × (N −1)/2 times. Consequently, the
processing time drastically increases when more instances are
added to the dataset.

The two main contributions of this paper attempt to over-
come the previously described problems. Firstly, we attempt to
reduce the noise effects on the performance of the algorithm
by using a k-distance function instead of using sensitive
operators as the infimum and supremum. Secondly, a parallel
granulation approach is introduced to reduce the processing
time of deriving the fuzzy-rough regions. In that regard, our
parallel solution will focus on the computation of the similarity
matrix and the fuzzy-rough regions attached to each decision
class. Numerical simulations show the superiority of the new
variant with respect to the the original FRCN algorithm and
other lazy learners reported in the literature.

The structure of this paper is as follows. In Section II
we introduce the reader to the fundamentals of fuzzy-rough
set theory. The FRCN model will be outlined in Section III,
whereas Section IV will elaborate on the two main contribu-
tions of this paper to the FRCN model. These contributions
will be assessed by extensive experiments in Section V. The
final remarks will be provided in Section VI.
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II. PRELIMINARIES ON FUZZY-ROUGH SETS

Fuzzy-rough sets can be seen as a blend of fuzzy set and
rough set theory that incorporates strengths of both theories. In
rough set theory, objects are categorized using hard boundaries
and traditional membership functions. This means that an
object either belongs to an approximation, or it does not. The
incorporation of fuzzy set theory allows us to create granules
with soft boundaries. In fuzzy-rough set theory, an object can
have a membership degree to each fuzzy-rough region. This
allows us to replace the abrupt transitions between classes
with more gradual ones. The FRCN classifier introduced by
Nápoles et al. [12] uses the fuzzy-rough approach proposed
by Inuiguchi et al. [5].

Let U denote the universe of discourse which incorporates
all objects in the training dataset. We can define Xc as a
partition of U which contains all elements classified with
decision class Dc. The membership degree of x ∈ U to a
subset Xc is given by the following equation,

µXc
(x) =

{
1 , x ∈ Xc

0 , x /∈ Xc

. (1)

Additionally, we need to formulate a membership func-
tion representing the similarity between two instances x and
y. This function, denoted by µP (y, x), can be constructed
by combining the previously described membership degree
µXc(x) with a similarity degree ϕ(x, y). This similarity degree
denotes the complement of the normalized distance between
two instances x and y. The FRCN classifier uses either the
Heterogeneous Euclidean-Overlap Metric (HEOM) or the Het-
erogeneous Manhattan-Overlap Metric (HMOM) to compute
the similarity degree [9]. The membership function can then
be formalised as follows:

µP (y, x) = µXc(x)ϕ(x, y) = µXc(x)(1− δ(x, y)). (2)

Using Equation 1 and 2, we can construct the membership
function describing the lower approximations associated with
the fuzzy set Xc. We use an implication function I so that
I(0, 0) = I(0, 1) = I(1, 1) = 0 and I(1, 0) = 1,

µP∗(Xc)(x) = min

{
µXc

(x), inf
y∈U
I(µP (y, x), µXc

(y))

}
.

(3)
Similarly, we can define the membership function for the

upper approximation. To do that, we use a conjunction func-
tion T such that T (0, 0) = T (0, 1) = T (1, 0) = 0 and
T (1, 1) = 1. Equation 4 shows this membership function for
the upper approximation,

µP∗(Xc)(x) = max

{
µXc

(x), sup
y∈U
T1(µP (x, y), µXc

(y))

}
.

(4)
The lower and upper fuzzy-rough approximations are the

main building-blocks of the FRCN classifier. In the next
section, we will explain how to derive the network structure
in a prescriptive way, without the need for an explicit learning
process to compute the weight set.

III. FUZZY-ROUGH COGNITIVE NETWORKS

When constructing an FRCN classification model, we first
need to granulate the information space, so that a fuzzy-
rough attribute space is created. We do this by categorizing
objects into granules with soft boundaries. This translates into
computing the positive and negative fuzzy-rough regions by
using Equations 3 and 4, respectively,

µPOS(Xc)(x) = µP∗(Xc)(x) (5)

µNEG(Xc)(x) = 1− µP∗(Xc)(x). (6)

Algorithm 1 depicts the granulation process, where D(x)
returns the decision class attached to x.

Algorithm 1 Fuzzy-rough information granulation
1: for each x ∈ U do
2: if D(x) = Dc then
3: Xc ← Xc ∪ {x}
4: end if
5: Compute µXc

(x) according to Equation 1
6: end for
7: for each x ∈ U do
8: for each subset Xc do
9: Compute µPOS(Xc)(x) according to Equation 5

10: Compute µNEG(Xc)(x) according to Equation 6
11: end for
12: end for

After computing all fuzzy-rough regions, we build a neural
network comprised of 2|D| input neurons, |D| output neurons
and |D|(4 + |D|) weights. Here, D represents the set of all
decision classes. This construction procedure is summarized
in Algorithm 2. Figure 1 displays the FRCN model for a
classification problem with only two decision classes.

Network

𝑃1
∗

𝑁1
∗

𝐷1

𝑃2
∗

𝑁2
∗

𝐷2

−1.0

1.01.0

−1.0

−1.0

−1.0

−1.0 −1.0

1.0

1.0 1.0

1.0

Fig. 1. Fuzzy-Rough Cognitive Network for binary classification.

In the FRCN algorithm, neural concept Ci denotes either
a positive region (P ∗c ), a negative region (N∗c ) or an output
neuron (Dc). The weights connecting the neurons are assigned
based on the following construction rules:

• R1: If Ci = P ∗c AND Cj = Dc then wij = 1.0
• R2: If Ci = N∗c AND Cj = Dc then wij = −1.0
• R3: If Ci = P ∗c AND Cj = Dv 6=c then wij = −1.0
• R4: If Ci = P ∗c AND Cj = Pv 6=c then wij = −1.0
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Algorithm 2 Network construction procedure
1: for each subset Xc do
2: Add a neuron P ∗c as the cth positive region
3: Add a neuron N∗c as the cth positive region
4: end for
5: for each decision class Dc do
6: Add a neuron Dc as the cth decision class
7: end for
8: for each neuron Ci do
9: for each neuron Cj do

10: Configure wij according to rules R1-R4

11: end for
12: end for

After the network has been constructed from the information
granules, the model can classify new objects via its reasoning
mechanism. The initial activation value of an input neuron
is computed based on the similarity degree between the new
object y and x ∈ U , and the membership degree of x to the
fuzzy-rough granular region. If Ci = P ∗c , then the activation
rule can be formalized as:

A
(0)
i =

∑
x∈U T2(ϕ(x, y), µPOS(Xc)(x))∑

x∈U µPOS(Xc)(x)
(7)

where T2 denotes a conjunction function that may be different
than the one used in Equation 4. If Ci = N∗c , then the neuron
is activated using the following rule:

A
(0)
i =

∑
x∈U T2(ϕ(x, y), µNEG(Xc)(x))∑

x∈U µNEG(Xc)(x)
. (8)

These activation values are computed for every decision
class Dc as stated in Algorithm 3.

The network will now perform its neural reasoning process.
The activation value of a neuron is computed using Equation
9 where M is the vector of incoming edges to the ith neuron.
This equation corresponds to Kosko’s activation function used
in fuzzy cognitive maps [13],

A
(t+1)
i = f(

M∑
j=1

wjiA
(t)
j ) (9)

where A
(t)
i denotes the activation value of the ith neural

processing entity on iteration t, whereas wij represents the
causal weight connecting Ci and Cj .

Algorithm 3 Network activation procedure
1: for each decision class Dc do
2: Compute A(0)

x (P ∗c ) according to Equation (7)
3: Compute A(0)

x (N∗c ) according to Equation (8)
4: end for

The reasoning process continues until either a fixed point
attractor, or a fixed number of iterations is reached. A fixed
point attractor is reached when A(t+1)

i = A
(t)
i applies for each

neuron i in the network. This reasoning mechanism is outlined
in Algorithm 4.

Algorithm 4 Network reasoning procedure
1: for t = 0 to T do
2: converged ← True
3: for each neuron Ci do
4: Compute A(t+1)

i according to Equation 9
5: if A(t)

i 6= A
(t+1)
i then

6: converged ← False
7: end if
8: end for
9: if converged then

10: return argmaxc{A(t+1)
x (Dc)}

11: end if
12: end for
13: if not converged then
14: return argmaxc{A(T )

x (Dc)}
15: end if

The class represented by the output neuron with the highest
activation value is assigned to the new object y.

IV. FAST k-FUZZY-ROUGH COGNITIVE NETWORKS

In this section, we introduce the main contributions of
this paper which aim at improving the performance of the
FRCN model with respect to both prediction power and
computational efficiency. Firstly, we present the k-fuzzy-rough
set model to cope better with noisy datasets. As a second
contribution, we propose a parallel granulation approach when
computing the distances between all instances in the training
set. This method will allow the k-FRCN algorithm to build
its model using multiple threads, thus speeding up its perfor-
mance.

A. k-Fuzzy-Rough Sets

For a given implication function I and T -norm, we notice
that the membership of an object to the fuzzy lower approxi-
mation µP∗(Xc) matches with the distance from x to its nearest
neighbor from different classes, while the membership to the
fuzzy upper approximation µP∗(Xc) is the similarity between
x and the nearest neighbor in that set Xc.

Equation 10 uses the Kleene-Dienes implicator to compute
the lower membership function,

µP∗(Xc)(x) = inf
y∈U

max
(
1− µP (y, x), µXc(y)

)
= inf
y∈Xc

max
(
1− µP (y, x), 1

)
∧

inf
y/∈Xc

max
(
1− µP (y, x), 0

)
= 1 ∧ inf

y/∈Xc

(
1− µP (y, x)

)
= inf
y/∈Xc

δ(x, y).

(10)

Equation 11 adopts the standard T -norm to compute the
upper membership function,
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µP∗(Xc)(x) = sup
y∈U

min
(
µP (x, y), µXc

(y)
)

= sup
y∈Xc

min
(
µP (x, y), 1

)
∨

sup
y/∈Xc

min
(
µP (x, y), 0

)
= sup
y∈Xc

µP (x, y) ∨ 0

= sup
y∈Xc

ϕ(x, y).

(11)

In k-fuzzy-rough sets, we attempt to reduce the noise effects
by using a k-distance function instead of the sensitive inf
and sup. Given an object x and a set of objects Y =
{y1, y2, . . . , yn}, we define a distance function δk between x
and Y as the distance from x to its k-th nearest neighbor in Y .
Therefore, Equations 10 and 11 can be rewritten as follows:

µP∗(Xc)(x) = inf
y/∈Xc

δ(x, y) = δ1(x, U −Xc), (12)

µP∗(Xc)(x) = sup
y∈Xc

ϕ(x, y) = 1− δ1(x,Xc). (13)

Notice that we get the original fuzzy-rough set formulation
if parameter k is set equal to one. On the other hand, we get
more flexible definitions for the upper and lower approxima-
tions when k > 1. We refer to this as k-fuzzy-rough sets. The
approximations can then be computed using:

µP∗(Xc)(x) = min {µXc
(x), δk(x, U −Xc)} , (14)

µP∗(Xc)(x) = max {µXc
(x), 1− δk(x,Xc)} . (15)

It is worth mentioning that Inuiguchi’s model [5] does not
assume that µP (x, x) = 1,∀x ∈ U . Instead, we compute the
minimum and the maximum when computing the µP∗(Xc)(x)
and µP∗(Xc)(x), respectively. This feature allows preserving
the inclusiveness of P∗(Xc) in the fuzzy set Xc and the
inclusiveness of Xc in P ∗(Xc).

B. Parallel granulation process

The Fast k-FRCN algorithm is a multi-threaded variant of
the FRCN model that improves the efficiency of the model
in large datasets. The algorithm uses k-fuzzy-rough sets to
granulate all information. The features that are implemented
in a multi-threaded way are: the computation of the distance
matrix, the construction of the fuzzy-rough regions, and the
computation of the similarity class for a given object.

The equal distribution of the distance computations induces
balanced workloads among all threads. Only the distances be-
low the main diagonal of the distance matrix are computed, as
the distance function used by the FRCN model is symmetric.
Figure 2 illustrates the computation of the distance matrix by
using three processing threads.

The regions associated with each decision class and the
similarity classes are computed in the same way. Firstly, the
dataset is split into several chunks so that each thread processes
a piece of data. Meanwhile, the main process waits until all
tasks are completed. Afterwards, all parts are merged.

Thread 1

Thread 2

Thread 3

Fig. 2. Process to compute the distance matrix.

V. NUMERICAL SIMULATIONS

To validate the two contributions of this paper, we set up
two experiments. In the first experiment, we set up a standard
classification problem context where we compare the Fast-k-
FRCN to the k-FRCN implementation. For each of the 35
datasets, 4 levels of noise have been generated (0%, 5%, 10%
and 20%). Both algorithms have been trained for each dataset
and noise level, resulting in 140 results per algorithm. The
results from this first experiment are used to check if the Fast-
k-FRCN does benefit from the parallelization of the distance
calculation step in terms of processing time.

In our second experiment, the k-FRCN algorithm is com-
pared with 6 state-of-the-art granular classifiers. The first goal
of this experiment is to check whether our proposal can deliver
competitive results when compared with other lazy learners.
Additionally, we validate if the k-fuzzy-rough sets allow the
algorithm to cope better with noisy datasets.

A. Proof of concept

Figure 3 displays the membership values for the lower and
upper fuzzy-rough approximations associated with the Setosa
decision class of the well-known Iris dataset. Because these
approximations are constructed using fuzzy-rough sets, the
unambiguous transitions of crisp sets are replaced with a
continuous gradient.

However, this continuous gradient may be disrupted when
noise is added to the dataset. Figure 4 shows the fuzzy-rough
lower and upper approximations for the same decision class,
but with 10% artificially added noise. It is noticeable that the
transition becomes less smooth. The k-distance function of
the k-fuzzy-rough sets tries to overcome this defect. The k-
fuzzy-rough approximations, with k equal to 4, of the same
decision class are again presented in Figure 5. Here, we can
see that the approximations are able to recover from this noise
and can construct a softer transition between the membership
functions.
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Fig. 3. Iris-setosa lower and upper fuzzy approximations.
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Fig. 4. Iris-setosa lower and upper approximations with 10% noise.
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Fig. 5. Iris-setosa lower and upper approximations using 4-FRST with 10%
noise.

B. Description of benchmark problems

To conduct our experiment, we selected 35 datasets suit-
able for pattern classification. The number of instances in
these datasets ranges from 1599 to 12960. Using fairly large
datasets, we can get a more clear insight in the reduction in
time necessary to build the model. The number of attributes
ranges from 2 to 240 and the number of classes from 2 to 100.
A more extensive description of the datasets can be found in
Table I.

All numerical attributes have been normalized and none of
the included datasets are considered noisy or have any missing
values. The noise mentioned in this paper is artificially added
using a noise filter in Weka. This filter replaces the original
decision class with a randomly selected decision class. This
method is applied to the specified percentage of instances.

TABLE I
DESCRIPTION OF THE DATASETS

Dataset Instances Attributes Classes Imbalance

abalone 4174 8 28 689:1
banana 5300 2 2 1:1
bank 4521 16 2 8:1
car 1728 6 4 19:1
cardiotocography-10 2126 35 10 11:1
cardiotocography-3 2126 35 3 9:1
chess 3196 36 2 1:1
crowdsourced-mapping 10545 28 6 140:1
csj 2796 34 6 2:1
frogs-mfccs 7195 22 10 51:1
hypothyroid 3772 29 4 1740:1
mfeat-factors 2000 216 10 1:1
mfeat-fourier 2000 76 10 1:1
mfeat-karhunen 2000 64 10 1:1
mfeat-morphological 2000 6 10 1:1
mfeat-pixel 2000 240 10 1:1
mfeat-zernike 2000 47 10 1:1
mushroom 8124 22 2 1:1
musk2 6598 167 2 5:1
nursery 12960 8 5 2160:1
optdigits 5620 64 10 1:1
ozone 2536 72 2 34:1
page-blocks 5473 10 5 175:1
pendigits 10992 16 10 1:1
phoneme 5404 5 2 2:1
plant-margin 1600 64 100 1:1
plant-shape 1600 64 100 1:1
plant-texture 1599 64 100 1:1
segment 2310 19 7 1:1
spambase 4601 57 2 2:1
splice 3190 60 3 2:1
wall-following 5456 24 4 7:1
waveform 5000 40 3 1:1
wine-quality-white 4898 11 7 440:1
winequality-red 1599 11 11 68:1

C. Lazy learners used for comparison

1) IBk [14]: IBk is an implementation of the KNN algo-
rithm that calculates the similarity between instances using
a distance function. This algorithm never generates any ab-
stractions of the dataset, but rather compares unseen instances
with already classified ones. Therefore, it is called an instance-
based algorithm. The similarity between two instances x and
y can be computed as:

ϕ(x, y) = −

√√√√ A∑
i=1

f(xi, yi) (16)

where f(xi, yi) = (xi − yi)2 and i is a numerical attribute
and f(xi, yi) = (xi 6= yi) for nominal attributes. We define
A as the set of attributes used to describe the two instances.
These attributes are normalized so that all attributes contribute
equally to the computed distance. The algorithm classifies an
unseen instance based on the majority class of its k most
similar instances. To handle noisy datasets, the algorithm keeps
a record of the performance of each instance. Only instances
that are known to correctly classify other instances are utilized
in the classification process. This decision making can be
enhanced by assigning a larger weight to neighbors that are
more similar to the new instance.
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2) KStar (K∗) [15] [16]: this algorithm uses an entropic
distance measure instead of a specific distance function such as
IBk. This entropic distance can be expressed as the complexity
of trying to transform one instance x to another instance y.
The K∗ distance is then defined as the sum of the probabilities
of all possible transformations between two instances. One
advantage of this distance measure is that it can take the
probability, that two values of a nominal attribute are quite
similar, into account.

3) FuzzyRoughNN (FRNN) [17]: to elaborate on FRNN,
we first introduce the fuzzy k-nearest neighbor (FNN) algo-
rithm as in [18]. A major drawback of KNN is that every
selected nearest neighbor is treated equally important in the
classification process. A new way of calculating the member-
ship of an instance to a class was introduced. This was done
by defining membership as the function of the distance of the
vector from its k-nearest neighbors and the memberships in
the possible classes of the neighbor. Let NN be the set of
k-nearest neighbors of a certain instance x. For an unlabeled
instance the membership to the class can be calculated in the
following manner:

µC(x) =
∑
y∈NN

FFNN (y, x) µC(y), (17)

with

FFNN (y, x) =
||x− y||−2/(m−1)∑

Xi∈NN
||x−Xi||2/(m−1)

. (18)

The m-parameter controls the overall weighting of the
similarity. The intended effect of this parameter is that closer
neighbors are weighted more heavily than farther ones. This
happens when m is one. When m increases, this effect
vanishes and neighbors are weighted more evenly. In [18], it is
suggested that a parameter value of 2 is used. For every x, the
algorithm will calculate the membership µC(y) to a certain
decision class DC . Two methods are described to do this in
[18]: a crisp and a fuzzified membership. A crisp membership
means that the membership will be 1 if the instance belongs to
the class. Otherwise, the membership will be 0. The fuzzified
membership proposed in [17] is given by:

µC(y) =

{
0.51 + 0.49 |NNC |

K if x is in class C

0.49 |NNC |
K otherwise

(19)

where |NNC | is the length of all nearest neighbors that belong
to decision class Dc and k is the predefined parameter that
defines the number of nearest neighbors that are considered.
Afterwards the decision class with the highest membership,
calculated by Equation 18, is used to classify the unlabeled
instance x.

One of the variants of FNN is FRNN. It integrates fuzzy-
rough set theory and the FNN algorithm. The FRNN algorithm
was proposed in [19]. It uses the k-nearest neighbors of a
particular instance x to calculate the upper and lower approx-
imations. Therefore, a [0, 1] valued fuzzy tolerance relation is
used. This can be seen as another way to describe similarity.
The mathematical formula for this relation is as follows:

FFRNN (y, x) = min
a∈A

FaFRNN
(y, x) (20)

where A denotes the collection of all attributes of the dataset,
while FaFRNN can be calculated as follows:

FaFRNN (y, x) = 1− |a(y)− a(x)|
|amax − amin|

. (21)

To calculate the membership of x to a decision class C we
first need approximations for the upper and lower boundaries
F∗C(x) and F ∗C(x). There are two variants of FRNN:
FRNN-FRS and FRNN-VQRS, in this paper referenced as
VQNN. The latter will be explained later in this paper. FRNN-
FRS uses the traditional T -norm and implicator approxima-
tions:

F∗C(x) = min
y∈NN

I(FFRNN (y, x), µC(y)), (22)

F ∗C(x) = max
y∈NN

T (FFRNN (y, x), µC(y)). (23)

Depending on the variant, these approximations may be
different. To get a definitive class for instance x, the algorithm
combines the upper and lower approximation by calculating
the mean of the two values. When this is done for every class,
the class with the highest value is selected for x.

4) VQNN [19]: In fuzzy-rough set theory, inf and sup
(Formula 3 and 4) operators are used to calculate the lower and
upper approximations of a given set. These approximations
will be the traditional rough set approximations when the set
is crisp. This makes the model more susceptible to noise,
as ∀ and ∃ do with a traditional set. This is why vaguely
quantified rough sets were brought into existence. Instead of
the traditional crisp quantifiers like ”all” and ”at least one”,
VQRS makes use of ”most” and ”some” to decide the lower
and upper approximations which are defined by:

µP∗Qs(y)(x) = Qs


∑

y∈NN
min(FFNN (y, x), µC(y))∑
y∈NN

FFNN (y, x)

 ,

µP∗Qm(y)(x) = Qm


∑

y∈NN
max(FFNN (y, x), µC(y))∑
y∈NN

FFNN (y, x)


such that Qs and Qm are fuzzy quantifiers that model the lin-
guistic quantifiers ”some” and ”most” respectively. A general
definition can be formulated, which can be used to generate
different fuzzy quantifiers, as follows:

Q(α,β) =


0 , x ≤ α

2(x−α)2
(β−α)2 , α ≤ x ≤ α+β

2

1− 2(x−α)2
(β−α)2 , α+β2 ≤ x ≤ β
1 , β ≤ x

(24)

where α and β are parameters that can be used to satisfy a
personal definition of ”some” and ”most”.
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5) FuzzyOwnershipNN (FONN) [17]: Another possibility
to combine FNN and fuzzy-rough sets is FONN. It can handle
uncertainty caused by overlapping classes and inadequate
knowledge. To do this, the algorithm uses the confidence that
an object x can be classified to a class C as membership,
defined by:

τC(x) =

∑
y∈U

FFONN (y, x)µC(y)

|U |
(25)

such that FFONN (y, x) is the fuzzy relation between y and
x. This fuzzy relation can be written down as:

FFONN (y, x) = exp
(
−
∑
a∈A

ba(a(x)− a(y))2/(m−1)
)

(26)

where m again controls the overall weighting, while ba defines
the bandwidth of the membership,

ba =
|U |

2
∑
y∈U ||a(x)− a(y)||2/(m−1)

. (27)

Firstly, the bandwidth is calculated for each attribute. Here-
after τC(x) is calculated for every class. The output of the
algorithm will be the class with the highest membership value.
There is no need for a parameter k in this algorithm, because
distant neighbors will not influence the membership that much.
Yet, every instance is considered.

6) OWANN [20], [21]: Vaguely quantified rough sets, as
proposed in [22], and traditional models still show some
crisp behavior or require parameter tuning. Therefore, ordered
weighted average (OWA) fuzzy-rough sets were introduced
in [23], using OWA operators as proposed in [24]. An OWA
operator of dimension n can be defined as a mapping: Rn → R
with an associated weight vector w = 〈w1, w2, ..., wn〉. This
vector has to fulfill two constraints:

n∑
k=1

wk = 1, (28)

∀k ∈ 1, 2, . . . , n : wk ∈ [0, 1]. (29)

A very suitable way to replace the strict minimum and
maximum operators of fuzzy-rough lower and upper approx-
imations is the OWA aggregator. The purpose here is to
calculate an OWA aggregation of a decreasingly ordered vector
V of m scalar values, which can be formulated as:

OWAw(V ) =

k∑
i=1

wici (30)

In this manner we can formulate the new upper and lower
approximations of a fuzzy rough set as follows:

F∗C(x) = OWAw∗I
(
FFRNN (y, x), µC(y)

)
,

F ∗C(x) = OWAw∗T
(
FFRNN (y, x), µC(y)

)
.

Similar to FRNN, the mean of the upper and lower approx-
imations values determines the decision class that is selected
for an unlabeled instance x.

D. Settings and Hyperparameter Optimization

All classification models built in this paper have been sub-
jected to hyperparameter tuning to optimize the performance
of each model for each particular dataset. A grid search
approach has been used to find the optimal hyperparameter
settings for each model build. This method is based on the
approach of Nápoles et al. [25], but replaces the lowest average
error with the highest average accuracy.

The procedure starts by splitting the dataset into 5 folds. It
then builds a model for each hyperparameter configuration to
detect the best hyperparameter settings. This model building
procedure builds 5 different models each time keeping aside
one fold. That fold is further split into the validation and
test set. These are later used to calculate the validation and
test accuracy for each model build. After building all 5
models for every hyperparameter configuration, the average
validation and test accuracy is computed. These results are
stored until all hyperparameter configurations have been built.
The model resulting from the hyperparameter configuration
with the highest validation accuracy will be used as the best
performing model. The pseudo-code for this procedure can be
found in Algorithm 5.

All previously described algorithms, that use a k parameter,
have been optimized with k values ranging from 1 to 10. The
lower α of the OWANN and VQNN classifiers has been trained
with values 0.1 and 0.2, the upper α with 0.2 and 0.3. Their
β parameters also have undergone hyperparameter tuning. We
have used 0.6 and 0.8 for the lower β, and 0.8 and 1 for
the upper β. The values for the fuzzifier parameter of FONN
ranged from 1 to 10. KStar was optimized by using values
from 5 to 40 in steps of 5 for the global blending option.

Algorithm 5 Hyperparameter tuning procedure
1: Randomly split dataset into 5 folds
2: for each parameter configuration cf : do
3: for each fold pt: do
4: Train model on remaining folds (not pt)
5: Split fold f in validation and test set
6: Calculate validation accuracy
7: Calculate test accuracy
8: end for
9: Calculate the average validation accuracy

10: Calculate the average test accuracy
11: end for
12: Determine which configuration bs reported the highest

average validation accuracy
13: return average test accuracy with configuration bs

E. Exploring Fast k-FRCN’s Processing Time

To assess the added value of the parallel implementation
on algorithm’s performance, we compare the time required to
build the model with thread levels ranging from 1 to 10. If
the thread level is set equal to 1, the classifier behaves exactly
the same in terms of processing time as the original FRCN
classifier. The average time to build the model per thread
level is computed based the results of the best performing
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hyperparameter configuration for each dataset. Figure 6 shows
the average time to build the model for each thread level.
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Fig. 6. Average duration in milliseconds to build model per thread level.

The time to build the classification model significantly
decreases when the algorithm has access to at least two threads
instead of one. When using two threads, the building time
of the model is on average reduced by 88% compared to
one thread. Adding more threads only marginally reduces the
processing time. Moving from two to three threads, the time
gain is 30%.

F. Exploring Fast k-FRCNs’ Performance

In this section, we compare the performance of the k-FRCN
model against 6 granular classifiers and the original FRCN
algorithm. This performance comparison experiment has been
conducted by using four different noise settings, that is, 0%,
5%, 10% and 20%.

Throughout this experiment, we use the kappa statistic
as an accuracy measurement [26]. This statistic is a more
robust measure because it takes the chance that an instance
is correctly classified by chance into account.

Table II shows the average kappa per level of noise for each
algorithm used in this experiment. The reader may notice that
the performance of all algorithms degenerates as more noise
is added to the problem. This is self-evident because it is not
obvious for the algorithms how to distinguish an incorrectly la-
beled instance from a correctly labeled one. The performances
of the algorithms over the 35 pattern classification datasets are
visualized in Figures 7, 8, 9 and 10.

TABLE II
AVERAGE KAPPA PER LEVEL OF NOISE

Algorithm 0% noise 5% noise 10% noise 20% noise

k-FRCN 0.79 0.70 0.62 0.50
FRCN 0.77 0.68 0.59 0.45
FONN 0.78 0.71 0.65 0.56
FRNN 0.71 0.59 0.49 0.34
IBk 0.75 0.62 0.52 0.37
KStar 0.74 0.64 0.55 0.41
OWANN 0.75 0.65 0.58 0.46
VQNN 0.75 0.67 0.60 0.47

In order to determine whether the performances of all
algorithms are statistically different, a Friedman test [27] has
been conducted for each level of noise. This non-parametric

test can be used to reject the null hypothesis if there is a
significant difference among the algorithms [28]. Thus, the
null hypothesis will be rejected when at least two classifiers are
performing significantly different. The p-values for these tests
are respectively 2.25E-5, 2.14E-18, 1.60E-21 and 2.65E-25.
All p-values are smaller than the 5% significance level and
therefore indicating a difference in performance between at
least two algorithms in each noise environment. The Friedman
ranks of all noise environments are shown in Figure 11, 12,
13 and 14. We can see that FONN is the best performing
algorithm with k-FRCN following as second. The ranks of
FONN and k-FRCN are the only ones that improve when
more noise is added to the datasets. On the other hand, moving
from 10% noise to 20% noise does not have an influence on
the Friedman order of the algorithms.

Next, we perform a post-hoc analysis to test for significant
differences between the proposed k-FRCN and the 7 other
algorithms in terms of accuracy. This pairwise comparison is
conducted using a Wilcoxon signed-rank test. This test will
reject the null hypothesis when there is a significant difference
between the two selected algorithms. Corrected values using
Holm are also given for the p-values of the pairwise tests. This
method will try to control for type I errors (false positive).
Tables III, IV, V and VI show the results of the pairwise
comparisons for each level of noise.
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Fig. 7. Accuracy per classifier over 35 datasets without artificial noise.
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Fig. 8. Accuracy per classifier over 35 datasets with 5% artificial noise.
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Fig. 9. Accuracy per classifier over 35 datasets with 10% artificial noise.
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Fig. 10. Accuracy per classifier over 35 datasets with 20% artificial noise.
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Fig. 11. Friedman rank for each classifier without artificial noise.
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Fig. 12. Friedman rank for each classifier with 5% artificial noise.
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Fig. 13. Friedman rank for each classifier with 10% artificial noise.
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Fig. 14. Friedman rank for each classifier with 20% artificial noise.

TABLE III
WILCOXON SIGNED-RANK TEST (0% NOISE)

Algorithm R− R+ R= p-value Holm

FRCN 6 25 4 2.57E-4 1.80E-3
FONN 21 12 2 8.58E-1 8.58E-1
FRNN 9 25 1 3.76E-4 2.26E-3
IBk 14 19 2 5.82E-2 1.16E-1
KStar 12 22 1 1.83E-2 7.32E-2
OWANN 12 22 1 1.32E-2 6.59E-2
VQNN 13 21 1 3.55E-2 1.06E-1

TABLE IV
WILCOXON SIGNED-RANK TEST (5% NOISE)

Algorithm R− R+ R= p-value Holm

FRCN 7 27 1 1.81E-4 9.05E-4
FONN 15 20 0 8.27E-1 8.27E-1
FRNN 4 31 0 2.90E-7 2.03E-6
IBk 4 31 0 1.60E-6 9.62E-6
KStar 7 28 0 4.44E-4 1.77E-3
OWANN 8 27 0 1.84E-3 5.53E-3
VQNN 10 25 0 1.18E-2 2.36E-2
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TABLE V
WILCOXON SIGNED-RANK TEST (10% NOISE)

Algorithm R− R+ R= p-value Holm

FRCN 4 30 1 5.42E-6 2.71E-5
FONN 18 17 0 4.41E-1 4.41E-1
FRNN 3 32 0 1.92E-9 1.34E-8
IBk 5 30 0 2.16E-8 1.30E-7
KStar 8 27 0 7.05E-6 2.82E-5
OWANN 5 30 0 1.51E-4 4.53E-4
VQNN 9 26 0 2.36E-3 4.72E-3

TABLE VI
WILCOXON SIGNED-RANK TEST (20% NOISE)

Algorithm R− R+ R= p-value Holm

FRCN 7 28 0 2.58E-6 1.03E-5
FONN 21 14 0 9.68E-2 9.68E-2
FRNN 2 33 0 1.46E-9 1.02E-8
IBk 2 33 0 4.07E-9 2.44E-8
KStar 4 31 0 1.01E-7 5.06E-7
OWANN 8 27 0 8.43E-5 2.53E-4
VQNN 10 25 0 6.65E-3 1.33E-2

Overall, the simulation results over the 35 benchmark prob-
lems show that the k-FRCN classifier significantly outperforms
all algorithms except for FONN in environments with 10% and
20% noise. This clearly indicates an improvement in the model
with respect to the original FRCN classifier.

VI. CONCLUDING REMARKS

In this paper, we have proposed and validated a Fast k-
FRCN variant of the existing FRCN classifier. The contribution
of this model is two-folded. Firstly, the introduction of k-
fuzzy-rough sets allows the model to perform better when the
dataset is noisy. We have compared our proposed k-FRCN
classifier to 7 state-of-the-art granular classifiers, including
the original FRCN model. The k-FRCN model has proven to
be capable of delivering very competitive results, especially
in noisy environments. The model was able to outperform
6 of the other algorithms. Moreover, it achieved a higher
accuracy than the original FRCN classifier on more than 70%
of the datasets. Secondly, a parallel implementation of the
information granulation procedure drastically reduces the time
necessary to build the model. This can be accomplished by
making more CPU threads available to the algorithm. The
processing time decreased on average with 88% when at least
two threads were at hand.
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