
Faculteit Bedrijfseconomische
Wetenschappen
master in de toegepaste economische
wetenschappen: handelsingenieur in de
beleidsinformatica
Masterthesis

An exploration to what extent process mining techniques can be applied to extract a
collaboration model from version control system logs

Leen Jooken
Scriptie ingediend tot het behalen van de graad van master in de toegepaste economische wetenschappen:

handelsingenieur in de beleidsinformatica

2018
2019

PROMOTOR :

Prof. dr. Mieke JANS

BEGELEIDER :

De heer Mathijs CREEMERS

Faculteit Bedrijfseconomische
Wetenschappen
master in de toegepaste economische
wetenschappen: handelsingenieur in de
beleidsinformatica
Masterthesis

An exploration to what extent process mining techniques can be applied to extract a
collaboration model from version control system logs

Leen Jooken
Scriptie ingediend tot het behalen van de graad van master in de toegepaste economische wetenschappen:

handelsingenieur in de beleidsinformatica

PROMOTOR :

Prof. dr. Mieke JANS

BEGELEIDER :

De heer Mathijs CREEMERS

An exploration to what extent process mining techniques can be applied
to extract a collaboration model from version control system logs

JOOKEN LEEN, Hasselt University
ABSTRACT
A precise overview on how software developers collaborate on code could

reveal new insights such as indispensable resources, potential risks and better

team awareness. One might have an idea about how these developers work

together, but this will often deviate from and be less nuanced than reality.

Version control system logs keep track of what team members worked

on and when exactly this work took place. Since it is possible to derive

collaborations from this information, these logs form a valid data source to

extract this overview from. This concept shows many similarities with how

process mining techniques can extract process models from execution logs.

The fuzzy mining algorithm [8] in particular holds many useful ideas and

metrics that can also be applied to our problem case. This paper describes

the development of a tool that extracts a collaboration graph from a version

control system log. It explores to what extend fuzzy mining techniques can

be incorporated to construct and simplify the visualization. A demonstration

of the tool on a real-life event log is given. The paper concludes with a

discussion of the business relevance.

ACM Reference format:
Jooken Leen. 2019. An exploration to what extent process mining techniques

can be applied to extract a collaboration model from version control system

logs. 1, 1, Article 1 (May 2019), 15 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Companies engaged in software development have to manage a

great deal of code on a daily basis. In order to do so, they work

with several teams of programmers that focus on specific parts of a

project. However, the more programmers a company employs and

the more projects are actively running at the same time, the easier it

is to lose the overview. It gets hard to keep track of who has knowl-

edge of certain aspects of the code and which programmers are

working together on which parts. This lack of awareness can also

cause files that are at risk of becoming unknown to any programmer,

to go unnoticed. This is the case when you have a non-static file

that only gets changed by a very small amount of people. If this

select group of programmers were to quit, the organization can end

up with code that nobody really knows the details of.

An effective way to improve this awareness is through visualization

of these relationships, which can be achieved through a social net-

work graph that represents programmers as nodes and relationships

between them as edges. In this way, we can easily identify clusters

of programmers that are working on similar things, isolated nodes

that should be paid special attention to and cross-functional team

members, to name some examples of insights that might be gained.

Since we wish to discover this collaboration from real-life project

© 2019 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in , https://doi.org/10.

1145/nnnnnnn.nnnnnnn.

scenarios, we believe that logs drawn from version control systems

serve as an ideal primary data source. These systems are collection

points of many different kinds of information that could possibly

be exploited in a way that benefits the business. Some examples of

data it holds are: the different code files that make up the project,

the evolution and other time related aspects of the code, commit

messages and programmer’s activity.

This idea of extracting a social network graph from a version

control system log strongly resembles the rationale of applying pro-

cess discovery to process event logs. Process discovery is a type of

process mining. Process mining focuses on extracting knowledge

and insights from process data, that is collected in event logs. An

event log is a log book of events which occur in the context of a

process. All events related to a common case make up one process

execution. There exist four different perspectives within process

mining, with the organizational perspective being the one that is

most closely related to our problem case. This perspective includes

techniques to learn more about organizational roles, people and

work patterns. One of these techniques is social network analysis,

which uses the event log to build a weighted social graph, with the

weight of a node or edge as indicator of its importance. To carry out

this organizational mining, the resource attribute of an event is the

main focus [19]. Van der Aalst et al. identified four types of metrics

that can be used to establish relationships between individuals in

an event log, which leads to various types of social networks. Those

four types of metrics are: metrics based on causality, metrics based

on joint cases, metrics based on joint activities and metrics based

on special event types [20].

This will be the starting point for our visualization, but with a

different kind of data input and a different goal. Instead of event

logs, we will be using logs drawn from version control systems.

The two are similar in the way that every commit message from

the latter can be seen as an event, and both specify a resource for

every event. In our case the resource is the programmer that carried

out the commit. Aside from these similarities, there are also some

aspects in which the two differ. In an event log the events follow a

certain process flow, while in the case of a version control system

there is no clear process notion involved. The act of developing

software might be better described as a project, rather than a process,

because it lacks the control that a central process engine provides.

This makes it difficult to define an exact process flow [1]. This lack

of a clear process notion is also the reason why we do not build on

the implementation by van der Aalst et al. [20]. The visualization

that we aim for does not fit within the four types of metrics, that

were mentioned in the previous paragraph:

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 • Jooken L.

• Metrics based on causality:
There is no real notion of causality, as work is not handed

over but rather collaborated on by multiple people at the

same or different times.

• Metrics based on joint cases:
These metrics count how frequently two individuals perform

activities for the same case. Since in our adaptation a case

refers to a project and a version control system log concerns

one project in particular, all individuals are performing activ-

ities for the same case.

• Metrics based on joint activities:
These metrics focus on the activities a resource performs:

the more similar the activities, the stronger the relationship

between resources. If we relate activities to files in our adap-

tion, this idea holds up. There are some issues, however, that

render the exact metrics used by van der Aalst et al. useless

for our implementation. First of all, we want relationships

between programmers only when they are working on the

exact same files. After all, there is no way of knowing with

certainty whether different files are related. Secondly, the

metrics used by van der Aalst et al. are only suitable if the

resources perform comparable volumes of work. This is not

necessarily the case for the programmers in the version con-

trol system log, as the number of files they work on can vary

significantly.

• Metrics based on special event types:
There is no notion of an event type for commits in a version

control system log.

In this work, we aim to develop a tool that takes a version con-

trol system log of a project as input and produces a visualization,

in the form of a graph, that shows how the programmers of that

project collaborated. This visualization should make it possible to

easily identify the core collaboration teams and isolated nodes, as

these are the most valuable insights for an organization. To enable

this, the visualization has to be clear and easy to understand. This

shows similarities with another aspect within the process mining

domain, namely fuzzy mining [8]. The fuzzy miner was the first

process discovery technique that envisioned a comparable visual

representation. Its goal is to discover process models from event

logs of unstructured processes. This comes down to using event log

data to produce a visualization of the links between these events. Its

approach is based on a roadmap metaphor, which abstracts unde-

sired details by making use of four different concepts: aggregation,

abstraction, emphasis and customization [8]. The goal of our re-

search is using log data to build a visualization of the interaction

between people. To achieve this, we will examine to what extend the

techniques from fuzzy mining are also applicable to our visualiza-

tion. We start by researching how we can extract the collaboration

structure and build the graph inspired by the fuzzy miner algorithm.

Next, we will also examine the metrics used by the fuzzy miner for

weight calculation. The fuzzy miner uses a notion of node and edge

importance for its simplification approach. It bases this importance

on two fundamental metrics: significance and correlation [8]. We

will explore to what extend our calculation of the importance of

programmers and their relationships can be inspired by the fuzzy

miner as well.

Contributions. This paper describes a way to extract a collabo-

ration graph from a version control system log, based on techniques

used in process mining. It discusses the graph’s design choices,

explores in what way techniques from fuzzy mining can also be

applied to this new problem domain, and lastly proposes several

insights that can be gathered from the tool that could benefit the

business.

Overview. The remainder of this paper is organized as follows.

Section 2 discusses the state of the art. We then continue by elabo-

rating the design choices for a new tool in section 3. This is followed

by a detailed description of the tool’s algorithms: section 4 explains

the algorithms used to calculate the importance of collaborators and

their relationships; while section 5 focuses on the approach used

to simplify the visualization. Section 6 holds a demonstration of

our tool on a real-life example and we conclude this paper with a

discussion in section 7.

2 RELATED WORK
Most of the literature covering potential uses of version control

system logs focuses on using the files stored in such a system to

visualize the source code hierarchy, rather than collaboration aspects

[5–7, 12, 14, 15, 17, 22, 24]. The benefits of code visualization have

been widely explored in an abundance of studies [5–7, 12, 14, 15, 17,

22] and come down to the following:

• Improving a programmer’s understanding of the software

• Facilitate feature localization

• Support software maintenance

• Speed up bug tracking

• Assist with new developer training

• Serve as a base for design quality assessment

These source code visualizations come in various shapes and sizes

such as: flowcharts (Moritz [6], Crystal Flow [6]), activity charts

(Flowgen [6], Kayrebt [6]), graph representations (SHriMP [16] [17],

Rigi [17], Imagix 4D [17], CARE [17], VIFOR [17], Hy+ [17], PECAN

[17], Whorf [17], NV3D system [7]), control structure diagrams

(GRASP [17], CSD [12]), virtual environments (ImsoVision [7], Soft-

ware World [7], SOLVEN [7]) and many more.

In contrast to this numerous amount of tools that deal with code

structure and flow, there are very little - to almost no- tools that

make use of data related to social aspects. This is accompanied by a

notable lack of research regarding the benefits of using this kind of

data to gain new insights.

A tool that does involve this type of data up to a certain level,

is the Manhattan tool, developed by Lanza et al. [11]. This tool

produces a 3D visualization of the code, based on a city metaphor

first used in CodeCity [23]. However, its main goal is supporting

team activity by increasing workspace awareness. This means that

the tool tries to make a programmer more aware of what his team

members are working on and whether it could potentially impact

his own work. In order to achieve this, the system visualizes in real-

time what each team member is working on, notifies the user about

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:3

emerging conflicts, shows classes that have been changed or deleted

by others, and developers whomodified a class more frequently. This

results in a more efficient and preventative way of working than the

current approach, which consists of raising awareness and conflict

solving through human interactions like meetings and informal

conversations [11]. Although the tool makes use of collaboration

data, it does not explicitly visualize these relationships between

programmers. There is no functionality to query the system about

how often and how closely members work together.

3 DESIGN OF THE COLLABORATION VISUALIZER

3.1 Choice of data source
There are several reasons why we chose version control system logs

as the data source to extract collaboration insights from:

(1) These logs collect a lot of data that is useful and necessary

to study how people collaborate on certain projects. They in-

clude the files that make up the project, the different program-

mers that worked on them, timing aspects, pair programming

and the way the project evolved over time.

(2) Most (if not all) companies that are involved in software

development make use of a version control system.

(3) There is no need to implement a new system to start col-

lecting data. The current and past logs can immediately be

analyzed, which also means that testing the tool can be done

instantaneously.

For this first study we will focus only on logs produced by the

Tortoise SVN system.

3.2 Solution requirements
We want to construct a visualization of the collaboration relation-

ships between programmers, in the form of a graph. In order to gain

valuable insights about the social structure of a development team,

we set the following requirements for our solution:

(1) It is able to read and process the data from a version control

system log.

(2) It uses the aforementioned data to construct a graph, in which

programmers are represented by nodes and the collaboration

between them by edges.

(3) It renders a visualization of this graph.

(4) Both the programmers and the edges between them have a

weight that reflects their importance.

(5) This weight is visualized by respectively the size of the node

and the thickness of the edge.

(6) The graph is clear and easy to understand, which implies that

some simplification measures have to be taken.

(7) The graph is presented in an aesthetically pleasant way, with

as few overlapping nodes and edges as possible.

(8) Multiple colours are available to distinguish between different

kinds of nodes and edges. A distinction is made between

regular nodes and nodes that represent clusters. Further, there

are three possible categories an edge can belong to:

• Pair programming edge:
The two programmers only ever engaged in pair program-

ming and did not work separately on the same files.

• Disjunct programming edge:
The two programmers only ever worked separately on the

same files and never engaged in pair programming.

• Pair and disjunct programming edge:
The two programmers worked separately, but also engaged

in pair programming.

(9) The visualization allows interaction in the form of zooming,

panning and drag movements.

(10) The tool works on a Windows platform.

3.3 Choice of tools
First and foremost, we had to carefully select which tools to use in

order to build our solution, while making sure that all the require-

ments stated in subsection 3.2 were met. We started off by collecting

information about 23 different social network analysis tools and

libraries, and compared them based on main functionality, input

format, output format, platform and license cost. After some con-

sideration we decided to use a combination of a self-written Python

program and the Gephi tool. Gephi is an Open Source interactive

graph exploration and manipulation software, suited for all kinds

of networks [2]. By making use of this software, we can focus our

efforts on developing an algorithm that builds the graph structure

from the log, without also having to encode the visual rendering and

user interaction from scratch. Of all possible network visualization

tools, Gephi was chosen because it offers functionalities that best

meet all of our visualization requirements proposed in subsection

3.2. These functionalities include the following:

• The program is able to read a graph from a wide variety of

input formats and visualize it. (Meets requirement 3)
• Edges can be given a weight that will automatically alter its

thickness. The size of the nodes can be dependent on any

user-defined attribute. (Meets requirement 5)
• Different kinds of graph drawing algorithms can be used to

render the visualization, including Force Atlas [10], Fruchter-

man Reingold [10] and Yifan Hu (Proportional) [9]. The afore-

mentioned algorithms are all force-directed and specialize

in drawing graphs as clear as possible, making sure that the

edges are of more or less equal length and that there are as

few crossing ones as possible. (Meets requirement 7)
• The colours of both the nodes and edges are adjustable and

can be set based on the ranking or partition of an attribute.

(Meets requirement 8)
• Interactive visualization is made possible by offering user

interaction. The structures can be manipulated by zooming,

panning and drag movements among other things. Shapes

and colors can be set to reveal hidden properties and the

graph can be interactively filtered on many attributes. (Meets
requirement 9)

• The program can be used on any system supporting Java 1.6

and OpenGL. (Meets requirement 10)

Furthermore, the tool also offers additional functionalities that are

valuable:

• The 3D render engine can display large networks in real-time

and speed up the exploration. This is necessary to ensure a

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:4 • Jooken L.

decent user experience when analyzing the logs of projects

that have many contributors.

• Different statistics can be calculated such as modularity, av-

erage clustering coefficient and eigenvector centrality. The

results of these statistics can also be used to manipulate the

visualization, for example: different node color or size. So

can, for example, the number of connected components be

calculated and used to colour-code the nodes. This makes it

easier to spot isolated nodes and clusters.

With the help of Gephi we can shift our focus to the development of

a program that will handle the remaining requirements (1, 2, 4 and

6). We have chosen to write our program in Python and use CSV as

the input format for the Gephi visualization.

3.4 Detail of the program structure
The program will comprise of several algorithms that carry out the

steps in the following list in order to generate the resulting graph.

The calculation of the file importance, the edge weights, the node

weights and the simplification of the graph will be explained more

into detail in sections 4.1, 4.2, 4.3 and 5 respectively. Calculating

an importance value for every file is necessary to get a right un-

derstanding of the importance of both the programmers and the

collaboration between them. The algorithms that handle the cal-

culation of the weights and the simplification of the graph will to

some degree be inspired by the fuzzy mining algorithm [8].

(1) Parse the log into a usable data structure

(2) Calculate the importance of each file

(3) Build the base graph:

• Include every programmer that is mentioned in the log

• Add a pair programming edge between two programmers

when they have participated in this activity at least one

time

• Add a regular edge between two programmers when they

have both worked on at least one file that is the same, and

this collaboration was not in the form of pair programming

(4) Calculate the edge weights:

weighted sum of the frequency significance and the proximity

correlation of the edge

(5) Intermediate clean-up of the edges with a weight equal to 0,

necessary to entail a correct calculation of the node weights

(6) Calculate the node weights:

weighted sum of the frequency significance, betweenness

centrality, eigenvector centrality and degree centrality of the

node

(7) Simplify the resulting graph:

• Phase 1 - edge filtering: filter out weak edges

• Phase 2 - aggregation: form coherent clusters of less signif-

icant programmers that have strong relationships between

them

• Phase 3 - abstraction: remove insignificant programmers

that are not strongly enough connected to other program-

mers so they can be aggregated

(8) Write the simplified graph to CSV format, so Gephi can carry

out the visualization

4 CONSTRUCTING THE BASE GRAPH:
WEIGHT CALCULATION ALGORITHMS

4.1 Calculating the file importance
As already mentioned in section 3.4, the program should calculate a

value that reflects the importance of a file. This value is necessary

to create a well-substantiated weight for both the programmers and

their relationships. Rather than to focus on the business importance

of a file, we have chosen to let this value represent how important

the file is for collaboration. We cannot base this importance of how

large a certain file is, since this information is not standard available

in a version control system log. So let us consider a file important

if it continues to ‘grow over time’. A project is dynamic, it evolves

over time to accommodate for new features and new customer re-

quirements. As a result of this, files that make up the core of the

application will get altered regularly in order to support this evolu-

tion and will also be the ones that catch the most bugs as they are

constantly being changed. Less important files, like configurations

or trivial pieces of code, stay static. These files that get changed on a

regular basis are good candidates for collaboration from a business

point of view. The reason for this is two-fold:

(1) Since these files are constantly being updated, it is good to

have multiple people with knowledge of them. This increases

the chance that there is always someone around that can help

with trouble-shooting and further development. That way,

people leaving the company or falling ill will not pose a threat

for the further evolution of the code.

(2) Collaboration in the form of pair programming, ensures faster

development, decreases the chance of introducing bugs and

speeds up bug fixing, since there are multiple people contem-

plating the same code [4].

Based on these assumptions, we will develop an algorithm to calcu-

late the file importance. To ensure that files that have been around

for a long time are not favoured over relatively new ones, we will

work with a ratio that takes the life span of the file into account.

This ratio considers the number of months the file in question exists

or existed, and calculates in how many of those months the file got

changed. For example: consider a file that was created in March and

changed in April, May and July of that year. If the log data ends in

August and the file did not get deleted between July and August, the

file importance will be 4/6. A file that existed for 1.5 years and got

altered in 12 of those months, also has a file importance of 4/6. We

do not factor in the number of commits related to this file that occur

within a month. The reason for this is that a programmer is free

to choose whether he commits his work in many small pieces or

just all at once. A downside to this approach is that files that were

created towards the end of the log will in most cases have a larger

importance than files that have been around for a long time. There

is no way of telling whether these new files will get altered regularly

in the future, but we do not consider this larger importance to be a

problem since these files are recent and therefore important at this

very moment in the developing stage.

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:5

Another aspect that must be touched upon before we can elucidate

the algorithm, is the fact that a file can be added and deleted multiple

times. A file is identified by its path. After deletion of a certain file,

it is possible to add that exact file path again. This implies that a file

can have multiple time stamps in which it was added to or deleted

from the version control system.

This brings us to the following algorithm that calculates the im-

portance value for a specific file:

File importance algorithm

(1) Collect the time stamps:

(a) Collect the time stamps of the commits where this

file was ‘added’ and sort them chronologically

(b) Collect the time stamps of the commits where this

file was ‘deleted’ and sort them chronologically

(c) Collect the time stamps of the commits where this

filewas altered (this includes both ‘added’ and ‘mod-
ified’) and sort them chronologically

(2) If the file was added before the start of the log data,

take the time stamp of the start of the log as starting

point;

Else take the time stamp of when the file was first

added as starting point

(3) Use this starting point to calculate how many months

the file existed up until it got deleted. If the file never

got deleted, take the last time stamp of the log as ending

point

(4) Calculate in how many of those months the file got

altered

(5) If the file got deleted within the time span of the log,

search for a point where the file got added again. If

such a point exists, take this as a new starting point and

repeat steps (3) to (5), while accumulating the number

of months the file existed and the number of months

in which the file got altered

(6) Calculate the file importance as:

the number of months in which the f ile дot altered
the number of months the f ile existed

Figure 1 illustrates six possible scenarios on how to determine which

time span to take into account to calculate the importance value.

It shows a timeline including the start and end point of the log

data. The orange indications show the time periods in which the

file exists in the log. These periods will be used to calculate the

aforementioned ratio.

Fig. 1. Different scenarios that illustrate the possible life spans of a file in the
log.

4.2 Calculating the edge weights
The edge weights are indicators of how strong the collaboration

between two programmers is. In order to logically substantiate these

weights, we examined and selected some metrics used in fuzzy min-

ing that we believe are also applicable to our problem. Fuzzy mining

simplifies a model by using abstraction and aggregation. It decides

between these two options based on the significance and correla-

tion value of a node or edge. Several metrics are used to calculate

these values [8]. We examined these metrics and decided that two of

them could also be used to calculate the edge weights for our prob-

lem. These metrics are the binary frequency significance and the
proximity correlation. Both of these contribute a value to different
aspects that together determine how important the collaboration is.

We will further elucidate these metrics in section 4.2.1 and 4.2.2.

4.2.1 The binary frequency significance.
The first metric we include in the calculation is the frequency sig-
nificance. Classified under the binary significance metrics, this

metric describes the relative importance of the relationship between

two nodes. Within fuzzy mining, it is defined as ‘the more often
two event classes are observed after one another, the more significant
their precedence relation’ [8]. We will adapt this idea to our problem

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:6 • Jooken L.

context as ‘the more files are worked on together, the stronger the
relationship’. However, there are several issues with this statement,

indicating that, in order to apply this metric to our problem case,

some constraints have to be added.

First of all, we cannot base the importance of the relationship

solely on the number of distinct files they have worked on together,

as this does not take into account the file importance. If we imple-

ment this metric without any constraints regarding the file impor-

tance, two programmers that worked on only a handful of, but very

important, files will end up with a weaker relationship than two that

worked on a lot of trivial files together. We will solve this problem

by making use of the file weights, as explained in section 4.1.

Secondly, we have to deal with the ever-recurring problem of the

time between two commits. Two programmers can work together

on a file multiple times, but we have to be careful not to favour a

programmer with the habit of committing his current work regu-

larly over one that likes to commit very big chunks of code more

sparsely.

Lastly, we will only consider files from commits that were not

pair programming activities between the two programmers under

consideration. The pair programming aspect will be included in the

edge weight calculation as a separate factor, further explained in

subsection 4.2.2, since this is a special kind of collaboration.

Keeping in mind these three constraints, we suggest the following

algorithm to calculate the frequency significance value for a certain

edge between two programmers:

Binary frequency significance algorithm

(1) Collect the commit list of the first programmer and

that of the second programmer

(2) Filter out all the pair programming commits concern-

ing these two programmers

(3) Using the remaining commits, compose a list of files

both programmers worked on

(4) For each of these files, do the following:

(a) Collect all the time stamps of when the first pro-

grammer committed this file; do the same for the

second programmer

(b) Order these two lists of time stamps chronologically

(c) Count the number of times they have worked on it

together, with the constraint that everything that

happens within the time span of one week counts

as the same ‘block’
(d) Calculate the frequency significance for this file as:

the number of blocks calculated in the previous step
x

the importance of the file under consideration
(5) The final frequency significance of this edge is the sum

of the frequency significance of all the aforementioned

files

Let us illustrate the principle mentioned in step 4c using the follow-

ing example:

Suppose we have already collected and ordered the time stamps

of when programmer 1 committed a certain file and the same for

programmer 2. This gives us the following table:

Ordered time stamps Ordered time stamps

of when programmer 1 of when programmer 2

committed the file committed the file

01/03 02/03

02/03 02/03

03/03 05/05

04/07 06/07

08/07

19/12

Table 1. In this example two blocks are identified where programmer 1 and 2
collaborated on the same file: the yellow and the pink one.

Table 1 shows the dates on which two programmers worked on a

certain file. Only when both programmers edited this file within the

same week, it counts as collaboration. Moreover, only when there

is more than one week between two consecutive dates it counts

as a separate collaboration session. So this example shows two

collaboration sessions, namely the yellow and the pink block.

4.2.2 The proximity correlation.
The second metric we include is the proximity correlation, which
is a binary correlation metric. Within the fuzzy mining algorithm,

the proximity correlation evaluates event classeswhich occur shortly

after one another, as highly correlated [8]. In terms of the timing

aspect, we have already taken the proximity into account during

the calculation of the frequency significance by limiting the permit-

ted time span between two consecutive commits (see subsection

4.2.1). However, in our case there is yet another interpretation of

proximity possible, namely the physical proximity in the form of

pair programming. This will serve as our proximity correlation, as

we have earlier decided to not include this aspect in the frequency

significance. There are two reason why we have chosen to include

this as a separate factor:

(1) Pair programming is a closer collaboration since the pro-

grammers are physically seated next to each other and both

contribute to the same code together.

(2) There is more certainty involved that they really interacted

and both know the code, than there is when they worked on

the same files but not as a pair programming activity.

This division allows for pair programming to have a greater influ-

ence on the final edge weight than the frequency significance.

Because this metric has the same constraints as the frequency sig-

nificance, explained in subsection 4.2.1, we will again work with

the file importance and a predefined time span between commits.

This results in the following algorithm:

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:7

Proximity correlation algorithm

(1) Collect all the pair programming commits concerning

these two programmers

(2) Compose a list of files that appear in these commits

(3) For each of these files, do the following:

(a) Collect the time stamps of all the commits concern-

ing this file

(b) Order these time stamps chronologically

(c) Define the time span that must lie between two con-

secutive commits in order to count as a separate

collaboration. The default is one month

(d) Count the number of times the programmers collab-

orated by going through the chronologically ordered

time stamps and tallying whenever there is at least

the predefined time span in between two consecu-

tive time stamps

(e) Calculate the proximity correlation for this file as:

the number of times they collaborated, as calculated
in step (d)

x
the importance of the file under consideration

(4) The final proximity correlation of this edge is the sum

of the proximity correlation of all the aforementioned

files

4.2.3 The final edge weight.
In order to calculate the final weight of an edge, the two aforemen-

tioned metrics are normalized and both get assigned a weight that

determines how much the metric influences the final edge weight

value. As already mentioned before, the proximity correlation value

should have a greater influence on the final weight, because the

metric concerns a closer collaboration and there is less uncertainty

involved. This leads us to the following formula:

Final edge weight formula

Final edge weight
=

0.40 x normalized frequency significance
+

0.60 x normalized proximity correlation

4.3 Calculating the node weights
The weight of a node shows the importance of that programmer

within the project of which the logs are under consideration. We

explored which metrics used by the fuzzy mining algorithm could

be useful for the calculation of this weight, like we did for the edge

weights in section 4.2. Only one metric seemed applicable to our

problem case, this one being theunary frequency significance [8].
In order to better substantiate the weight, we looked for additional

applicable metrics stemming from traditional graph theory. The

three metrics that were eventually selected are the betweenness
centrality, the eigenvector centrality and the degree centrality.
These four metrics will be explained more into detail in subsections

4.3.1, 4.3.2, 4.3.3 and 4.3.4. Each of the values they produce will be

used to calculate the final node weight in subsection 4.3.5.

4.3.1 The unary frequency significance.
The fuzzy mining algorithm evaluates the frequency significance of

a node as ‘the more often a certain event class was observed in the log,
the more significant it is’ [8]. We will adopt this idea as ‘the more
often a programmer appears in the log, the more significant he is’, but
we will need to set some constraints. Again, we work with a list

of distinct files and the file importance. To counter the ‘free choice
of when to commit’ problem, the distinct list of files makes sure

we count every file only once. However, only considering the total

number of files a programmer worked on is not nuanced enough.

This would for example cause a programmer that worked on five

trivial files to have the same significance as one that worked on five

very important files. To counter this problem, we will also factor in

the file importance.

This leads us to the following algorithm:

Unary frequency significance algorithm

(1) Compose a list of all the files this programmer worked

on

(2) Calculate the sum of the importance of each of these

files

(3) The frequency significance will be the normalization

of this sum. (Since the importance of a file ∈]0, 1], we

normalize this sum by dividing it by the number of

files)

4.3.2 The betweenness centrality.
The betweenness centrality is the second metric we include in the

calculation. It is one of the many centrality measures present in

graph theory.We chose this specificmeasure to handle programmers

that are a part of several different teams. This metric considers a

node highly important if it forms bridges betweenmany other nodes.

So this node is an important gatekeeper of information between

disparate parts of an organization [3]. To calculate this value we

make use of the NetworkX Python library [18], which computes

the betweenness centrality of a node as the sum of the fraction of

all-pairs shortest paths that pass through that node [18]. We pass

the current graph and the edge weights, calculated as explained in

Section 4.2, as arguments. Lastly, we normalize the results based on

the minimum and maximum centrality value, instead of using the

number of nodes. Otherwise the values will be too small to make a

real impact on the final weight.

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:8 • Jooken L.

4.3.3 The eigenvector centrality.
The next metric that contributes a value to the node weight is the

eigenvector centrality. According to this metric, a node is highly

important if many other highly important nodes link to it. However,

the centrality does not only depend on the number of edges incident

on the node, but also on the quality of those edges [21]. So this

metric reveals teams of important nodes that work closely together.

We implement this metric by making use of the NetworkX library

and the edge weights, calculated as explained in section 4.2.

4.3.4 The degree centrality.
Lastly, we also include the degree centrality, which looks at the

number of edges incident upon the node [21]. Wewill use this metric

to identify (nearly) isolated nodes. These nodes are important in our

visualization because they impose a threat. The reasoning behind

this is that when a programmer is the only one to work on a file, he

also becomes the only one with knowledge of this code and very

important for the further evolution of it. This, combined with the

frequency significance (i.e. the importance and number of files), can

uncover nodes at risk. These risky nodes represent programmers

that have contributed many important files to the project, but have

written these all by themselves without any collaboration. This

makes the programmer very valuable for the company and not easy

to replace. So these nodes should have larger weights than other leaf

nodes, to prevent them from being pruned during the simplification

phase.

At first glace, this seems to contradict the eigenvector centrality,

described in the previous subsection. A (nearly) isolated node will

have a low eigenvector centrality value, which does not provide

it with the importance it needs. However, we cannot use a low

eigenvector centrality value as an indicator to give extra weight to

a node. This because a node that is connected to many unimportant

nodes will also have a low eigenvector centrality and there is no

evidence to imply that this node is also important. Furthermore,

imposing a larger weight on a node with a low eigenvector centrality

will cause the core team cluster nodes to have a low weight, which is

not what we want. For this reason we use the eigenvector centrality

to identify the core teams and the degree centrality as a separate

metric to identify the (nearly) isolated nodes and give them the

weight they deserve. The degree centrality only affects these almost

isolated nodes, because it only relies on the number of incident

edges. A node with only a few neighbours will have an increased

importance, while it will not affect the importance of nodes with

many neighbours. This is good because having many incident edges

does not necessarily imply that a node is important.

To apply the degree centrality metric to our weight calculation, we

have to alter the original formula [13], which looks as follows:

CDi =
the number o f links incident on node i

the total number o f nodes node i can be connected to

=

∑n
j=1 ai j

n − 1

(1)

with n being the total number of nodes and ai j the position in

the adjacency matrix. The division by n − 1 is meant to scale the

centrality measure between 0 and 1.

Since we need nodes with less incident links to have a larger weight,

we alter the formula as follows:

C∗
Di =

the number o f nodes node i is NOT connected to

the total number o f nodes node i can be connected to

=
n − 1 − x

n − 1

= 1 −
x

n − 1

= 1 −CDi

(2)

with n being the total number of nodes and x the number of links

incident on node i .

To calculate our final degree centrality value, we make a distinction

between pair programming and non-pair programming edges. The

reason for this is that the latter involves a lot of uncertainty, while

in the case of pair programming we are certain that more than one

programmer has knowledge of the code. We implement this logic

as follows:

Degree centrality algorithm

(1) Calculate the adapted degree centrality for the distinct

collaboration edges (see equation 2)
(2) Calculate the standard degree centrality for the pair

programming edges (see equation 1)
(3) Subtract (2) from (1)

(4) The result ∈ [−1, 1] → normalize to ∈ [0, 1]

4.3.5 The final node weight.
After the normalization of every metric we can calculate the final

node weight by taking the weighted sum. We used the following

weights for the aforementioned metrics respectively: 15%, 25%, 30%

and 30%. The eigenvector and the degree centrality have the greatest

influence because the main goal of our visualization is identifying

the core teams and isolated nodes. We also deemed the betweenness

centrality more important than the frequency significance because

programmers that are a part of different teams form an important

insight and this should be emphasized in the visualization. This

leads us to the following formula:

Final node weight formula

Final node weight
=

0.15 x normalized frequency significance
+

0.25 x normalized betweenness centrality
+

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:9

0.30 x normalized eigenvector centrality
+

0.30 x normalized degree centrality

5 GRAPH SIMPLIFICATION APPROACH
At this point we have constructed the base graph and assigned

weights to both the nodes and the edges. However, this graph is

too large and too unclear to derive any useful insights from it. This

means that in order to be of any value to us, the graph needs to

be simplified. This unstructuredness reminded us of the "spaghetti-

like" process models that are often the result of carrying out process

mining approaches on real-life processes. The fuzzy mining algo-

rithm offers a way to simplify this kind of process models [8]. Since

we have already partly based our weight calculation on how the

fuzzy miner values its nodes and edges, we will also examine to

what extend its simplification process can be applied to our graph.

The fuzzy miner got its inspiration from a road map, which uses

four concepts to provide a high-level view: abstraction, aggregation,

customization and emphasis (see figure 2).

Fig. 2. Road map metaphor used by the fuzzy miner [8].

The miner includes these concepts in its simplification approach as

follows: [8]

• Aggregation of less significant but highly correlated be-

haviour

• Abstraction of less significant and lowly correlated behaviour

• Emphasis by highlighting more significant behaviour

• Customization based on the context, level of detail or pur-

pose of the model

These concepts are then incorporated into three transformation

methods that take the base graph as input and produce a simpli-

fied version of it as output. The first method is conflict resolution
which aims to remove edges from nodes that are in conflict. This is
the case when two nodes are connected by edges in both directions.

Since our collaboration graph is undirected, this phase is not appli-

cable and can be skipped. Edge filtering is the second method used

in the simplification approach. This method filters the edges on a

local basis: the edges with the highest utility value will be preserved,

after comparison with an edge cutoff parameter. We can apply this

concept to our problem case by removing collaboration relations

that are very weak. These relations are not well established and

therefore involve a lot of uncertainty about whether collaboration

really took place. It is best to remove these edges from the graph.

The last method comprises node aggregation and abstraction,

which preserves highly correlated groups of less significant nodes

as clusters and removes isolated, less significant nodes [8]. We can

apply this to our graph as follows: programmers that are not very

important but have strong collaboration relations between them

can be presented as a group; very insignificant programmers that

have no strong relations with others can be abstracted. The latter

ensures that nodes that our tool mistook for programmers will be

removed from the final graph.

Now that we have a basic understanding of how these methods

can be applied to our problem case, we can construct the approach

we will follow for the simplification of our graph. Our approach

consists of the following three phases: (1) edge filtering, (2) aggrega-

tion, (3) abstraction. We will elaborate these steps in the following

subsections.

5.1 Phase 1: Edge filtering
In this first phase we filter out edges that are weak and therefore

not well established. The fuzzy miner [8] tackles its edge filtering

by calculating a utility value for every edge, which is the weighted

sum of the edge’s significance and correlation value. For every node

the edges with the highest utility value are then preserved. This is

achieved by normalizing the utility values of all the edges incident on

the node, and comparing these values with an edge cutoff parameter.

We will adapt this algorithm to better fit our problem case.

The most striking difference between our collaboration graph and

the graph used by the fuzzy miner [8], is that the former is undi-

rected while the latter is directed. This results in the fuzzy miner

[8] carrying out the edge filtering algorithm twice for every node:

once for the incoming edges, once for the outgoing ones. Since our

graph is undirected, we perform our filtering algorithm only once

on the entire set of edges incident on the node. This creates a new

problem: an edge can be unimportant for one node, but important

for the target node it is connected to. We solve this problem by only

filtering an edge when both its connected nodes agree on it. This

also implies that we first determine for all the nodes which edges

are candidates for removal, before we actually filter them from the

graph. If we would go through the graph node by node and filter

the edges immediately, then the chosen edges would depend on the

order in which we handled the nodes.

Another important aspect to mention is that it is impossible to

create new isolated nodes, because the edge cutoff parameter is

compared to the normalized utility values. This guarantees that at

least one edge (the most important one) will always be preserved. A

next problem we encountered is that we did not explicitly calculate

a significance and correlation value for every edge. We did however

incorporate these concepts into the edge weight. Since the utility

value is meant to be an indication of how important the edge is, we

can let the edge weight, as calculated in section 4.2, represent it.

Lastly we also have to determine the edge cutoff parameter. This

parameter determines how careful the algorithm is with removing

edges. A lower cutoff parameter will preserve most of a node’s

edges, while a higher one only preserves the strongest collaboration

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:10 • Jooken L.

relations. This parameter depends on the log under consideration

and the purpose of the desired visualization.

This brings us to the following algorithm:

Edge filtering algorithm

(1) For very node, do the following:

(a) Collect all the edges incident on this node

(b) If the node has more than one incident edge, do the

following:

(i) Collect the weights of all these edges

(ii) Normalize these weights between [0, 1]

(iii) Add every edge for which the normalized weight

< edge cutoff parameter to the list of possible can-

didates for filtering

(iv) If this edge is already present in the list of candi-

dates, it means that the other node it is connected

to also suggested it as a candidate for filtering.

Move this edge to the list of edges to filter

(2) Once all the nodes are handled, remove the edges that

appear in the list of edges to filter, from the graph

5.2 Phase 2: Aggregation
In this second phase we form coherent clusters of programmers that

are not very important but have very strong relationships between

them. Such a group of programmers is represented by a single node

in the graph, because their individual importance does not outweigh

the added value of simplification. However, they are not abstracted

from the graph because their strong mutual collaboration could

provide interesting insights for the tool’s end user.

First we will elaborate how the fuzzy miner [8] handles node aggre-

gation, since this will form the base for our aggregation approach.

The fuzzy miner selects every node that has a unary significance

value below the node cutoff parameter as a possible candidate for

aggregation. Next it examines the most highly correlated neighbour

of each of these candidates. If this neighbour is a cluster node, the

candidate under consideration gets added to this cluster and all of

its incident edges are transitively preserved. If not, a new cluster is

formed with the candidate as first member. Once every candidate

has been handled, the second phase that consists of cluster merging,

sets in. In this phase, each cluster gets checked whether all of its

predecessors are also clusters. If so, the cluster under consideration

gets merged with the most highly correlated one. The exact same

procedure is also carried out for the successors.

Our aggregation approach consists of the same two phases: initial

cluster building and cluster merging. After carrying out these two

phases we also have to redefine the weights of both the cluster and

its connected edges and determine the collaboration type of these

edges (disjunct/pair programming, or both). In the next subsections

we will explain each of these phases more into detail, including

when and why we deviate from the original fuzzy miner approach.

5.2.1 Initial cluster building.
We start off by collecting the nodes that are possible candidates for

aggregation. This means that we check for each node whether it is

unimportant enough to aggregate. The fuzzy miner calculates this

importance by only making use of a unary significance metric. In

our case, however, the importance of a node is represented by its

weight, which incorporates the unary frequency significance along

with three centrality measures (as explained in section 4.3). This

value is then compared to a node cutoff parameter, of which the

value again depends on the log under consideration and the purpose

of the desired visualization. By default, this cutoff parameter is set

as the average weight of all the nodes in the graph. In most cases

there will be a lot of nodes with a low weight, which lowers the

average and limits the number of candidates for aggregation.

Once the candidates are selected, each of them has to be evaluated

to determine whether they can be aggregated. This is only the

case when they have an edge that is strong enough to carry out

the aggregation. We deviate here from the original fuzzy miner

approach. Once a candidate has been selected by the fuzzy miner

it will certainly become a cluster by merging with its most highly

correlated neighbour, regardless of the edge’s weight [8]. In our

approach it is possible that the candidate will eventually not be

clustered at all. Because we want a cluster to represent a group of

strongly connected programmers, an additional check is performed

to ensure that the weight of that edge is large enough. To determine

whether an edge is strong enough to pull two nodes together, we

have to declare an aggregation-correlation parameter to which the

edge weight can be compared. Only when the edge weight exceeds

this parameter, the edge is strong enough to contract the nodes and

form a cluster. Using the average edge weight of all the edges as the

parameter and comparing this to the absolute edge weight is not

possible. The reason for this is that the weight of a node depends on

the weight of its connected edges. Since we only select nodes with

a low weight as possible candidates, their edge weights will also be

low. The result is that none of these edges have a weight that exceeds

the aggregation-correlation parameter, so none of the nodes will

actually be aggregated. So we have to find another way to determine

whether an edge is strong enough to carry out aggregation.

We found our solution in a metric that is also used by the fuzzy

miner, namely the distance significance. The miner uses this met-

ric to determine the significance of an edge, but it can be adapted to

solve our problem. The distance significance looks at how much the

significance of an edge differs from the significances of its connected

nodes. The bigger the difference, the less its distance significance

value. This metric locally amplifies important relationships between

nodes and weakens the already insignificant ones [8]. So instead of

using the absolute weight of an edge, we will look at the strength

of the edge in the local context. We know that the candidate nodes

have low weights and we are searching for strong edges, so the big-

ger the difference between the weights of these two, the more the

edge qualifies to carry out aggregation. We choose the aggregation-

correlation parameter to be the difference between the average node

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:11

weight of all the nodes and the average edge weight of all the edges.

So for each candidate node we search the strongest edge whose

weight exceeds this aggregation-correlation parameter. If no edge

is deemed strong enough, the node remains untouched.

Now we can resume where we left off while following the fuzzy

miner approach. For every node that has an edge capable of aggrega-

tion, we check whether the target node that the edge is connected to

is a cluster or not. If it is, we add this node to that cluster; otherwise

we build a new cluster with this node as the first member.

We conclude this first aggregation phase with an overview of

the algorithm that was just explained. Next, the merging of these

clusters will be discussed in phase 2.

Initial cluster building algorithm

For each node:

If the node weight < node cutoff parameter:

(1) Collect the edges incident on this node

(2) For each of these edges, do the following:

(a) Calculate the distance significance as :

| edge weight - node weight |
(b) If the distance significance > aggregation-correlation

parameter → this edge is capable of aggregation, so

add it to the possible candidates

(3) From the list of candidate edges, select the strongest

one to actually carry out the aggregation

(4) If the target node it connects to is a cluster → add the

node and its incident edges to this cluster

(5) Else make a new cluster with this node as the first

member

5.2.2 Cluster merging.
As stated before, the fuzzy miner only merges clusters when its

pre- or postset contains only cluster nodes. Our collaboration graph

is not directed, so we cannot make this distinction. However, it is

in our case also not necessary that all the neighbouring nodes are

cluster nodes. If two nodes have a very strong connection, they will

most likely work on the same or related things and have more or less

the same knowledge. So they can be considered as one. Nodes that

collaborate with one of these two can theoretically also be seen as

working with the other. This implies that in order to merge, not all

the neighbouring nodes have to be clusters. This idea is illustrated

in figure 3, where the green nodes represent the clusters.

Fig. 3. Not all neighbouring nodes have to be clusters in order to merge. Node 2
and 3 are cluster nodes that are also connected to a regular node. If node 2 and 3
can be seen as more or less the same, the nodes 1 and 4 can be considered as also
working with the other cluster node. So losing the information to which original
cluster node a regular node was connected, is an acceptable simplification.

So for every cluster node, we check if one of its neighbours is also

a cluster. If there are multiple candidates, we choose the one that

is connected by the edge that has the greatest aggregation power

that is above the aggregation-correlation parameter, as described in

subsection 5.2.1.

Summarized this gives us the following algorithm:

Cluster merging algorithm

For every cluster, do the following:

(1) Collect its neighbouring cluster nodes

(2) For every edge that connects this node to a neighbour-

ing cluster node, do the following:

(a) Calculate the distance significance as follows:

| edge weight - node weight |
(b) If the edge’s distance significance value > aggregation-

correlation parameter→ add it to the list of possible

candidates for merging

(3) Select the candidate edge with the largest distance

significance to actually carry out the merging

(4) Merge both clusters and transitively preserve the edges

5.2.3 Redefining the cluster’s weights.
Now that we have created clusters of programmers, we also have

to calculate a weight for both the cluster and its connected edges.

We start by determining the weight of these edges. There are

two possible scenarios: the edge can connect the cluster to either a

regular node or to another cluster.

Let us first consider the scenario where the edge connects the

cluster to a regular node. If this regular node is only connected to

one node within the cluster, then its original weight is retained. If

however, the regular node is connected to multiple nodes within

the cluster, these connecting edges will be removed and replaced by

one edge that represents all these connections to the cluster. It is

this replacing edge that needs a new logical intermediate weight.

This new weight will be the average of the weights of the edges

that connect a cluster node to the regular node, but corrected for

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:12 • Jooken L.

the strongest edge. The reasoning behind this is that the strongest

edge is important for visualization insights. Imagine a node that has

a very strong relation to a node within this cluster, but also many

insignificant edges to other nodes within the cluster. These many

low edge weights will strongly decrease the average weight of all

these edges that connect the cluster to this regular node. This causes

the final weight for the replacing edge to be an underestimation.

We correct this value as follows:

Cluster edge weight formula

Collect the weights of all the edges connecting this regular

node to a node within the cluster:

The weight of the replacing edge =

the avд edдe weiдht + the stronдest edдe weiдht
2

We will illustrate this with an example in figure 4:

The average edge weight would be an appropriate value to use as

the weight of the replacing edge in the example on top. However, in

the bottom example this value would be an underestimation. If we

would use it, we would lose the information that the node is very

strongly connected to one node within the cluster, and therefore

also to the cluster as a whole. In contrast, applying our formula

results in a value that represents this information more accurately.

Fig. 4. Two example scenarios that illustrate how the weight of the new replac-
ing edge that connects the node to the cluster (depicted in green) is calculated.

The second scenario is the one where the edge connects the cluster

to another cluster. An example of this can be found in figure 5. Again,

we collect the weights of all the edges between the two clusters and

calculate the weight of the replacing edge according to the formula

used in the previous scenario.

Fig. 5. An example scenario that illustrates how the weight of the new replacing
edge that connects two clusters (depicted in green) is calculated.

Next we still have to calculate a weight for the cluster node. We

do this in exactly the same way as with the edges: first we calculate

the averageweight of all the nodes thatmake up the cluster, after this

we correct the weight by adding the weight of the most important

node member and dividing this sum by two. In summary this gives

us the next formula:

Cluster node weight formula

Collect the weights of all the node that make up the cluster:

The new cluster weight =

the avд node weiдht + the stronдest node weiдht
2

5.2.4 Redefining the cluster’s edges collaboration type.
The edges in our graph are labeled according to their collaboration

type. An edge can get assigned one of three possible types, as already

discussed in section 3.2:

• Type 1: pair programming edge

• Type 2: disjunct programming edge

• Type 3: pair and disjunct programming edge

After forming the clusters, we need to redefine the collaboration

type of the edge connecting to this cluster. To do this we check

the collaboration types of the edges connecting the regular node

or the cluster to the cluster under consideration. If all of the edges

are of type 1, the cluster edge gets assigned type 1; the same logic

applies to type 2. If one of the edges is of type 3, the cluster edge

gets assigned this type. If none of the above applies, which is the

case when some edges are of type 1 and others are of type 2, the

cluster edge gets assigned type 3.

5.3 Phase 3: Abstraction
In this last phase we remove certain programmers from the graph.

Our abstraction approach however, is more nuanced than the one

the fuzzy miner [8] uses, which removes all the isolated and singular

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:13

clusters. The miner already selected all the insignificant nodes in its

aggregation phase and consequently removes all the detached parts

of the process and every cluster that only consists of one node. The

reason behind this is that isolated clusters can never be reached in

the process model and singular clusters do not simplify the model.

We can apply neither of these approaches to our problem case. Iso-

lated clusters are an important aspect of our collaboration graph,

because they draw attention to teams that specialize in a certain

area and not engage in what other programmers are doing. The only

nodes that should be removed in this phase, are the ones that are

insignificant and not strongly connected to the rest of the graph.

These programmers hardly contributed to the project, so they do

not add any useful insights to the visualization. We do keep singular

clusters, which are also programmers that did not contribute much

to the project. However, they are relatively strongly connected to

the rest of the graph, which is why they got clustered in the first

place. This strong connection could possibly provide interesting

insights, like for example a fairly new developer that is being trained

by a core developer. So we will only remove programmers that are

insignificant and not strongly enough connected to other program-

mers so they can be aggregated. We do this as follows.

First we search through the non-clustered nodes for possible candi-

dates to abstract. This comes down to checking whether the node’s

weight falls below the node cutoff parameter, as we did with ag-

gregation in subsection 5.2.1. If we find a possible candidate, we

check whether all of its incident edges are too weak to carry out

aggregation. We do this by comparing the distance significance to

the aggregation-correlation parameter, as described in subsection

5.2.1. If all of the edges are indeed too weak, we can remove this

node and all of its incident edges from the graph. With this we

conclude our graph simplification.

Abstraction algorithm

For every node that does not belong to a cluster, do the fol-

lowing:

(1) Check whether the node’s weight < node cutoff param-

eter

(2) If so, check if every incident edge has a distance sig-

nificance value < aggregation-correlation parameter

(3) If so, remove the node and all of its incident edges from

the graph

6 TOOL DEMONSTRATION AND BUSINESS RELEVANCE
In this section we will demonstrate the tool. The version control

system log that we use in this demo originates from Cegeka, which

is a multi-national technical service provider company. This log

contains 1486 chronologically ordered commits, dating from June

2009 to November 2017, and these are all related to the same project.

Each commit describes the contributors, the exact time stamp the

commit took place, a message and a list of files that were modified,

added or deleted. The log contains a total number of 6329 altered

files.

After the collaboration visualizer analyzes this log, we are pre-

sented the following graph, in which all contributors have been

anonymized:

Fig. 6. Collaboration graph that is the result of the tool analyzing a real-life
log. The green nodes are clusters of programmers, while a pink one represents a
single programmer. The edges are colour-coded to represent the following: the
green edges indicate pair programming, the orange ones disjunct programming
and the purple ones imply that the programmers engaged in pair as well as
disjunct programming.

The resulting graph counts 89 nodes and 146 edges. All the green

nodes are clusters, which make up 5.62% of all nodes. The green

edges indicate pair programming, the orange ones disjunct program-

ming and the purple both pair and disjunct programming, with a

distribution of respectively 2.74%, 26.71% and 70.55%.

The first thing that catches the eye is the two isolated pairs in

the bottom right corner of figure 6. It is a good sign that there

are no single isolated nodes, but these two small groups are also

worth investigating a little further. Both programmers 53 and 54

and programmers 73 and 74 are only engaging in pair programming

with each other and do not interact with the rest of the graph. This

could mean that they specialize in a certain aspect of the project

we are analyzing. These pairs show with high certainty (because

the relation is pair programming) that there are two people with

knowledge of these aspects. However, their relation is not very

strong and none of the programmers seems to be very important, as

indicated by the size of their node. After inspection of the commits

in the log, we could verify that the reason for this is that both pairs

made a very limited contribution to the project. It is worth keeping

an eye out for such isolated groups, especially if they are small and

the members have a large importance. The reason for this is that

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

1:14 • Jooken L.

they are valuable sources of knowledge and not easily replaced. To

mitigate this risk, one might want to expand these groups.

A second aspect that stands out are the nodes P1, P7, P9, P45 and P61

that have a following of many nodes with a degree of one. There are

multiple possible explanations for this. First of all we can see that

the weights of the followers are rather small, so their contribution

to the project is limited. Such a node could be someone that was

called in to fix a difficult bug, but you would expect such an expert

to play a bigger role in the project on multiple aspects, so this is

rather unlikely. On the other hand it is possible that such a node is

a starting programmer, who has not had the time yet to contribute

a significant part to the project. A last, and most likely, possibility

is that these nodes are just wrongly identified as programmers by

the tool. To validate this theory we need expert knowledge on the

actual composition of the development team of Cegeka. With this

information we could further fine tune the tool’s parameters to filter

these out.

Let us zoom in and analyze some striking relationships. There are

three of these relationship that we would like to discuss (indicated

on figure 7). The first one is the strong pair programming relation

between P60 and P84. This could possibly represent a teacher -

apprentice relationship, where programmer P84 is still learning

under supervision.

The second relation we would like to mention is the strong dis-

junct programming relation between P1 and the cluster of program-

mers P85, P86, P87 and P88. This relation implies that they are

working on the same aspects of the project’s code, but P1 plays

overall a more important role. It also seems that P1 is involved in

multiple separate parts of the code, as he also collaborates strongly

with the cluster that is made up of programmers P89, P90, P91 and

P92. This causes programmer P1 to be a very valuable resource.

Lastly, the rather strong disjunct programming relation between

P58 and P61 could mean that programmer P58 is solely focusing

on one specific part of programmer P61’s tasks. As there is no

other node that connects to P58, these two programmers are the

only ones working on that specific aspect of the code. Scheduling

a pair programming activity once in a while or entrusting another

programmer with the same task, is recommended to mitigate the

indispensability of this programmer.

Fig. 7. 3 Striking relationships between nodes

We conclude this demonstration by identifying the core develop-

ment teams. In order to do this, we look at the programmers and

relationships that have the heaviest weights, which makes them

the most important ones. This is depicted in figures 8 and 9, that

respectively show the top 20% heaviest nodes and top 10% heaviest

edges. We can distinguish two main teams: a smaller one that is

made up of programmers P61, P16 and P59; and a larger one with

programmers P7, P9, P11, P15, P18, P22, P29 and P72 being the most

important ones in this group. Notice that programmer P61 is also to

a certain degree involved in the second team and therefore forms a

contact point between the two. This makes this programmer very

valuable.

If we look at the most important programmers, we can see a risk

arising. Programmers P1, P17, P21 and P28 are among the most valu-

able assets of the project, but are connected by some of the weakest

relationships in the graph. If we look back at figure 7, we can see

that P1 has rather strong relations with two clusters, so the risk P1

poses is limited. However, P17, P21 and P28 are only connected by

the edges that are depicted on figure 8 and therefore pose a signifi-

cant threat. These programmers make significant contributions to

the project but do not strongly collaborate with others. This could

cause problems when one of them falls ill or leaves the company. It

is advised to look further into these cases and take precautions.

Fig. 8. The top 20% heaviest nodes show the most important programmers.

Fig. 9. The top 10% heaviest edges show the strongest collaboration relation-
ships.

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

An exploration to what extent process mining techniques can be applied to extract a collaboration model from version control system logs
• 1:15

7 DISCUSSION AND FUTURE WORK
In this paper, we described a tool that can extract how program-

mers collaborated on code from a version control system log and

visualize this in the form of a graph. This graph can be used to

reveal potential risks (like indispensable resources) and improve

team awareness. Due to many similarities, we gathered inspiration

for the development of the tool from the fuzzy miner algorithm [8],

which is a process mining discovery algorithm. We combined the

metrics from the fuzzy miner that we deemed applicable to our case,

with metrics from standard graph theory.

Since this is the very first version of our tool, there are still aspects

that can be improved and fine tuned. The proper parameter settings

differ from log to log and also depend on the insights the end user

wants to gain from the visualization. Further research should be

done to provide an improved default parameter setting. Further, the

tool currently only works with logs generated from a Tortoise SVN

system. There exist however multiple version control systems that

can be used, which might structure their logs differently. Including

logs from these systems as an input option is a good requirement

for the next version of the tool. Lastly, this paper is limited to a

demonstration of the applicability of the tool, but validation still

needs to be added.

Acknowledgements:
This research is supported by Cegeka, who was kind enough to

provide us with their data. I would also like to thank my promoter

Mieke Jans and supervisor Mathijs Creemers for their feedback and

helpful ideas.

REFERENCES
[1] Bala, S., Cabanillas, C., Mendling, J., Rogge-Solti, A., and Polleres, A. Min-

ing project-oriented business processes. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2015).

[2] Bastian, M., and Heymann, S. Gephi : An Open Source Software for Exploring

and Manipulating Networks. ICWSM (2009).

[3] Cambridge Intelligence KeyLines. Social network visualization: Using key-

lines to visualize networks of people, 2019. https://cambridge-intelligence.com/

keylines/social-network-analytics/.

[4] Cockburn, A., and Williams, L. The Costs and Benefits of Pair Programming.

Extreme programming examined (2001).

[5] Eick, S. G., Steffen, J. L., and Sumner, E. E. SeesoftâĂŤA Tool for Visualizing

Line Oriented Software Statistics. IEEE Transactions on Software Engineering
(1992).

[6] Georget, L., Tronel, F., and Tong, V. V. T. Kayrebt: An activity diagram extrac-

tion and visualization toolset designed for the Linux codebase. In 2015 IEEE 3rd
Working Conference on Software Visualization, VISSOFT 2015 - Proceedings (2015).

[7] GraÄŊanin, D., MatkoviÄĞ, K., and Eltoweissy, M. Software visualization.

Innovations in Systems and Software Engineering 1 (09 2005), 221–230.
[8] Günther, C. W., and van der Aalst, W. M. P. Fuzzy Mining âĂŞ Adaptive

Process Simplification Based on Multi-perspective Metrics. 2007.

[9] Hu, Y. The Mathematica ® Journal Efficient, High-Quality Force-Directed Graph

Drawing. Methematica Journal 10 (2006), 37–71.
[10] Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. ForceAtlas2, a contin-

uous graph layout algorithm for handy network visualization designed for the

Gephi software. PLoS ONE (2014).

[11] Lanza, M., D’Ambros, M., Bacchelli, A., Hattori, L., and Rigotti, F. Manhat-

tan: Supporting real-time visual team activity awareness. In IEEE International
Conference on Program Comprehension (2013).

[12] Marcus, A., Comorski, D., and Sergeyev, A. Supporting the evolution of a soft-

ware visualization tool through usability studies. In Proceedings - IEEE Workshop
on Program Comprehension (2005).

[13] Newman, M. Networks: An Introduction. 2010.

[14] Quante, J. Do dynamic object process graphs support program understanding? - A

controlled experiment. In IEEE International Conference on ProgramComprehension
(2008).

[15] Sensalire, M., Ogao, P., and Telea, A. Evaluation of software visualization tools:

Lessons learned. pp. 19 – 26.

[16] Storey, M. A., Fracchia, F. D., and Müller, H. A. Cognitive design elements to

support the construction of a mental model during software exploration. Journal
of Systems and Software (1999).

[17] Storey,M. A.,Wong, K., andMüller, H. A. How do program understanding tools

affect how programmers understand programs? Science of Computer Programming
(2000).

[18] Team, N. NetworkX, 2014.

[19] Van der Aalst, W. Process mining: Data science in action. 2016.
[20] Van Der Aalst, W. M., Reijers, H. A., and Song, M. Discovering social networks

from event logs. Computer Supported Cooperative Work (2005).

[21] Wasserman, S., and Faust, K. Social network analysis: methods and applications
II. 1994.

[22] Wettel, R., Lanza, M., and Robbes, R. Software systems as cities: a controlled

experiment. In ICSE ’11 Proceedings of the 33rd International Conference on Software
Engineering (2011).

[23] Wettel, R., Lanza, M., and Robbes, R. Software systems as cities: a controlled

experiment. 2011 33rd International Conference on Software Engineering (ICSE)
(2011).

[24] Zimmermann, T., Weissgerber, P., Diehl, S., and Zeller, A. Mining version

histories to guide software changes. IEEE Transactions on Software Engineering
(2005).

, Vol. 1, No. 1, Article 1. Publication date: May 2019.

https://cambridge-intelligence.com/keylines/social-network-analytics/
https://cambridge-intelligence.com/keylines/social-network-analytics/

	Abstract
	1 Introduction
	2 Related Work
	3 Design of the collaboration visualizer
	3.1 Choice of data source
	3.2 Solution requirements
	3.3 Choice of tools
	3.4 Detail of the program structure

	4 Constructing the base graph: weight calculation algorithms
	4.1 Calculating the file importance
	4.2 Calculating the edge weights
	4.3 Calculating the node weights

	5 Graph simplification approach
	5.1 Phase 1: Edge filtering
	5.2 Phase 2: Aggregation
	5.3 Phase 3: Abstraction

	6 Tool demonstration and business relevance
	7 Discussion and future work
	References

