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Fuzzy-Rough Cognitive Networks: Building Blocks and
their Contribution to Performance

Marnick Vanloffelt1, Gonzalo Nápoles1

Abstract

Pattern classification is a popular research field within the Machine Learning
discipline. Black-box models have proven to be potent classifiers in this partic-
ular field. However, their inability to provide a transparent decision mechanism
is often regarded as an undesirable feature. Fuzzy-Rough Cognitive Networks
are granular classifiers that have proven competitive and effective in such tasks.
In this paper, we examine the contribution of the FRCN’s main building blocks,
being the causal weight matrix and the activation values of the neurons, to the
model’s average performance. Noise injection is employed to this end. Further-
more, we explore various alternatives for the current structure of these building
blocks. Firstly, we experiment with possible ways of adjusting the weight matrix,
which is originally composed of fixed weight values based on set rules. Secondly,
we explore if computing a confidence degree per decision class from another, po-
tentially weaker, classifier could lead to more powerful neuron activation and
possibly an improved performance.

Keywords: pattern classification, fuzzy-rough sets, granular classifiers, fuzzy
rough cognitive networks

1. Introduction1

When it comes to Pattern classification [1], a wide variety of models and2

techniques exists to approach the classification problem. However, most of the3

existing models are not transparent in the sense that they do not explain how4

they arrived at their conclusions. Therefore, these models are labelled as black5

boxes. Fuzzy Cognitive Maps (FCMs), first introduced by Bart Kosko [2], were6

intended to circumvent the tradeoff between knowledge acquisition and knowl-7

edge processing. Kosko used a fuzzy di-graph to represent causal reasoning in8

a visual and easily interpretable fashion. As such, FCMs are interpretable re-9

current neural networks [3] with signed and weighted causal relations between10
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the model’s concepts. In turn, these concepts are low-level representations of11

the underlying data. As such, both the neurons and connections get specific12

meanings with respect to the classification problem at hand.13

Although the transparency displayed in FCMs has proven to be a valuable14

and desirable feature, FCM-based models have several disadvantages. One of15

these disadvantages is the initialisation of the weight matrix by experts [4, 5, 6].16

Another is the discrete performance of FCM-based classifiers when compared17

with traditional black boxes. Therefore, Nápoles et al. [3] introduced Rough18

Cognitive Networks (RCNs) in order to create a transparent, yet accurate clas-19

sifier. These RCNs are granular neural networks, which augment the reasoning20

scheme of FCMs with information granules derived from Rough Set Theory21

(RST). RST entails the construction of three regions (positive, negative and22

boundary regions) based on the approximate similarity of objects in the uni-23

verse of discourse [7]. Rough sets essentially establish that an object can belong24

to different sets or relations at the same time, albeit to varying degrees [8].25

Although the RCN algorithm has proven competitive in solving a wide va-26

riety of classification problems, the model was still quite sensitive to an input27

parameter denoting the similarity threshold upon which the rough information28

granules are built [9]. Therefore, Nápoles et al. [9] introduced the Rough Cog-29

nitive Ensembles (RCEs), which use a collection of RCNs, each operating at30

a different granularity level. As such, each RCN employs a different similarity31

threshold. This ensemble architecture promotes model diversification. Unfor-32

tunately, the model’s transparency is severely damaged due to this ensemble33

strategy, similar to Random Forests, for example.34

As an alternative to overcoming the parametric learning requirements related35

to the similarity threshold without damaging the model’s transparency and36

discriminatory power, Nápoles et al. [10] introduced a classifier based on Fuzzy-37

Rough Set Theory (FRST), which is a hybridisation of the Fuzzy Set and Rough38

Set Theories [11, 12, 13]. In FRST, the rough sets described in Rough Set Theory39

are extended with fuzzy sets in order to characterise the degree to which an40

object belongs to an information granule [8]. The new model was consequently41

named Fuzzy-Rough Cognitive Network (FRCN).42

FRCNs proved to be superior to RCNs with respect to the model’s per-43

formance [8]. Furthermore, FRCNs also outperformed various popular tradi-44

tional classifiers such as Support Vector Machines, Simple Logistic and k-Nearest45

Neighbours [8]. The model also performed similarly to certain black-box models,46

such as the Multi-Layer Perceptron, Random Forest and Logistic Model Tree,47

while simultaneously providing a more translucent decision mechanism due to48

the transparent high-level model topology [8].49

Although FRCNs are promising in terms of performance and transparency,50

it was noted that a learning algorithm able to compute the weight matrix from51

data in the underlying FCM is absent [10, 14]. Indeed, the initial weight matrix52

consists of fixed weights, with a value of either -1.0 or 1.0. The question if such53

a learning algorithm would provide merit to the FRCNs performance without54

harming transparency, and if so, which algorithms would be suitable in that55

regard, remains open. Therefore, in this paper, we investigate whether changing56
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the values of the causal weights affects performance, and if so, in which way.57

It is worth noting that the weight matrix is not the only crucial compo-58

nent that could benefit from optimisation. The activation values of input-type59

neurons are possible candidates as well, as they are a vital building block. In60

this paper, we explore the effects of adding a confidence measure per decision61

class, derived form another classifier, to the initial activation values of the input62

neurons. We will elaborate on the two alternate approaches we employed in this63

paper to implement this confidence degree later on.64

The remainder of this paper is structured as follows. Firstly, we give an65

overview on the FRCN model in Section 2. Section 3 describes the research66

questions we intend to tackle, as well as our applied methodology. Next, Sec-67

tion 4 outlines the results obtained from numerical simulations and a discussion68

based on our analysis. Finally, Section 5 summarises our findings and includes69

recommendations for further research.70

2. Fuzzy-Rough Cognitive Networks: Theoretical Background71

The process of constructing and exploiting an FRCN follows three distinct72

phases: the information space granulation, network construction and network73

exploitation. In this section, each of these phases is described through their74

respective theoretical foundations.75

2.1. Information Space Granulation76

Let us begin with the information space granulation, which essentially entails77

dividing the available information (in this case a dataset, which we will label as78

the universe of discourse U) into granules. Consider a universe of discourse U ,79

a fuzzy set X ∈ U and a fuzzy binary relation P ∈ F(U × U). Let µX(x) and80

µP (y, x) be their respective membership functions. The function µX : U → [0, 1]81

computes the membership degree to which x ∈ U is a member of X, while82

µP : U × U → [0, 1] denotes the degree to which y is presumed to be a member83

of X depending on whether x is a member of the fuzzy set X [10]. In this paper,84

P (x) is defined by its membership function µP (x)(y) = µP (y, x) [8].85

To define the lower and upper approximations, we employ the measures86

presented in the possibility theory [15]. Concretely, the truth values of the87

statements “y ∈ P (x) implies y ∈ X” and “∃y ∈ U such that x ∈ P (y)” under88

fuzzy sets P (x) and X, are used to define the lower and upper approximations89

of a set in fuzzy environments [8]. Let us consider these approximations and90

their membership functions separately.91

Firstly, to construe the membership function of the lower approximation, we92

use the necessity measure infy∈U I(µP (y, x), µXk
(y)) with I being an implica-93

tion function such that I : [0, 1]× [0, 1]→ [0, 1]. This function is used to assess94

the truth value of the statement “y ∈ P (x) implies y ∈ X” [8, 10]. Equation 195

formalises this idea as follows:96

µP∗(Xk)(x) = min

{
µXk

(x), inf
y∈U
I(µP (y, x), µXk

(y))

}
. (1)
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where Xk denotes the set containing all objects labelled with the k-th decision97

class. In a comparable fashion, we can derive the membership function for the98

upper approximation, which is shown in Equation 2,99

µP∗(Xk)(x) = max

{
µXk

(x), sup
y∈U
T1(µP (x, y), µXk

(y))

}
. (2)

such that the truth value of the statement “∃y ∈ U such that x ∈ P (y)” can100

be measured with the possibility measure supy∈U T1(µP (x, y), µXk
(y)) with a101

conjunction function, or t-norm2, T1 : [0, 1]× [0, 1]→ [0, 1] [10].102

In both Equation 1 and Equation 2, we do not assume that µP (x, x) =103

1,∀x ∈ U [16]. Therefore, we compute the minimum between µX(x) and104

infy∈U I(µP (y, x), µXk
(y)) when computing µP∗(Xk)(x), and the maximum be-105

tween µX(x) and supy∈U T (µP (x, y), µXk
(y)) when computing µP∗(Xk)(x). This106

feature allows preserving the inclusiveness of P∗(X) in the fuzzy set X and the107

inclusiveness of X in P ∗(X) [10].108

Equations (3) and (4) display the membership functions associated with the109

fuzzy-rough positive and negative regions, respectively,110

µPOS(Xk)(x) = µP∗(Xk)(x) (3)

µNEG(Xk)(x) = 1− µP∗(Xk)(x). (4)

These memberships functions allow computing more flexible information111

granules by replacing hard transitions between classes with soft ones. This112

allows an element to belong to more than one decision class, albeit to varying113

degrees. As such, a strict similarity threshold is no longer required [10].114

Next, let us consider X = {X1, . . . , Xk, . . . , XM} with X ⊂ U according to115

the values of the different decision classes. Consequently, Xk ⊆ X comprises116

those objects labelled as Dk. Based on this partition, we can define the mem-117

bership degree of x ∈ U to a subset Xk, assuming that all objects labelled as118

Dk have maximum membership degree to the Xk:119

µXk
(x) =

{
1 , y ∈ Xk

0 , y /∈ Xk

. (5)

However, more sophisticated variants can be formalised as well, which would120

allow an object to have a varying degree of membership to different similarity121

classes at the same time. We define an alternative formulation of the member-122

ship degree of an object to its similarity class later on.123

Another component to be defined is the membership function µP (y, x) asso-124

ciated with the fuzzy binary relation. Equation (6) shows the function adopted125

2A t-norm is a conjunction function T : [0, 1] × [0, 1] → [0, 1] that fulfils three conditions:
(i) ∀a ∈ [0, 1], T (a, 1) = T (1, a) = a, (ii) ∀a, b ∈ [0, 1], T (a, b) = T (b, a), and (iii) ∀a, b, c ∈
[0, 1], T (a, T (b, c)) = T (T (a, b), c).
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in this paper, which depends on the membership degree of object x to X, and126

the similarity degree between x and y [10, 8]. The similarity degree ϕ(x, y) de-127

notes the complement of the normalised distance δ(x, y) between two instances128

x and y. Possible candidates for the distance function are the Heterogeneous129

Manhattan Overlap Metric (HMOM), Heterogeneous Euclidean Overlap Metric130

(HEOM) and Heterogeneous Value Difference Metric (HVDM). However, other131

alternatives to the three functions mentioned above are also available.132

µP (y, x) = µXk
(x)ϕ(x, y) = µXk

(x)(1− δ(x, y)) (6)

To summarise the information granulation porcess, let us assume that the133

universe of discourse U contains those objects comprised into the training set134

and Θ : U → D is a function that returns the decision class attached to each135

training set instance, such that D = {D1, . . . , DK}. Algorithm 1 summarises the136

steps for granulating the information space under the fuzzy settings described137

above.138

Algorithm 1. Information space granulation.139

FOREACH x ∈ U DO140

IF Θ(x) = Dk THEN141

Xk ← Xk ∪ {x}142

END IF143

Compute µXk
(x) according to Equation 5144

END145

FOREACH x ∈ U DO146

FOREACH subset Xk DO147

Compute µPOS(Xk)(x) according to Equation (3)148

Compute µNEG(Xk)(x) according to Equation (4)149

END150

END151

152

2.2. Network Construction153

After the information space granulation, the resulting Fuzzy-Rough con-154

structs are used to build a recurrent neural network. Similarly to RCNs, input155

neurons denote positive or negative fuzzy-rough regions and output neurons156

denote the decision classes for the problem at hand. However, contrary to157

the RCN’s topology, boundary regions are not included, as previous research158

pointed out that including the these regions into did not significantly increase159

the classifier’s discriminatory ability [8]. This behaviour is not surprising be-160

cause in crisp-rough environments the hesitant evidence is more conclusive when161

compared to the evidence coming from fuzzy-rough granules [10]. As such, we162

construe the neural network topology using the following rules:163

• (R∗1) IF Ci = P ∗k AND Cj = Dk THEN wij = 1.0164

• (R∗2) IF Ci = N∗k AND Cj = Dk THEN wij = −1.0165
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• (R∗2) IF Ci = P ∗k AND Cj = Dv 6=k THEN wij = −1.0166

• (R∗4) IF Ci = P ∗k AND Cj = Pv 6=k THEN wij = −1.0167

where Ci is the i-th neural concept, Dk represents the k-th decision class, and168

P ∗k and N∗k are neurons denoting the positive and negative fuzzy-rough region169

associated to the k-th decision class.170

Figure 1 shows the network topology of FRCNs for binary classification171

problems. With respect to the topological characteristic, any FRCN consists172

of 2|D| input neurons, |D| output neurons and |D|(4 + |D|) causal weights. As173

such, the number of neurons is determined by the number of decision classes,174

as is the number of causal relations.175

Network

𝑃1
∗

𝑁1
∗

𝐷1

𝑃2
∗

𝑁2
∗

𝐷2

−1.0

1.01.0

−1.0

−1.0

−1.0

−1.0 −1.0

1.0

1.0 1.0

1.0

Figure 1: Fuzzy-Rough Cognitive Network for binary classification problems.

Algorithm 2 shows the steps required to build the topology of the granular176

neural network from the information granules computed in Algorithm 1.177

Algorithm 2. Network construction.178

FOREACH Xk DO179

Add a neuron Pk as the kth positive region180

Add a neuron Nk as the kth positive region181

END182

FOREACH Dk DO183

Add a neuron Dk as the kth decision184

END185

FOREACH Ci DO186

FOREACH Cj DO187

Assign wij according to rules R∗1 −R∗4188

END189

END190

191
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2.3. Network Exploitation192

Once the network has been constructed, we can classify new (unlabelled)193

instances by activating the input-type neurons and performing the (high-level)194

neural reasoning process, which is the same as in Fuzzy Cognitive Maps [10, 4, 5].195

In order to activate these neurons, we use the similarity degree between the196

object y and x ∈ U as well as the membership degree of x to each fuzzy-rough197

granular region. Furthermore, we calculate the inclusion degree of the fuzzy198

intersection set into the k-th fuzzy-rough region. This procedure produces a199

normalised value that will be used to activate the input neurons in the causal200

network [10].201

Equation (7) formalises a generalised measure to compute the activation202

value of the k-th positive neuron, where T2 denotes a t-norm, ϕ(x, y) is the203

similarity degree between x and y and µPOS(Xk)(x) is the membership degree of204

x to the k-th positive region. Similarly, we can activate neurons denoting fuzzy-205

rough negative regions. Only output neurons remain inactive at the beginning of206

the neural reasoning process, as their values depend on the previous activation207

values of the input-type neurons.208

A(P ∗k ) =

∫
T2(ϕ(x, y), µPOS(Xk)(x))dx∫

µPOS(Xk)(x)dx
(7)

However, due to the fact that the universe of discourse U can be described209

finite due to the fact that most datasets are finite, the use of integrals may not210

be convenient [10]. Rules (R∗5) and (R∗6) show a more practical way of activating211

the positive and negative fuzzy-rough regions, respectively.212

• (R∗5) IF Ci = P ∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µPOS(Xk)(x))∑

x∈U µPOS(Xk)(x)213

• (R∗6) IF Ci = N∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µNEG(Xk)(x))∑

x∈U µNEG(Xk)(x)214

Once the initial activation vector A(0) associated with the object y has been215

computed, we perform the neural reasoning process until (i) a fixed-point at-216

tractor is discovered, or (ii) a maximal number of iterations is reached. At217

that point, the label of the output neuron having the highest activation value218

is assigned to the object [10, 8].219

Algorithm 3a shows the first step towards exploiting the neural network,220

the activation of input neurons for a new test instance x, while Algorithm 3b221

summarises how to determine the decision class from output neurons.222

Algorithm 3a. Network activation procedure.223

FOREACH Dk DO224

Calculate A
(0)
x (Pk) according to rule R∗5225

Calculate A
(0)
x (Nk) according to rule R∗6226

END227

228
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Algorithm 3b. Network reasoning procedure.229

FOR t = 0 TO T DO230

converged← TRUE231

FOREACH Ci DO232

Compute A
(t+1)
i = f

(∑M
j=1 wjiA

(t)
j

)
233

IF A
(t)
i 6= A

(t+1)
i THEN234

converged← FALSE235

END236

END237

IF converged THEN238

RETURN argmaxk{A(t+1)
x (Dk)}239

END240

END241

IF not converged THEN242

RETURN argmaxk{A(T )
x (Dk)}243

END244

245

It is worth mentioning that the FRCN algorithm can operate in either a246

lazy or inductive fashion. In a lazy setting, both the fuzzy-rough granules and247

the network topology can be constructed when the new instance arrives. This248

is however not efficient since the granules and the topology can be reused to249

classify new instances. In the inductive approach, the knowledge is stored into250

the discovered granules and the causal weight matrix, which is determined by251

rules (R∗1) - (R∗4) [9, 8].252

In this Section, we provided the construction and exploitation of an FRCN253

in three separate stages: information space granulation (Algorithm 1), network254

construction (Algorithm 2) and network exploitation (Algorithms 3a and 3b)255

by means of a recurrent neural network. In the next Section, we describe the256

theoretical contributions of this paper.257

3. Research contributions258

It was already mentioned that optimising the weight matrix by means of a259

supervised learning algorithm is a possible research track. Currently, the weights260

are fixed, with a value of either 1.0 or -1.0. However, the prerequisite for the261

possible implementation of an algorithm able to compute different values from262

data, is knowing what the contribution of the weight matrix is with respect to263

the model’s performance. Moreover, the contribution of the different weight264

sets in the weight matrix should also be examined. This way, a targeted optimi-265

sation could be implemented instead of a general one, should the contribution266

of the weight sets be uneven. As such, the first research question is what the267

contribution of the individual weight sets is in an FRCN.268

Next to weight matrix optimisation, we also mentioned optimising the ac-269

tivation of input-type neurons, as a more powerful activation could lead to270
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increased performance results. There are various ways that could possibly lead271

to this, but the track we explore in this paper is the definition of an alternative272

to Equation 5. This equation stipulates that the each object in the universe of273

discourse U has maximum membership to the subset Xk, which denotes the ob-274

jects labelled as Dk. However, our variant would allow an object to have varying275

membership degrees to different similarity classes at the same time. Equation 8276

shows a general version of our first proposal,277

µXk
(x) =

{
ρΩ
Xk

(x) , y ∈ Xk

0 , y /∈ Xk

(8)

where ρΩ
Xk

(x) denotes the confidence degree of x to be a member of Xk according278

to the Ω classifier. This Ω can be any classifier able to compute such a confidence279

degree, even potentially weaker ones compared to the FRCN. In this paper, we280

present two concrete proposals: a soft covering of the information space and a281

hybrid FRCN.282

Let us start with the first proposal, which is to compute the confidence degree283

ρΩ
Xk

(x) for and object x and every decision class k, from another, potentially284

weaker classifier Ω, which can subsequently be used to create a soft covering285

of the information space instead of a crisp one. As such, an object can belong286

to different similarity classes at the same time, albeit to varying degrees. This287

way, we can “correct” distortions in the initial activation values of these neurons288

caused by instances which are assigned to the wrong decision class before the289

FRCN model is built and exploited. In this variant, we are thus injecting290

additional knowledge during the granulation process.291

Let us consider the following example. Let x ∈ X, with X ∈ U , be an292

object labelled with the k-th decision class. Let ϑ be an FRCN and Ω be the293

classifier used to compute ρΩ
Xk

(x), and thus also µXk
(x). If ϑ labels x as Dm,294

but Ω labels this same object as Dk, with k 6= m, then this is a distortion which295

leads to a decreased performance of the FRCN. However, the implementation296

of Equation 8 instead of Equation 5 forces the FRCN to take the confidence297

weights produced by Ω into account, thus allowing it to correct this error.298

Our second proposal has a similar purpose to the first one, but employs a299

very different approach. Instead of providing a soft covering for the information300

space, we insert the confidence weights directly into the initial activation values301

of the FRCN’s input-type neurons. As such, (R∗5) and (R∗6) are replaced by302

• (R∗
′

5 ) IF Ci = P ∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µPOS(Xk)(x))∑

x∈U µPOS(Xk)(x) ρΩ
Xk

(x)303

• (R∗
′

6 ) IF Ci = N∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µNEG(Xk)(x))∑

x∈U µNEG(Xk)(x) (1− ρΩ
Xk

(x))304

respectively. This hybrid approach has proven to be effective in FCMs [17],305

with the sole exception that we refrain from employing black box models to306

produce the confidence degrees. Evidently, using black-box models to this end307

is detrimental to the model’s transparency. Note that this does not mean that308

black-box models cannot be used. The only explicit requirement we might want309
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to consider for Ω is related to the computational burden. Therefore, we opt for310

lighter classifiers in this paper.311

The two approaches described above could significantly affect performance,312

should these models provide additional information, containing complementary313

insights to perform the classification process.314

4. Numerical simulations and discussion315

In this section, we describe our applied methodology to tackle the research316

questions described in the previous Section, the data and benchmark used in317

the numerical simulations and our experimentation results.318

4.1. Methodology319

To explore whether FRCNs are susceptible to the implementation of a learn-320

ing algorithm able to optimise the weight matrix, resulting in an increased per-321

formance, noise was gradually introduced to the weight matrix. Furthermore,322

we also injected Gaussian noise into the activation values. As such, we are able323

to determine the relevance of both the weight matrix and activation values in324

the network’s performance.325

The main hypothesis here is that if noise is introduced to the weight matrix,326

the performance of the FRCN will gradually yet significantly deteriorate. Again,327

we hypothesise that if noise is gradually introduced to the initial activation328

values, performance will significantly decrease.329

Noise injection is also used to assess the relevance of the initial activation val-330

ues of input-type neurons. Similar to the previous approach, Gaussian noise was331

gradually introduced to these initial activation values. Again, we hypothesise332

that if noise is gradually introduced to the initial activation values, performance333

will significantly decrease.334

Once we assessed the contribution of both the weight matrix and initial acti-335

vation values, we move on to the two algorithm proposals presented in Section 3.336

To determine the impact of the proposed changes on the model’s perfor-337

mance, we used different white box classifiers. In this case, we used the One338

Rule classifier (OneR) [18], the J48 decision tree (J48) [19], Bayesian Networks339

(BN) [20], Logistic Regression (Log Reg) and k-Nearest Neighbours classifier340

(kNN) [21].341

Our hypothesis for the two algorithm proposals is that they could signif-342

icantly affect performance, on condition that these models provide additional343

(external) information, containing complementary insights to perform the clas-344

sification process.345

Our hypothesis is that the two approaches described above will significantly346

increase performance, should these models provide additional information, con-347

taining complementary insights to perform the classification process.348
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4.2. Data and benchmark evaluation349

When Gaussian noise was inserted, the same seed was used to ensure the350

reproducibility of the results. In terms of a performance benchmark, we employ351

the average Cohen’s kappa instead of the average accuracy rate. For trans-352

parency, we employ the Occam’s Razor principle; A simpler topology is pre-353

ferred over complex model architectures. This principle implicitly guards the354

model’s topological transparency and simplicity, thus indirectly preserving one355

of its most valuable features.356

We resorted to the WEKA software package (v3.6.11) [22] to conduct these357

simulations. Simulation results were processed in R (v3.5.2) [23]. Furthermore,358

10-fold cross validation was applied to all iterations in each separate experiment.359

Furthermore, we use the Wilcoxon Signed-Rank Test with Holm correction [24,360

25] to provide statistical support to the claims made in this paper.361

With respect to the datasets, Table 1 displays the 55 academic datasets362

employed in the numerical simulations [26].363

Table 1: Datasets used in the experiments.

ID Dataset Instances Attributes Noisy Imbalance
1 acute-inflammation 120 8 No No
2 acute-nephritis 120 6 No No
3 anneal 898 38 No 85:1
4 anneal.orig 898 38 No 85:1
5 appendicitis 106 7 No No
6 audiology 226 69 No No
7 australian 14 2 No No
8 autos 205 25 No 22:1
9 balance-noise 625 4 Yes 5:1
10 balance-scale 625 4 No 5:1
11 balloons 16 4 No No
12 banana 5300 2 No No
13 blood-transfusion 748 4 No No
14 breast 277 9 No No
15 breast-cancer-wisc-prog 198 34 No No
16 bridges-version1 107 12 No No
17 bridges-version2 107 12 No No
18 car 1728 6 No 17:1
19 cleveland 297 13 No 12:1
20 colic 368 22 No No
21 colic.orig 368 27 No No
22 collins 500 23 No 13:1
23 contact-lenses 24 4 No No
24 contraceptive 1473 9 No No
25 credit-a 690 15 No No
26 crx 653 15 No No
27 dermatology 358 34 No 5:1
28 echocardiogram 131 11 No 5:1
29 ecoli 336 7 No 71:1
30 ecoli0 220 7 No No
31 ecoli-0vs1 220 7 No No
32 ecoli1 336 7 No No
33 ecoli2 336 7 No 5:1

Continued on next page
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Table 1 – continued from previous page
ID Dataset Instances Attributes Noisy Imbalance
34 ecoli3 336 7 No 8:1
35 ecoli-5an-nn 336 7 Yes 71:1
36 energy-y1 768 8 No No
37 energy-y2 768 8 No No
38 eucalyptus 738 19 No No
39 flags 194 28 No 15:1
40 glass 214 9 No 8:1
41 glass0 214 9 No No
42 glass-0123vs456 214 9 No No
43 glass1 214 9 No No
44 glass-10an-nn 214 9 Yes 8:1
45 glass2 214 9 No No
46 glass-20an-nn 214 9 Yes 8:1
47 glass3 214 9 No 6:1
48 glass-5an-nn 214 9 Yes 6:1
49 glass6 214 9 No 6:1
50 haberman 306 3 No No
51 iris 150 4 No No
52 iris0 150 4 No No
53 iris-10an-nn 150 4 Yes No
54 iris-20an-nn 150 4 Yes No
55 iris-5an-nn 150 4 Yes No

364

Before we move on to the results, we establish a base case model topology.365

This base case will serve as the benchmark for all comparisons made in the366

remainder of this paper. The following fuzzy operators and distance function367

will be used as the default parameters for the base case FRCN model: the368

Lukasiewicz fuzzy t-norm for both T1 and T2, the Lukasiewicz fuzzy implicator369

and the HMOM distance function.370

4.3. Topology371

Firstly, the contribution of the causal weight matrix is put under investiga-372

tion by gradually introducing noise into the different weight sets. In Figure 2,373

the effect of a full inversion of the causal weight sign, an inversion of the weights374

connecting positive regions and decisions (in that order), the full randomisation375

of the causal weight values and the randomisation of the weights connecting376

positive regions and decisions on the average kappa statistic. The results of this377

first experiment indicate an uneven contribution of different weight sets to the378

performance of the model.379

Next, we investigate the effect of noise injection into these different weight380

sets according to the following system. We employ a noise level, increasing its381

value with 10 percentage point increments from 0 to 100 percent. Furthermore,382

the following logic applies regarding the implication of each noise level echelon:383

• 0% - 50% : The sign of the weight is preserved, but the absolute value384

gradually decreases to zero with each increment.385

• 50% : The value of the weight is equal to zero.386
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• 50% - 100% : The original sign of the weight is inverted and the absolute387

value is gradually increased to one with each increment.388

−1.0

−0.5

0.0

0.5

1.0

Base Case Inverted Inverted (Dec.) Randomised Randomised (Dec.)

A
ve

ra
ge

 K
ap

pa
 S

ta
tis

tic

Figure 2: Average Kappa when the weight matrix is inverted or randomised

Figure 2 shows the results of the noise injection described above for the four389

weights sets described in (R∗1) - (R∗4). For each of these sets, no significant390

decreases in performance were observed when the sign was preserved. Sign in-391

version significantly deteriorates the model’s performance, except for the cause-392

and-effect relation between positive regions. In this weight set, noise injection393

does not significantly affect performance.394

−1.0

−0.5

0.0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Positive regions to decisions

A
ve

ra
ge

 K
ap

pa

−1.0

−0.5

0.0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Positive regions to other positive regions

A
ve

ra
ge

 K
ap

pa

−1.0

−0.5

0.0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Negative regions to decisions

A
ve

ra
ge

 K
ap

pa

−1.0

−0.5

0.0

0.5

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Self−reinforcement

A
ve

ra
ge

 K
ap

pa

Figure 3: Effect of noise injection on the different weight sets in the weight matrix.
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Table 2: Statistical evidence related to the noise injection in the different weight sets.

Noise Lvl. p-value Hypothesis Noise Lvl. p-value Hypothesis

<50% >0.26 Not Rejected <50% >0.13 Not Rejected
50% 0.7718 Not Rejected 50% 0.9652 Not Rejected
>50% <1E-10 Rejected >50% >0.73 Not Rejected

Noise Lvl. p-value Hypothesis Noise Lvl. p-value Hypothesis

<50% >0.53 Not Rejected <50% >0.83 Not Rejected
50% 9.702E-06 Rejected 50% 9.702E-06 Rejected
>50% <6.5E-06 Rejected >50% <2E-06 Rejected

The results shown in Figure 3 carry some interesting insights with respect395

to the model topology. Firstly, since adjusting the absolute value of the weights396

while preserving the original sign does not seem to affect performance, there397

is an indication that changing these weight values might not be as interesting398

as we presumed. Secondly, the fact that noise in connections between positive399

regions has no significant effect suggests that these connections might not be400

required to maintain model performance. If this statement can be confirmed by401

suppressing this connection, some pertinent questions could arise. Firstly, if we402

remove these connections, is the model still recurrent? Secondly, can we still403

call the underlying network a Fuzzy Cognitive Map? And finally, why are these404

connections not necessarily required to maintain performance?405

Table 3 shows that the suppression of these relations has a positive, yet sta-406

tistically insignificant, impact on the model’s performance (TL1). The ∆kappa407

is defined by the following equation:408

∆kappa =

{
1− K

K∗ , K∗ ≥ K
−1 + K∗

K , K∗ < K (9)

where K denotes the average kappa of the base case model and K∗ denotes the409

average kappa of the alternative scenario.410

Next to the suppression of positive region connections, we also explore the411

impact of other topological changes to the network. The first is a bilaterally412

negative connection between decision neurons (TL2). The second is a connection413

from decision neurons to their respective positive region (with wij = 1.0) and414

positive regions belonging to other decisions (with wij = −1.0) (TL3). In the415

third option, we investigated the effect of both of these changes when the relation416

between positive regions are suppressed (TL4 - TL5). Finally, we conducted a417

final experiment where we combine all aforementioned changes (TL6). Figure 4418

visualises each of these topological changes for a two-class classification problem.419

If we examine the results displayed in Table 3, we can see that topologies420

TL1, TL5 and TL6 yield positive, yet statistically insignificant, results. These421

three alternative models have in common that the connection between positive422

neurons is suppressed. This means that even if these connections are suppressed,423

performance is not significantly affected. Furthermore, notice that TL1 and TL5424

have the same outcome, despite TL5 having a more complex topology. This re-425

confirms that more complex models are not necessarily more accurate.426
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Figure 4: Changed topology scenarios TL1 (positive region connections suppressed), TL2

(decision connections added), TL3 (connections between decision neurons and positive regions
added), TL4 (decision connections added and positive region connections suppressed), TL5

(connections between decision neurons and positive regions added, positive region connections
suppressed) and TL6 (combination of all previous changes)
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Table 3: Performance difference (∆kappa) per scenario.

Scenario ∆kappa p-value Holm R+ R− Hypothesis

TL1 0.00888 0.03673 0.18365 18 9 Not Rejected
TL2 -0.00025 0.7353 1.00000 3 3 Not Rejected
TL3 0 1.00000 1.00000 0 0 Not Rejected
TL4 -0.00025 0.7353 1.00000 3 3 Not Rejected
TL5 0.00888 0.03673 0.18365 18 9 Not Rejected
TL6 0.00937 0.0186 0.11160 16 7 Not Rejected

4.4. Activation Values427

Introducing Gaussian noise into the initial activation values of input-type428

neurons allows us the assess (or rather re-confirm) the relevance of the initial429

state vector. Similar to the approach employed with the weight matrix, we use430

increasing noise levels, from 0 to 100 percent, with 10 percent increments. The431

null hypothesis is that introducing noise will significantly deteriorate an FRCN’s432

performance. Figure 5 shows the results of this experiment.433
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Figure 5: Effect of Gaussian noise injection in the initial activation values on performance.

Table 4: Statistical evidence related to the Gaussian noise injection in the activation values.

Noise Level p-value Holm Hypothesis

10 % 2.278E-10 5.693E-10 Rejected
20 % 5.693E-11 5.693E-10 Rejected
30 % 6.017E-11 5.693E-10 Rejected
40 % 5.693E-11 5.693E-10 Rejected
50 % 6.358E-11 5.693E-10 Rejected
60 % 5.693E-11 5.693E-10 Rejected
70 % 6.358E-11 5.693E-10 Rejected
80 % 6.017E-11 5.693E-10 Rejected
80 % 6.357E-11 5.693E-10 Rejected
100 % 6.718E-11 5.693E-10 Rejected
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As the results point out, we can reject the null hypothesis at all noise ech-434

elons. These results re-confirm the anticipated relevance of the activation state435

vector. As such, finding a more powerful way of activating input-type neurons436

is a scheme worth exploring. The correction of existing noise in the underlying437

data of the FRCN is an especially interesting research track.438

4.5. Confidence Degrees439

In Section 3, we already mentioned the integration of a confidence degree440

ρΩ
Xk
∈ [0, 1], derived from a different, potentially weaker classifier Ω. We de-441

scribed two possible approaches for this integration.442

The first approach, providing a soft covering of the information space, en-443

tailed using (R∗
′

5 ) and (R∗
′

6 ) to compute the initial activation values of the444

positive and negative region neurons respectively. Figure 6 visualises this algo-445

rithmic change.446

𝑷𝟏
∗′

𝑵𝟏
∗′

𝐷1

𝑷𝟐
∗′

𝑵𝟐
∗′

𝐷2

−1.0

1.01.0

−1.0

−1.0

−1.0

−1.0 −1.0

1.0

1.0 1.0

1.0

Figure 6: FRCN with activation values based on (R∗′
5 ) and (R∗′

6 ).

Table 5: Comparison of FRCNs with different Ωs.

Ω ∆kappa Holm R+ R− Hypothesis

OneR -0.16197 1.0000 9 39 Not Rejected
J48 -0.21534 1.0000 4 40 Not Rejected
BN -0.28583 1.0000 7 45 Not Rejected

Log Reg -0.22953 1.0000 9 41 Not Rejected
kNN -0.21783 1.0000 4 42 Not Rejected

The second approach entails using Ω, in this case a white box classifier, to447

generate a confidence degree per decision class and subsequently using this de-448

gree to directly affect the initial state vector of the input-type neurons. Figure 7449

visualises the topological change as a result of this second proposal.450
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Figure 7: Hybrid version of an FRCN, with a white box classifier as Ω.

To determine the confidence weight of each positive and negative region in451

the network, the following rules apply:452

• IF Ci = P ∗k THEN ρk = ρΩ
Xk

453

• IF Ci = N∗k THEN ρk = 1− ρΩ
Xk

454

where ρk is the confidence degree belonging to the k-th decision class.455

Again, we employ the ∆kappa of the average kappa statistic, as described456

in Equation 9. To determine whether this change is positive and significant, we457

employ the Wilcoxon Signed-Rank Test with Holm correction.458

Table 6: Comparison of the hybrid FRCNs with different Ωs.

Ω ∆kappa Holm R+ R− Hypothesis
OneR -0.31005 1.0000 10 43 Not Rejected
J48 0.00297 0.5739 25 23 Not Rejected
BN 0.01488 0.00055 34 12 Rejected

Log Reg 0.00128 0.29336 28 19 Not Rejected
kNN 0.00405 0.5739 23 24 Not Rejected

The results in Table 6 show that using Bayesian Networks significantly in-459

creases the performance of the FRCN, while all other options do not yield sta-460

tistically significant results. This is interesting, as this would suggest that in461

some way, Bayesian Networks are able to produce different information than the462

FRCN and that this information leads to a correction of the results produced463
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by the FRCN. Table 7 shows the number of instances where the original FRCN464

and Bayesian Network agree and disagree. The resulting ∆kappa using the hy-465

brid model presented earlier is also included in this first table. The second table466

serves the same purpose, but compares consensus between the FRCN and the467

J48 Decision Tree.468

Our hypothesis is that if a classifier reports more agreement with the FRCN,469

it will contribute less to the cooperative learning. As such, comparing the470

hybrid models with a Bayesian model, which produced positive results, and a471

J48 Decision Tree, which did not significantly affect performance, will provide472

an indication towards this last hypothesis. When comparing Tables 7 and 8, we473

can see that indeed, the Decision Tree’s consensus degree is higher compared474

to the Bayesian Network. Therefore, there might be an indication that our475

hypothesis holds true. Yet, it is important to further verify this hypothesis in476

further research, with more classifiers and additional arguments.477

Table 7: Consensus table for the FRCN and Bayesian Network.

ID Agree Disagree ∆kappa
1 120 0 0
2 120 0 0
3 874 24 -0.00572
4 866 32 0.03949
5 101 5 0.12669
6 198 28 0.02897
7 593 97 0.0284
8 159 46 -0.03479
9 468 157 0.02057
10 471 154 -0.01448
11 20 0 0
12 3919 1381 -0.00306
13 579 169 0.01639
14 224 62 -0.08531
15 0 198 0.01
16 80 25 0.00138
17 88 17 0.04305
18 1462 266 -0.00296
19 192 111 0.05123
20 316 52 0.016
21 283 65 -0.04442
22 489 11 -0.00221
23 21 3 0
24 748 725 0.05012
25 616 74 0.03493
26 609 81 0.04598
27 351 15 0.01038
28 124 8 -0.02662
29 282 54 0.0103
30 218 2 0.01599
31 218 2 0.02166
32 310 26 0.0103
33 319 17 0.0325
34 309 27 0.00803
35 265 71 0

Continued on next page
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Table 7 – continued from previous page
Dataset ID Agree Disagree ∆kappa

36 399 369 0
37 419 349 0
38 427 309 0.06536
39 122 72 0.05357
40 159 55 0.04143
41 178 36 0.03505
42 199 15 0.08808
43 176 38 0.09428
44 199 15 0.03947
45 205 9 0.00632
46 134 80 0.01627
47 205 9 0.04143
48 149 65 0.02559
49 132 82 0.02559
50 30 276 0
51 142 8 0.01176
52 149 1 -0.01266
53 142 8 -0.01163
54 136 14 -0.03158
55 131 19 0

478

Table 8: Consensus table for the FRCN and J48 Decision Tree.

ID Agree Disagree ∆kappa
1 120 0 0
2 120 0 0
3 876 22 0.02414
4 830 68 0.05153
5 98 8 0.0279
6 165 61 0.09127
7 621 69 0.01318
8 158 47 0.04007
9 509 129 -0.06437
10 511 114 -0.10869
11 20 0 0
12 4917 387 -0.00271
13 620 128 -0.04432
14 238 48 -0.19695
15 146 52 0.02813
16 63 42 -0.05262
17 69 36 -0.00127
18 1620 108 0.01901
19 190 113 -0.03332
20 335 33 0.00553
21 287 81 -0.06411
22 499 1 0.00221
23 24 0 0
24 881 559 0.08714
25 639 51 0.00444
26 620 70 0.00887
27 337 29 0.0072
28 118 14 -0.10127

Continued on next page
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Table 8 – continued from previous page
Dataset ID Agree Disagree ∆kappa

29 336 0 0
30 220 0 -0.00339
31 220 0 0.01542
32 336 0 0
33 308 28 0.04945
34 312 24 0.0414
35 260 76 0.08064
36 517 251 0.02305
37 499 269 0.00281
38 441 295 0.11281
39 121 73 -0.03579
40 153 61 -0.00705
41 170 44 0.02625
42 203 11 0.13914
43 164 50 0.12491
44 203 11 -0.01853
45 209 5 -0.0248
46 138 76 0.06514
47 209 5 -0.00705
48 138 76 -0.00017
49 120 94 -0.00017
50 55 251 -2
51 147 3 -0.0119
52 149 1 -0.08861
53 139 11 -0.05814
54 134 16 -0.01053
55 130 20 -0.01579

479

5. Concluding remarks480

In this paper, we introduced the reader to Fuzzy-Rough Cognitive Networks.481

Furthermore, we investigated the contribution of the FRCN’s building blocks to482

its performance and also highlighted the possible ways which might lead to an483

improvement of this performance. Specifically, we explored two main tracks to484

this end, the first being optimising the model’s weight matrix and the second485

being implementing algorithmic changes based on either a soft covering of the486

information space or a hybrid approach.487

The first track led to some interesting discoveries. The connections between488

the positive regions might not be necessary to maintain model performance.489

Further changes to the weight matrix, whether these changes entailed adding490

extra connections between neurons or changing the values of the weights, did491

not lead to different results either. Therefore, our hypothesis is that optimising492

the weight matrix by means of a learning algorithm, does not necessarily lead493

to an increased performance. Furthermore, the results showing that suppress-494

ing positive region connections might not affect performance provides us with495

additional research questions. Firstly, if we suppress these connections, can the496

model still be called a recurrent neural network? Secondly, can it still be called497
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a Fuzzy Cognitive Map in that case? And finally, why would these connections498

not be necessary to maintain performance?499

The second track also yielded some thought-provoking results. Using a white500

box classifier to produce a confidence degree per decision class, we implemented501

two different changes to the original algorithm. Firstly, we used the confidence502

degrees to transform the existing crisp fuzzy-rough environment to a softly cov-503

ered one, which allows an object in the universe of discourse to belong to more504

than one similarity class at the same time. This approach did not yield posi-505

tive results with respect to the performance. Secondly, we used the confidence506

degrees as weights, multiplying them with the initial activation values of input-507

type neurons. Here, we discovered that the performance of an FRCN can only508

be increased using a Bayesian Network as the white box classifier. The reason509

why this is the case, is an open question. The hypothesis is that the Bayesian510

Network produces additional insights from the available information in compar-511

ison to the FRCN, which allows the latter to correct wrongly labelled objects.512

We presented evidence to support this hypothesis using a consensus measure513

between the original FRCN and the Ω classifier, but these results should be514

expanded in further research.515
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