|

Universidad Euskal Herriko Escuela Universitaria Ingeniaritzako

de Ingenieria Unibertsitate Eskola

del Pais Vasco Unibertsitatea Vitoria-Gasteiz Vitoria-Gasteiz

Final career project

Integration of a Pl controller in a wireless
control network.

Name student(s): Geert Beckers & Dieter Slechten

Name promoters (and company/research centre): Johan Baeten (UHasselt/KU Leuven), Isidro Calvo &
Oscar Barambones (Universidad del Pais Vasco)

specialisation: Energy — automation

Preface

The paper you are about to read is named: “Integration of a Pl controller in a wireless control
network”. The research for the paper was done at the university of the Basque country, UPV/EHU.
This paper serves as the final thesis for both our Master’s degrees in industrial engineering at KU
Leuven and UHasselt in the academic year of 2018-2019.

First and foremost we would like to thank our external promotor Prof. Dr. Ir. Isidro Calvo. Throughout
this project he sat down with us many times and helped us get back on track when we were stuck.

Next we would to thank our internal promotor Prof. Dr. Ir. Johan Baeten as well as our external co-
promotor Prof. Dr. Ir. Oscar Barambones. They were a great help with the controlling aspect of this
paper.

Next we would also like to thank Ander Chouza who we could always ask for help or a different
perspective.

Finally we would like to thank our friends and family for their help and support.

And last but not least we would like to thank you, the reader. We hope you find this paper
interesting and informative.

Geert Beckers & Dieter Slechten

Vitoria-Gasteiz, January 2019

Table of contents

1

T 1Ay e o [N Tot i Te] o HARRR TSP P PRSP PPOPRTPPR 15
1.1 SIUATIONAL SKETCH .. 15
1.2 DomMains Of @PPlICAtION.....uiiii i 15
13) =Yl = o Tl o o] o] 1= o P SRPRN 16

131 COMMUNICATIONSeiiiiiiiiiiiiiic ittt sba e s rae e 16

1.3.2 (601 014 o] F ST P TP PRSI 16
1.4 [oY [=Totd= L - | PRSP 16

Description of the experimental SELUPuoviiiiii i e 17
2.1 (60e] pa] o To] a1=T o | £SO RPNE 18

2.1.1 Arduing MiICroCONTIOIIENi ittt 18

2.1.2 XBEE SHIEI ..ttt st st 18

2.13 (60731 o] | =T U OO O TSP PUTOVOTTOTPTRPP 19

2.1.4 XBEE @NTENNAS ...t 19

2.15 XBEE USB @XPIOTEI ...ueiiiiiie ettt ettt e st e e e tte e e e et e e e s e atae e s ennbeeeeennteeeeennnenas 20

2.1.6 ENA EFfECEON ..t 20

2.1.7 TraNSISTOr CIFCUIT ..o 22

2.1.8 POWET EranSTOrMENciiiiiiieeeee ettt sttt s be e st esabe e e saes 22

2.1.9 MYRIO eMbedded dEVICEoviiiiiie e e s e e 24
2.2 Total eXPerimental SELUP ..oocccuiii e e et e e e are e e e e abe e e e earee e e earaeas 25
2.3 FIFST ESES it 27

Configuring XBee antennas With XCTU......c.ueiiiiiiiiiiiieec ittt esree e st e e s svee e e s srree e e ennes 28
3.1 General explanation of how the software Works..........ccoecvveiieciiiiicciiee e 28
3.2 Configuration for the experimental SETUPcoovcviii i 30

L= [TSP TP RO 31
41 YT e [TaY =4 =10 1 LT 32
4.2 RECEIVEA Frame@......i ettt et r e s s es 32

Explanation of the LabVIEW Programcceciieei ittt srree e see s e svee e s sabae e s 33
5.1 Creating SINAluiii e e e e e et e e e st r e e e eataeeeeaaraeeeanes 33

5.1.1 SinusOIdal INPUL SIBNAL........eeiiiieeee e e e e e e e 34

5.1.2 RaMP INPUL SIBNAL.. ... e e e e e e e e e s re e e e e e e e e enannnnns 35

5.1.3 SQUAre INPUL SIBNAL..cciiiiii i e e e e e e ata e e e esabaeeessnnaaeeeas 36

5.1.4 Steady reference iNPUL SIGNAl.........ceiiiiiiieiiiie e e 37
5.2 Do TTSIET=T o 11 =R RERROt 38
53 ST =T oL =Y 1V oV =N 39

5.3.1 Case structure of XBEE rECEIVING.....cccccviiiieiiiieeectiee ettt e ettt e e et e e e etae e e e eare e e e e araeaeas 40

5.4 Implementation of Pl controller in LAbVIEW..........ccveiiriiiiiiicee e 42

5.5 Saving data and @NalYSINGueeiiiciiieiiiee e s raeeeeas 44

oI V4o [V Lo BT OUPT VRO UPPTOPRTO 45
6.1 Code for tests With Pl cONtrOller ..o 45
6.2 Code for comMmMUNICAtION TESTSeovieiieiierieerie e 46

/A o] 4o | 1= S T TPV OPTO TSRO 48
7.1 LabVIEW real-time programming.......cccocceeeiiiciieeieiiee e ccitee e eeitee s sree e see e s sree e s s savee e s enreeas 48
7.2 Parameter CONfIUIAtIONciiiiiiiei e 49
7.3 (o1 Qo T ol T Ty 1 Y USSP 50

8 COMMUNICATION ..eeiiiiiiiiii ittt rbe e e e s srr e e e s srae e e s sraeeeseanes 52
8.1 Changes made to the LabVIEW Programcoccveeeieiieeeiiciieeecccieeeeeciteee s eeesieeee s ssneneesenes 52
8.1.1 Modified creating Signal ... e 52
8.1.2 MOAIfied XBEE SENG ..coueiiiiieeiee ettt ettt st e s st s ae e sbe e e eans 53
8.1.3 Y oo 13 1Yo IEY- 1 V2T o = SRS 53

8.2 FIFST LRSS ettt e 54
8.3 BUT I BITO .ttt sttt st e e sab e e s bt e s bt e e sabeeebeeesabeesabeeesareens 56
8.4 (o1 A o T ol TSP 56
8.5 Modifying the XBEE rECEIVE VI u..ccieeiieei ettt et e e e et e e e eatae e e nraeas 60

9 Comparative system tests after solving the problems..........ccoociiiiiiiii e 62
9.1 Test after increasing the INPUL VOILAZEcooeuvvie i et 63
10 (6e] 4ol V11 o o WP PRSPPI 65
11 FUBUI® WOTK ..ottt st et e st st e b e ne e sreesaeeenne s 66

12] (Y L= [L T 67

List of tables

Table 1: example of missing frame

List of
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46

figures

Specific layout of the experimental SEtUP.......coccvieiiiciiii i 17
Arduino UNo MiICrOCONTIOIIEN ...cciceiiie ettt e e s e e s sabe e e e sraeaeeas 18
XBee shield for the ArdUINOc.eiiiiiiieeeecee et e s raee e sbe e s ees 18
Example of LabVIEW program running in the controllerccccoecveeiiciee e, 19
b LT I N R T oL =] o1 o = DR PPPPPTPTPPPRPPRE 19
Example of parameters Within XCTU.........ueiiiiiie ettt e et e e e e 20

XBEE USB EXPIOIEI ..ttt ettt ettt ettt e ettt s st e e s st e e s st e e e s sbeeeessbeeeesssteeeesnstaeassnnes 20
(M o = [Tot d g Tol- [ot U T 1 o] PSPPI 20
Amplifier and POSItION SENSOI ...cc.viiie e e e e e e e b e e e s rnaaeeeeas 21
T POSITION SENSOF CIMCUIT ..ttt e e e e et e e e e e s s sbereeeeeseessaannnee 21
T TPANSISTON CIFCUIT..eeiiieiee it e e e e e e e e e s ene e e e e e e e e sanmnenee 22
B =Y) {0 41T PRSP 23
001V N[O I =T 0 o] oT=To [[Te [o L=V ol PSP 24
2 Total eXperimeEntal SELUDuvii ettt e e e e et e e e et e e e enraeeeeanaeeeean 25
: Schematic overview of the total SEtUP.....cccuiii it e 26
Y 0] o L =Te IR AU USRS 27
D (O U ol oV i T-={U] = o] o ST 28
D (08 U ol] o T-Yo] LTSRS 29
: Explanation communication with experimental SEtUPcceeeeeciieeiciiiiee e, 30
B CT= oL I T [l (ot (UL =TSR 31
YT o [TaT =48 =10 1 TSRS 32
B oY o A Te I =T o o1 TSR 32
1 TOtal LADVIEW PrOZIram coooeiiieecciiee e eiitee et ee e sttt e e st e e e sete e e e sataeesssasaeeessnsaeessnsaneesnnsseeenns 33
: Case selection of iINPUL SIZNAISeiiiiiiiieicee e e e s raaee e 33
: Block diagram of the sinusoidal input SigNal..........ccocciiiiieciie e 34
: example of the sinewave iNPUL SIZNA.....coccuiiiiiiiiii e 34
: Block diagram of the ramp input SIZNalooeeiiiiiiciee e 35
: Example of the ramp iNPUL SIZNal.......uviiiieiee e e e 35
: Block diagram of the square input SigNal........ccccuviiiiiiiiiiciiie e 36
: Example of the square iNPUL SiZNal........ooo i 36
: Block diagram of the steady reference input signal........cccccveiviiiiiiiiiciee e, 37
TTHE XBEE SENU Vl.iiteiee ettt e e st e s ba e e sabeesbaeesateesanaeesanes 38
: First part of the XBee receive 8eneral V... ... icciiii ettt 39
: True case structure of XBEE rECEIVINGcuiiiiiiiieciiie ettt e e e e e iae e s e saaaeeeas 40
: False case structure Of XBEE MECEIVEiiviieeiie ettt rtee e e et e s aee e 41
T ENd Of the XBEE rECEIVE VI ...eeineiiieiieetteete ettt ettt st ettt st e s 41
: PID implementation in LADVIEWuviiiiiiieccee et eree st e e s 42
: Block diagram of PiD CONTIOIIEN.......oooeeiiieeeeeeecee et ettt 43
2 Front panel of the PID GaiNSccccuuiiiicciiie ettt e et e e e aae e e ssaaaeeeeas 43
1 SaVING data fOr @NAIYSIS ...ciiuiiieeeiiee et e e e et e e et a e e e et a e e e e aaaaeaean 44
: Arduino code for piezo electric aCtUATONoccciiiiieciee e e 45
s initialisation and setup commuNIcation COAEoiiiiiiiiiiiiiiieccee e 46
: Main loop for the cOmMMUNICATION TEST ...cccuuiiieeciiieecctiee et e 46
: MATLAB program to read data from excel file........ccccovviiviiiiicciiiee e, 49
1 PIDTUNEr and CONtrol ParameterS......cuiieicciieeeccireeeccire e e esire e e eeire e e estree e esesee s essaeeeenasaaeeens 49

1o - = d= B (o o 111 =Y Y A RO STR 50

file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834188
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834194
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834220
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834221
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834224
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834225
file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834228

Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

Lost package filter eXplanationcoociiiiiiciie e 51

Modified ramp SIBNAl........uiii i e 52
Y oTe I3 T=To I 21T =T o o [P TSPUTS 53
Y T e [T=Te ¥ \Va o= oo Yo 1P RPN 53
CoOMMUNICATION TEST B...oeiiiiiiiieiiiiiiee ettt e et e e e e s s are e e e e e e e s s sanneaeeeeas 54
ComMMUNICATION TEST D...eeiiieii it e e e e e e e e e e nnneneeeeas 54
VISA clear function in LADVIEWccocuiiiiiiiiiie ettt e s s e e s aaee e 56
Communication test 65 MS l0OPLIME ...cccciiiii i 57
Communication test 100 MS l00PTIMEuviiiieiiiee ettt e e e ebre e e e e ereeeeeenes 58
Example VISA read to String subset fuNCtioNc..eeviiiiiiiiiie e 59
Changes to XBEE IrECERIVE Vl.ucc.ueiiei ittt ettt ettt e et e e etae e e s s bte e e s ebte e e e ebaeeeeennes 60
True case of the checksUmM ChECK.......occviiiiiiec e 60
False case structure of the checksum checkccuvviiiiiiiiii e, 61
Test before OptimiSatioNuei i e e e e e 62
Test after OpPtimMiSatioNciic i e e 62
Pl test after optimisation with voltage iNCreasecccceveeccie e, 63
Deviation error between sending and received valueccccceviveiieeiicciee e, 64

file:///C:/Users/Geert/Documents/School/Masterproef%202018-2019/Thesis/Thesis_GeertBeckers_DieterSlechten.docx%23_Toc535834229

Abstract (English)

The university of the Basque country is doing research about implementing wireless networks into
industrial processes. This paper focuses on the integration of a specific control structure in which
wireless communications are used. Research will be done in order to determine the validity and
reliability of using wireless communications in an industrial setting.

In order to test this an experimental setup was created to mimic an industrial process. A piezoelectric
actuator, an Arduino Uno microcontroller and position sensor were used. The first experiments were
done in order to determine the right control parameters. There were also a few experiments to
analyse the package losses that were encountered. And finally different range tests were conducted
to see how this effected package loss and latency.

The conclusion of this paper is that a Pl controller can be implemented in a wireless control network
and that it is a valid solution. However this will not be the case in every industrial process. In
processes that require for instance real-time control, the latency will be too big to use wireless
communication, also the package loss is something to take into account.

Abstract (Nederlands)

De Universiteit van het Baskenland doet onderzoek naar de mogelijkheid om draadloze netwerken te
implementeren bij industriéle processen. Deze paper focust op de integratie van een specifieke
regelstructuur waarbij draadloze communicatie wordt gebruikt. Dit onderzoek moet de graad van
validiteit en betrouwbaarheid van deze draadloze communicatie bewijzen in een industriéle
toepassing.

De gebruikte experimentele opstelling bootst een industrieel proces na. De opstelling bevat een
piézo-elektrische actuator, een Arduino Uno microcontroller en een positie sensor. De eerste
experimenten werden gedaan om juiste controleparameters te achterhalen. Er werden ook een
aantal experimenten gedaan om het data verlies te analyseren. De laatste reeks experimenten testen
het effect van de afstand op dataverlies en looptijd.

De conclusie van deze paper is dat een Pl controller weldegelijk kan geimplementeerd worden in een
draadloos regelnetwerk en dat het een goede oplossing is. Dit is echter niet geval voor elke
industriéle toepassing. Bij processen die bijvoorbeeld een real-time regeling nodig hebben, zal de
looptijd ten gevolgen van de draadloze communicatie te groot zijn om een goede regeling te
realiseren. Ook het dataverlies is iets waar rekening mee gehouden moet worden.

1 Introduction

1.1 Situational sketch

The university of the Basque country is doing research about implementing wireless networks into
industrial processes. We are continuing the work of Steven Abrahams, he compared wired and
wireless control applications. He researched if it was possible to use wireless technologies without
losing too much accuracy and flexibility.

This project focuses more on the integration of a specific control structure in which wireless
communications are used and researches if using wireless technology can be used in an industrial
setting. To test this we are using a piezoelectric actuator and a position sensor.

Several tests will be carried out to test the viability of the technology. With these tools we can create
a closed-loop control system. To accomplish this wireless network XBee antennas are used, these
transmit the data from the sensor to the computer, and from the computer back to the actuator. The
PI controller will be configured within LabVIEW and will eventually be uploaded onto a myRio device,
with which it can run autonomously.

1.2 Domains of application
Wireless network can be implemented in many different domains. A couple of examples are vehicles,
airplanes, industrial automation and building automation.

According to a study published in “IEEE communications Surveys & Tutorials” (Volume 20, Issue 2).
The wiring harnesses used for the transmission of data and power in a vehicle can weigh 40 kg and
contain sometimes up to 4 km of wiring. By using a wireless network there is room for improvement
in fuel efficiency, reducing manufacturing and maintenance cost and easy way.

Through the high demands of safety and efficiency, most of the airplanes rely on large wired sensor
and actuator networks. The wiring harnesses of airplanes weigh 2-5% of the total weight of an
airplane. By reducing this weight, the performance and safety will improve while the manufacturing
and maintenance cost will decrease.

Modern building control systems require a variety of sensing capabilities to control temperature,
pressure, humidity and flow rates. By controlling their temperature, pressure, humidity and flow
rates the energy consumption would be less. The implementation of these sensing capabilities would
be much easier and cheaper if the sensors and actuators are wireless.

This paper focusses on the implementation in industrial automation. The estimation of using a
wireless network can save up to 90% compared to the deployment cost of wired field devices. Since
the discrete product of the factory automation requires sophisticated operations of robot and belt
conveyors at high speed, the sampling rates and real-time requirements are often stricter than those
of process automation. Furthermore, many industrial automation applications might in the future
require battery-operated networks of hundreds of sensors and actuators communicating with access
points. (Park, Ergen, Fischione, Lu, & Johansson, 2017)

1.3 Stating the problems
This paper consists of two major subjects: communications and control. These subjects inherently
have a few problems that need to be held in account.

1.3.1 Communications

Latency or message delay is a factor that needs to be measured and researched. If the latency is too
big, the controller cannot function properly and will limit the responsiveness. This is something that
is inherent to wireless communications and cannot be solved completely. But it can be measured and
a conclusion can be drawn to determine if wireless communication is a valid option for certain
industrial processes.

Package loss is another important factor that needs to held in account. Valuable data used to control
the process will get lost and will cause the controller to be an unreliable part of the industrial
process. This loss of data can be caused by interference with other wireless communications or due
to loss of connection.

1.3.2 Control

Defining and finetuning the control parameters is a challenge because the delay in communications

needs to be taken into account. For the experiments conducted in this report we intentionally chose
an easy process to control but in reality the industrial processes that this technology can be used in,

is much more complex.

Communication also plays a big part in controlling a system. For every problem that is being solved in
the communication it must be validated that this solution does not make the control aspect of the
system worse or slower.

1.4 Project goals
The main goal of this project is to set up a complete wireless control loop with a Pl controller, sensor
and end effector.

The secondary goals are :

o Implement a “myRio” device, to allow the system to function independently from the
computer. This makes the set-up representative for a real industrial system.

o Research the characteristics of the wireless network and optimize them as far as possible.
Reduce the loss of data and increase responsiveness.

. Simplify the system by only using one antenna for sending and receiving instead of two
antennas.

2 Description of the experimental setup

In order to test the wireless communication and wireless control loop an experimental setup is
needed. Three XBee antennas, an Arduino microcontroller, a computer and various electronic
components are used in this setup. In Figure 1 the layout is shown in which these components are
configured. The individual components are explained in the next chapters.

NI myRIO

Xbee S1
N
v
N\

C

(

Xbee S1 Xbee S$1
Arduino uno
Piezo electric " Position

actuator sensor

Figure 1: Specific layout of the experimental setup

2.1 Components

2.1.1 Arduino microcontroller

An Arduino Uno microcontroller is used to interact with the physical world. Its primary use is to
generate a PWM signal in order to control the end effector. This kind of microcontroller is chosen
because it is easy to program and cheap to buy. There also is a lot of support for different
accessories, for instance the XBee antenna shield explained in the next chapter.

Figure 2: Arduino Uno microcontroller

2.1.2 XBee shield

This XBee shield is placed onto the Arduino Uno so that it is able to send and receive wireless data
through an XBee antenna. The analog and digital pins are transferred through the XBee shield so that
these can still be used. It is also equipped with a switch so that you can easily switch to receive data
through the serial port on the Arduino (to upload your program) or through the XBee antenna.

Figure 3: XBee shield for the Arduino

18

2.1.3 Controller

This is simply a computer that runs a LabVIEW program. In this program the Pl controller will be
configured and a few tests will be able to run on here. It also includes all the necessary code to save
data, the code to send and receive data to and from the XBee antennas. In Figure 4 an example
LabVIEW program is shown, this is a program that is used in this project to send data through the
XBee antenna.

Header

Ho |F7E
<0
<7
<1
<0 B USE port IN USB port OUT
22 error in (no error) =2 Mﬁ;ffciji e
<22 I Tat w [error out
<1 =3
Sending frame
: B s - o]
Sequence @ om
I@ ¥ Array (with C5)

Checksum 6L

POBL |

Sending Value

Sequence +1
; ﬁl

Figure 4: Example of LabVIEW program running in the controller

2.1.4 XBee antennas

These antennas are merely used to transfer data from one point to the next wirelessly. The XBee S1
version were chosen for this project. These antennas have a range of 30 meters indoors and 100
meters outdoors. This range is more than enough for the tests conducted in this paper.

Three XBee antennas are used in the experimental setup to make it easier to configure, later on two
XBee antennas could be used. This can be achieved by eliminating the XBee antenna of the sensor
and using the antenna on the microcontroller for both sending and receiving data.

Figure 5: XBee S1 antenna

19

2.1.5 XBee USB explorer

In order to configure all the parameters for the XBee antennas, a serial connection needs to be made
to a computer running the XCTU software. The USB explorer is outfitted with a micro USB port which

allows easy connection to the computer.

In the XCTU software various parameters can be changed about the XBee. For instance: Destination
address, Source address, Baud rate, 1/0 settings, etc. This program and the configuration of the XBee

antennas will be explained in a later chapter.

Figure 7: XBee USB explorer

2.1.6 End effector

i CH Channel C

. 1D PAN 1D | 3332

' DH Destination Address High 0

i DL Destination Address Low 4444

I MY 16-bit Source Address 3333

¢ SH Serial Number High 134200

I SL Savial Number Low A0E4DDAF

MM MAC Mode 802154 + MaxStream haader w ~
- RR XBee Ratries o

' RN Random Delay Slots 0

' NT Node Discover Time | 19 ¥ 100 ms =4
. NO Node Discover Options. | 0

+CE Coordinator Enable End Device [0} v
' §C Scan Channels | 1FFE Hitheld 4
¢ SD Scan Daration |4 | eponent

Figure 6: Example of parameters within XCTU

The end effector used in this setup is a piezoelectric actuator outfitted with a position sensor. This
actuator is a good representation of an actual end effector used in industrial processes. The built in
position sensor is an added bonus as this makes it easier to build a closed control loop. This actuator
however has proven to be very sensitive to impulses so care must be taken when working with it.

Figure 8: Piezo electric actuator

20

2.1.6.1 Position sensor

The position sensor discussed earlier has a range from 0 V — 10 V. This range needs to be converted
to arange of 0 V — 3,3 V. This has to be done because the analog input of the XBee antenna only
allows a range of 0 V — 3,3 V. This conversion is done by a simple voltage divider with three resistors.

Figure 9: Amplifier and position sensor

33V ov

2000
vee Analog : e 2
Input —
AREF
GND
Xbee antenna 000

Valtage position sensor

Figure 10: Position sensor circuit

21

2.1.7 Transistor circuit

In order to convert the PWM signal that is provided by the Arduino microcontroller a transistor
circuit is built. This circuit will transform the PWM signal into an analog signal with a range of 0,7 V —
10 V. The range starts at 0,7 V because of the characteristics of the transistor. A transistor needs this
voltage over the base and emitter, so that it can allow current to pass from the collector to the
emitter.

5V oV 10 V (adjustable source)
100 O
‘ 34,7 kQ 7~ X
Vee PWM | ;‘ 1 LV) Voltage transformer
GND PIN 5| 4 \ h / (0-10V)

| Xbee antenna

oV

Arduino + Xbee shield

Figure 11: Transistor circuit

The transistor that is used in this circuit is vulnerable to overdrawing current. Care must be taken in
order to ensure that not too much current is provided to the collector, emitter or base as this will
lead to failure of this part.

2.1.8 Power transformer

The piezo electric actuator uses a range of 0 V— 150V, therefore a power transformer was needed.
This power transformer will change the input range of 0,7 V — 10 V provided by the transistor circuit
to the needed 0V —-150V.

These transformers can be zeroed and the out channel can be enabled and disabled. On the display
the current output voltage can also be read. This allows for greater flexibility and an extra method to
check what voltage is being provided to the actuator.

Care must be taken when applying the voltage, the voltage over the actuator should never be greater
than 150 V as this can cause damage to it. Therefore it was decided that the voltage was limited to
145V, just to be safe. The transformers are displayed in Figure 12.

On top is the transformer for the actuator. This has one high voltage output that goes to the actuator
and one external input which is connected to the transistor circuit.

On the bottom is a transformer for the sensor. This has one input that is connected to an amplifier
which is connected to the sensor. This also has one output which isa 0 V —10 V scale that goes to the
circuit discussed in chapter 2.1.6.1.

- (,

Figure 12: Transformers

23

2.1.9 myRIO embedded device

In order to make our LabVIEW programs run autonomously a myRIO embedded device was used.
Onto this device programs can be uploaded and it has built in memory to save the gathered data. To
this device the XBee antenna was connected via the USB explorer and a micro USB cable as displayed
in Figure 13. The cable to the left is the power cable and the cable in the middle is the USB cable used
to download the program onto the device.

Figure 13: myRIO embedded device

24

2.2 Total experimental setup

In the figure below the actual experimental setup is shown. All the components discussed in the
previous chapter are utilised in this setup. This setup is the most complex version, this could be
simplified by only using one XBee antenna to send and receive the information to and from the
piezoelectric actuator.

The piezo electric actuator and amplifier are attached to a wooden board because these are very
fragile. The cables are of a small diameter and are prone to breaking. On the next page a schematic
overview is displayed that shows the individual parts more clearly.

N

=

The transformers for the piezo

electric actuator
N ,

J
The piezo electric actuator and - in v : &\

amplifier for the position sensor The myRIO embedded device
with an XBee antenna connected

The electronic circuit with the
Arduino and the antenna for
the position sensor

Figure 14: Total experimental setup

25

Amplifier for

transformer
Position Piezo electric
sensor actuator

Transistor

myRIO device

I

antenna

cable

circuit

[(0-3.3V)

Voltage
devider

Xbea
antenna

=] >
Arduino Una
microcontrolier

| Xbee
; antenna

Adjustable power
supply (0-10 V)

Figure 15: Schematic overview of the total setup

. Computer

26

2.3 First tests

In the first test the end effector and sensor were replaced by simpler components. This was done to
simply test the communication and to understand how XBee sends and receives data. The simplified
setup can be seen in Figure 16. This made it possible to check if the XBee antennas were properly
configured for future tests.

Here a button was used to send data to the controller and an LED was used to receive data from the
controller. By using the XCTU software the receiving data could be monitored, so it was possible to
see what the data included and if this made sense. Via the same software we could send a command
to the XBee antenna to set an output to “HIGH”. This then lighted up the LED, and now it was certain
that the XBee antenna was configured correctly to both send and receive data.

Figure 16: Simplified setup

27

3 Configuring XBee antennas with XCTU

3.1 General explanation of how the software works

XCTU is a program that can be used to change the parameters that define the XBee antennas. With
this you can program which XBee antennas connect to each other, which ones send and which ones
receive data. In this program you can change a large list of parameters, too large to list them all, but

here are some of the most important ones:

e Channel: Choose which RF channel to use.

e PAN ID: Personal Area Network ID, Antennas can be grouped into different networks. This

allows for more flexibility.
e Destination address: The address to which data will be sent.

e Source address: The address of the XBee antenna. In order for data to be received by this

Xbee, it must be sent to this address.
e Power level: the transmitter output power can be set.

e |/O settings: here various digital and analog I/O can be set, as well as PWM configurations

e Baud rate: the baud rate can be configured to various standard values

e FEtc..

When the program is first opened the XBee antennas that are connected to the computer need to be
discovered. After this is done the found antennas are displayed to the left of the screen, on the right

you will find the parameters currently downloaded into the antenna. The parameters can be directly

altered in this window. Once the changes are made press the write button (highlighted with a red

circle on Figure 17) and the new parameters are downloaded to the antenna.

..' rl ows Faom ek

B Raso Matme

L

A Feeatiune 01 W0 104
(% Pert COMY - SOMBI UM - A

MAC: 001 IAZ2HADIG

Figure 17: XCTU configuration

Q0-0 o=

s Cardgueton| - 301 A0S0

o nn
Ll |
o Pradact My B4

e

et e et

Toxhing B Secry

OF Ol

oMy

ON Derv ey, Ao Hgr
Ot Destmarcr Addwes Lom
MV 15 2 Sewmr Rethen
SN Sl Pecr e (0

SL Gord Marder Loe
AL e

0 XD

N b aben Otay Vnti
WY Mk Diirve Thoe
[R
CF Comthunr Lruide

AT S Darwwin

S0 Scmr Dvawnm

AN Dt Deseon AsaccuencT
A es by Aiimiatan
A Amsceem vemasss
B ALS Dacypecs Duts
K ALS iy by
s b

Intetcrg

L

Delnan: 4

St Ly T (0 AL

”
LU

44t

nwus
aaniu

WU INA ¢ Variraem swnder w03 1)

ref Dwyin 19

w4

G-2co- 8 & EE

“
‘mo
1<)
<]

20

80
1M g 00

30

et e 00
80

=17

per—

80
o0
80

28

This program also features a console in which you can track all the serial communications that
happen wirelessly, which is located on the top right of the screen, it is the icon in the middle. Data
that is being sent is presented in blue and received data is presented in red. At the bottom of the
screen custom data packages or “frames” can be created to send from one XBee to another. How
these frames are formed will be discussed in a later chapter.

A quick way to test if two XBee antennas are properly connected to each other, is to connect them
both to a separate USB port. Discovering them both with the XCTU software and then utilising the
console to send one package from Xbee A to XBee B. This way one can see if XBee A sends the data
properly and Xbee B receives it properly. Repeat the other way around and one can be assured that
both antennas are connected properly.

] nnn,lh\n Toeks Melg

PQBEI

[L= B hestans - cOTIA940E4008

Mawes Coetrobn

- : .
Ponction: JDRE 802154 (1 uJ 5| ™ To amers 1
» = LY R feaomes |
802 et COMID - SORANIN . AN Clsie - 8
MAG (013ADSEDETT -
Frames loy Q00 0O O Fenesun
ﬂtu‘u 0 0 Torw Lngh Frare
.@ Pas COMI| ROBACTN - AR T 9 - it e ¢ ¥A P o Pactel -4 Addves
E WAC: 091 RO o " : ol .
Sevit farmes OO0 senvusngnnene
ey o [T——
m ol VX {rwnered! Pegannt -5t et drm R :

Figure 18: XCTU console

29

3.2 Configuration for the experimental setup
In our experimental setup, as explained in chapter 2.1.4, three XBee antennas are used. These
antennas need to be configured correctly in order to ensure communication between them.

Firstly all three need to be part of the same Personal Area Network, in our case “3332” is chosen
which is the default value. After this we need to make sure they all have a different source address.
These addresses need to be unique otherwise the wrong XBee will receive the wrong data. Next we
need to define the destination addresses, 16-bit addresses are chosen because in our experimental
setup not a lot of XBee antennas are used, so 16-bit suffices.

This requires some planning, the right sending antenna needs to be coupled with the right receiving
antenna and vice versa. To explain this easier Figure 19 shows the three antennas that are being used
in the experimental setup and how they communicate.

XBee A
Source: 1111 antenna
Destination: 22 22

p.
~

(

XBee B XBee C
Source: 22 22
Destination: 11 11 i e Source: 33 33
' I Destination: 11 11

Figure 19: Explanation communication with experimental setup

XBee A is connected to the controller, B is connected to the Arduino microcontroller and C is
connected to the sensor.

As you can see XBee A sends data to XBee B. B only needs to receive data so the destination address
doesn’t matter, but 11 11 is chosen just in case B ever needs to send any data back to the controller.
C sends back to A. Therefore the destination address of C needs to be 11 11, the source address of A.
The destination address of A needs to be 22 22, the source address of B.

After the destination and source addresses have been correctly configured, the baud rate of all XBee
antennas must be configured to be the same. This is important because if two devices are
communicating at the same speed, data can be misinterpreted or deemed completely wrong and
dismissed (Jimblom, sd). For this setup the standard baud rate is chosen, which is 9600.

Lastly the 1/0O needs to be configured according to purpose of each antenna. XBee A does not have to
control any I/0 so these can remain disabled. Because XBee B is connected to the Arduino, no I/O
configurations need to be made. These will be done in the Arduino code. XBee C needs an analog
input in order to read the sensor value, so this is configured.

4 Frame

The data we send and receive via XBee is formatted into a “frame”. This is a standard format in which

every byte has a meaning. This makes it easier to understand where the data starts and ends. In a
frame all the bytes are a hexadecimal value.

In Figure 20 the frame structure is displayed. It consists of a few different elements and each has a

meaning.

e Start delimiter: this byte is always “Ox7E” so that it is clear when the data frame starts.

e Llength:

byte.

these two bytes indicate the length from the next byte up until the second to last

e Frame data: a few different things are indicated here, the APl identifier, frame 1D,
Destination address, extra options and RF data.

o APl identifier: This indicates the type of frame, for instance: sending frame, receiving
frame,...

o Frame ID: This is only used when an acknowledgment is required, for these
experiments we do not require this so this byte is set at “0x00".

o Destination address: this indicates to which address or from which address the data
is being send/received.

o Options: Different options can be chosen with this byte. For these experiments
acknowledgements need to be disabled so this byte is set to”0x01”.

o RFdata: This is the actual data that is being transferred from one XBee to the next.
This can be anywhere from 0 to 100 bytes, and also includes a checksum at the end
to check if the data is correct.

Start Delimiter Length Frame Data Chacksum

OXTE

| [mse 'SJI APkspecific Stuctre | | 18yte |
AP| Identifier |dentifier-specific Data

| Ox cmdData
Frame D (Byle 5) Destination Address (Bytes 6-7) Oplions (Byte B) RF Data (byte{s) S-n)
Identifies the UART data frame for the 0x01 = Disable ACK
host 10 correlale with a subsequent ACK MSB first, LSB |ast, Ox04 = Send Packeat with Up to 100 Bytes
(acknowledgment), Selting Frame Broadcast = OxFFFF Broadcast Pan ID per packet
10 10 '0" will disable response frame. All other bits must be set to 0

Figure 20: General frame structure

31

4.1 Sending frame

As previously discussed frames have different APl identifiers, these indicate which kind of frame is
created. For a frame that is designed to send information the identifier is set to “0x01”. This indicates
a TX request for a 16-bit address. Figure 21 below shows what a complete frame looks like in XCTU.

7E 88 87 81 88 11 11 81 18 F1 DA

Figure 21: Sending frame
In this frame we can differentiate all the previously discussed elements.

e 7E:start delimiter

e (0007: the frame is 7 bytes long from the next byte until the second to last byte
e 01:significates a send request for a 16-bit address

e 00: no response frame needed, no acknowledgement

e 11 11: destination address

e 01: the option for disabling acknowledgements is selected

e 10 F1: the data that is being send

e DA: the calculated checksum

4.2 Received frame

A frame that is being received will have the identifier set to “0x81”. This indicates a RX request from
a 16-bit address.

JE B8 87 81 ee 22 22 81 18 F1 B8

Figure 22: Received frame

e 7E:start delimiter

e 0007: the frame is 7 bytes long from the next byte until the second to last byte
e 81:significates a receiving request for a 16-bit address

e 00: no response frame needed, no acknowledgement

e 22 22:source address

e (01: the option for disabling acknowledgements is selected

e 10 F1: the data that is being send

e B8: the calculated checksum

The data that is being sent is not limited to just the control / measured value. For some tests a
sequence number is included in these data bytes. This made it easier to see when which frames get
sent / received.

There are various different types of frames you can send via XBee antennas but these are too many
to list here. The frames discussed previously are the ones used in these experiments.

Also for the experiments a sequence number was added to the data before the checksum “F1” in the
examples given previously. This one byte of data is import to know when the frame was sent /
received.

5 Explanation of the LabVIEW program

To explain the program easier, it is separated in five parts: creating signal (1), Xbee sending (2), PID
(3), Xbee receiving (4) and saving (5). In Figure 23 the total LabVIEW program and the part described
below are displayed. For a global overview of this program please take a look at the appendices at
the end of this paper.

Every part will be explained in a separate paragraph. The code will be shown and a short text will
explain how it works. For the communication tests (Chapter 8 Communication) the code was
changed in some aspects. These changes will be explained in the appropriate chapter.

[m=—————

Figure 23: Total LabVIEW program

5.1 Creating signal

The user can choose from four different input signals: sinusoidal, ramp, square and a steady
reference. Each of these signals will explained in the following chapters. The user can change these
signals by using a case selector block, displayed in Figure 24.

0: Sinusoidal
1: Ramp
2: Square
3: Steady ref

&=

Figure 24: Case selection of input signals

33

5.1.1 Sinusoidal input signal
For the first method three different sinewaves will be formed, where the maximum will be decreased
every sinewave.

So the signal will be a sinus from 0 to 1023 and back to 0 after that the signal will go to 680 and back
to 0 and the last sinus will go to 340 and also back to 0. Every sinus will be 1000 samples long, so
when the loops reaches 3000 sinus the test will stop.

T : : T

0,01
;=
_gD 13 L
Simulate Signal
Sine Heed SR}

Figure 25: Block diagram of the sinusoidal input signal

Figure 26 shows an example of what the sinusoidal input signal will look like.

Sinewave input function

Figure 26: example of the sinewave input signal

5.1.2 Ramp input signal

The next method is a simpler one, a ramp function that increases the value by one every time the
main loop of the LabVIEW program is executed. The ramp function is 3000 samples in length. The
ramp will reach its peak at 1500 samples and will go back down to zero.

Figure 27: Block diagram of the ramp input signal

Figure 28 shows an example of what the ramp input signal will look like.

Ramp input signal

Figure 28: Example of the ramp input signal

5.1.3 Square input signal
This signal will send a maximum value of 1500 for 100 samples and then a minimum value of 0 for
that same amount of samples. A start offset of 50 samples is chosen. The total duration of this signal

is 500 samples.

Simulate
Signal2
Sguare

N

Figure 29: Block diagram of the square input signal

Figure 30Figure 28 shows an example of what the square input signal will look like.

Square input signal

Figure 30: Example of the square input signal

5.1.4 Steady reference input signal

This signal allows the user to send a constant value as an input signal. This signal has no fixed length
and the value can be changed as the user pleases.

Send. Val.
] 0-1500

Figure 31: Block diagram of the steady reference input signal

shows an example of what the square input signal will look like.

Steady reference input signal

5.2 Xbee sending
This VI is used to create a frame that store the data that needs to be sent to the actuator. More
information on how these frames are configured can be found in chapter 4.

1
eader
o ik
L0
e T
3 L
<0 E) "y
uT
"2 |
<22 [
., [
o - N - | Sending frame
" Trg——— i a’—l!'! 01/ S 2y i
Sending Value i) -,
B o £~ 2
B > Array (with C5)
Sequence = ; I"‘ill Checksum W
3
2 [r—iilylithout C5)
[frame compestion
4
o F=np S [TS I J 1) B woju o fart
5 0t OMDO | OaFF | OweF 0W00 | OWO2 | Ous¥ OafF oure
B = g - = > 2 a0
5 2 gE3gs 3 g Bl £ |36
T 22 % E z F . - 3
® % AL 1 L 2 S § -3
X 1 R g X s ES
] 3 b 3 = 3 g H
i 3 T | 3 :

Figure 32: The XBee send VI

The VIl is consists of 5 parts. In the first part the constant frame parameters are formed (indicated by
ared 1in the top left corner of Figure 32). At the bottom of the figure you can see how a frame is
composed. These constant parameters are saved in an array and after these, the data bytes and
checksum is added.

The second part is where the data gets transformed to 8 bit or 1 byte of data. The PWM of the
Arduino can only read an 8 bit signal, therefore the 10 bit signal needs to be converted to an 8 bit
signal. The next byte of data is used for the sequence number and this gets set to the eight position
in the frame.

In the third part the checksum is formed. At the end of every frame there needs to be a checksum.
This is calculated by the sum of the array without the start delimiter and the frame length. This
number is then subtracted from the hexadecimal number “OxFF”. This checksum will set in place 11
of the array. After this the frame is complete and gets formed into the frame so it can be sent
through the XBee antenna.

The fourth part consists of making the sequence. Every time the Xbee sends a frame the counter will
increase by one as long as the sequence is lower or equal to 65535. Then the sequence will start
over.

38

The fifth and final part consist of a visa write function, where the frame that is formed is sent to the
Xbee antenna. If there is an error before the sending block, the sending block will not be executed.

The USB port IN variable will determine through which serial port the information will be sent. This

port needs to be the port where the Xbee antenna is connected.

5.3 XBee receiving

The XBee receive VI takes the information that is useful out of the received frame. This VI includes
three cases: Receiving for the experimental setup, receiving for communication tests and one for
receiving with a filter and a check on the checksum.

The part that stays the same for all of these cases is shown in Figure 33. First of the received frame is
imported into LabVIEW. The frames that are received after this, will be put in a buffer. The correct
USB port is set, so the myRIO device knows where to look. Next the amount of bytes that is being
received is checked.

The frame that was imported is checked for the frame delimiter byte “7E” this indicates where the
frame starts. If this byte is not found a zero is passed through. If the start delimiter is found the data
will be extracted out of the frame. All these action will be done within the case structure explained in
the next chapter.

USE portin

/0

Bt |pstr

é}-tes at Portk ._

error in (no error) E_

[(Sack

=

Frame delimeter

Mmber of bytes (frame)

Figure 33: First part of the XBee receive general VI

5.3.1 Case structure of XBee receiving
When the case structure is true, the start delimiter of “7E” was found.

Checksum = Ok?

P

Read buffer
{bibe]

132

Figure 34: True case structure of XBee receiving

In the first part the two bytes after the start delimiter is checked. These bytes are the least significant
byte and most significant byte of the length of the frame. The most significant byte is multiplied by
256 and added to the least significant byte. This value is then added by one for the checksum.

In the second part the data gets converted into a decimal value, this will be the receiving value. The
data bytes are located on the eighth and ninth location in the frame.

The third part checks the checksum of the frame The sum of the entire frame is taken without the
start delimiter and the frame length and check if this equals “OxFF”.

The last part is where the checksum of the frame is checked. It takes the sum of the whole frame
without the start delimiter and the frame length and check if this is FF.

40

When the case structure is false , the start delimiter of “7E” was not found in the frame.

[False "t

Figure 35: False case structure of XBee receive

The USB port that is being used and the error list gets transferred through and all the values that are
being sent are zero.

The final part of the LabVIEW code contain the outputs.

USB port out is for the next serial connection. If there is an error it will go to the error out port. The
data that was converted to a decimal value will go to the sending value. An array will be formed and
every element of the frame is put in it. This is for checking the received frame.

E'JSB p:nrt DutE
o

error out
e

Sending Value

Array (frame)
e b
;‘

Figure 36: End of the XBee receive VI

5.4 Implementation of Pl controller in LabVIEW
As stated before the control algorithm that was chosen for our control network is a Pl controller.
LabVIEW has a built in PID block, this is used. Only the P and | part of the controller is set.

The created signal between 0-1500 on the left side of the picture is converted to a value between 0-
1023. This is the input for the Pl controller. The two values above the PID controller block are the
output range in between which the values can be sent. The blue line coming from the bottom of the
figure is the received value. PID gains are the values that are being set for K and Ti factor.

Heference value(0-1023 0-1022 send
OE “'
DELE=
i
..................... e
!_ SEHD
Sigﬂﬂl 1023 r“:-..“ -
(0-1500) —1
P ' — [FiD
B
SGL
| PID gains
11]23| :
' ﬁ Conversion to go from 0-150.0v
e to 0-10v, the range for the myRio.

Figure 37: PID implementation in LabVIEW

42

Figure 38 and Figure 39 show the implementation of the PI controller into LabVIEW. Figure 38 shows
how the VI accepts a few inputs such as: Setpoint value, Process variable, PID gains and Output
range. As well as one output: Output value.

Setpoint value: this is the desired value of the control variable.

Process variable: this is the measured value of the control variable, looped back into the PID
controller.

PID gains: here the values for the control parameters are defined. These include:
proportional gain, integral time and derivative time. Since we are only using a Pl controller
the derivative time is left at 0.

Output range: the limits within which the controller is allowed to operate.

Output value: returns the output of the control algorithm.

In Figure 38 a more detailed look at the PI controller and its inputs and outputs is shown.

In Figure 39 the front panel is shown in which we can configure the PID gains. This was done so that
the control parameters could be changed quickly and easily. It also serves as a visual reminder on
which parameters were chosen for a test.

Setpoint value
Process variable

PID gains

proportional gain (Kc) 1]1,000

Output value integral time (Ti, min) /{0,001

Outputrange

) i i et 7Y
PID gains derivative time (Td, min) Ar‘0,000
Figure 38 : Block diagram of PiD controller Figure 39: Front panel of the PID gains

43

5.5 Saving data and analysing

The data from the test need to be saved for analysing. First the data gets collected at the case
structure by indexing. After that the data gets put into an array and goes to a Write Delimited
Spreadsheet. Here the data is written in to a CSV and txt file.

These files will be loaded into an Excel spreadsheet and from here the data can be analysed and
graphs can be made.

Data:

1.-Sequence(cycle nurmber)
2.-Reference (0-1023)

3.-5end converted value (0-1023)
4,-Receiving value(D-1023)

Hooo

P

Figure 40: Saving data for analysis

44

6 Arduino

6.1 Code for tests with Pl controller

As explained in a previous chapter an Arduino Uno microcontroller is used to interact with the piezo
electric actuator. The micro controller receives data from the XBee antenna through the XBee shield,
but some code is needed in order to process this data.

Figure 41 represents all the code that is being used in the Arduino to control the actuator. Firstly all
the variables need to be initialised. The pin which is chosen as the output for the PWN signal is
defined as pin 5. All other variables used later on in the code are given an initial value of “0”.

In void setup the baud rate needs to be set for the serial communication. The value 9600 is set as this
will be the same as the baud rate of the XBee antennas.

In void loop the main program runs continuously. If the serial buffer of the Arduino is filled with at
least 10 bytes, the bytes can be read. Because the layout of the frame is known we know that the
first byte is the start delimiter, second byte is the most significant byte of the length, ... Therefore we
can save these individual bytes in the correct variables.

Now we are only interested in the actual data byte, in which the position of the actuator is saved.
This byte is saved in the variable “bDataPacketLSB”. We only use the least significant bit because the
PWM signal of the Arduino only accepts an 8-bit value. This is then written to the previously defined
PWM pin with the code AnalogWrite(PWMPin, bDataPacketLSB).

Figure 41: Arduino code for piezo electric actuator

6.2 Code for communication tests

In the next chapter there will be a detailed description on how the communication tests were carried
out. But in order to do these tests the code in the Arduino had to be altered. The Arduino now simply
reads incoming data and sends it back. The delay between messages can then be measured as well as

the package loss.

byte bStartDelimiter = 0;
byte bLengthMSB 07

byte bLengthLSB 0;

byte bAPI Id = 0;

byte DbAPI FrameId = 0;
byte bAdresMSB
byte bAdresLSB 0;

byte bOption = 0;

byte bDataPacketMSB = 0;
byte bDataPacketLSB = 0;
byte bSequence = 0;

byte bChecksum = 0;

Il
[’

void setup () {

Serial.begin (9600);

Figure 42: initialisation and setup communication
code

REON!

(Serial. L ()>11){
bStartbDelimiter = Serial. i{) s
biengthMsSB = Serial.read():
bLengthLSB = Serial.read():
bAPI_ Id = Serial.:r: ():

PAPI Frameld = Serial. ad ()2
badresMsB Serial.read():
bAdresLSB = Serial.! (s
boption = Serial.rsad();
bDataPacketMSB = Serial.read():
bDataPacketLSB Serial.!)
bSequence = Serial.rvead():;
blhecksum = Serial.reazd();

(bStartDelimiter):

e (bLengthMSE) ;

e (bLengthLSB) 7
(bAPI_Id):
(bAPI_FrameId):

= (bAdresMSB)

= (bAdresLSB) ;
(bOption)
(bDataPacketMSB) 7

= (bDataPacketLSE);

& (bSequence) ;

(bChecksum) ;

Figure 43: Main loop for the communication test

In Figure 42 the code starts, here all the variables are initialised with a value of 0. So that when the
program restarts no data gets transferred and everything starts at “0”. These variables all represent
the different bytes that will be sent in the frame by the controller.

Next is the void setup, here the serial communication is configured with a baud rate of 9600. This
baud rate needs to match those of the controller and all XBee antennas, in order to guarantee good

communication.

46

In Figure 43 the main loop of the Arduino code is displayed. This starts off with an if statement, here
the rest of the code will only be executed if there are eleven or more bytes in the buffer of the
Arduino.

At first all the bytes get read one by one, and saved in various variables. This allows for easy access to
different parts of the frame. This part is almost exactly the same as with the Pl controller test, except
for one byte. One byte is added after bDataPacketLSB, namely bSequence. For this test it is important
that the sequence number of the sent frame is known. Then when this frame is received again by the
controller, it can be calculated how long it takes for the Arduino to send this information back.

Lastly the exact variables that were previously read, are sent back in the same sequence via the XBee
antenna to the controller.

7 Controller

For the control algorithm a simple Pl controller is used. This type of controller is chosen because it is
simple to implement, simple to configure and is most commonly used in industrial processes. It is
also easy to implement this into LabVIEW as it has its own VI. This VI allows for quick and easy
changes to the control parameters.

7.1 LabVIEW real-time programming
“The LabVIEW Real-Time Module combines LabVIEW graphical programming with the power of a
real-time operating system, enabling you to build deterministic real-time applications.

A misconception about real-time is that it means quick. More accurately, real-time means in-time. In
other words, a real-time system ensures that responses occur in time, or on time. With general
purpose operating systems, you cannot ensure that a response occurs within any given time period,
and calculations might finish much later or earlier than expected.

A real-time system consists of software and hardware components. The software components include
LabVIEW, the RT Engine, and the LabVIEW projects and Vls you create. The hardware components of
a real-time system include a host computer and an RT end-effector.” (National Instruments
Corporation, 2010)

An option could also have been to make use of this Real-Time programming in LabVIEW. This would
make our wireless control network more reliable and more accurate. Unfortunately this method of
programming was not used in this paper because of time constraints.

When this programming gets implemented in a real life application this could very beneficial for the
control network. It would definitely be a good next step in the right direction to make the control
structure more responsive and in general faster.

7.2 Parameter configuration

In order to configure the Pl controller a MATLAB toolkit was used to determine sufficient parameters.
This toolkit uses a series of data which we acquired through LabVIEW. This program allows us to
perform a step-response from which we then can collect data. This data is stored into an excel file,
which we then read via MATLAB and stored into a 1-dimensional array.

1— [D] = xlsread('SearchingPIl.csv');
2 — Outputdata = D(:,3):

Figure 44: MATLAB program to read data from excel file

As you can see this is a very small program, but invaluable in order to determine the PI control
parameters. This “Outputdata” is then used as the basis on which a step-response plot is created.

Next a tool called PIDTuner is used to get a rough estimation of the Pl control parameters. By visually
tuning the step response curve a value for K and Ti is calculated. This is not the most optimal value
for the controller but it is a good starting point.

Ameafiod Flant Bvussrs Oom Pade ¢ Deolay

Dimp Pt Mefwrmecs 1racking Oslenst 2

Angrade
-

Figure 45: PIDTuner and control parameters

These parameters were initially used and a few tests were concluded, and data was collected. The
parameters were a good start but required more finetuning. So these values were changed a few
times until better results were obtained.

7.3 Lost packages filter

To have a better controlled system, the package lost filter is made. If there is a

] package lost , the Pl controller will try to make the difference between the
MI::';;':_“ [~ measured value and demanded value as small as possible. It will also do this as
rLTer |—— fast as possible. In reality the measured value is different than the receiving
o value. Therefore the filter will use the previous received value to control the
system.

Figure 46: Package lost
filter VI

The package lost filter was the first solution to make the controlled system better. This solution was
temporary and there were some doubts about the communication and installation of the plant.
Therefore the communication was separated from the plant. This will be explained in a following
chapter called communication. The better way to check the frame is with the checksum. This will be
explained in chapter modifying the XBee Receive VI.

On the next page a graphic explanation of the LabVIEW program will be given. The VI block works as
follows. First it is going to check if the receiving value is equal to 0. If it is not equal to 0 it will just
take the receiving value for controlling the system. When the receiving value is 0 it will check if the
previous sending value is a 0.

For example if the previous sending value and the receiving value are equal the system just receives
the 0 otherwise it will take the previous received value.

It will make sure the PI controller does not need to control extremely when it is not necessary.

Recerad vake [T

| (5] 3
T

g

Sending alus 71}

(B3] 3

Recoved vaue (T-1)

Amcunts of package lodt ()

[

Figure 47: Lost package filter explanation

Facered value

51

8 Communication

As discussed in the first chapter, communication is a big part of this paper. To provide the wireless
communication XBee antennas were chosen, but are they adequate for control applications? This is
what needed to be researched.

In order to test the accuracy and reliability a few tests needed to be done. For this the experimental
setup discussed previously needs to be changed.

Only the myRIO controller and Arduino Uno microcontroller are being used. The piezo electric
actuator and sensor combination will not be used because this does not affect the communication.
The principle behind these tests is to see how the frames are sent and received. And to measure the
time delay on these messages also called latency, the amount of messages that get lost as well as the
effect of the range on these factors.

8.1 Changes made to the LabVIEW program

In order to test the communication characteristics properly, a few changes needed to be made to the
LabVIEW program discussed in chapter 5. These changes will be discussed and explained in this
chapter.

8.1.1 Modified creating signal

The tests that were done before were rather short, for the communication tests longer tests needed

to be performed. The creating signal block was trimmed down to just include the ramp signal and the
steady reference signal. The ramp signal was modified to go up and down between the values of 100

and 900. The steady reference signal was just copied from the previous program.

0-1024

T Sending Val.
oz 0-1024
— R
WIEE]
I32
Sended Val.
0-1024
Send. Val. (-1)
0-1024 2
izt Stop
TF
Loop time
asg——
I3

Figure 48: Modified ramp signal

In this test, the number of samples that were taken was 600000. In the first case, if the value is
lower than 100 it will just count up with 1. If the value is higher than 900 it will count down. If it is
higher than 100 and lower than 900 it will check the two previous values. If it was counting up it will
still count up and if it was counting down it will still count down.

This ensures that the correct amount samples is counted.

8.1.2 Modified XBee send

For this VI there where almost no changes. Except the case that there is no possibility to send more
than 1023. When the value is higher it will automatically send 1023. If it is less than 1023 it just sends
the created signal.

Actuator signal

1023

Figure 49: Modified XBee send

8.1.3 Modified saving
For testing the communication there was more interest in knowing which was the sending frame,
receiving frame and the checksum.

Sending frame file path (String)

IIEE

E [# .F‘u.fh
3 =

Receiving frame

EEE*' at i ‘%H‘

Checksum ok or not

2]
=5

i||[izT
H
k

=14

'

Figure 50: Modified saving code

!ﬂn
idd

8.2 First tests

For the first tests a simple ramp test is performed in order to see if the communication works

correctly. The results are show in Figure 51 and Figure 52, these results were the best of the tests

that were done.

600

500

400

300

Decimal Val.

200

100

Figure 51: Communication test B

1000
800
s
Z 600
(3]
£
(S
[
S 400
200
0
I~ M o0 N o
O T OOMm o m
NN 00 0O
D I o B B R B |

Figure 52: Communication test D

1977
2023

2069

Communication Test B

e Rec. Val.

O™ O W<t MmN o
O 0
N AN AN OO OO MmO o

Sequece(x 100ms)

91
210
229

4

8

0

2

4

6

e Send. Val

Ramp Communication Test D

2115

2161
2207
2253
2299
2345
2391

2437
2483
2529
2575
2621
2667
2713

Sequence(x 100ms)

e Sending == Receiving

2759

2805
2851

2897

2943
2989
3035

/

3081

3127
3173
3219

3265

54

From the first graph it is clear there is a starting error in the beginning of the test. Every time the
communication starts there are a couple of strange receiving values. After that the correct values
come in, but at a latency.

The second problem that can be noticed is these peaks that are actually zeroes that are being
received by the XBee antenna. These zeroes also seem to be periodic, from every test that was
carried out these zeroes came back at a periodic cycle. This could be credited towards a fault in
reading the frame, but this needs to be researched further in order to get a clear conclusion.

From these graphs the conclusion can be made that the latency is going to be a problem in
controlling the plant. The latency depends on the starting error and every time a wrong frame value
is read the latency gets bigger. We can derive the next formula from this conclusion:

Latency = Starting error + amount of wrong frames

Equation 1: formula to calculate the latency

This means that when the communication cycle runs for a long time, the latency will get worse over
time. This will have severe consequences for the controlling aspect of the system. As the latency will
get so big that it becomes impossible for the Pl controller to effectively control the system.

8.3 Buffer error

To understand where this starting error comes from, a closer look was taken at the received data in
the beginning. At first it was thought that these values were random, but after a few tests and upon
further inspection it became clear what the problem was.

These values were not random at all, they were the values that were dropped or read wrong in the
previous test. This meant that the myRIO would hold these values in a buffer and does not clear this
upon starting a new test. This is something that can be solved easily with the VISA clear function in
LabVIEW.

% ASRLIZINSTR =~
=
01003 corerol |
Wi
Rederence valueld 1023) 01023 3
l hae i K
|l =
|
] ._ I
92—
1003 *H— —___jp—
023 e— >4
- S | . I

7.’: 'l!

T PID guns Ii" 5‘<'|

| 1023
L m Converzion 20 90 from O 150.0v
10 0-10v, the range for the myRio,

VISA resource in JF=a ,..i VISA resource out
CLE
B Errorout

Figure 53: VISA clear function in LabVIEW

This function has one input and two outputs. The VISA resource in specifies the VISA resource to
open and VISA recourse out is simply a copy of the resource used as an input. Error out contains
information about an error that may occur.

8.4 Lost packages
There are a couple of things that can be the cause of this problem. To solve this problem , the cause
needed to be more clear.

From the first tests it was clear that these wrong frames were periodic. Upon further inspection is
also became clear that these frames were missing the data and checksum. In the next loop no frame
was received and after that the myRIO is getting the frame that was wrong or not received entirely.

First of all this wrong frames are at a specific time and are periodic. The frame that the myRio
receives is missing the data and the checksum. The loop after the fault there is no frame and after
that the myRIO continues with the next value. An example is given in Table 1

Previous rec. Val. Current Rec. Frame

8101001111 0100 09D2
9| 01001111 0100
10
0 | 0100 1111 0100 OBDO
11 | 01001111 0100 OCCF

Table 1: example of missing frame

There are a couple of possibilities for the problem. There can be a problem with the baud rate, frame
length and the loop time in LabVIEW. Maybe more characteristics will affect this problem but these
are the ones that are researched in this paper.

To check if it relies on the loop time in LabVIEW, A simple way is to just change the time of the wait
function. This quick change proved that there were no changes, frame were stilling being read
wrong. Figure 54 and Figure 55 shows the results of two test with different loop times. Of course
more tests were done but were not included here because they all showed the same results.

1000
900
800
700
600
500
400
300
200
100

Value sending / receiving

Commucation test 65 ms looptime

MO MNDDA MO NDDET NN NN O N OO NSNS0
NS d 00O MmO NS NOODWOMOWWIMANOOOWOS Fd0WNANONS 00 WMo <
NN VWO ANOMIMMNODOANISIILN~NIIDOANTST OMNIOOE MO ST OO MmN O o

A A A AT A AN AN AN ANANANOOOONNN ST TSN NN NN

Sequence (samples(x 65ms))

e Send. Val. e==Rec. Val.

Figure 54: Communication test 65 ms looptime

57

Communication test 100 ms looptime

1000
900
800
700
600
500
400
300
200
100

Value sending / receiving

173

345

517

689

861
1033
1205
1377
1549
1721
1893
2065
2237
2409
2581
2753
2925
3097
3269
3441
3613

3785
3957
4129

Sequence (samples(x 100ms))

== Send. Val.

Figure 55: Communication test 100 ms looptime

e Rec. Val.

4301

4473

4645

4817

4989

5161
5333
5505
5677
5849

58

The Second possibility was a change in frame length. This needed to be done in the LabVIEW code as
well as in the Arduino code. Instead of only sending data to the Arduino, the myRIO is sending now
also the sequence number so it can always be checked which frame was read wrong or lost entirely.
Again after a couple of tests there was no change in receiving the wrong frames. These graphs looked
the same as the ones in Figure 54 and Figure 55 so these were also not included here.

The last option was that the clocks were not in sync. Therefore the baud rate needed to be changed
so that the periodic nature of these wrong frames would change, and we could record this data. The
serial communication of the myRIO and Arduino were set to 9600 as standard, this value was
changed to 4800 and 19200 and a couple of communication tests were done. The wrong frames still
kept coming in at the same intervals, so this was not the solution after all.

After many more failed attempts at trying to find the solution something remarkable was noticed
while reviewing the data. When constantly sending the same value, no frames were read wrong, no
matter how long the test was carried out.

The only time the frames were read wrong was when the hexadecimal value “0A” was sent via the
XBee. This is the hexadecimal number for 10, but is also found in the numbers 266, 522 and 778. This
would explain why the lost packages seemed periodic because the nature of the tests had always
been a ramp.

To test this further we plugged both antennas directly into the computer and tried to send a frame
with the data byte “0A”. Via the XCTU software console it could be checked what the antennas sent
and receive. The frame got sent correctly from one XBee to the other XBee. From this we could
deduct that the antennas were not the problem.

The next step towards finding the solution is to check the LabVIEW program. In order to investigate
this further it needs to be known how LabVIEW converts the data into values. To visualise this the
VISA read function is changed to a String subset function.

SR S
"'R" %

Figure 56: Example VISA read to String subset function

In Figure 56 the situation before and after the change is shown. The string subset function takes in
this example the first byte out of the frame. This changes how the LabVIEW program reads the data,
but this did not make a difference for the dropped frames.

8.5 Modifying the XBee receive VI

There were some problems with the 0A and the receiving VI doesn’t check if the checksum is ok. At
this point it does not matter if the frame is correct of not, the program will use it anyway. Every time

there was a problem with the OA the checksum was also not correct. So these two problems can be
solved at the same time.

The thought process to improve the controlling part is when there is a fault in the checksum, the
myRIO is going to use the previous frame and use that data to control the system. All the changes are
in the receive VL. In this paragraph, the changes are explained to the XBee receive VI.

Faults
Zfaults
BE=T) I S B 7 4 o, S -

“IFLTER
oH

Previous frame Data MSE Mew frame

labc [* abc
b Data LSE e

Figure 57: Changes to XBee receive VI

The first two changes are saving the faults and saving the previous frame. Every time a frame gets
lost or interrupted and the previous frame gets sent, it will count up with one.

The red circle in Figure 57 is shown in detail in Figure 58.

|If the checksum is false the previous frame will be used. |

¢ fa:ultsi

ihizs M VISA resource name 2
I3l
VISA resource name A
/0
WIZAE
Iy

error in (no error) 2

error in (no error)

Previous frame

[abe
LGecL]

Figure 58: True case of the checksum check

There is a case structure in the file with a true and false case. If the checksum is correct it will carry
out the true case. This will do the same as the other receive Xbee VI discussed in chapter 5.3.1.

The false case means that the checksum isn’t correct and the previous frame need to get used.

Not only the previous frame will get used but the buffer will get cleared. It is also interesting to save
the total number of frames that are lost. The rest of it will be the same as the previous receiving VI

discussed in chapter 5.3.1.

2 faults

[If the checksum is false the previous frame will be used. |

L]
VISA re:

[False 't

SOUMCE N@mMe

VISR,
Wizl

[EEE]
| CLR |

Lz [T

error in (no error)

= o
=

Checksum True/False

TF

Recent frame

Previous frame

labc |

Fll=I—1132)
Fram byte 4 to
Checksum

]

mt O
mt O

VISA resource name 2

TZA=)

10

error in (no error) 2

T]
= o
=

Faults

ng value

Figure 59: False case structure of the checksum check

9 Comparative system tests after solving the problems
Finding the problem for the frame lost every time there was a OA in the data, was not
successful.

But solving the problems was not an issue. The difference between the value you want and
the receiving value is very small after solving the buffer error and the frame lost.

In the two tests below the sending value is the reference signal. The Pl will control the
sending value depended on the received value. Both PI controllers are configured with the
same parameters. In the two examples they are not getting to their maximum value.

Every test is done with a loop time of 100 ms. So one sequence is equal to 100ms. The setup
of the test was like in Figure 14 and Figure 15 earlier in this paper.

Pl test (0,1/0,001)

1200
1000
ﬁSOO
o
=
S 600
S
70400
>
200
0
ONN T 4 0N AN OOWOUMONSE JdT0N ANOOOVUMONSS 00NN n O
DO OO0V RNINNMNOVDOVUOUNOL NI ITIT T OO N AN NN A A A A
AN N TN ON0OOODO A AN NMST N OMNOODO A NONMSTS WM OIS 0O
= A A A AN AN AN AN AN AN NN NN
Sequence(x 100ms)
e Sending value === Receiving val.
Figure 60: Test before optimisation
Pl test (0,1/0,001) after communication optimisation
1200
1000
)
0800
-
S 600
s
= 400
>
200
0
ON<ST 9 0N AN OO WOUMONNSET Td0ONLANOLVMONSS TN AN OO N O
A OO OO0 INNNENNOVCOVOUINULINSSITSETT oM AN oA oo
AANN TN ONO0ONDO A ANNMSTTWN ONOONDO T AN MST N OIS 0D
™ A AN AN AN AN AN NN NN
Sequence(x 100ms)

e Sending val. e=m=Receiving val.

Figure 61: Test after optimisation

62

To test the difference between these two graphs, the deviation was taken between sending
and receiving. Because of not reaching the maximum, the first 800 samples were taken. For
the test before the communication the average deviation was 34,54. AT the second test the
average deviation was 5,23. This is respectfully 3.58% and 0.51%.

9.1 Test after increasing the input voltage

To reach the maximum of the piezo electric actuator, the voltage between the emitter and collector
was increased to 10.4 V from 10 V. To find out how the maximum voltage could be sent over the
actuator, the option steady reference was chosen to create the signal. The myRIO sends a value of
1023 to the Arduino and after that the voltage over the emitter and collector was increased slowly
until 150V. The results are shown in Figure 62 below.

Pl test after communication with voltage increase

1200
1000
)
~ 800
o
-
o 600
9]
=]
< 400
>
200
0
O VL AN TFTO O NN OLOVUANWOWTST OO NI O N OO S O WwWANOIT O O N 0 <
cCO~NIN <M AHO0O~NOSS N AHOOON O S N AN AN O IN MmN O OO O WI"mMmAN
NN <N O OMNOODODO A ANANOMS W ~ 00 OO O I AN N TN OO0 O
D I o B B I T I I IO o | AN AN AN AN AN AN ANANANANAN

Yol
o
[ee]
i
)

Sequence(x 100ms

e Sending val. e=Receiving val.

Figure 62: Pl test after optimisation with voltage increase

63

This test shows very promising results because there is not much delay. Furthermore the
plant that is being used for this test is delicate and not optimized.

The deviation for this test was also very promising because the average deviation is 0.44.
This percentage is the deviation of the total value(1023). The average deviation is bigger
around the maximum value of the system. This deviation error is shown in Figure 63.

Error

Percentage of total

Sequence(x 100ms)

Figure 63: Deviation error between sending and received value

64

10 Conclusion

As stated in the first chapter of this paper, the main goal was to create a wireless control loop with a
Pl controller, sensor and end effector. As also discussed in the previous chapter, this was successful.
We of course did not stop at just the implementation. Some problems were encountered such as
package losses and latency. These are characteristic to wireless systems but it was deemed necessary
to further research these aspects in order to determine the validity of using wireless networks in a
control structure.

During the communication tests more problems were found with the wireless transmission of the
data. The latency problem was fixed relatively easily by clearing the buffer before starting the
communication but the package loss problem was not solved so easily. A lot of tests and solutions
were tried but often without success. In the end we were still unsuccessful in finding the cause of this
problem but at least a solution was found. By implementing the package loss filter discussed in a
previous chapter, this was no longer an issue and further tests could be done.

With the communication problems solved, new tests with the Pl controller could be carried out.
Something that immediately became clear was that these communication errors caused a lot of
interference with the controlling aspect of our setup. Without the package losses the controller did
not have to react so harshly and the end result was a much cleaner and accurate control signal.

Overall we can conclude that the implementation of the Pl was successful, however there are some
things to take into account. There are a few problems inherent to the wireless transmission of data.
For instance this should only be used with non-critical systems. Also for systems that require real
time control, the response time of the wireless systems is just too slow. This could be possible by
using the real-time programming way with LabVIEW but this remains to be tested.

11 Future work

One of the things that need to be researched is why the frames with “0A” data bytes get lost. There
is a possibility that this is a programming error but a closer look needs to be taken.

It might also be interesting to do more long distance tests as well as trying to control multiple plants.
Maybe a change in controlling algorithm might be significant to research, or at least get better
control parameters for the Pl controller.

And finally, trying to convert the current LabVIEW programs to real-time LabVIEW programs. We
think this could be of great value, and improve the system even more.

This project was based more around an ideal Pl controller in a wireless network. It will also be
interesting to put in some external interferences and research the changes this causes to the control
loop.

12 References

Abrahams, S. (2018). Creation of a Wireless Networked Control System using XBee antennae and
LabView. Opgehaald van Limo:
http://depot.lias.be.kuleuven.ezproxy.kuleuven.be/delivery/DeliveryManagerServlet?dps_pi
d=1E10802480

Digi international. (2017). XBee/XBee-PRO S1 802.15.4 (Legacy).

DIGI International Inc. (2018, November). XCTU user manual. Opgehaald van Digi:
https://www.digi.com/resources/documentation/digidocs/pdfs/90001458-13.pdf

Doering, E. (2016). NImyRIO Project Essentials Guide.
Harris, M. H. (2010). Getting Started with XBee RF Modules.

Jimblom. (sd). Serial communication. Opgehaald van Sparkfun:
https://learn.sparkfun.com/tutorials/serial-communication/all

K Smriti Rao, R. M. (2014). Comparative study of P, Pl and PID controller for speed control of VSI-fed
induction motor. Opgehaald van ijedr.org: https://www.ijedr.org/papers/IJEDR1402230.pdf

National Instruments Corporation. (2010, September). twiki.cern.ch. Opgehaald van CERN:
https://twiki.cern.ch/twiki/pub/Main/IntroductionToLabview/Labview RealTime_Module_-
_basic.pdf

Park, P., Ergen, S. C., Fischione, C., Lu, C., & Johansson, K. H. (2017, December 06). Wireless network
design for control systems : A survey. Opgehaald van Limo: https://ieeexplore-ieee-
org.kuleuven.ezproxy.kuleuven.be/document/8166737/authors#authors

Appendices

The following graphs represent the tests that were done at the very beginning, with the experimental
setup and without a Pl controller.

Step respone (No Pl controller)
400

350

300

250

200

150

100

Value sending / receiving

50

AT NO MO OOANNOWO AN OMOWAOAONLWMO dFNNOMWLWO NN N O o N
A A A AN AN ANOONON T NDNDN O O ONMNNINGOGOOGDOWOO O

100

Sequence (x 100ms)

== Sending 0-1023) === Measering (0-1023)

Step response open loop
1200

1000

800

600

400

Value sending / receiving

200

1 4 7 1013161922 2528 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Sequence (smaples(x 100ms))

== Sending (0-1023) === Measering (0-1023)

68

vz6T 74
8€8¢C 9601
7sLe 8901
9997 ovoy
085 zTov
V6T v86¢€
80vC 956€
(444 876€
9€Cc 006€
oste 7L8¢
v90¢ v8e
8L61 918€
cosl — 88L€
08T 7 o e 09L€
el s = S zeLE
VEL 3§ e voLE
o 8VST X< o] 9/9¢
o 9rT 9 S £
o 9 = 8v9¢€
= 9UET 5 —
c S s 079¢€
) 06Cl & w 3 z6se
o voeT o S v
o 8TTT 5 S vose
z€0t 7 > Jese
9v6 _ < 805¢
098 9 08ve
889 veve
209 96€€
91§ 89¢€¢
0S¥y ovee
s CTEE
8G¢C 12143
Ut 9sz€
98 1443
— 0 00z¢g
o o o o o o o o o o o o o o
o o o o o o o o o o o o
o~ o [ee] (o] < o~ [o\] o 0 (o] < o~
Ll i i i

Suini@2a4 / Suipuas anjep Sulnl@294 / Sulpuas sanjep

69

Sequence (x 100ms)

e sending == receiving

The following graphs represent the tests that were done with the experimental setup and with a
configured PI controller. See the graph titles for more details. When information is written in
brackets this means the Pl settings (K/ Ti/ Td)

Behavior test with Pl (1/0,01/0)

1200
oo
& 1000
>
(O]
(8]
CIJ800
—
[eTs}
£ 600
©
o
» 400
(O]
>
©
£ 200
0
O M OV O AN ASTNOMNUOVOANLWOW AT NOMUOWOANLWOO ASTN~NOMOWOO
NNOAdASYT OO AMINOVDONITNDIATOOAMNIMNONINODAT OO
< T TN D NN W OO ONNNNNOOOLWOGDOGDODOOOOOOOO ™ = A «nN
R T o B o B B B O R IO B |
Time interval (10ms)
e sending == receiving
Bad PI controller
1200
1000
o0
£
2
g 800
(9]
S
~
2 600
-
[=
b
o 400
=
(L
>
200
0
O VU ANOW T O VNSO OVOUNOWOWTOOUNOS O OUNOO S O OVONOS O WOWN 0
CON N TN A OO0~ O N HdHOOON O TN ANOOODMNOWINMNMANOO O WWLmMmAN
SHANN <N O OMNOODDO A ANANMSTWM OMNNNDO A NN TN O~ 0O
™ A A AN AN AN AN AN NN NN

Sequence (10ms)

e Sending == Receiving

Pl settings 1

1200

1000

o o o
o o o
(] © <

Suini@daa / Buipuas anjep

o
o
o~

1£44
8€8¢
(47X 4
999¢
08s¢
veve
80v¢
[44°4
9€¢CC
0ST¢
¥790¢
861
681
908T
0cLT
ve9T
81ST
(44"
9LET
06¢T
v0cT
8TIT
ceot
976
098
vLL
889
09
919
(03y%
1443
8G¢
(44"
98

Sequence (x 100ms)

e Sending == Receiving

Pl settings 2

1200

o
o
o
—

o o o o
o o o o
0 O < ~N

Suini@dal / Suipuas anjep

1444
8€8¢
(47X 4
999¢
08s¢
veve
80v¢
eee
9€cCC
0ST¢
¥90¢
861
681
908T
ocLT
7€e9T
81ST
[l
9LET
06ct
v0cT
8TTT
ce0t
976
098
vLL
889
09
919
oey
1443
85¢
(44"
98

Sequence (x 100ms)

e Sending == Receiving

71

Pl controller ramp function

1200000

800000
600000
400000
200000

o
o
o
o
o
o
—

8uini@da4 / Suipuas anjep

LE6T
8178¢
6G/¢C
049¢
185¢
[45144
€ove
1454
§cee
9€T¢
Lv0T
8G6T
6981
08.T
1691
091
€14t
vevt
SEET
174
LSTT
8901
6.6
068
108
(474
€29
vES
E14%
9G¢
L9¢
8.1
68

Sequence (x 100ms)

e Sending e |\leasering

Closed loop with filter 1

1200

1000

o o o
o o o
0 O <

Suini@dad / Suipuas anjep

200

14474
8€8C
(47X 4
999¢
08¢
174
80%¢
ceee
9€cCC
0ST¢C
790¢
861
68T
908T
0cLT
€91
81ST
[
91
06¢T
v0¢T
8TT1
[430) "
976
098
vLL
889
<09
919
(0154
1443
85¢
[44)
98

Sequence (x 100ms)

e Sending === Receiving

72

Closed loop with filter 2

1200

1000

o o o o
o o o o
(] (] < N

Suini@das / Suipuas anjep

4474
8€8¢C
(47X 4
999¢
08s¢
149744
80v¢
(444
9€cCcC
0ST¢C
¥790¢
861
68T
9081
ocLT
€91
8vST
(44"
9LET
06¢T
v0cCT
8TITT
[430) %
976
098
vLL
889
09
919
(0157
4743
85¢
(44"

98

Sequence (x 100ms)

e Sending == Receiving

Closed loop with filter 3

1200

1000

800

IRV

400

200

0v6¢
968¢
CcLLe
889¢
09¢
0¢se
9EvC
(4514
89¢¢C
8T¢C
00T¢
910¢
[439)
8181
9.1
0891
9651
[45)"
8T
vreT
09¢1
9/TT
60T
800T
1443
or8
9GL
[4A°)
889
70S
ocy
9€¢
(44
891
8

Sequence (x 100ms)

e Sending e Receiving

73

Closed loop (0,200/0,001/0) and filter

1200

1000

Suini@daa / Buipuas anjep

2414
8€8C
(47X 4
999¢
08s¢
145144
807¢
(444
9€¢c
0ST¢
¥90¢
861
681
908T
ocLT
Vet
ST
(44"
9LET
06¢T
v0cT
8TITT
[430)%
9176
098
vLL
889
09
919
(0134
1443
85¢
(44"
98

Sequence (x 100ms)

e Sending == Receiving

74

These are Pl controller tests but instead of a ramp function, sinus functions are used as the input
signal.

value sending / receving

Value sending / receiving

1200000

1000000

800000

600000

400000

200000

1200000

1000000

800000

600000

400000

200000

89
178
267
356
445

89
178
267
356
445

534
623
712
801
890
979
1068
1157
1246
1335

534

623

712

801

890

979
1068
1157
1246
1335
1424
1513
1602
1691
1780
1869
1958
2047
2136
2225
2314
2403
2492

Pl controller sinus function

Sequence

1424
1513
= 1602

—_

X

1691

00ms)

e Sending e |\leasuring

1780
1869
1958
2047

Pl test with sinius function

A N

Sequence (x 100ms))

== Sending (0-1023)

\

\

\

|

e |\|easuring (0-1023)

i

2136
2225
2314
2403
2492

2581
2670
2759
2848
2937

2581
2670
2759
2848
2937

75

These graphs represent tests that were done with the best Pl parameters that were found. Without
the lost samples filter.

Pl test
1200000
80 1000000
=
7] —
S 800000
g
2 600000
£
C
& 400000
Q
=
£ 200000
0
OO0~ OIS ONANTdTONDON O NN TdIO DN ONETOMOAN OO 0N
CONLOUINTETMOM AN TdATOOONOINTNHNANTdONDOVOINTOMHOAN—TIOONOONLLYS M
A NN TN OMNOWOWOODO A AN MSTN OOMNDIONOAANNMSTS WM O~
™ A AN AN AN AN AN AN AN NN
Sequence(x 100ms)
== Sending value(0-1023) == [\|easuring value (0-1023)
Pl ramp test
1200000
ap 1000000
C
=
Y 800000
o
~
2 600000
£
C
3
400000
=
(T
= 200000
0
OO0~ OIS ON AN dO OO ONETM AN TN O INS MO O O 0N
CO™N O N OMON OO OINETMO AN dO0O0O0VOVUINTMHM AN TdIOOOON~NNNS M
A NN <N OMNOWOWOOO AN M N OWOUNODOOTOATANNMNSSEWONOOO
™ A A A A AN AN AN AN AN AN AN NN NN

Sequence(x 100ms)

== Sending (0-1023) === Measuring (0-1023)

76

Value sending / receiving

1200000

1000000

800000

600000

400000

200000

89
178
267
356
445

Pl test ramp function

534
623
712
801
890
979
1068

~
wn
—
—

== Sending (0-1023)

O NN AN o O) 0
N AN O 00 wwn g
NM <IN O O 0O O
L B e B B B B o B e R B e B)

Sequence(x 100ms)

e |easuring (0-1023)

2136
2225
2314
2403
2492

2581
2670
2759
28438
2937

77

Pl tests but at different loop times. To see what effect this has on the lost frames.

Time 10 ms

1200

1000

—

o o o
o o o
0 o <

Suini@dal / Buipuas anjep

200

ov6C
968¢
cLLT
889¢
09¢
0¢sce
9eve
CSEC
89¢¢C
¥81¢
00T¢
910¢
[43)
8181
voLT
0891
96ST
[4%)"
8l
vreET
09¢T
9LTT
60T
8001
1449
08
9sL
[4A°)
889
0S
ocy
9ee
[474
89T
8

Sequence(x 10ms)

e Sending == Receiving

Time 10 ms test2

1200

1000

o o o
o o o
0 © <

8uini@a4 / Suipuas anjep

o
o
~N

¢S6¢
048¢
88/L¢
90L¢
29t
se
09¥%¢
8L¢EC
96¢C¢C
14144
CETC
0S0¢
8961
9881
08T
[44A>
ov9T
8GST
9LVT
V6ET
[4%)
oect
5149
9901
786
06
0¢8
8€L
999
LS
(4514
Oty
8ce
Elg4
9T
8

Sequence(x 10ms)

e Sending == Receiving

78

Time 65ms

1200

o o o o o
o o o o o
m 0 O < N

8uini@2a4 / Buipuas anjep

[41°r4
T¢8e
0€LC
6€9¢
815¢
LSYT
99¢€¢C
SlLee
8T¢
€60¢
¢00¢
1161
0¢81
6¢LT
8€91
LVST
9svT
S9€T
744"
€811
60T
T00T
0T6
618
8¢L
LE9
I
SSv
9¢
€LC
81
16

Sequence(x 65ms)

e Sending == Receiving

Time 65 ms test2

1200

—
o o o o o
o o o o o
w 0 © < ~N

8uinl@a4 / Suipuas anjep

(4114
T8t
0€Le
6€9¢
81S¢
LSVC
99¢€¢
STA44
8T¢
€60¢
00¢
1161
0¢81
6¢LT
8€91
LyST
9SvT
S9€T
vt
€811
60T
T00T
016
618
8¢L
L€9
Elg
SSv
9¢
€LC
81
16

Sequence(x 65ms)

e Sending == Receiving

79

Time 15ms

1200

o o o o o
o o o o o
m o0 o < (o)

8uini@2a4 / Suipuas anjep

v1i6c
(07414
9Lt
e9¢
8€S¢
144744
0s€¢C
9G¢¢C
9T¢
890¢
vL6T
0881
98.LT
69T
86ST
70ST
0TVt
9T¢eT
[444}
8¢TT
veot
(0149
98
SL
899
¥9s
0Ly
9LE
8¢
881
6

Sequence(x 15ms)

== Sending == Receiving

Time 15 ms test 2

1200

1000

o o o
o o o
o0 o <

8uinl@2a4 / Buipuas anjep

o
o
~N

v16¢
0¢8¢e
9Lt
(4314
8€S¢
4474
0s€c
9§¢¢C
9T¢
890¢
vL61
088T
98/.1
[43:)
86ST
0ST
0TvL
9T¢l
[444"
8¢T1
veoT
o6
98
SL
899
9s
(7A74
9LE
8¢
88T
6

Sequence(x 15ms)

e Sending == Receiving

80

More step tests to see how fast the Pl controller reacts.

Value sending / receiving

Value sending / receiving

1200000

1000000

800000

600000

400000

200000

1200000

1000000

800000

600000

400000

200000

0

Pl test multiple step tests

O OO0 0000000000000 O00DO000D000O0O0O0O0O0 00O oo
N O ANNOATNOMOAOANMOOATHNOMUOVIONLLOO AN O MO
T A AN NN OON T ITETNDNDWN OO O ONNNOGDOGDOWOOO O
Sequence(x 100ms)

e Sending == \easering

Pl test step response
O LN TO O N ITO ONXOTO OV NSO ONOT O OVONK T O O AN
THEH NN TN O ONMNOOOODOODOO A AN ANMMS N O W00 o O
R B e IO TR O O R O B AR e O TR R O IR O |

Sequence(x 100ms)

e Sending == Receiving

81

These graphs represent the tests that were done when the lost package filter was first implemented.

The control signal is inverted so that it becomes easier to see on the graph, otherwise it would
overlap with the receiving curve.

filter test 1 (fail)
1200

iy
0 o
o o
o o

Value sending / receiving / control
(2]
o
o

400
200
0
C oo™~V NANTdODDONOINTNMANTODNDONLOINTETNAN dO O QNS
O™~ OIN<OAN—TODINOINONOANTOND0ONTONOHOANTIO DTN M
AANN <N OMNO0O0OOO A ANmM n O O 00 NO T NN <D OIS0
o A A A A A AN NN AN ANANANANNNN

Sequence(x 100ms)

e Sending e Receiving e Control

Filter test 2 (fail)
1200

=
(0] o
o o
o o

Value sending / receiving / control
(o]
o
o

400
200
0
CQONUOVUWLTNANATONONVOINITNANAODNDONOINITONNAOQ 0N
ONLOUNITNANATOAIRNOINTNAATONOVONEMNANAONWONILWOI M
A NMNSTNON®DONO N M in © © 0V NO A NMNTFIFTNONDID
A A A A A A A A A AN NNNNNNNNNN

Sequence(x 100ms)

e Sending == Receiving e Control

82

New control parameters had to be tested because the lost package filter changes the characteristics
of the system.

Filter test (P1 0,1/0,001)

1200

Juny
00 o
o o
o o

Value sending / receiving / control
[e2)
o
o

400
200
0
OO0~V OO ANTITONDONN ONTNAN O OO OINTNOAN O O 0
O~ LO NSO AN OO OO AN OO T NN OO0 S oM
AN <IN O N0 O = N O O 00O T AN < N OISO
o AN AN AN NN NN NN
Sequence(x 100ms)
e Sending === Receiving === Control
Filter test (P1 0,3/0,001)
1200

[y
o
o
o

(0]
o
o

B
o
o

S

Value sending / receiving / control
N (o))
o o
o o

89
178
267
356
445
534
623
712
801
890
979
1068
1157
1246
1335
1424
1513
1602
1691
1780
1869
1958
2047
2136
2225
2314
2403
2492
2581
2670
2759
2848
2937

Sequence(x 100ms)

e Sending e Receiving === Control

83

Filter test (P1 0,2/0,001)

1200

o o o o o
o o o o o
m o0 (] < ~N

|043u02 / uIAl9D3Y / Buipuas anjep

1444
8€8¢
(47X 4
999¢
08s¢
veve
807¢
eee
9€cCC
0ST¢
¥90¢
861
681
908T
ocLT
7e9T
81ST
[l
9LET
06ct
v0¢T
8TTT
Ce0t
976
098
vLL
889
09
919
oey
1443
85¢
(44"
98

Sequence(x 100ms)

e Sending e Receiving === Control

84

These graphs represent the communication tests that were carried out with the use of the
experimental setup. These tests were done by only using the myRIO device and the Arduino Uno
microcontroller. In the tables the amount of samples in between a lost sample is recorded.

1200
& 1000
>
[J]
9 800
<
2 600
£
c
& 400
Q
=
< 200
0
"REEELE
package lost
Sample time | Difference
278 278
535 257
792 257

211
241
271

Communication test (10ms)

L e O e O e O e O e B B |
O M W AN LW 0 H < I~ O
N Mmoo < T n N wn o

Sequence(x 10ms

e sending == receiving

631
661
691
721
751
781
811
841
871
901
931
961
991
1021

85

Communication ramp test

1200
1000
800
600

400

Value sending / receiving

200

o o e e
O O N WO = < SO M
N N < < TN N n 0o

31

61

91
121
151
181
211
241
271
301
331
661
691
721
751
781
811
841
871
901
931
961
991

1021

Sequence(x 100ms

e sending == receiving

package lost

Sample time | Difference

12 12
269 257
526 257

783 257

These graphs represent the amount of samples in between lost packages, the periodic nature of the

problem can be clearly seen on these graphs.

Samples between lost packages

400
350
300
250
200
150
100

50

0Om/100ms

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
amount of lost packages

Samples between lost packages

400
350
300
250
200
150
100

50

0m/65 ms

1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23

Amount of lost packages

87

Samples between lost packages

Samples between lost packages

350

300

250

200

150

100

50

400
350
300
250
200
150
100

50

5m/100ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Amount of lost packages

5m/65ms

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23

Amount of lost packages

88

In this graph the LabVIEW program would send packages as fast as it could, the times you see here is
the time it takes for LabVIEW to construct a frame. The average time needed was around 20 ms.

Different loop times

250
200

150

Loop time (ms)

100 s = = - =
[] = al l“ m m ¥ =
n EE n -
50 J e & K
n - .
ol 'l. sl Sl
0 1000 2000 3000 4000 5000 6000 7000

Amount of samples

89

This is the global LabVIEW program, this is only to give a clearer view than in chapter 5.

v ASRLIANSTR [

ff ° 192 ! o sana |
0-150w ﬁ

I Creating a signal between 0-1500
[Drata:

R:f:(:mevulu:(l]-ﬂ]z]J S=ndln9 Frame 1.-Sequence{cycle number)

2-Reference (0-1023)
3.-Send converted value (0-1023)
|- |£ 4 -Receiving value{l-1023)

s -H

om-
- Si idal
ey e _
Z Squane 0-1500 - _'| >
3: Steady ref ﬁj'l _:!
LH - T D
— PIC gains Ref out
J Conwersion 1o qo from 0-15000v
i to 0-10v, the range for the myRic.
— o
[
WISA Refnum out] _ I j
0-1023w receive I I—
=
0-1023w receive 2 IEF‘B‘_) —> 0-150v receive =
. '
=l -]
E.] —'ﬁbg— error out =
5]
Checksum = QK7
| b3
@ Receiving frame | I.i
]

