Master's Thesis Engineering Technology

2018-2019

Characterizing bulk and interface behavior of encapsulants within photovoltaic laminates.

Busra Merve Sesli

Master of Electromechanical Engineering Technology

Introduction

Although solar energy represents only a small portion of the total energy use, their deployment and use are increasing very fast. Applications as building and vehicle integrated PV require require a long lifetime. Continue amelioration of the reliability is thus essential.

Figure 2-3: pareto of field failures, delamination of encapsulant around the metallization of the cell [1].

Methods

Mechanical behaviour of the encapsulant Samples of encapsulant are subjected to dynamic tests.

Objectives

The object of this master thesis is to characterize the parameters which contribute to the adhesion between the cell metallization and the encapsulant.

> It has been shown that the parameters that contribute to adhesion strength are [2] :

- The morphology of the adherend surface.
- The mechanical properties of the adhesive.

The examination of the interface to determine the influence of :

- Process parameters
- Different encapsulants

Delamination of the encapsulant has been identified as one of the most prevalent failure modes that affect the reliability of the PV-modules. It is found that delamination occur more profound around the metallization of the cell [1].

Encapsulant properties

- **Frequency sweeps:** The different encapsulants are subjected to sinusoidal stress and the deformation is measured. This measurement is performed at different temperatures
- **Master curve :** The frequency sweeps at different temperatures are shifted to a reference temperature by a shift factor.
- **Shift factor:** this factor is determined by fitting the different shift factors to the Arrhenius model. This a iterative process.

Figure 11: Master curves of the three most commonly used encapsulants : EVA, Borealis, Arkema

Morphology of the metallization

Si-cel

The Si-cell with a fully metallization coating is studied with a confocal laser scanning microscope.

Interface of the laminate

Figure 4: Components of a photovoltaic module [1]

PV-laminates are made in small scale (3cm x 3 cm)

custom made with full area metallization instead of

Figure 5: small scale PV-laminate

Master Curve Arkema • 110 • 120 • 130 • 140

• 150

• 160

EVA

A

Interface & morphology

The laminates are processed at 140 °C and

are shown in the table below. The average

roughness of the Ag- and Al- metallization

was also be determined on the SEM image

160 °C. The SEM image of the cross sections

Figure 6: SEM images of the different laminates

Different metal contacts (adherend surface)

Prof. dr. ir. Michaël Daenen Supervisors / Cosupervisors: Ing. Philippe Nivelle

