Master's Thesis Engineering Technology

2018-2019

Waste water recovery at Suomen Kerta

Siemen Steegmans

Master of Energy Engineering Technology

Problem	Case description
Suomen Kerta is a candle factory located in Riihimäki, Finland. At the factory they have to contend with an enormous amount of waste water that is created after cooling candles and that is currently discharging all the waste water into the river. The purpose of this thesis is to reduce the water and the energy use in the production process of the candles.	 A) Investigation if Seasonal Thermal Energy Storage (STES) is a possibility to improve the energy efficiency of the process by storing the hot waste water seasonally. Eventually battery storage will be investigated based on the amount of energy from the waste water of the production process. B) A closed hydraulic circuit is designed to use the waste water from machine a in machine b and to do this as energy efficient as possible by dimensioning the right centrifugal pumps.

Case A

STES when the machines are not operating simultaneously

Case B

Closed hydraulic circuit when the machines are operating

(Figure 1)

simultaneously (Figure 2)

	Rotary Molding Machine STES Figure 1: Pr	Annual waste water 6 000 m ³ Twater = 30 °C Swamp		Rotary Molding Machine Swamp	nual waste water 000 m ³ vater = 30 °C	Tap wa Twater Cooling Drums	ter = 4 °C Annual waste water 11 000 m ³ T _{water} = 12 °C		
rigure 1. Trinciple Scheme case A				rigule 2. Filiciple Scheme case D					
Underground thermal energy storage systems	Aquifer thermal energy storage:	 water at high temperatures required (40 – 70°C), high installation costs. 	Closed hydraulic circuit to reuse the waste water from machine A (Rotary Molding Machine) in machine B (Cooling Drums) as energy efficient as possible. For proper functioning, the system must be well balanced.						
	Borehole thermal energy storage:	 water at high temperatures required (70 – 110 °C), high installation costs. 	Technical components used to balance the circuit:						
Above ground thermal energy storage systems	Pit thermal energy storage: Tank thermal energy storage:	 too cost intensive infrastructure to reach high efficiency at our low temperature application. too cost intensive infrastructure to reach high efficiency at our low temperature application. 	High efficient electrically powered centrifugal	Filters to filter the impurities in the waste	Three-way valve connects and mixes water	Flow regulator maintains a constant flow	Machine B pulverizes liquid candle material to	Back pressure regulator maintains a	
	Earth-bermed systems:	 no earth-sheltering storages near the factory to benefit from soil's thermal property to store waste water. 	circulating the water through the	water (candle wax), which is	machine a (30 °C) with tap water (4	within a necessary band.	raw candle material using cooling drums.	pressure upstream.	
	Salt hydrate technology:	 not user-friendly enough, required high water temperatures (52 °C for salt), too expensive design. 	system.	detrimental to the cooling water.	°C) to realize cooling water (12 °C) used in the cooling drums.				
Organic Ranking Cycle (ORC systems): • useable for power production from low to medium temperature heat sources in the range of 80 to 350 °C.			Each component and each pipe has their hydraulic pressure loss. Total hydraulic loss of the design is = 273 kPa or 27,8 m. The losses can be compensated using 2 centrifugal pumps connected in parallel and will have an annual electricity cost of \in 412.77.						

Domestic heat recovery:

- too many impurities in waste water,too high installation cost,
- too complex to implement in current domestic water circuit.

Ability to save 1 643 m³ of waste water each year if the machines are running 1 060 hours at the same time, which corresponds to \in 7 361,14.

Conclusion

STES systems will not offer a possible solution (temperature waste water only (30 °C) and the infrastructure for these systems will be too costly. ORC installation will not have a sufficiently high efficiency due to the too low temperature of the waste water. A closed hydraulic system, on the other hand, is cheaper and easier to install and can save up to 1 643 m³ water/year. This will result in water savings, money savings and less environmental pollution since the polluted water is not discharged into the river anymore.

Supervisors / Cosupervisors: Prof. DEXTERS Annick: UHasselt association KULeuven Dr. ing. PENTTILÄ Katariina: HAMK Häme University of Applied Sciences In collaboration with Suomen Kerta Oy, Riihimäki factory

HAMEEN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES

