Hierarchical texturing of injection mould materials by femtosecond laser processing

Sander Vanhemel

Master of Electromechanical Engineering Technology

Introduction

Nature offers many examples of functional surfaces. The Lotus leaf, for instance, is well known for its water-repellent properties due to its hierarchical surface structures (Figure 1). The surface is **superhydrophobic** (Figure 2). Ultrashort pulsed laser enables the fabrication of superhydrophobic topographies on metals, by different approaches: **direct laser writing (DLW)** and **Laser-Induced Periodic Surface Structures (LIPSS)** [2]. Applying these textures on mould materials which can significantly improve the cycle time of the injection moulding process is poorly investigated. Therefore, there is a need for a comparative study.

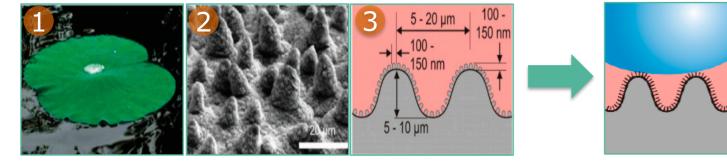
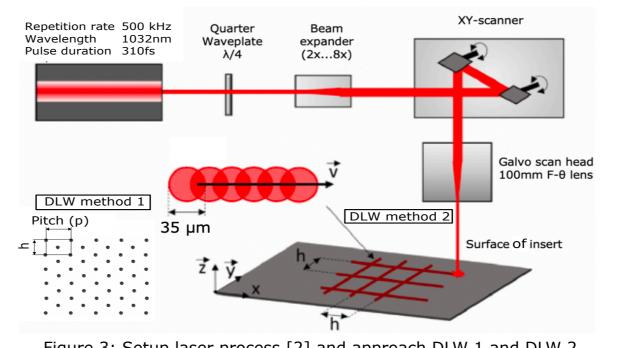


Figure 1: (1) Lotus leaf, (2) hierarchical surface topography

Figure 2: schematic view of water


Methodology

LIPSS processing was used to produce a regular 1D submicron grooves:

- **LIPSS** (lines hatched from each other): fluence 8.9-1123.2 mJ/cm² , scanning speed 100-1000 mm/s, hatch 1-10 μ m.

Inspired by natural hydrophobic surfaces, a dual-scale topography was created by using two methods:

- DLW method 1 (Figure 3): fluence 731.0 mJ/cm², scanning speed (v) 100-1500 mm/s, hatch (h) 1.5 μm, 5-35 repetitions.
- DLW method 2 (Figure 3):, fluence 8.9-1123.2 mJ/cm², 10.10³-3.10⁶ pulses per spot (PPS).

Materials:

- Aluminium-Zinc alloy (3.4365)
- (Beryllium-free) copper alloy (AMPCOLOY 940)
- Hot work tool steel (1.2343)

Lotus leaf, (3) dimensions Lotus leaf [1]

drop in Cassie-Baxter state [1]

Objectives

The main objective is to fabricate similar surface structures on **common mould materials** for injection moulding processes. A **single-step femtosecond laser process** (Figure 3) will be optimised to generate two sorts of geometries:

- Single-scale (submicron) grooves i.e. LIPSS with no ablation.
- Dual-scale topography i.e. Lotus leaf (micro pillars + submicron grooves).

Results

Based on the results from **LIPSS**, more roughness is obtained for the mould materials when the effective number of pulses per line (N) increases (Figure 4).

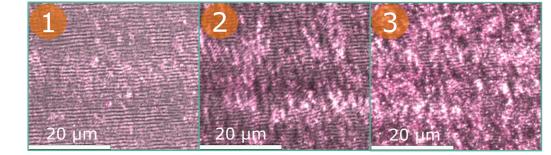


Figure 4: Alicona G5 images of (1) N = 48, (2) N = 96, (3), N = 192 Also, the periodicity from the **LIPSS** are in the same range for all the materials (Figure 5 and Table 1).

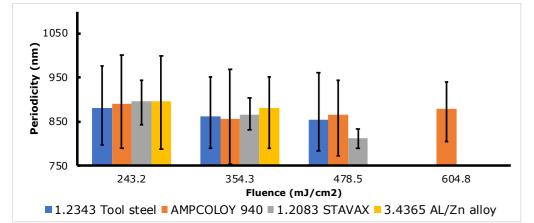


Figure 5: Evolution of periodicity with the fluence, LIPSS method Table 1: Range of parameters to fabricate LIPSS with corresponding periodicities

Material	Al/Zn alloy	Copper alloy	Hot work tool steel	Stainless tool steel
Fluence (mJ/cm ²)	80.2-150.1	150.1-730.5	80.2-354.3	80.2-354.3
Effective pulses per unit area (-)	481-192	48-962	48-96	48-96
Periodicity (nm)	798-906	794-925	799-901	787-901

Similar LIPSS are found at low fluences (Table 2).

Table 2: Parameters to obtain similar LIPSS with corresponding periodicities

Material	Al/Zn alloy	Copper alloy	Hot work tool steel	Stainless tool steel
Fluence (mJ/cm ²)	150.1	478.5	354.3	234.2
Scanning speed (mm/s)	1000	500	1000	1000
Hatch (µm)	10	10	5	5
Periodicity (nm)	830	865	861	853

The results of **DLW method 1** show that increasing the number of pulses per line (N) leads to deeper and sharper grooves (Figure 6). Also, the pillars are getting more well-defined and **LIPSS** are appearing on the pillars.

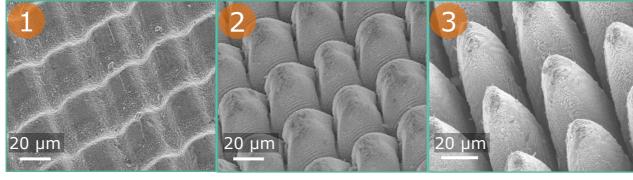


Figure 6: DLW method 1, SEM images of (1) N = 4000, (2) N = 28000, (3) N = 210000

In term of ablation, both steels observe a same behaviour. Aluminium has highest removal rate, this leads to the lowest number of pulses per line for a specific depth (Figure 7 and Table 3).

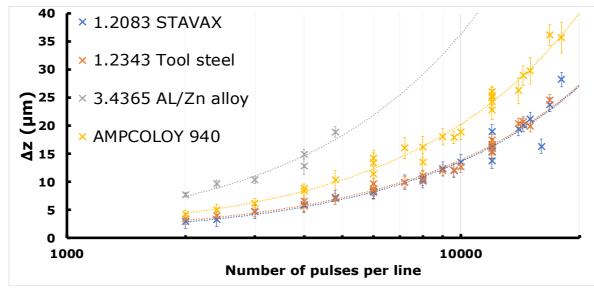


Figure 7: Evolution of depth of the grooves with the number of pulses per line, in DLW 1 method

Table 3: Parameters for similar dual scale topography with DLW method 1 $% \left(1\right) =\left(1\right) \left(1\right) \left($

Material	Al/Zn	Copper	Hot work	Stainless
	alloy	alloy	tool steel	tool steel
Number of pulses per line	5342	7348	10839	11060

Figure 3: Setup laser process [2] and approach DLW 1 and DLW 2 method

• Stainless tool steel (1.2083)

Characterization techniques:

- Focus-variation microscope
 Alicona G5
- Scanning electron microscope

 Jeol JCM-7000 Neoscope
 Benchtop

DLW method 2 shows that a rise in pulses per spot (PPS) leads to deeper hole and larger diameters. Also, **LIPSS** were found in all of the holes (Figure 8).

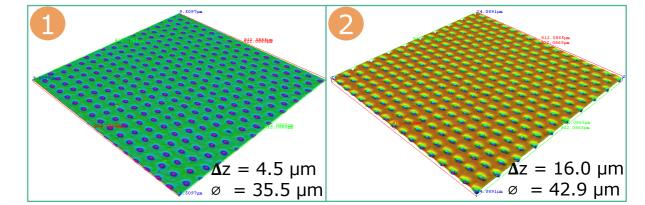


Figure 8: DLW 2 method, (1) Fluence = 478.5 mJ/cm^2 , PPS = 100.10^3 ; (2) Fluence = 478.5 mJ/cm^2 , PPS = 750.10^3

The results from the **DLW method 2** show that **similar holes** with the same depth are **obtainable** (Figure 9). Also, the lowest amount of energy can be achieved for Al/Zn alloy in order to get a similar depth (Table 4).

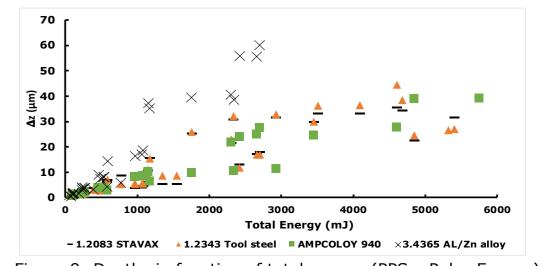


Figure 9: Depths in function of total energy (PPS x Pulse Energy), in DLW 2 method

Table 4: Parameters for obtaining diameter 41 μm of and depth of 32 μm

Material	Al/Zn alloy	Copper alloy	Hot work tool steel	Stainless tool steel
Fluence (mJ/cm ²)	478.5	478.5	1123.2	1123.2
PPS (10 ³)	221	1092	610	500
Diameter (µm)	37.30	41.19	44.30	45.14
Depth (µm)	32.00	32.00	31.57	31.57

Conclusion

Mimicking the Lotus leaf with the DLW 1 and DLW 2 method has been achieved on the mould materials with a small deviation. Also, producing 1D submicron grooves (LIPSS) are achieved with same roughness and a small deviation on the periodicity. **LIPSS**:

• The similar LIPSS have a periodicity 852±23 nm.

DLW 1 method:

- A depth is fixed at 15 μm which leads to different number of pulses for each mould material (5342 – 10839).

DLW 2 method:

- Similar holes were found with a diameter of 41±4 μm and depth of 32±0.5 $\mu m.$

Future research

- Replication efficiency via injection moulding will be analysed to investigate the influences of different thermal conductivities of the mould materials.
- Tool wear of the mould inserts will be investigated for a certain number of injection cycles.

References

[1] F. A. Müller, C. Kunz, and S. Gräf, "Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures," Materials, vol. 9, no. 6, Jun. 2016.

[2] J.-M. Romano, M. Gulcur, A. Garcia-Giron, E. Martinez-Solanas, B. R. Whiteside, and S. S. Dimov, "Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures," *Appl. Surf. Sci.*, vol. 476, pp. 850–860, May 2019.

Supervisors / Cosupervisors: Pro

Professor Stefan DimovJean-Michel RomanoProfessor Albert Van BaelTim Evens

