Supervisors / Cosupervisors:

Sander Vanhemel

Hierarchical texturing of injection mould materials by femtosecond laser processing

Professor Stefan Dimov Jean-Michel Romano Professor Albert Van Bael Tim Evens

Master of Electromechanical Engineering Technology

Conclusion

References

Results

Objectives

Nature offers many examples of functional surfaces. The Lotus leaf, for instance, is well known for its water-repellent properties due to its hierarchical surface structures (Figure 1). The surface is **superhydrophobic** (Figure 2). Ultrashort pulsed laser enables the fabrication of superhydrophobic topographies on metals, by different approaches: **direct laser writing (DLW)** and **Laser-Induced Periodic Surface Structures (LIPSS)** [2]. Applying these textures on mould materials which can significantly improve the cycle time of the injection moulding process is poorly investigated. Therefore, there is a need for a comparative study.

> [1] F. A. Müller, C. Kunz, and S. Gräf, "Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures," Materials, vol. 9, no. 6, Jun. 2016.

[2] J.-M. Romano, M. Gulcur, A. Garcia-Giron, E. Martinez-Solanas, B. R. Whiteside, and S. S. Dimov, "Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures," *Appl. Surf. Sci.*, vol. 476, pp. 850–860, May 2019.

Figure 1: (1) Lotus leaf, (2) hierarchical surface topography

Lotus leaf, (3) dimensions Lotus leaf [1]

The main objective is to fabricate similar surface structures on **common mould materials** for injection moulding processes. A **single-step femtosecond laser process** (Figure 3) will be optimised to generate two sorts of geometries:

- Single-scale (submicron) grooves i.e. LIPSS with no ablation.
- Dual-scale topography i.e. Lotus leaf (micro pillars + submicron grooves).

Future research

- Replication efficiency via injection moulding will be analysed to investigate the influences of different thermal conductivities of the mould materials.
- Tool wear of the mould inserts will be investigated for a certain number of injection cycles.

LIPSS processing was used to produce a regular 1D submicron grooves:

Also, the periodicity from the **LIPSS** are in the same range for all the materials (Figure 5 and Table 1). Figure 4: Alicona G5 images of (1) N = 48, (2) N = 96, (3), N = 192

• **LIPSS** (lines hatched from each other): fluence 8.9-1123.2 mJ/cm2 , scanning speed 100-1000 mm/s, hatch 1-10 µm.

Inspired by natural hydrophobic surfaces, a dual-scale topography was created by using two methods:

- **DLW method 1** (Figure 3): fluence 731.0 mJ/cm2 , scanning speed (v) 100-1500 mm/s, hatch (h) 1.5 µm, 5-35 repetitions.
- DLW method 2 (Figure 3):, fluence 8.9-1123.2 mJ/cm² , 10.10³-3.10⁶ pulses per spot (PPS).

Surface of insert

Galvo scan head
100mm F-0 lens

Figure 3: Setup laser process [2] and approach DLW 1 and DLW 2 method

In term of ablation, both steels observe a same behaviour. Aluminium has highest removal rate, this leads to the lowest number of pulses per line for a specific depth (Figure 7 and Table 3).

Based on the results from **LIPSS**, more roughness is obtained for the mould materials when the effective number of pulses per line (N) increases (Figure 4).

Mimicking the Lotus leaf with the DLW 1 and DLW 2 method has been achieved on the mould materials with a small deviation. Also, producing 1D submicron grooves (LIPSS) are achieved with same roughness and a small deviation on the periodicity. **LIPSS**:

• The similar LIPSS have a periodicity 852±23 nm.

DLW 1 method:

• A depth is fixed at 15 µm which leads to different number of pulses for each mould material (5342 – 10839).

DLW 2 method:

• Similar holes were found with a diameter of 41 ± 4 µm and depth of 32 ± 0.5 µm.

Materials:

- Aluminium-Zinc alloy (3.4365)
- (Beryllium-free) copper alloy (AMPCOLOY 940)
- Hot work tool steel (1.2343)

Characterization techniques:

- Focus-variation microscope - Alicona G5
- Scanning electron microscope - Jeol JCM-7000 Neoscope Benchtop

Figure 2: schematic view of water

Introduction Methodology

drop in Cassie-Baxter state [1]

Figure 7: Evolution of depth of the grooves with the number of pulses per line, in DLW 1 method

Table 2: Parameters to obtain similar LIPSS with corresponding periodicities

Similar **LIPSS** are found at low fluences (Table 2).

Figure 5: Evolution of periodicity with the fluence, LIPSS method Table 1: Range of parameters to fabricate LIPSS with corresponding periodicities

Table 3: Parameters for similar dual scale topography with DLW method 1

The results from the **DLW method 2** show that **similar holes** with the same depth are **obtainable** (Figure 9). Also, the lowest amount of energy can be achieved for Al/Zn alloy in order to get a similar depth (Table 4).

Figure 9: Depths in function of total energy (PPS x Pulse Energy), in DLW 2 method

Table 4: Parameters for obtaining diameter 41 μ m of and depth of 32 μ m

Figure 8: DLW 2 method, (1) Fluence = 478.5 mJ/cm², PPS = 100.10^{3} ; (2) Fluence = 478.5 mJ/cm², PPS = 750.10^3

Pitch (p)

DLW method 1

 $35 \mu m$

ے

DLW method 2

The results of **DLW method 1** show that increasing the number of pulses per line (N) leads to deeper and sharper grooves (Figure 6). Also, the pillars are getting more well-defined and **LIPSS** are appearing on the pillars.

DLW method 2 shows that a rise in pulses per spot (PPS) leads to deeper hole and larger diameters. Also, **LIPSS** were found in all of the holes (Figure 8).

Figure 6: DLW method 1, SEM images of (1) $N = 4000$, (2) $N = 28000$, $(3) N = 210000$