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A method is proposed to analyse the e�ect of the algorithmic parameters and instance10

characteristics on the quality of a Pareto front produced by a multi-objective algorithm.

�is method is applied to a variable neighborhood tabu search that is used to solve a

multi-objective microzone-based vehicle routing problem.

Our method can accommodate many di�erent performance indices for Pareto fronts and

uses the Promethee multicriteria decision analysis method to select the best con�guration15

based on the characteristics of the instance being solved.

Keywords: Multi-criteria decision making, Promethee, GDSS.

1 Introduction

Researchers and practitioners in the �eld of evolutionary algorithms (EA) and heuristic optimization

in general acknowledge that an appropriate structural con�guration of an algorithm, as well as the20

se�ing of good parameter values is essential for an EA to perform well. �is process is o�en called

tuning. Yet, con�guring an EA and se�ing its parameters in an optimal way is an optimization problem

in itself, and is generally considered to be a signi�cant challenge. Most algorithms can be con�gured in

many di�erent ways and/or feature a large number of parameters, each with many di�erent possible
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se�ings. Moreover, limited general knowledge has been obtained on the e�ect of EA parameters and25

con�guration on the performance of the algorithm (Eiben and Smit, 2011a; Eiben and Smit, 2011b).

If tuning a single-objective algorithm is a non-trivial task, con�guring the structure and se�ing

the parameters of a multi-objective algorithm is even more challenging. Whereas a single-objective

algorithm has the advantage that the solutions it �nds under di�erent parameter con�gurations can be

trivially compared using their objective function, the same cannot be said of a multi-objective algorithm.30

Multi-objective algorithms produce a Pareto set of non-dominated solutions, and many di�erent ways

exist to assess the quality of such a Pareto front. As a result of this complexity, a relatively large

number of papers have appeared on the subject of tuning single-objective algorithms, but contributions

describing methods to set the parameters of multi-objective algorithms are few and far between.

As mentioned, there is no straightforward way to compare the quality of multiple Pareto sets, as35

there are di�erent properties a Pareto set should have in order to be considered “good”. A large number

of papers have been dedicated to measuring the quality of a Pareto set, and several performance indices

have been proposed as a result. Okabe et al. (2003) provides an overview of various performance indices

(PIs) and categorises them in three classes: cardinality-based PIs, accuracy PIs, and distribution and

spread PIs. �e class of cardinality-based indices, in which the number of solutions in the Pareto set and40

dominance of solutions from one Pareto set over an other Pareto set are bundled. Accuracy indices that

measure how close a Pareto set is to a theoretical Pareto front, or how much of the area of the solution

space is dominated by a Pareto set. And �nally, distribution and spread indices, that measure how well

and evenly spread the solutions of a Pareto set are in the solution space.

An algorithm might not work well in the same con�guration on all instances. In other words, the45

instance that is being solved might have a signi�cant impact on the ideal parameter se�ings, producing

Pareto sets that perform di�erently when measured on the various performance indices used. For

example, large instances might require a large mutation rate to achieve an acceptable accuracy, whereas

small instances might need a small mutation rate to achieve this. �erefore, not only the parameters

of the algorithm should be studied, but also the properties of the instances, as well as the interaction50

between both.

In this paper, we propose a novel approach to optimize the performance of a multi-objective opti-

mization approach, that determines the best parameter se�ings and con�guration for di�erent instance

characteristics. It is is illustrated by applying it to the multi-objective variable neighborhood tabu search

proposed in J. Janssens et al. (2015).55

Our method makes use of a full-factorial experiment, in which the algorithm is executed for multiple
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levels of the algorithm parameters on instances with varying characteristics. �e experiment returns a

Pareto set for each combination of parameter se�ings and instance. Several indices (we use three, i.e.,

one for each of the classes, in our experiments) are used to measure the quality of the Pareto sets.

Our method uses a well-known multi-criteria method, i.e., the Promethee method of (Brans, Vincke,60

et al., 1986), to compare the Pareto sets obtained using di�erent parameter se�ings. �e Promethee

method returns a net �ow for each of the Pareto sets. Statistical analysis (analysis of variance (ANOVA))

is then used to measure the in�uence of the parameter se�ings and their interaction e�ects with instance

properties on this net �ow. �e results and conclusions from that analysis are compared with the results

obtained by the Promethee GDSS Procedure for veri�cation purposes.65

�is paper is organized as follows. Section 2 reviews the literature on parameter tuning. Section 3

introduces metrics for the evaluation of the quality of Pareto sets. Section 4 reports on the Promethee

method, more speci�cally the implementation which is used in this research. Section 5 brie�y introduces

how the concept of a Group Decision Support System can be integrated into our solution method.

Section 6 applies the complete procedure to an application on vehicle routing with courier companies.70

Results are analysed in Section 7. �e paper ends with some conclusions in Section 9.

2 Literature

While the early developers of EAs either chose parameter values at hoc or at random, or copied them

from other articles, gradually some interest has grown in how to choose the right parameters in order to

obtain good performance of a developed optimization algorithm. Hooker (1995) argues that researchers75

should focus on scienti�c testing rather than competitive testing. Esquivel et al. (2002) proposed that

evolutionary computation techniques are very able to build well-delineated Pareto fronts in multi-

objective optimization problems and applied it to the job shop scheduling problem. �ey stressed that

good parameter se�ings can enhance the behavior of the evolutionary algorithm. �is would lead to a

sound understanding of why certain algorithms work be�er than others, rather than merely listing80

algorithms and their computational times. In Eiben and Smit (2011b), this leads to two perspectives of

parameter tuning: con�guring an evolutionary algorithm by choosing parameter values that optimise

its performance, and analysing an evolutionary algorithm by studying how its performance depends on

its parameter values. In their paper, a conceptual framework for parameter tuning is presented. �ey

also classify tuning methods.85

CALIBRE is proposed by Adenso-Diaz and Laguna (2006), and a�empts to �nd the best values for up
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to �ve search parameters associated with a procedure under study. It performs a systematic search for

parameter values within speci�ed ranges employing a measure of performance as a guiding mechanism.

CALIBRE makes use of Taguchi’s fractional factorial experimental designs, coupled with a local search

procedure.90

Instead of estimating the performance of an evolutionary algorithm for multiple parameter values or

ranges of values, REVAC estimates the expected performance when parameter values are chosen from

a probability density distribution with maximised Shannon entropy (Nannen and Eiben, 2007). �is

method is only appropriate for quantitative parameters (Eiben and Smit, 2011b).

Racing is a technique that tests a set of con�gurations in parallel, quickly discards those con�gurations95

that are clearly inferior and concentrates the computational e�ort on di�erentiating among the be�er

con�gurations (Maron and Moore, 1997).

F-Race is a racing algorithm that starts by considering a number of candidate parameter se�ings

and eliminates inferior ones as soon as enough statistical evidence arises against them (Balaprakash

et al., 2007). An iterated F-Race is proposed in Bira�ari et al. (2010), and an implementation in R is100

presented in López-Ibáñez, Dubois-Lacoste, et al. (2016). López-Ibáñez and Stützle (2010) apply I/F-Race

on a bi-objective TSP using both the hypervolume and the epsilon measures.

Sequential parameter optimization (SPO) (Bartz-Beielstein, Parsopoulos, et al., 2004; Bartz-Beielstein

and Preuss, 2006) is an iterative model based approach that entails two phases. First a primary model is

built, which is a�erwards evaluated and improved in a second step, that is executed iteratively.105

Many of the aforementioned methods only deal with single-objective optimization methods, but

could possibly be extended to cope with multi-objective optimisation problems. Furthermore, most of

the methods mentioned before deal with the solutions and their objective values directly rather than

with quality of the Pareto set. �e method proposed in this paper deals with indices that measure

the quality of the Pareto set. To the best of our knowledge, only López-Ibáñez and Stützle (2010) and110

G. K. Janssens and Pangilinan (2010) took into account quality indices before.

Many real-world optimisation problems are multi-objective by nature and have objectives that are in

con�ict. Di�erent strategies can be used to solve such optimization problems. Traditionally, popular

strategies have combined all objectives in a single function, hence rendering the problem a single-

objective one. �ese strategies are more commonly known as aggregating functions of scalarizing115

strategies. �ey are easy to implement, but several disadvantages have been noted: (1) these methods

may miss some Pareto-optimal solutions, (2) they are in�uenced by the shape of the search spaces,

and (3) they are time consuming because they should be performed in a series of di�erent runs (with
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di�erent weights for the various objective functions) in order to obtain a set of Pareto-optimal solutions

(Das and Dennis, 1997). Some scalarizing strategies are the weighted sum, epsilon-constraint, and goal120

a�ainment methods. On the other hand, decision making is applied to a set of solutions, generated

by an optimization run. �e optimal solution in this case is the Pareto-optimal set. However, the size

of the Pareto-optimal set may be in�nite in some instances and may be impossible to �nd even when

it only consists of a �nite number of solutions. In such cases, the preferred result is a subset of the

Pareto-optimal set, called a Pareto set approximation. To generate such a Pareto set approximation,125

evolutionary algorithms have been named as natural candidates, since they naturally maintain a set of

solutions throughout the search (Bosman and �ierens, 2003).

Zitzler, Laumanns, et al. (2004) stress the quality assessments of Pareto set approximations. In single-

objective optimisation, quality can be de�ned by means of the objective function. While comparing

several solutions in the presence of multiple optimisation criteria, the concept of Pareto dominance130

can be used, but mostly leads to solutions being incomparable, i.e. neither of them dominates the

others. It becomes more complicated when sets of solutions are compared as one Pareto set completely

dominating another is rare.

Deb (2001) states that there are two orthogonal goals for any multi-objective optimisation algorithm:

(1) to identify solutions as close as possible to the true Pareto-optimal set and (2) to identify a diverse set135

of solutions distributed evenly across the entire Pareto-optimal front. �is has led to the development

of several metrics that characterise either closeness to the Pareto-optimal front, or diversity of the

solutions, or both.

In our experiment, we select one measure from each of the classes, proposed by Okabe et al. (2003).

�e Set coverage metric is a cardinality-based metric which computes the relative spread of solutions140

between two non-dominated sets (Zitzler, 1999). �e hypervolume metric is an accuracy metric which

measures both closeness and diversity (Zitzler, 1999). Scho�’s spacing metric belongs to the class of

distribution and spread metrics (Scho�, 1995). It measures the diversity across the Pareto surface. Most

measures are unary quality measures, i.e., the measure assigns to each Pareto set approximation a single

number that re�ects a certain quality aspect.145

5



3 Metrics for the evaluation of the quality of Pareto sets

3.1 Set Coverage

Coverage (C), �rst proposed in Zitzler and �iele (1998), is used to compare two sets to each other in

terms of dominance, and falls in the class of cardinality based performance indices. A solution vector a

is said to cover solution vector b if a weakly
1

dominates b, notated as a � b. �e coverage of set S1150

over set S2 is given by:

C(S1, S2) = |{s2 ∈ S2;∃s1 ∈ S1 : s1 � s2}| /|S2 | (1)

�e reader should note that C(S1, S2) does not have to be equal to 1 − C(S2, S1). �e metric value

C(S1, S2) = 1 means all members of S2 are weakly dominated by S1. On the other hand, C(S1, S2) = 0

means that no member of S2 is weakly dominated by S1.

Set coverage is a pairwise metric. �e coverage of each Pareto front versus all other fronts is calculated.155

�e metric values need to be aggregated into a single number, for example by averaging. �e larger the

value of the coverage metric, the be�er the Pareto front.

3.2 Hypervolume

As no optimal Pareto set is available, evaluating the quality of the obtained Pareto sets on accuracy can

only be done by comparing them to each other. For each Pareto set we calculate the objective value160

space covered by the set of non-dominated solution vectors, refered to as hypervolume (see Zitzler and

�iele, 1998). �e algorithm used in this paper to calculate the hypervolume for a Pareto set has been

proposed by Fonseca et al. (2006). An example of a hyperarea, a special case of the hypervolume in two

dimensions, is given in Fig. 1. �e larger the hypervolume, the be�er the Pareto set.

�e hypervolume metric is interesting because it is a unary metric which is sensitive both to the165

overall advancement of the non-dominated set and to the distribution of individual points across the

set. �e placement of the reference point r is critical and determines the sense and the magnitude of

the hypervolume. Problems may appear if objectives have dissimilar scales or if some objectives are not

bounded.

1
A solution weakly dominates another if it is as least as good with respect to all objectives and be�er with respect to at least

one objective.
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Figure 1: �e hypervolume indicator in a two-objective case

3.3 Spacing170

To evaluate the distribution of the solution vectors in the retrieved Pareto sets, spacing (SP) is used. It

was introduced by Scho� (1995). Scho�’s metric measures the diversity of a non-dominated set with

a relative distance measure between consecutive solutions in the obtained non-dominated set S . It is

calculated as

SP(S) =

√√√
1

|S − 1|

|S |∑
i=1

(di − ¯d)2 (2)

di = min

sk ∈S∧sk,si

M∑
m=1

| fm(si ) − fm(sk )| (3)

wherem is the number of objective functions and
¯d is the average of di . �e distance measure is the175

minimum value of the sum of the absolute di�erence in objective function values between solution si

and any other solution sk in the obtained non-dominated set. In Okabe et al. (2003) it is pointed out

that this measure should be used with some caution, as a large gap between solution vectors can bias

the results. A value of zero means that all solution vectors are equally spaced. Scho�’s metric should be

as small as possible.180
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4 The Promethee method

�e Promethee method, introduced by Brans, Vincke, et al. (1986), is used in this paper to create a

ranking of the alternative combinations of se�ings for the algorithmic parameters. Promethee is an

outranking method in multiple-criteria decision analysis (MCDA), that originally was proposed in two

forms. Promethee I, where a partial ranking of alternatives is created, and Promethee II, where a185

complete ranking is given as output. Two main parameters can be set by the decision maker to in�uence

the behaviour of the ranking mechanism. For each criterion i , a weight πi which is a measure of relative

importance of that criterion, can be given. Next to the weight, a preference function for each criterion

needs to be chosen. Six basic types of generalised criteria have been de�ned by Brans, Vincke, et al.

(1986). For nearly all basic types of generalised criteria, additional parameters need to be de�ned such190

as an indi�erence zone and a preference zone, for which the decision maker is indi�erent or has a strict

preference for one solution over the other.

4.1 Promethee optional choices

�e three metrics used in our study correspond to the criteria in the Promethee method. Criteria may

have di�erent weights corresponding to their importance, but we have chosen to use equal weights.195

Varying these weights can favour one index over the others, but that is out of the scope of this paper,

and le� to the decision maker. For all three metrics the third criterion proposed in Brans, Vincke, et al.

(1986) has been selected. It is called the criterion with linear preference and requires one additional

parameter p.

�e preference function of action a with regard to b, P(a,b), is a function of the di�erence between200

the objective values for two alternatives a and b, f (a) and f (b), so that we can write

P(a,b) = P(f (a) − f (b)). (4)

It has to be a non-decreasing function, equal to zero for negative values of d = f (a)–f (d). In order to

give a ba�er view on the indi�erence area, Brans and Mareschal (2005) introduce a function H (d) which

is directly related to the preference function P .

H (d) =


P(a,b) if d ≥ 0

P(b,a) if d ≤ 0

(5)

When d is de�ned as d = f (a) − f (b), Eq. (6) de�nes the type 3 criterion, which is called the criterion205
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with linear preference. As long as d is lower than a value p, the preference of the decision maker

increases linearly with d . If d becomes greater than p, we have a strict preference situation.

H (d) =


|d |/p if |d | ≤ p

1 if p < |d |

(6)

p

1

0

d

H (d)

Figure 2: Linear preference and indi�erence area

4.2 Promethee algorithm

Following equation Eq. (4) a preference function value H (d) of alternative a over alternative b is

calculated for each criterion i and denoted as Pi (a,b). �e multicriteria preference index Π is de�ned as210

the weighted average over the preference functions Pi as de�ned in Eq. (6). �e multi-criteria preference

index Π is de�ned as the weighted average of the preference functions Pi as described in Eq. (7), where

the weight πi is a measure of the relative importance of criterion fi . �e Promethee rankings are

obtained by means of the concepts of �ows: an entering �ow and a leaving �ow. Both the entering �ow,

ϕ−, and the leaving �ow, ϕ+, and their resulting net �ow, ϕ, are calculated.215

�e entering �ow is the sum of all multi-criteria preference indices (Π), of one alternative over all

other alternatives in setA. For more information on the the calculation of the preference index and the

positive and negative �ows, the reader is referred to Brans and Mareschal (2005) and Brans, Vincke,

et al. (1986).

Π(a,b) =

∑k
i=1

πiPi (a,b)∑k
i=1

πi
(7)

220

ϕ−(a) =
∑
b ∈A

Π(b,a) (8)
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ϕ+(a) =
∑
b ∈A

Π(a,b) (9)

ϕ(a) = ϕ+(a) − ϕ−(a) (10)

5 The Promethee GDSS Procedure

Sections 3 and 4 o�er a methodology to evaluate Pareto fronts based on a single instance. However,

it is usually important that an algorithm performs well (and hence has a good set of parameters) for

a wide variety of instances, rather than a single one. In general no parameter se�ing is expected to225

dominate all others for all instances, in which case one is generally interested in a compromise set, that

o�ers a reasonable performance for many instances. �is problem is similar to what is called a group

decision problem. Such a problem occurs in real-life when di�erent decision makers are involved in

taking a decision, such as di�erent departments in a company, di�erent countries in an international

organization, or di�erent stakeholders in a project. To support this type of decision problem, supporting230

systems have been developed, for example to help with structuring the idea(s), the generation of

alternative options, or the voting procedures. In the context of the Promethee method, Macharis et al.

(1998) have developed a multi-criteria procedure for group decision support. �is procedure describes a

multi-step approach in which decision makers are in a room with computer support and a facilitator.

While corresponding to our problem, we face a simpler problem as the decision makers in our problem235

do not set their own criteria weights

For each instance that is examined in this paper, the metaheuristic proposed in J. Janssens et al. (2015)

is applied for the combinations of �ve se�ings for the tabu list parameter and ��een options for the

move order parameter, as explained in Section 7. �e Pareto optimal sets, retrieved from the algorithm,

are compared on three performance indices by the Promethee method. �is gives us a list of net �ows240

for each parameter combination for each instance.

�e Promethee Group Decision Support System Procedure (see Brans and Mareschal, 2005) is used

as a mechanism to retrieve an overall ranking. �is approach is intended to be used when one has to

deal with multiple decision makers, but could be utilised to �nd a global “best” parameter se�ing as

well.245

�ree phases are described in this technique, for which phase I and phase II are the generation of

the alternatives and criteria, and the individual evaluation by each decision maker (using Promethee)

respectively.

�e third phase entails the global evaluation which makes use of the individual evaluations, here the
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net �ows for each instance, as criteria. Each of them is assigned a weight, which in this paper is set250

equal to 1 for all instances. A�er that, the Promethee method is applied to this matrix of alternatives,

using the type 3 generalised criterion with strict preference p = 2.

6 The vehicle routing problem for courier companies

�e approach is illustrated by means of a vehicle routing problem for courier companies. �e geograph-

ical region for delivery is divided into small zones, called microzones. A microzone corresponds to a bin255

or container in which parcels can be dropped at arrival at the depot. To ensure stability in the planning,

the preferred assignment of microzones to vehicles is �xed in a tactical plan. When an estimate of

the workload in each microzone is available, the microzones are reassigned to the available vehicles,

with a preference for the vehicle they are assigned to, in the tactical plan. �e optimization problem,

as it appears for this application, is formulated as a tri-objective vehicle routing problem. �e three260

objectives include: (1) minimise the total transportation cost; (2) minimise the deviation from the tactical

plan; and (3) minimise the workload imbalance. An e�ective metaheuristic for generating a Pareto front

with non-dominated solutions has been formulated in J. Janssens et al. (2015). �e approximation to the

real but unknown Pareto front depends on the parameters which guide the heuristic.

�e model in J. Janssens et al. (2015) assumes that a tactical plan is given, with known work times for265

the microzones and known microzone-vehicle allocations. A set of realistic test instances is generated.

�e test instances comprise: zones that are assigned to vehicles in a tactical plan, an initial routing for

the tactical plan, a limit on the amount of work a vehicle (driver) can perform, the amount of work in

the microzones and the coordinates of the microzones in the distribution zone.

�e instances used in this paper, which can be found on http://antor.uantwerpen.be/ZVRP. For an270

overview of the naming syntax for the instances and the range of values from which the instance

properties are drawn, the reader is referred to J. Janssens et al. (2015). �e instance characteristics that

are investigated include the number of microzones, the number of clusters and the deviation from the

average workload. Rı́os-Mercado (2016) have developed a metaheuristic (GRASP) to solve a commercial

districting problem, which means to partition a set of basic units into a pre-speci�ed number of districts275

in order to minimize a measure of territory dispersion. It refers to a real application for a beverage

distribution company.
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7 Algorithmic parameter values

�e algorithm in the case study constructs a routing plan for the multi-objective VRP by iteratively

applying a multi-neighborhood tabu search heuristic to a weighted sum of the three objective functions.280

By varying the weights of the weighted sum, the tabu search heuristic is forced to explore di�erent

areas of the search space. Fundamental decisions on this type of heuristics include a decision on the

neighborhood moves to be used and in which sequence, as well as the size of the tabu list.

�e experiment investigates two parameters of the algorithm: the tabu list size and move order/move

inclusion (related to neighborhood search). �e tabu list size ranges from a size of zero elements to285

eight elements. �e parameter does not directly change the size in physical memory, but rather the

number of iterations that each element remains in the tabu list for. At every iteration, one element is

placed in the list and will remain there for a number of iterations equal to the tabu list size. �is directly

relates to the number of elements that is present in the tabu list.

�e second parameter determines the move order to be used in the variable neighborhood tabu search.290

�is move order de�nes the sequence of moves to be explored. �e decision is made to have three

consecutive moves at maximum, to keep the possible number of combinations to a manageable size. �e

move order does not necessarily comprise every move de�ned in the paper. All permutations without

repetition of moves are examined. Each move is executed until no further improvement is found. �is

means that scheduling the same move twice in a row is not bene�cial. �e choice has been made to295

exclude any repetition of the moves, to reduce the number of combinations, even though executing

some move x followed by move y followed by move x might yield a be�er result than only executing

move x followed by move y. If all moves are included, six possible combinations exist. If only two

moves are executed (one move is excluded), there are six more combinations. If only one move is used,

three combinations are possible. �is gives a total of 15 possible move orders, in comparison to the300

81 (4
3 − 1 + 4

2 − 1 + 4
1 − 1) combinations, without restriction on repeated moves. An overview of the

move orders tested in the experiment is shown in Table 1.

8 Analysis of the results

A full factorial experiment has been set up and executed, in which the algorithm described in J. Janssens

et al. (2015) is run for every possible parameter combination (nine values of the tabu list size and 15305

values of the move sequences as described in Section 7) on all instances, multiple times.

For each of the resulting Pareto fronts, the three performance indices are calculated. �e reference
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Table 1: Move order

Move order ID Order of moves

0 2-opt – swap – relocate

1 2-opt – relocate – swap

2 swap – 2-opt – relocate

3 swap – relocate – 2-opt

4 relocate – 2-opt – swap

5 relocate – swap – 2-opt

6 2-opt – swap

7 2-opt – relocate

8 swap – 2-opt

9 swap – relocate

10 relocate – 2-opt

11 relocate – swap

12 2-opt

13 swap

14 relocate

point for the hypervolume and the pairwise coverage is calculated for each instance separately. �is is

done to avoid any bias based on the instance characteristics. E.g., if one instance features microzones

that are located in close proximity, solutions for such an instance will naturally have longer driving310

distances than those for an instance in which microzones are spread out in a broad area. In such a

situation, a common reference point for the hypervolume and the pairwise coverage makes li�le sense.

On the resulting performance indices, the Promethee method is applied on a per instance per run (of

the full factorial experiment) basis. �e net �ows retrieved from Promethee are analysed statistically

with ANOVA to identify which parameters or instance characteristics have a signi�cant impact on the315

resulting net �ows.

�e statistical analysis starts by ��ing a model with up to third order interactions, which returns a

model with a reasonable �t (adjusted R2 = 0.925), but the high number of large (> 0.10) p-values makes

it clear that the model has many insigni�cant terms. Starting from this model, a stepwise regression

was performed based on the Akaike Information Criterion (AIC) to eliminate unnecessary terms. By a320

combination of stepwise regression and the removal of remaining terms with a p-value larger than 0.05,

a model with an intercept, nine signi�cant e�ect terms and six non-signi�cant e�ect terms with an

adjusted R2 = 0.928 was obtained.

�e main e�ects that are not signi�cant, but are part of a signi�cant interaction e�ect were le� in the

model. �e decision was made to only analyse main e�ects and second order interaction e�ects as no325

third-order interaction e�ects were statistically signi�cant. �e main e�ects ‘move order’ and ‘tabu list
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size’ and second order interaction e�ects ‘number of microzones:move order’, ‘number of clusters:move

order’, ‘number of clusters:tabu list size’ and ‘workload deviation:move order’ are further investigated.

�e distribution of the residuals is shown in Fig. 3. As the points in this residual plot are randomly

dispersed around the horizontal axis, the regression model is appropriate for the data.330

Figure 3: Residual plot for the ��ed model

�e Tukey HSD (Honest Signi�cant Di�erence) test for the parameter tabu list size, which is plo�ed

in Fig. 4, reveals that there is a signi�cant di�erence between tabu list size equal to eight and every

other tabu list size, and between tabu list size six and zero (the 95% con�dence interval does not contain

0). If the box plot of the tabu list size is examined, veri�cation can be made that the mean net �ow for

tabu list size eight is slightly lower than the the other mean values. �e plots of the interaction e�ect335

between tabu list size and number of clusters is shown in Fig. 5 and Fig. 6.

�e main e�ect ‘move order’ is also signi�cant. Fig. 7 demonstrates that there are large di�erences in

the net �ows obtained using the di�erent move orders.

�e move order has a signi�cant impact in several interaction e�ects. �e same three move orders are

being ranked the highest consistently. From the Tukey HSD test, it can be concluded that no signi�cant340

di�erence exists between the mean net �ow for these move orders. Move orders 4, 5 and 11 take the

highest ranking places for workload deviation, number of clusters and number of microzones (see Fig. 8,

9 and 10)
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Figure 4: Tukey HSD 95% con�dence intervals on the di�erence in net �ows for di�erent tabu list sizes

Figure 5: Interaction plot of number of clusters and tabu list size
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Figure 6: Interaction plot of tabu list size and number of clusters

Figure 7: Box plot of move order
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Figure 8: Interaction plot of number of clusters and move order

Figure 9: Interaction plot of number of microzones and move order
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Figure 10: Interaction plot of workload deviation and move order

Furthermore, move order 1 always ranks in the top 5. �e four move orders (1, 4, 5, and 11) seem

to have in common that the relocate move is directly or indirectly followed by the swap move. �e345

presence and order of the 2-opt move seems to be of less importance. Further experiments should

indicate if this e�ect is reproducible, and what is causing the 2-opt move to be of less importance to the

quality of the Pareto front. �e poorest performing move order seems to be number 13, which uses

only the swap move. No other clear trend seems to be present in the interaction plots.

�e Promethee GDSS procedure was also run on the Promethee net �ows. �e top 20 ranked350

alternatives are shown in Table 2. �e results found by the GDSS procedure are consistent with our

analysis with ANOVA. �e highest ranking move orders are 1,4,5 and 11, and tabu list sizes 0,2,4 and 6

have a slight edge on tabu list size 8. Of course this is a general ranking, and speci�c instance properties

might give a di�erent ranking as described above.

9 Conclusions355

In this paper, we have presented a methodology to study the e�ects of the algorithmic parameters of a

multi-objective algorithm on the quality of the produced Pareto fronts. Our methodology is based on

the Promethee method, a well-known multi-criteria decision making method, and allows to identify
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Table 2: Top 20 ranking net �ows for the GDSS procedure

Move order Tabu list size Promethee net �ow

11 2 0.0828

4 2 0.0821

4 0 0.0818

11 4 0.0809

4 4 0.0802

5 0 0.0799

11 0 0.0798

11 6 0.0788

4 6 0.0785

5 2 0.0785

5 4 0.0765

5 6 0.0758

11 8 0.0738

4 8 0.0723

5 8 0.0718

1 8 0.0641

1 6 0.0633

1 0 0.063

1 4 0.0624

1 2 0.061

which parameter se�ings and which instance characteristics in�uence the quality of the Pareto fronts

produced by a multi-objective algorithm. Our method works by running a statistical experiment that360

applies the multi-objective algorithm on di�erent instances and with di�erent parameter levels to

obtain a set of Pareto fronts. Performance indices for the resulting Pareto fronts are calculated and

passed to the Promethee method to retrieve a ranking per instance and per run of the experiment. �is

ranking is than analysed with ANOVA to determine which parameters or instance characteristics have

a statistically signi�cant e�ect, and what the possible interactions are. Additionally,the Promethee365

Group Decision Support System Procedure can be used to determine a global best parameter se�ing

across all instances.

As an example, we have analysed the performance of the multi-objective algorithm proposed in

J. Janssens et al. (2015). �e result of applying our methodology shows that the move order has an

important impact on the ranking of the Pareto fronts in the Promethee method. �is indicates that370

the move order is largely responsible for the quality of the Pareto front found by the algorithm. Four

instances of move order where consistently ranked in the top 5 of highest mean net �ow for the

characteristics of the test instances. �is indicates that even if the speci�cations of the instances change,

these move orders seem to deliver high quality solutions and Pareto fronts. �e swap move alone
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performs poorly in terms of Pareto front quality, and is ranked very low. No further important e�ects375

could be found by visual inspection of the interaction plots for move order and instance characteristics.

Secondly, se�ing the tabu list size to 8 has a negative impact on the quality of the Pareto front as it

results in a lower mean net �ow than the rest of the tabu list sizes.

�e methodology proposed in this paper can be applied to any multi-objective algorithm, and should

allow for a more systematic way of se�ing the parameters of such an algorithm than is commonly done.380

�e analysis of our methodology when applied to di�erent multi-objective algorithms for di�erent

problems is therefore the main line of future research.
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Zitzler, E., M. Laumanns, and S. Bleuler (2004). “A tutorial on evolutionary multiobjective optimization”.

In: Metaheuristics for multiobjective optimisation. Ed. by X. Gandibleux, M. Sevaux, K. Sörensen, and450
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