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Abstract

While the machine learning literature dedicated to fully automated reasoning algorithms is abundant, the number of methods
enabling the inference process on the basis of previously defined knowledge structures is scanter. Fuzzy Cognitive Maps (FCMs)
are recurrent neural networks that can be exploited towards this goal because of their flexibility to handle external knowledge.
However, FCMs suffer from a number of issues that range from the limited prediction horizon to the absence of theoretically sound
learning algorithms able to produce accurate predictions. In this paper we propose a neural system named Short-term Cognitive
Networks that tackle some of these limitations. In our model, used for regression and pattern completion, weights are not constricted
and may have a causal nature or not. As a second contribution, we present a nonsynaptic learning algorithm to improve the network
performance without modifying the previously defined weight matrix. Besides, we derive a stop condition to prevent the algorithm
from iterating without significantly decreasing the global simulation error.

Keywords: Short-term memory, cognitive mapping, nonsynaptic learning, modeling, simulation

1. Introduction

Fuzzy Cognitive Maps (FCMs) [16, 17] continue to grow in
popularity mainly because of their potential to deal with expert
knowledge. In these recurrent neural networks, neurons have a
specific meaning for the problem under investigation, whereas
edges denote causal relationships [6]. In a simulation context,
the reasoning is devoted to computing the system state attached
to an initial vector, which is regularly provided by the expert.
This is equivalent to computing the activation value of each de-
cision neuron from non-decision ones.

Likewise, fuzzy cognitive mapping has been used to design
more complex machine learning solutions. The development
of forecasting models for univariate / multivariate time series
[19, 26, 8] and granular cognitive classifiers [22, 23] are ex-
amples that illustrate the potential attached to this technique.
Even the Neurocomputing journal recently dedicated a special
issue [9] to relevant theoretical advances in this field. But to
what extent some contributions reported in the literature can be
considered authentic FCM solutions (as originally defined by
Kosko [16, 17]) may be questionable. For example, would it
be correct to claim that an FCM model adjusted using a data-
driven heuristic learning algorithm properly reflects real-world
causalities between any two concepts?

Generally speaking, FCMs are far from being a theoretically
robust simulation technique. The rather limited prediction hori-
zon of neurons, the absence of an accurate learning algorithm
and the ambiguous semantics of fixed points are examples of
shortcomings identified in this model. Carvalho [4] discussed
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some of these problems, but for some reason the current FCM
research remains inside the box. While some of the above-
mentioned drawbacks seem perfectly solvable, the fact is that
traditional FCMs face theoretical barriers difficult to surmount.
For example, Concepción et al. [5] introduced the contraction
theorem for FCMs which states that the activation space of a
sigmoid neuron may shrink infinitely, without any guarantee of
reaching an equilibrium point. Even if the system converges,
there is no guarantee that the discovered equilibrium attractor
leads to the lowest simulation error.

In spite of the above-mentioned issues, the cognitive map-
ping principle stands as a powerful approach to perform simu-
lations on the basis of previously defined knowledge structures.
In our research, we refer to this valuable characteristic as the
flexible reasoning. Not many machine learning techniques al-
low to directly embed knowledge into their reasoning process.
It is worth mentioning that in the flexible reasoning paradigm
the knowledge structures can be defined by experts or computed
by other algorithms. However, designing such a highly flexible,
sound simulation model under the umbrella of traditional FCMs
may become (unnecessarily) difficult. For example, what if the
experts have a clear picture of how the variables correlate, but
they are unable to confidently claim the existence of causal re-
lationships between them?

This paper brings to life the following contributions. Firstly,
we discuss some major problems affecting FCM-based models
which motivated this research. Secondly, we introduce a neu-
ral system referred to as Short-term Cognitive Networks, which
allow reasoning on the basis of previously defined knowledge
structures. In our research, these structures refer to the weight
matrix that determines the interaction among domain variables.
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Thirdly, we propose a nonsynaptic learning algorithm to reduce
the global simulation error without modifying the weight ma-
trix. This gradient-based algorithm regulates the excitation de-
gree of each neuron in each iteration. As a last contribution, we
analytically derive a stop condition to prevent the learning al-
gorithm from iterating without decreasing the global error, thus
notably increasing its efficiency.

The rest of this paper is organized as follows. Section 2 pro-
vides a concise background on traditional FCMs, whereas Sec-
tion 3 discusses the key motivations behind our proposal. Sec-
tion 4 presents our flexible reasoning model baptized as Short-
term Cognitive Networks, while Section 5 is dedicated to the
nonsynaptic learning method. Section 6 introduces the numeri-
cal simulations, and Section 7 outlines the concluding remarks
and future research avenues.

2. Fuzzy Cognitive Mapping

In a nutshell, an FCM denotes a complex network of causal
relationships among abstract concepts. Figure 1 shows an FCM
describing the complex interrelations in a simplified food chain.
The reasoning model is intuitive and fairly self-explanatory be-
cause the modeled system can be graphically visualized. It can
be seen that predators thrive when there is a lot of prey, whereas
the prey animals themselves are under pressure from the preda-
tors but can be boosted by the presence of grass. Given a set of
predators, prey and grass, the FCM can evolve in several itera-
tions. It is likely that after a sufficient number of iterations, the
network will eventually find a stable state (i.e., fixed point) in
which the system reaches a balance.

Predator Prey

Grass

−1.0

1.0
−1.0

1.0

Figure 1: FCM-based system comprised of three neuronal concepts modeling
the interrelations in a simplified food chain.

In its mathematical form, an FCM can be defined by a 4-
tuple 〈C,W,A, f (·)〉, where C = {C1, . . .CM} comprises the
variables describing the physical system, typically visualized
as nodes in the network while W denotes an M × M weight
matrix where wi j ∈ [−1, 1] encodes a causal relation of Ci upon
C j. In the graph, each weight is visualized as a labeled edge be-
tween the corresponding concepts. The interpretation of causal
weights is depicted as follows:

• wi j > 0: If activated, Ci will excite C j. More explicitly,
higher (lower) activation values of Ci in the current itera-

tion will lead to higher (lower) activation values of C j in
the following iteration;

• wi j < 0: If activated, Ai will inhibit C j. More explicitly,
lower (higher) activation values of Ci in the current itera-
tion will lead to higher (lower) activation values of C j in
the following iteration.

• wi j = 0: Ci will not influence C j. In the graphical model,
this relation is usually indicated by the absence of an edge
between the two concepts.

These statements are different from common phrases like an
increase (decrease) in one will cause an increase (decrease) in
the other. The systematic misinterpretation of causal weights
has been widely discussed by Carvalho [3]. In this paper, we
have chosen a definition that is more in line with the inference
rule attached to the neural system.

The function A : C × N → A(t)
i comprises the activation

value of the Ci concept in the tth iteration step. The initial ac-
tivation value A(0)

i can be either determined by the expert at the
beginning of the simulation process, or computed from histori-
cal data. During the reasoning process, such values are updated
using the inference rule depicted in Equation 1. In reference to
the previous paragraph, it can be seen that A(t+1)

i is defined by
the activation values of its connected concepts in the previous
iteration, not by any increase or decrease. On the other hand,
this reasoning rule treats the concepts as standard McCulloch-
Pitts neurons [20] in a causal graph, which is why FCMs are
considered (recurrent) neural systems.

A(t+1)
i = f

 M∑
j=1

w jiA
(t)
j

 , i , j (1)

A pivotal aspect of any neural reasoning model is the transfer
function f : R → I used to maintain the incoming evidence
within the activation space I, often I = [0, 1] or I = [−1, 1].
Equation 2 displays the sigmoid function, a common choice in
fuzzy cognitive modeling because of its ability to represent both
qualitative and quantitative scenarios,

f (x) =
1

1 + e−λx (2)

where λ > 0 controls the function slope. Recent studies [24, 25]
have shown that this parameter may have a significant impact
on the FCM’s dynamic behavior.

For a sufficient number of iterations T , the recurrent system
can be attracted to one of the following states:

• Fixed-point (∃tα ∈ {1, 2, . . . , (T − 1)} : A(t+1) = A(t),∀t ≥
tα): the map produces the same output after the cycle tα,
so A(tα) = A(tα+1) = A(tα+2) = · · · = A(T ).

• Limit cycle (∃tα, P ∈ {1, 2, . . . , (T−1)} : A(t+P) = A(t),∀t ≥
tα): the map produces the same output periodically after
the cycle tα, so A(tα) = A(tα+P) = A(tα+2P) = · · · = A(tα+ jP)

where tα + jP ≤ T , such that j ∈ {1, 2, . . . , (T − 1)}.
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• Chaos: the map continues to produce different state vec-
tors for successive cycles.

Typically, the meaning of an iteration is ignored when model-
ing simulation or pattern classification scenarios. In these cases,
it is desired that the system converges to a fixed point in order
to draw conclusions. When forecasting time series, however,
iterations are typically equated with the time span between two
discrete observations in a dataset. Generically speaking, fixed-
point attractors are less desirable when forecasting long-term
time series since such equilibrium points suppress the model’s
ability to forecast fluctuations.

3. Criticism and Motivation

For many years we have presented FCMs as an almost infal-
lible technique for modeling and simulating complex systems.
However, as already mentioned, FCM-based systems exhibit
serious drawbacks that may affect the simulation outcomes. In
this section, we discuss three of such issues: (1) the causation
fallacy behind existing learning algorithms, (2) the restrictions
imposed by the FCM model, and (3) the implications of unique
attractors in simulation scenarios.

According to Kosko [17], each arrow in an FCM denotes a
causal relationship that is described by a signed and bounded
weight. The causality assumption is a key aspect here, other-
wise we would be in presence of traditional associative neural
networks. But some of the most accurate learning algorithms
reported in the literature [34] [33] [29] rely on heuristic search
methods, whose results depend on the initial conditions and ran-
dom sequences. This implies that we should not claim any kind
of causation unless we establish domain-dependent constraints
beforehand to guide the search. As an alternative, we could em-
ploy Hebbian-like algorithms [30] which attempt to compute a
model with minimal deviation from a predefined initial matrix.
Although those methods could be useful in control problems,
their poor generalization capability [6] makes them unsuitable
for more challenging prediction scenarios.

Another issue with the fuzzy cognitive model is that both
causal weights and neurons’ activation values are bounded. It
can be verified that such constraints reduce the FCM predic-
tion horizon, which can be defined as the interval of activation
values that a neuron can produce.

Proof. Let Ci be a sigmoid neuron, then its activation value
in the tth iteration can be expressed as:

A(t)
i (k) =

1

1 + e−λ
(∑M

j=1 w jiA
(t−1)
j (k)

) ,∀k

where k denotes the index of the activation vector used to start
the recurrent reasoning process.

Since −1 ≤ w ji ≤ 1 and 0 ≤ A(t−1)
j (k) ≤ 1, then

min(Ci) ≤
M∑
j=1

w jiA
(t−1)
j (k) ≤ max(Ci),∀k

where

min(Ci) =

M∑
j=1

w ji(1 − sig(w ji))
2

max(Ci) =

M∑
j=1

w ji(1 + sig(w ji))
2

denote the minimal and maximal bounds, respectively, for the
raw activation values of neurons in the current iteration, before
being modified with the sigmoid transfer function. Such values
are obtained by assuming that both neurons’ activation values
and and weights have extreme values.

Moreover, since the sigmoid function f (x) is monotonically
non-decreasing, we can confidently state that:

1
1 + e−λ(min(Ci))

≤ A(t)
i (k) ≤

1
1 + e−λ(max(Ci))

,∀k.

Observe that the neuron will never reach values outside this
activation interval, which reduces its prediction horizon. For
example, let us assume that the event Ci is caused by C1 and C2
such that w1i = w2i = −1 and λ = 1, then the minimal value that
Ci can produce is 0.1192, regardless of the input to C1 and C2,
or the number of iterations. �

It is fair to mention that we can tackle this problem from dif-
ferent angles. For example, if we increase the lambda value
to 5 in the previous example, then the activation bounds will
be expanded. However, the sigmoid function will resemble the
binary activator, and again we are reducing the prediction hori-
zon. Perhaps the easiest approach to increase the prediction
ability of these models is to assume that w ji ∈ R which could
comprise a causal meaning or not.

An important choice that has to be made refers to the inter-
pretation of a node in the FCM. Intuitively, one would be in-
clined to make a one-to-one mapping between a variable and a
node. This is not the only option though. Previous research [12]
has produced successful solutions where the nodes in the FCM
are actually information granules, bundling more information
than just a bare observation in a time series. Other approaches
[27] apply machine learning to make an appropriate selection
of concepts based on data. Whatever approach has been se-
lected, simplification strategies [13] can be applied to enhance
the understandability of complex maps.

The last issue refers to the FCM convergence to a unique
fixed point, which becomes a cause for concern in prediction
problems. The existence and uniqueness of the fixed-point at-
tractor on FCM-based models is a complex problem that has
been rigorously studied in the literature [15, 11]. While these
results have been found relevant in control problems, their us-
ability in other scenarios is less evident. Being more explicit,
if the FCM converges to a unique fixed-point attractor, then the
model will produce the same state vector regardless of the ini-
tial activation vector. Nápoles et al. [21] concluded that reach-
ing a suitable tradeoff between convergence and accuracy is
not always possible, while Concepción et al. [5] analytically
proved that the feasible state space of a sigmoid FCM will al-
ways shrink after each iteration with no guarantee of conver-
gence to a fixed-point attractor.

3



The aforementioned issues lead to the hypothesis that we
can obtain lower simulation errors with an FCM-like neural
model by 1) relaxing the stringent causality assumption where
wi j ∈ [−1, 1] and 2) limiting the number of iteration step when
performing the reasoning process.

4. Short-term Cognitive Networks

In this section, we present a neural system baptized as Short-
term Cognitive Networks (STCNs) that attempts to address the
main drawbacks discussed above. More explicitly, we intend to
develop a flexible neural model devoted to scenario simulation
where the domain experts have the responsibility to design the
network architecture, while the learning algorithm is dedicated
to reducing the global simulation error without modifying the
expert knowledge. In order to make a clear distinction between
these contributions, the present section focuses on the network
architecture and reasoning, whereas the next section elaborates
on the supervised learning algorithm.

4.1. Architecture and Reasoning

In a simulation context, an STCN can be defined as a neural
network where each problem variable is denoted by a neural
processing entity, whereas weights define the relation between
variables. Hidden neurons are not allowed as the expert could
not establish a comprehensible weight matrix due to the lack of
semantics attached to these entities.

In the classical FCM formalism, the wi j weight defines the
type of causality between Ci and C j, and to what extent the
Ci event causes the C j event. But would it be possible design a
meaningful FCM-like reasoning model if we remove the causal-
ity assumption? We can definitely do so, although weights’
interpretation will definitely change. In the STCN approach,
w ji ∈ R denotes the rate of change on the conditional mean of
Ci with respect to C j, assuming that the other neurons impact-
ing Ci are fixed. Observe that this is similar to interpreting the
coefficients in a multiple regression equation.

Another important component of any neural network refers
to the mechanism used to propagate the initial information.
Equation 3 and 4 display the neural reasoning rule attached to
the proposed cognitive network,

A(t+1)
i (k) = f (t+1)

i

 M∑
j=1

w jiΨ
(t)
j (k)

 (3)

where

Ψ
(t)
j (k) =

 f (t)
j

(∑M
l=1 wl jA

(0)
l (k)

)
t > 0

A(0)
j (k) t = 0

(4)

represents short-term evidence attached to the ith neural entity
in the current iteration t such that t = {1, 2, . . . ,T }, using the
kth example as the excitation vector. Equation 5 formalizes the
generalized sigmoid function used to squash the neuron’s acti-
vation within the [0, 1] interval,

f (t)
i (x) =

1

(1 + q(t)
i e−λ

(t)
i (x−h(t)

i ))1/v(t)
i

(5)

where qi > 0, λi > 0, hi ∈ R and vi > 0 are parameters that
can be used to compensate the lack of flexibility imposed by
the fact that weights cannot be modified, as they were fixed by
the expert during the modeling stage.

The STCNs’ reasoning process comprises two mechanisms:
the forgetting step and the information propagation. During the
first step (see Figure 2) the network discharges the evidence ac-
cumulated until the current iteration; only the sigmoid param-
eters associated with each neuron are preserved. The second
step (see Figure 3) is concerned with computing the short-term
evidence Ψ

(t)
j (k) by multiplying the initial activation vector with

the fixed weight matrix. As a final step, the evidence collected
from neurons in the iteration t is propagated to the following
iteration. In computational terms, each block has a complexity
of O(M2) for each activation vector.

𝑡-1

𝐶1

𝐶2

𝐶3

𝐶1

𝐶2

𝐶3

𝐶1

𝐶2

𝐶3

discharge preserve

𝑡 𝑡+1

Figure 2: Forgetting mechanism in the STCN model.

In the following sub-section, we discuss how the proposed
iterative neural architecture helps increase the model’s accuracy
when performing prediction tasks.

4.2. Dynamical Properties

When analyzing the way in which STCNs operate, the issues
related with time series forecasting ring a bell. However, it is
convenient to remark that STCN iterations and time steps are
not necessarily equivalent. This implies that our neural system
can be used in presence of static data, so the subsequent itera-
tions can be seen as a regularizer.

As illustrated in Figures 2 and 3, in each STCN iteration
the model can be effectively unfolded into a three-layer feed-
forward neural network. This process can be done by mapping
each iteration t with a layer in the multilayer network where
w(t)

ji = w(t+1)
ji ,∀t. Due to the successive discharging of the old

evidence it might be claimed that the system can be described
by the last neural block. However, we should take into account
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Figure 3: Inference propagation in the STCN model.

that the forgetting operator only discharges the first abstract
layer of the current neural block.

Therefore, the STCN model does involve an implicit long-
term recurrence such that the knowledge preserved from the
previous iteration is stored within the neurons. This happens be-
cause the data used to adjust the sigmoid parameters in the t + 1
iteration (during the learning phase) is obtained after transform-
ing the original data with the previously computed parameters.
This is similar to the regularization based on data transforma-
tion [10] used in deep learning models.

In the STCN algorithm, the updating rule finishes once the
network reaches a fixed number of iterations. If the iterations
are not explicitly defined, and due to we have no knowledge on
the real simulation error when exploiting the model for a unseen
pattern, the maximum number of iterations will be determined
during the supervised training phase.

5. Nonsynaptic Learning

Nonsynaptic learning was first introduced and applied by
Nápoles et al. [24] to improve the convergence of FCM-based
models equipped with sigmoid transfer functions. In the STCN
context, the nonsynaptic learning seems a suitable approach to
reduce the simulation error without the need of altering the
knowledge stored into the synaptic connections. This can be
implemented by computing the sigmoid function parameters
qi > 0, λi > 0, hi ∈ R and vi > 0 associated with the ith
transfer function in each iteration.

The nonsynaptic learning procedure relies on the gradient de-
scent method [28, 2]. The first step towards formalizing the
learning rule is concerned with the definition of a differentiable
error function for each iteration, as we assume that the network
will forget the old information due to the short-term memory.
This implies that we will perform a separate learning process
for iteration in an incremental fashion where only the previous
sigmoid parameters are exploited, thus reducing the algorithm’s

complexity. Equation 6 shows how to compute the error of the
ith neuron in the t iteration,

E(t)
i =

K∑
k=1

 1(
1 + q(t)

i e−λ
(t)
i

(
Â(t)

ik −h(t)
i

)) 1

v(t)
i

− Y(k)


2

(6)

where Â(t)
ik =

∑M
j=1 w jiΨ

(t−1)
j (k) is the raw value for the ith neu-

ron before being transformed, and K is the number of training
instances used as simulation examples. We can define a training
example as a |C|-dimensional vector comprising the activation
values of all variables, where any variable in the model can be
predicted from the remaining ones.

Before applying the nonsynaptic learning method, we first
transform the data into a sigmoid space since our model lacks
a formal output layer with linear units, as typically occurs in
multilayer perceptron networks.

Once the sigmoid transformation step is done, we iteratively
improve an initial solution until a maximum number of epochs
P is reached. The parameter vector X = [λ(t)

i , h(t)
i , q(t)

i , v(t)
i ] is

updated by using the gradient-based rule:

X(l+1) = X(l) − Z(l+1) (7)

Z(l+1) = βZ(l) + η∇E(t) (8)

where β ≥ 0 is the momentum, η > 0 is the learning rate, while

∇E(t)(Ci) =

[
∂E
∂
λ

(t)
i

, ∂E
∂

h(t)
i

, ∂E
∂

q(t)
i

, ∂E
∂

v(t)
i

]
, such that

∂E

∂λ(t)
i

=

K∑
k=1

γ(Â(t)
ik − h(t)

i )(q(t)
i ϑ

(−1− 1

v(t)
i

)
)(ϑ
− 1

v(t)
i − Y(k))

v(t)
i

,

∂E

∂h(t)
i

=

K∑
k=1

−
γ(q(t)

i ϑ
(−1− 1

v(t)
i

)
)(ϑ
− 1

v(t)
i − Y(k))λ(t)

i

v(t)
i

,

∂E

∂q(t)
i

=

K∑
k=1

−
γ(ϑ

(−1− 1

v(t)
i

)
)(ϑ
− 1

v(t)
i − Y(k))

v(t)
i

,

∂E

∂v(t)
i

=

K∑
k=1

(2ϑ
− 1

v(t)
i ln(ϑ))(ϑ

− 1

v(t)
i − Y(k))

v(t)
i v(t)

i

,

where γ and ϑ are defined as follows:

γ = 2e−(Â(t)
ik −h(t)

i )λ(t)
i

ϑ = 1 + q(t)
i e−

(
Â(t)

ik −h(t)
i

)
λ(t)

i .

Equation 9 shows the inverse sigmoid function used to re-
verse the forecasted values back to the original domain. This
function is not defined when − 1−y−vi

qi
≤ 0, but this scenario is

not possible because qi > 0, vi > 0 and 0 < y < 1. Due to
this function may produce values that grow towards infinity, we
confine the real values of each variable Xi to [Li,Ui], where Li

and Ui denote the minimum and maximum values observed in
the dataset for the ith variable, respectively.
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f −1
i (y) =

− ln
(
−

1−y−vi

qi

)
+ hiλi

λi
(9)

This learning method is applied sequentially to each STCN
iteration since the parameters estimated in the current iteration
will be adopted to compute the following short-term evidence.
Each learning process will stop either when a maximal number
of epochs is reached or when the variations on the parameters
from an iteration to another are small enough. It can be proved
that, if the latter situation comes to light, then the STCN model
will enter into a stationary state in which the network will con-
tinue to produce similar approximation errors.

Proof. Let us assume that an implicit STCN reached a good
enough local optimum in the t + 1 iteration step, then the global
simulation error for the network is:

E(t+1) =

M∑
i=1

K∑
k=1

 f (t+1)
i

 M∑
j=1

w jiΨ
(t)
j (k)

 − Yi(k)


2

where Yi(k) represents the real (expected) value associated with
the Ci neuron for the kth simulation example, M denotes the
number of neural processing entities, while the short-term evi-
dence is Ψ

(t)
j (k) = f (t)

j

(∑M
l=1 wl jA

(0)
l (k)

)
.

If ∆E(t+1) =
(
E(t+1) − E(t+2)

)2
< ξ1, t + 2 ≤ T , for a small

enough ξ1 > 0, then two scenarios are possible:

• F1 = { f (t+1)
i }Mi=1 and F2 = { f (t+2)

i }Mi=1 represent two different
local optima. Consequently,

∃Ci ∈ C |

∫ +M

−M

(
f (t+1)
i (x) − f (t+2)

i (x)
)2

dx > ξ2.

• F1 = { f (t+1)
i }Mi=1 and F2 = { f (t+2)

i }Mi=1 represent the same
local optimum. Consequently,

@Ci ∈ C |

∫ +M

−M

(
f (t+1)
i (x) − f (t+2)

i (x)
)2

dx > ξ2.

If the first scenario comes to light, then we are in presence
of a multimodal space since the families of sigmoid functions
F1 and F2 lead to equally accurate solutions, but there exist
at least a pair of functions f (t+1)

i (x) ∈ F1 and f (t+2)
i (x) ∈ F2

that differ in their shapes. This implies that the network could
still have a chance to reach a better solution, thus we should
continue iterating. In the second case, the shapes of all pairs
of functions f (t+1)

i (x) ∈ F1 and f (t+2)
i (x) ∈ F2 are significantly

similar. For a small enough ξ2 and given the fact that STCNs
employ a short-term reasoning process on which weights do
not change from an iteration to the following, we can claim that
Ψ

(t+1)
j (k) ≈ Ψ

(t+2)
j (k),∀ j, k because

f (t+1)
j

 M∑
l=1

wl jA
(0)
l (k)

 ≈ f (t+2)
j

 M∑
l=1

wl jA
(0)
l (k)

 .

Moreover, since the proposed learning algorithm is determinis-
tic, we can expect the same behavior for the sigmoid functions
in { f (t+3)

i }Mi=1, . . . , { f
(T−1)
i }Mi=1, therefore∫ +M

−M

(
f (p)
i (x) − f (p+1)

i (x)
)2

dx ≈ 0

such that p = {t + 1, t + 2, . . . ,T − 1}. Given the fact that the
sigmoid activator is a continuous, non-noisy function we can
claim that ∆E(p) ≈ 0. This suggests that the STCN reached
a stationary state on which further learning iterations will not
significantly reduce the simulation error. �

6. Numerical Simulations

In this section, we evaluate the performance of STCNs in
simulation scenarios where the goal is to forecast the value of
any variable from the remaining ones.

6.1. Proof of Concept
In our first experiment, we illustrate how to build an STCN

modeling the well-known Iris problem. As our neural system
is not devoted to solving any classification problem, we remove
the decision class during the preprocessing stage. This implies
that our dataset will be comprised of 4 numerical attributes, so
the prediction problem consist on forecasting the value of any
attribute from the remaining ones.

The first step in modeling this problem is to represent each
attribute with a sigmoid neuron. As an alternative to the lack of
expert knowledge for this problem, we can model the relation
between neurons C j and Ci as a linear regression equation Ai =

w jiA j + r ji. Equations 10 and 11 display how to compute such
coefficients from the training dataset,

w ji =
K

∑
k xi(k)x j(k) −

∑
k xi(k)

∑
k x j(k)

K(
∑

k x j(k)2) − (
∑

k x j(k))2 (10)

r ji =

∑
k x j(k)2 ∑

i xi(k) −
∑

k xi(k)x j(k)
∑

k x j(k)
K(

∑
k x j(k)2) − (

∑
k x j(k))2 (11)

where K denotes the number of instances in the training set,
whereas xi(k) represents the value of the i-th variable as coded
in the k-th training example. It should be stated that the r ji co-
efficients are used to initialize the offset parameter of the ith
neuron as h(0)

i = min{1,
∑M

j=1 r ji}, which simulates the bias in a
McCulloch-Pitts neuron [20]. This initialization strategy may
help reach better results with less effort when training neural
system. The remaining sigmoid function parameters are inter-
nalized using a random approach

Figure 4 portrays the Pearson correlation between variables
describing the Iris problem. This symmetric matrix provides a
clear picture of the strength of each synaptic connection on the
resulting nonlinear neural system. It should be remarked that
such correlation values are not the weights defining the relation
among concepts, but they serve as an indicator on the strength
on weights computed by Equation 10.
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Figure 4: Pearson correlation between Iris variables.

Figure 5 shows the STCN for the Iris dataset after computing
the coefficient matrix. As a second step, we fine-tune the model
by using our nonsynaptic approach such that the learning rate is
set to 0.001, the momentum is set to 0.85, while the number of
epochs for each training process is set to 500. These values have
been arbitrarily selected as they reported good average results
during preliminary simulations.
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Figure 5: STCN model associated with the Iris dataset where neurons in the
cognitive network represent the length (C1) and width (C2) of the sepal leaf
and the length (C3) and width (C4) of the petal leaf. In this model, w ji denotes
the rate of change on the conditional mean of Ci with respect to C j, assuming
that the other neurons impacting Ci are fixed.

In this example, the initial parameter values are h1 = 0.762,
h2 = 1.0, h3 = 0.808, h4 = 0.686, λi = 2.5, qi = 1.0 and
vi = 1.0. Moreover, the sigmoid parameters used to transform
the space are arbitrarily set to λ = 2.5, h = 0.5, v = q = 1.0.
This configuration reports an average error of 0.124 across all
neurons, but after applying the nonsynaptic learning algorithm
the global error decreased to 0.037.

Figure 6 and 7 display, as an example, the sigmoid function
adjustment for the the neuron denoting the X1 variable (i.e.,
sepal length). The orange line represents the sigmoid function
in the previous iteration step, while the blue one indicates the
adjusted function. In this simulation, the initial solution was
set as follows: λ1 = 5, h1 = 0.5, q1 = 1 and v1 = 1. After a
few iterations the learning algorithm was able to decrease the
simulation error from 0.3789 to 0.0007.
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Figure 6: Adjustment of the sigmoid transfer function associated with the C1
neuron at the beginning of the STCN reasoning process.
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Figure 7: Adjustment of the sigmoid transfer function associated with the C1
neuron towards the end of the STCN reasoning process.

Figure 8 portrays the training error after performing several
STCN iterations. This simulation illustrates how the error pro-
gressively decreases from an STCN iteration to the following,
until a local optimum is discovered. Towards the end, the STCN
becomes stationary since there is no reason to update the shape
of the sigmoid function attached to each neural processing en-
tity. Therefore, when this situation is detected (as explained in
Section 5) the learning process stops.
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Figure 8: Global simulation error in each STCN iteration.

Next, we compare the performance of our algorithm (in terms
of approximation error) against state-of-the-art algorithms used
for regression and pattern completion.

6.2. State-of-the-Art Algorithms

In the regression context, we adopted several state-of-the-art
models for comparison purposes, which are implemented in the
R programming language. The selected algorithms include: lin-
ear regression (LREG) from the nnet package, support vector
regression (SVM) from the e1071 package, k-nearest neigh-
bors (kNN) from the class package, random forest (RF) from
the randomForest package and multilayer perceptron (MLP)
from the monmlp package.

Associative memories [18] are powerful tools for handling
pattern completion tasks that involve several dependent vari-
ables simultaneously. As a representative of these networks we
have selected the Hopfield model [14] since its architecture is
reasonably similar to the one discussed in this paper, i.e. each
neuron has a well-defined meaning for the prediction problem.
Likewise, we compare our method against an FCM using sig-
moid neurons where weights are confined to the [−1, 1] interval.
The kNN algorithm was also selected as it can be easily adapted
to perform pattern completion tasks.

6.3. Parameter Settings

For each algorithm, hyperparameter tuning using grid search
has been performed. By doing so, each dataset is split into three
data pieces: the validation set, the test set and the training set.
The best parameter configuration is selected by using the vali-
dation set, which is kept aside when training the model. The re-
sults reported in this paper are obtained from running the model
on a test set, different from the validation set but also unknown
during the learning phase, using the optimal parameters accord-
ing to the validation set. Table 1 displays the parameter values
considered during the grid search.

It should be stated that we couple the above-explained hyper-
parameter tuning scheme with a 5-fold cross validation process.
With the dataset randomly split into 5 folds of equal size, each
combination of 4 folds is used as the training set. Half of the
remaining fold is randomly selected to create a validation set,

Table 1: Parameter values used in the cross search.

Method Parameter Values
SVM kernel linear, polynomial, radial, sigmoid

γ 1/(attributes)
kNN k 1,3,5
RF number of trees 300, 500, 800, 1000
MLP learning rate 0.01, 0.1, 0.3, 0.5, 0.8

momentum 0, 0.001, 0.01, 0.05, 0.1
FCM sigmoid slope (λ) 1.0, 3.0, 5.0
STCN learning rate (α) 0.001, 0.003, 0.005, 0.008, 0.01

momentum (β) 0.8, 0.82, 0.85, 0.88, 0.9

the other half is used for testing. Finally, we report the average
across all folds. For the sake of fairness, the same folds have
been used for all method and configurations. This validation
scheme is described in Algorithm 1.

Algorithm 1 Parameter tuning procedure
1: Randomly split dataset into 5 folds
2: for each parameter configuration c f: do
3: for each fold pt: do
4: Train model on remaining folds (not pt)
5: Split fold f in validation set and test set
6: Calculate validation error
7: Calculate test error
8: end for
9: Calculate the average validation error

10: Calculate the average test error
11: end for
12: Determine which configuration bs reported the lowest av-

erage validation error
13: Return average test error with configuration bs

Aiming at estimating the FCM weight matrix, we adopt an
evolutionary learning approach based on an elitist Real-Coded
Genetic Algorithm [31]. The required parameters are fixed as
follows: the mutation probability is set to 0.1, the crossover
probability is set to 0.9, the number of generations is set to 100,
whereas the number of chromosomes is equal to the number of
weight parameters to be estimated.

6.4. Dataset Characterization
Aiming at evaluating the accuracy of the proposed neural sys-

tem, we have selected 35 datasets from the study reported by
Nápoles et al. [23]. Table 2 outlines the main features of such
datasets where the number of attributes ranges from 3 to 22, the
number of decision classes from 2 to 8, whereas the number of
instances goes from 106 to 625. Similarly to the proof of con-
cept, we remove the decision class since our goal is to predict
the value of numerical attributes.

Observe that our experiments are devoted to rather small
datasets for the following reasons: (i) to keep the simulation
time low, and (ii) to better resemble the real-world simulation
scenarios on which domain experts are able to provide a limited
number of training examples.
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Table 2: Datasets used during simulations.
ID Dataset Instances Attributes Noisy
1 acute-inflammation 120 6 no
2 acute-nephritis 120 6 no
3 appendicitis 106 7 no
4 balance-noise 625 4 yes
5 balance-scale 625 4 no
6 blood 748 4 no
7 echocardiogram 131 11 no
8 ecoli 336 7 no
9 glass 214 9 no
10 glass-10an-nn 214 9 yes
11 glass-20an-nn 214 9 yes
12 glass-5an-nn 214 9 yes
13 haberman 306 3 no
14 hayes-roth 160 4 no
15 heart-5an-nn 270 13 yes
16 heart-statlog 270 13 no
17 iris 150 4 no
18 iris-10an-nn 150 4 yes
19 iris-20an-nn 150 4 yes
20 iris-5an-nn 150 4 yes
21 liver-disorders 345 6 no
22 monk-2 432 6 no
23 new-thyroid 215 5 no
24 parkinsons 195 22 no
25 pima 768 8 no
26 pima-10an-nn 768 8 yes
27 pima-20an-nn 768 8 yes
28 pima-5an-nn 768 8 yes
29 planning 182 12 no
30 saheart 462 9 no
31 tae 151 5 no
32 vertebral2 310 6 no
33 vertebral3 310 6 no
34 wine 178 13 no
35 wine-5an-nn 178 13 yes

* From the study by Nápoles et al. [23], we have discarded the problems nominal attributes or those involving class imbalance
since they are described by the same attributes, thus resulting in 35 problems.

6.5. Discussion: Multiple Regression

Table 3 displays the Mean Squared Error (MSE) achieved by
each algorithm across selected datasets, after performing a 5-
fold cross-validation process. It should be mentioned that, in
the case of the state-of-the-art regression methods, we report
the average MSE across several independent models (i.e., one
per each dependent variable) since these algorithms allow to
predict a single variable at each time. Therefore, each variable
in the dataset will be used one time as the dependent variable,
and N-1 times as an independent one.

The numerical results indicate that our model is the best-
performing technique followed by MLP. It is remarkable the
superiority of our model with respect to these well-established
algorithms, even when they build an independent regression
model per each dependent variable to be predicted. Or perhaps,
being capable of approximating the value of multiple variables
using a single model eventually becomes a key piece towards
producing smaller simulation errors.

Table 3: MSE achieved by each regression algorithm. The best-performing
algorithm for each method is highlighted in boldface.

ID STCN MLP LREG RF SVM kNN
1 0.0661 0.0348 0.0402 0.0786 0.0487 0.0579
2 0.0751 0.0501 0.0457 0.0851 0.0914 0.0944
3 0.0155 0.0051 0.0013 0.0083 0.0036 0.0117
4 0.1255 0.1258 0.1349 0.1476 0.1278 0.2867
5 0.1257 0.1261 0.1338 0.1431 0.1288 0.3037
6 0.0103 0.0100 0.0081 0.0097 0.0100 0.0160
7 0.0468 0.0565 0.1195 0.0565 0.0583 0.0866
8 0.0308 0.0381 0.0472 0.0354 0.0355 0.0663
9 0.0121 0.0095 0.0068 0.0113 0.0064 0.0177
10 0.0196 0.0288 0.1620 0.0248 0.0268 0.0421
11 0.0375 0.0494 0.0792 0.0454 0.0514 0.0825
12 0.0179 0.0250 0.0889 0.0235 0.0249 0.0353
13 0.0506 0.0500 0.0528 0.0566 0.0509 0.0898
14 0.1260 0.1270 0.1446 0.1330 0.1311 0.2269
15 0.0892 0.1039 0.2043 0.1092 0.1144 0.1728
16 0.0809 0.1015 0.1754 0.1017 0.1071 0.1538
17 0.0128 0.0083 0.0088 0.0090 0.0084 0.0136
18 0.0215 0.0339 0.0436 0.0305 0.0340 0.0482
19 0.0270 0.0435 0.0540 0.0442 0.0427 0.0746
20 0.0150 0.0246 0.0311 0.0232 0.0247 0.0303
21 0.0119 0.0139 0.0173 0.0142 0.0141 0.0264
22 0.1898 0.1904 0.2541 0.2116 0.2735 0.5284
23 0.0083 0.0135 0.0265 0.0116 0.0129 0.0193
24 0.0185 0.0070 0.0158 0.0069 0.0068 0.0125
25 0.0152 0.0187 0.0228 0.0177 0.0182 0.0316
26 0.0266 0.0358 0.0380 0.0347 0.0369 0.0628
27 0.0369 0.0453 0.0511 0.0451 0.0475 0.0838
28 0.0196 0.0290 0.0302 0.0273 0.0292 0.0496
29 0.0127 0.0044 0.0022 0.0091 0.0023 0.0189
30 0.0412 0.0461 0.0517 0.0462 0.0505 0.0807
31 0.0619 0.0883 0.3430 0.0709 0.1037 0.1007
32 0.0093 0.0053 0.0066 0.0085 0.0066 0.0120
33 0.0105 0.0067 0.0062 0.0095 0.0074 0.0132
34 0.0166 0.0191 0.0545 0.0171 0.0175 0.0297
35 0.0211 0.0281 0.0505 0.0248 0.0249 0.0417
AVR 0.0430 0.0458 0.0729 0.0495 0.0508 0.0864

Aiming at exploring whether the differences in algorithms’
performance are statistically significant or not, we rely on the
Friedman two-way analysis of variances by ranks [7]. This test
advocates for the rejection of the null hypothesis (p-value =

1.0547E-14 < 0.05) for a confidence interval of 95%, hence we
can conclude that there are significant differences between at
least two models across datasets.

As a second step, we perform a pairwise significance anal-
ysis using STCNs as the control method. With goal in mind,
we resorted to the Wilcoxon signed rank test [32] and post-hoc
procedures to adjust the p-values instead of using mean-ranks
approaches, as suggested by Benavoli et al. [1]. Table 4 reports
the unadjusted p-value computed by the Wilcoxon test and the
corrected p-values associated with each pairwise comparison.
In this paper, we assume that a null hypothesis H0 can be
rejected for a certain confidence level if at least two post-hoc
procedures supports the rejection.
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Table 4: Pairwise analysis using the STCN algorithm as the control method
(multiple regression setting).

Algorithm p-value Bonferroni Holm Holland
kNN 1.352E-6 6.763E-6 6.763E-6 6.763E-6
RF 0.000118 5.927E-4 4.742E-4 4.741E-4
LREG 0.000582 0.002912 0.001747 0.001746
SVM 0.005928 0.029643 0.011857 0.011822
MLP 0.045688 0.228444 0.045688 0.045688

The statistical analysis reveals that the proposed algorithm
is superior in performance to LREG, kNN, RF, MLP and SVM
since both Holm and Holland suggest to reject the null hypothe-
ses for a 95% confidence interval. Conclusions derived from
Bonferroni’s test are consistent with Holm and Holland for all
methods except for MLP. These results evidence the capabil-
ity of our algorithm to produce high-quality predictions with
less effort, i.e. without the need of building a separate model
for each dependent variable. In spite of that, it should be high-
lighted that the main contribution attached to our proposal is the
flexible reasoning scheme that allows including expert knowl-
edge into the network structure.

6.6. Discussion: Associative Memories

For this experiment, we modify the datasets listed in Ta-
ble 3 so that each record has probability 0.2 to be corrupted.
However, flexible reasoning goes beyond human-in-the-loop,
since it refers to the use of any knowledge possible to enhance
the model’s performance. For example, when completing a
corrupted pattern, we could initialize the neurons representing
missing positions with estimations of the expected values. In
the following experiment, those neurons are initialized with the
average value of the corresponding attribute.

Table 5 shows the performance of each associative memory
after performing a 5-fold cross-validation. The results show
that our proposal is capable of outperforming the other algo-
rithms, while Hopfield reports the higher prediction errors. This
could be a result of using a Hebbian learning procedure over
datasets with rather small patterns.

The Friedman test confirms that there are significant differ-
ences in the algorithms’ performance (p-value=1.6892E-18 <
0.05) for a confidence interval of 95%. Table 6 depicts the
p-value obtained with the Wilcoxon signed rank test and the
adjusted p-values. As in Table 4, the methods used to correct
the o-values are Bonferroni, Holm and Holland. All post-hoc
procedures advice rejecting the conservative hypothesis for a
significance level of 0.05, thus corroborating the superiority of
the STCN algorithm in this experiment.

Overall, the results have shown that STCNs are a convenient
simulation and prediction model in terms of simulation error.
Remark that STCNs are perfectly suited to deal with static data
since abstract layers resulting from the iterations act as a reg-
ularizer. However, the forecasting of times series with STCNs
emerges as the most logical step towards exploring the potential
behind the proposed neural system.

Table 5: MSE achieved by each associative memory. The best-performing al-
gorithm for each method is highlighted in boldface.

ID STCN FCM kNN Hopfield
1 0.1574 0.2006 0.0588 0.2589
2 0.1888 0.2050 0.1144 0.2567
3 0.0176 0.0429 0.0255 0.0619
4 0.1123 0.1256 0.1885 0.2433
5 0.1162 0.1218 0.1628 0.2375
6 0.0204 0.0763 0.0127 0.0615
7 0.0473 0.0908 0.0819 0.1195
8 0.0362 0.0618 0.0399 0.1312
9 0.0180 0.0527 0.0290 0.0696
10 0.0282 0.0520 0.0399 0.0659
11 0.0390 0.0631 0.0588 0.0728
12 0.0256 0.0597 0.0321 0.0719
13 0.0451 0.0567 0.0699 0.1306
14 0.1023 0.1283 0.1335 0.2079
15 0.0999 0.1171 0.1389 0.2420
16 0.0964 0.1215 0.1134 0.1976
17 0.0210 0.0581 0.0146 0.1192
18 0.0322 0.0491 0.0286 0.1583
19 0.0343 0.0605 0.0430 0.1413
20 0.0243 0.0784 0.0379 0.1535
21 0.0130 0.0410 0.0173 0.0934
22 0.1832 0.2061 0.3907 0.2251
23 0.0099 0.0903 0.0193 0.1075
24 0.0162 0.0702 0.0149 0.1220
25 0.0220 0.0564 0.0263 0.0626
26 0.0372 0.0604 0.0403 0.0747
27 0.0444 0.0654 0.0707 0.0768
28 0.0315 0.0516 0.0346 0.0778
29 0.0224 0.0324 0.0274 0.1904
30 0.0430 0.0760 0.0559 0.0699
31 0.0776 0.0933 0.0918 0.1911
32 0.0106 0.0453 0.0152 0.0906
33 0.0121 0.0295 0.0137 0.0832
34 0.0218 0.0518 0.0283 0.1470
35 0.0277 0.0528 0.0308 0.1505
AVR 0.0524 0.0813 0.0658 0.1361

Table 6: Pairwise analysis using the STCN algorithm as the control method
(associative memory setting).

Algorithm p-value Bonferroni Holm Holland
Hopfield 2.477E-7 7.431E-7 7.431E-7 7.431E-7
FCM 2.477E-7 7.431E-7 7.431E-7 7.431E-7
kNN 0.000456 0.001369 4.563E-4 4.563E-4

7. Concluding Remarks

In this paper, we have presented a neural system —referred
to as Short-term Cognitive Networks — for regression and pat-
tern completion. This model allows performing simulations
on the basis of previously defined knowledge structures, where
weights may have a causal meaning or not. Aiming at preserv-
ing the initial knowledge, we developed a nonsynaptic learning
algorithm that relies on the gradient descent to reduce the er-
ror without altering the weights. Likewise, we have derived a
stopping criterion to prevent the learning method from iterating
without decreasing the simulation error.
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The statistical analysis reported that the STCN model is su-
perior (in terms of simulation error) to most regression models
adopted for comparison. Moreover, our proposal allows mak-
ing predictions without the need of building a separate model
for each decision variable to be forecasted. In the context of
associative memories, the results support the superiority of our
model over both FCMs and Hopfield.

While our proposal is accurate in terms of simulation errors,
it brings to life a sensitive problem: the short-term reasoning
mechanism is not able to capture the dynamics governing the
system under analysis. Therefore, another point that should be
studied is how to expand the STCN memory without affecting
the prediction rates, which would allow capturing the dynamic
patterns attached to the physical system. But if an explicit long-
term memory brings to life the limitations inherent to classic
FCMs, then it would be a high price to be paid on behalf of
patterns that experts rarely exploit in practice.

Although this research focused on providing an accurate al-
ternative for traditional FCMs used in simulation scenarios, the
STCN model can certainly be expanded to other domains. Time
series forecasting or pattern classification based on the flexible
reasoning paradigm are open problems that deserve attention.
Another interesting challenge that may be explored in futures
studies is how to efficiently fine-tune the network parameters
in presence of time-varying pieces of data. Likewise, how to
handle the uncertainty introduced by experts during the mod-
eling stage is deemed pivotal towards designing a robust, still
flexible, neural reasoning model.
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