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Abstract

Bivariate binary response data appear in many applications. Interest goes most often to a

parameterization of the joint probabilities in terms of the marginal success probabilities in

combination with a measure for association, most often being the odds ratio. Using e.g. the

bivariate Dale model, these parameters can be modelled as function of covariates. But the odds

ratio and other measures for association are not always measuring the (joint) characteristic of

interest. Agreement, concordance, synchrony are in general facets of the joint distribution distinct

from association and the odds ratio as in the bivariate Dale model can be replaced by such

an alternative measure. Here we focus on the so-called conditional synchrony measure. But,

as indicated by several authors, such a switch of parameter might lead to a parameterization

that does not always lead to a permissible joint bivariate distribution. In this contribution, we

propose a new parameterization in which the marginal success probabilities are replaced by

other conditional probabilities as well. The new parameters, one homogeneity parameter and two

synchrony/discordance parameters, guarantee that the joint distribution is always permissible.

Moreover, having a very natural interpretation, they are of interest on their own. The applicability and

interpretation of the new parameterization is shown for three interesting settings: quantifying HIV

serodiscordance among couples in Mozambique, concordance in the infection status of two related

viruses, and the diagnostic performance of an index test in the field of major depression disorders.



Keywords

Association, asynchrony, concordance, discordance, marginal homogeneity, maximum likelihood,

McNemar’s test, synchrony

1 Introduction

In medical applications as well as in other fields, it is often of interest to examine the ‘resemblance’

between two or more observations from paired or matched outcomes. Here focus is on two binary paired

or matched outcomes. Examples considered in this paper are the HIV status among couples; the infection

statuses for the same individual for both the Varicella-Zoster Virus and the Parvo B19-virus, viruses that

are similar in their transmission being close contact; and the diagnostic performance of the Whooley

questions as a screening tool for depression amongst older adults in primary care. Resemblance can be

measured in different ways, depending on the characteristic of interest. It could be represented by an

association parameter, such as the Pearson product-moment correlation or, for binary data, by the cross-

product ratio or odds ratio. However, often association is not of interest but rather agreement. Agreement

and association are in general distinct facets of the joint distribution. Strong agreement requires strong

association, but strong association can exist without strong agreement.1 A well-known measure for

agreement is Cohen’s kappa, see Agresti1 for extensions and ways to model agreement.

Measures for association and agreement are typically symmetric and can be misleading if one of the

agreeing outcomes is very dominant, such as the (negative, negative) combination in our first example

of the HIV status among couples. Indeed, as the majority of pairs agree in being negative, symmetric

measures of association or agreement might be high even if there is only a small number of agreeing

positive pairs. In the context of measuring synchrony in neuronal firing, Faeset al.2 proposed a new

measure of synchrony, the conditional synchrony measure (CSM), which is the probability of two neurons

firing together, given that at least one of the two is active. Faeset al. state that, although the odds ratio

is an attractive association measure with nice mathematical properties (such as the absence of range

restrictions, regardless of the marginal probabilities), it is less suitable for quantifying synchrony, due to
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its symmetry treating 0-0 matches of equal importance as 1-1 matches. Similar to the CSM but being

rather interested in discordance, Jugaet al.3 defined the HIV conditional (sero)discordance measure

(CDM) as the conditional probability that the couple is HIV discordant, given that at least one of them,

man or woman, is HIV positive.

As noted by Faeset al. and Jugaet al., a reparameterization of the joint bivariate binary distribution

in terms of the marginal “success” probabilities and with the OR parameter replaced by the CSM (or

the CDM) does not lead to a permissible joint distribution for the full ranges of all parameters, as

the Fŕechet bounds can be violated.4 This puts constraints on the parameters of the joint bivariate

distribution which are difficult to translate to the regression parameters when introducing dependency

of the parameters on risk factors and other covariates. Moreover the constraints hinder fitting the models,

leading to computational issues such as convergence problems. The objective of this paper is to solve this

non-permissibility problem, and to introduce an alternative parameterization guaranteeing a permissible

distribution for all combination of values. The alternative parameterization, no longer including the

marginal success probabilities, is shown to be of interest on its own, and offers additional insights for

particular applications.

In the next section, three settings with illustrative datasets are introduced. Then the new measures

and the new parameterization are presented and covariate models for the different parameters and

maximum likelihood inference is briefly described. The illustrative datasets are analyzed using the

new parameterization and the paper ends with final conclusions, considerations and ideas about further

research.

2 Applications and datasets

In the following subsections three different settings and specific data examples are introduced in the field

of disease control and prevention.

2.1 HIV serodiscordance among couples in Mozambique

We consider the same setting as in Jugaet al.3, based on data from the 2009 National Survey of

Prevalence, Risk Behavioural and Information about HIV and AIDS (INSIDA5). This survey was a

cross-sectional two-stage survey, carried out by the National Institute of Health in collaboration with

the National Bureau of Statistics of Mozambique. The objective is to model HIV serodiscordance among

couples as a function of different risk factors and other covariates.

Let yij = (yij1, yij2) denote the HIV status (1 if positive, 0 if negative) of a (female,male)-couple

j = 1, . . . , ni in enumeration area (EA)i with ni sampled couples,i = 1, . . . , N . For the INSIDA data,

the total number of EAs isN = 270 and
∑N

i=1 ni = 2159 is the total number of couples. Expressing
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that the covariatesx1,ij , x2,ij andx3,ij can be possibly different subvectors of the full covariate/factor

vectorxij , Jugaet al.3 fitted several joint models for both marginal probabilities to be HIV positive,

complemented with a new conditional (sero)discordance measure CDM (defined in Section 3):

logit(P{yij1 = 1}) = βT
1 x1,ij + b1,i,

logit(P{yij2 = 1}) = βT
2 x2,ij + b2,i,

logit(CDM) = βT
3 x3,ij + b3,i,

(1)

where

(b1,i, b2,i, b3,i) ∼ N3(0, Σ), (2)

are distributed as a trivariate normal distribution with mean zero-vector and covariance matrixΣ. Note

thatx`,ij (` = 1, 2, 3) are vectors of covariates, some of these covariates are specific for the male/female

individual, some specific for the couple, and some are at the level of the province. They considered

different choices for the covariance matrixΣ = V RV (including full/partial correlated, full/partial

shared, full/partial equal, independent). From their final model, Jugaet al.3 concluded that the HIV

prevalence for the province where a couple was located as well as the union number for the woman

within a couple are factors associated with HIV serodiscordance.

As will be discussed in Section 3, the parameterization with both HIV marginal probabilities and the

conditional discordance measure CDM does not satisfy the Fréchet inequalities4, causing computational

difficulties with some of the models. In Section 5.1 we will reanalyze these data with the same type of

models, but based on our new parameterization as introduced in Section 3.2.

2.2 Varicella Zoster Virus and Parvo B19 concordance

The Varicella-Zoster Virus (VZV) and the Parvo B19-virus (B19) are similar in that transmission occurs

during close contacts. The contact rate and the infectiousness of the pathogen determine the spread of the

infection in a population. It has been shown that the contact rate depends on age through heterogeneity

in mixing of individuals from different age-classes. Several approaches have been proposed to model

multi-sera data. Henset al.6 used a marginal model (bivariate Dale model7 with odds ratio as association

parameter) and conditional models (modelling one infection status conditional on the other) to model the

multi-sera VZV-B19 data from Belgium. Henset al.8 studied the behaviour of the bivariate-correlated

gamma frailty model for cross-sectionally collected serological data on hepatitis A and B.

Here we reanalyze the Belgian VZV-B19 serological data. In a period from November 2001 until

March 2003, 2381 serum samples in Belgium were collected and consecutively tested for VZV and

B19.9 Together with the test result for VZV and B19, gender and age of the individuals were recorded.
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Figure 1. VZV and B19 data, as function of age. Proportion of samples that tested positive on both VZV and
B19 (top left panel), that tested positive on B19 only (top right panel), that tested positive on VZV only (lower
left panel), and that tested negative on both viruses (lower right panel), based on a cross-sectional survey in
Belgium anno 2001-2003. The size of the dots is proportional to the number of serum samples collected in the
corresponding age category.

Samples from children under 6 months were omitted, as test results are driven by maternal antibodies

in this early stage of life. The maximum age of 40 years was fixed by design; it was considered not

important to test for older ages given that it concerns childhood infections.

Figure1 depicts the bivarate distribution of VZV and B19 as a function of age. In Section5.2 we

will propose and discuss new measures to provide other and new insights in the joint occurrence of both

infections, as function of age and gender.

2.3 Diagnostic performance and concordance of the Whooley questions

Based on a cross-sectional validation study, conducted with 766 patients aged≥75 from UK primary

care and recruited via 17 general practices based in the North of England during the pilot phase of

a randomized controlled trial, Bosanquetet al.10 assessed the diagnostic performance of the Whooley

questions (Whooleyet al.11) as a screening tool for major depression disorder (MDD) amongst older

adults in UK primary care. Sensitivity, specificity and likelihood ratios comparing the index test (two

Whooley questions) for an MDD-diagnosis were ascertained by the reference standard Mini International

Neuropsychiatric Interview (MINI12). Participants completed a self-reported, written version of the

index test, the Whooley questions: (WQ1) During the past month, have you often been bothered by

feeling down, depressed, or hopeless? (yes=1/no=0); (WQ2) During the past month, have you often been

bothered by little interest or pleasure in doing things? (yes=1/no=0). In the standard method of scoring

the Whooley questions, participants who respond yes to at least one of the two questions were classified

as screening positive for depression.

Table 1 shows a2 × 2 table cross-classifying the index test (positive if being positive for at least

one Whooley question) with MINI as the golden standard reference (GSR), as well as tables cross-

classifying both Whooley questions against each other, unconditionally and conditional on the GSR
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Table 1. Whooley questions data. Left table: index test versus golden standard reference. Right table:
Whooley Question 2 versus Whooley Question 1, unconditionally and conditional on the golden standard
reference.

Index Test
GSR 0 1

0 458 273
1 2 33

WQ2
WQ2 GSR=0 GSR=1

WQ1 0 1 0 1 0 1
0 460 41 458 40 2 1
1 95 170 91 142 4 28

status. Concordance between index and golden standard reference, and concordance and discordance

between both Whooley questions is of interest and will be discussed in Section5.3.

3 Measuring con(dis)cordance and (a)synchrony

First we briefly review existing measures, including the conditional synchrony measure. Next the new

parameterization is introduced, discussed and relations with other parameters are examined. A final

subsection focuses on the estimation of the new parameters by maximum likelihood.

3.1 Existing measures

Consider a bivariate binary outcomey = (y1, y2) and a (possibly multivariate) covariatex and let

πk`(x) = P (y1 = k, y2 = `|x), k, ` = 0, 1, (3)

with 0 < πk`(x) < 1 and
∑1

k,l=0 πk`(x) = 1, denote the conditional joint distribution ofy given

x (dependency ofx suppressed from notation, if not relevant), with marginal conditional (success)

probabilitiesπ1+(x) = π10(x) + π11(x) andπ+1(x) = π01(x) + π11(x). Many parameterizations are

theoretically possible, but in many cases interest goes in the effect ofx on the marginal probabilities

(most often with a logit link allowing an odds ratio interpretation), complemented with an association

parameter, such as the correlationρ = (π11 − π1+π+1)/
√

π1+(1 − π1+)π+1(1 − π+1), (with a Fisher-

z link) or the odds ratioφ = (π00π11)/(π01π10) (with a log link).

But such association measures are not the target parameter of interest in case interest goes to

con(dis)cordance or (a)synchrony. In the context of measuring synchrony in neuronal firing, Faeset

al.2 stated that the odds ratio is less suitable to quantify synchrony due to its symmetry, treating 0-0

matches of equal importance as 1-1 matches, and proposed a new measure of synchrony, the conditional
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synchrony measure CSM, defined as

CSM(x) =
π11(x)

π10(x) + π01(x) + π11(x)
, (4)

being the probability of two neurons firing together, given that at least one of the two is active. In order

to model HIV serodiscordance among couples in Mozambique, Jugaet al.3 introduced the conditional

(sero)discordance measureCDM(x) = 1 − CSM(x) and showed that the CDM measure is a more direct

and relevant measure to study the effects of risk factors.

A limitation of this parameterization, with the marginal probabilities combined withCSM(x) or

CDM(x), is that not all values ofπ1+(x), π+1(x) and ofCSM(x) (or CDM(x)) result in a permissible

joint distributionπk`(x). Indeed, the Fŕechet bounds4 need to hold: given values0 < π1+(x) < 1 and

0 < π+1(x) < 1, a permissible joint distribution is only obtained if

max{1 −
π1+(x)
π+1(x)

, 1 −
π+1(x)
π1+(x)

} ≤ CDM(x) ≤ min{π1+(x) + π+1(x), 1}. (5)

When modelling the dependency onx and possibly including additional random effect structures on all

three parameters (π+1, π1+ andCDM or CSM) to account for additional heterogeneity, the constraints

(5) may cause problems when fitting some models (computational issues, non-convergence, ...).

3.2 New measures and new parameterization

While it is common to include the two marginal probabilities as part of a model parameterization,

particular alternative parameters might be of interest too and might shed more light on the research

questions at hand. In the three applications of interest, focus is not on the marginal probabilities. The

new parameterization proposed here abandons the common starting point of adding the parameter of

interest to the marginal probabilities, but takes an opposite approach: next to the CSM or CDM measure,

which other parameters of interest can be introduced to obtain a complete parameterization of the joint

distribution?

As a first parameter define the conditional probability thaty1 is positive, given that both disagree:

π = P (y1 = 1|y1 6= y2) =
π10

π10 + π01
, (6)

or, alternatively,1 − π being the probability thaty2 is positive in a disagreeing pair(y1, y2). This

parameter focuses on disagreeing pairs and the probability that one is more dominant than the other.

Note thatπ = 0.5 implies symmetry (πk` = π`k) and hence marginal homogeneity (π1+ = π+1),

and π > 0.5 implies thatπ1+ > π+1. Actually π is the central parameter in McNemar’s (exact) test
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for matched pairs with, under the null hypothesis of marginal homogeneity,π̂ ∼ Bin(n∗, 0.5) with n∗

the total number of disagreeing pairs (see e.g.1). This implies that, although the two marginal success

probabilitiesπ1+, π+1 are no longer model parameters, their equalityπ1+ = π+1 can still be directly

tested, while accounting for covariate effects. Actually, instead of the parameterπ, one could use the

relative difference

2π − 1 =
π10 − π01

π10 + π01
=

π1+ − π+1

π10 + π01
.

In the sequel we will use definition (6) and refer to it as the (marginal) homogeneity parameter.

As a second parameter, define (as before) the “positive” conditional synchrony measure CSM, being

the probability that both are agreeing (both positive) given that at least one is positive:

σ+ = P (y1 = y2|y1 + y2 ≥ 1) =
π11

π10 + π01 + π11
, (7)

or, alternatively, the (positive) CDM, now denoted asδ+ = 1 − σ+.

Finally, define the third parameter as the “negative” conditional synchrony measure, being the

probability that both are agreeing (both negative), given that at most one is positive:

σ− = P (y1 = y2|y1 + y2 ≤ 1) =
π00

π00 + π10 + π01
. (8)

Again, the third parameter can also be defined as (negative) CDM, beingδ− = 1 − σ−.

The homogeneity parameterπ determines the relative ratio of the off-diagonal probabilities of

disagreement, independently of the values ofσ+ andσ−, whereas the parametersσ+, σ− (or alternatively

δ+, δ−) focus on the diagonal probabilities of agreement, and

π11/π00 = (
σ+

1 − σ+
)/(

σ−

1 − σ−
).

The measureσ+ tends to 1 if and only ifσ− does so. The parametersδ+, δ−, σ+, σ− are invariant

for switchingy1 with y2, but π will switch to 1 − π. Depending on the application and the particular

parameters of interest, one can opt for a particular combination, e.g.π, δ+ andσ−. The joint probabilities

πk` can easily be expressed in terms of the new parameters, e.g. in terms ofπ, σ+ andσ−

π00 =
σ−(1 − σ+)
1 − σ−σ+

, π10 =
(1 − σ−)(1 − σ+)

1 − σ−σ+
π,

π01 =
(1 − σ−)(1 − σ+)

1 − σ−σ+
(1 − π), π11 =

σ+(1 − σ−)
1 − σ−σ+

.
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It can also readily be shown that, for any combination of values for the three conditional probabilities

0 < π, σ−, σ+ < 1, the Fŕechet bounds are satisfied, and we obtain a permissible joint distributionπk`.

The marginal success probabilities can be written as

π1+ =
(1 − σ−)(1 − (1 − σ+)(1 − π))

1 − σ−σ+
, π+1 =

(1 − σ−)(1 − (1 − σ+)π)
1 − σ−σ+

,

and the odds ratio as

φ = (
σ−

1 − σ−
)(

σ+

1 − σ+
)

1
π(1 − π)

. (9)

Identity (9) shows that the odds ratioφ decomposes in three factors, each related to one of the three

new parameters. The association in terms of the odds ratio increases multiplicatively with the odds of

both synchrony measuresσ− andσ+, and converges to infinity as the homogeneity parameterπ tends to

0 or 1. The minimal value ofφ, for fixed values ofσ− andσ+, is obtained forπ = 0.5, corresponding

to marginal homogeneity. Of course, this factorization is not helping in characterizing independence, but

independence is not of interest in our settings of interest.

The relation with Cohen’s kappa measure of agreement takes the form

κ =
σ−(1 − σ+) + σ+(1 − σ−) − K(π, σ−, σ+)

(1 − σ−σ+) − K(π, σ−, σ+)
,

for a rather complicated functionK(π, σ−, σ+). But an immediate consequence is that there is perfect

agreement according to Cohen’s kappa,κ = 1, if and only if there is perfect negative (σ− = 1) or perfect

positive (σ+ = 1) conditional synchrony.

A bit different and more “asymmetric setting” is that of measuring the accuracy of diagnostic tests.

Assumey1 represents the true disease status, andy2 another alternative test. Sensitivity Se= P (y2 =

1|y1 = 1) and specificity Sp= P (y2 = 0|y1 = 0) relate to the new parameters as

Se=
σ+

σ+ + (1 − σ+)π
, Sp=

σ−

σ− + (1 − σ−)(1 − π)
,

and for the positive predictive value PPV= P (y1 = 1|y2 = 1) and the negative predictive value NPV=

P (y1 = 0|y2 = 0) it holds that

PPV=
σ+

σ+ + (1 − σ+)(1 − π)
, NPV =

σ−

σ− + (1 − σ−)π
.

First of all, note that Se and PPV do not depend onσ− and Sp and NPV do not onσ+. As to be expected,

Se and NPV decrease whereas Sp and PPV increase with the homogeneity parameterπ. If π is very close
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to 1, Se≈ σ+ and Sp≈ 1. Furthermore, in that case, PPV≈ 1, and NPV≈ σ−. Similarly, if π is very

close to 0, Se≈ NPV ≈ 1, Sp≈ σ− and PPV≈ σ+. Se and PPV increase withσ+ and Sp and NPV

increase withσ−. All of them tend to 1 wheneverσ+ tends to 1 (and thusσ− tends to 1).

The diagnostic odds ratio

DOR =

(
Se

1 − Se

)(
Sp

1 − Sp

)

=

(
PPV

1 − PPV

)(
NPV

1 − NPV

)

=

(
σ+

1 − σ+

)(
σ−

1 − σ−

)
1

π(1 − π)
(10)

is used as a measure of the effectiveness of a diagnostic or screening test. It is independent of prevalence,

it is a single indicator of test performance, ranging from zero to infinity and higher values (above 1) are

indicative of better test performance13. Equation (10) decomposes the DOR in three factors: given the

value of the marginal homogeneity parameterπ, higher values of the DOR correspond to higher values

of one or both synchrony measuresσ+, σ−.

Although our application as introduced in Section 2.3 is based on a cross-sectional study, allowing

to estimate the disease prevalence by the case study prevalence, this might be not the case for other

study designs. Consider for instance the case-control design, with data about a screening test result for

the diseased and non-diseased subpopulation (as defined by a golden standard or reference test). Such a

design allows the estimation of the sensitivity and specificity, but not the prevalence of the disease. The

formulas

π =
(1 − Se)Prev

(1 − Se)Prev+ (1 − Sp)(1 − Prev)
,

σ+ =
Se× Prev

1 − Sp(1 − Prev)
,

σ− =
Sp(1 − Prev)
1 − Se× Prev

,

with Prev= π1+ the prevalence of the disease, show the dependency of the homogeneity parameter and

both conditional synchrony measures on the disease prevalence. These formulas allow us to combine data

with knowledge about the disease prevalence (from other data or literature) to estimate or to model the

parametersπ, σ+ andσ− for a case-control study (typically in the Bayesian paradigm).

4 Estimation and inference

Consider quadrinomial observationsyjk` = I(yj1 = k)I(yj2 = `) for k = 0, 1 and ` = 0, 1, for j =

1, . . . , n. Then, by the orthogonalityπ ⊥ (σ−, σ+), the quadrinomial likelihood, withπ00 + π01 + π10 +
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π11 = 1,

L(4)(π00, π01, π10, π11) =
n∏

j=1

π
yj00

00 π
yj01

01 π
yj10

10 π
yj11

11 ,

factorizes into a trinomial and binomial likelihoodL(4) = L(3) × L(2) with

L(3)(σ−, σ+) =
n∏

j=1

π
yj00

00 π
yj11

11 (π01 + π10)
yj01+yj10 ,

=
(1 − σ−)(1 − σ+)

(1 − σ−σ+)

n∏

j=1

(
σ−

1 − σ−

)yj00
(

σ+

1 − σ+

)yj11

,

with

L(2)(π) =
n∏

j=1

πyj10(1 − π)yj01 .

In case no parameters are common to the models for(σ−, σ+) andπ, both likelihoods can be maximized

separately, and, in case interest only goes to the conditional synchrony measures, the disagreeing

observations can be collapsed and it suffices to only maximize the trinomial likelihood.

The dependency of the three conditional probabilitiesπ, σ+ andσ− (or any other eligible combination

of interest from the sets{σ+, δ+} and{σ−, δ−}) on covariates can be modelled with three components:

h1(πj) = βT
1 x1j , h2(σ+j) = βT

2 x2j , h3(σ−j) = βT
3 x3j , (11)

whereh1, h2 andh3 are link functions (logit, probit, cloglog, ...). We will focus on the logit link as it

allows a more appealing interpretation of covariate effects in terms of odds ratios. The model components

(11) can be embedded in different frameworks of estimation and inference; we will opt for full maximum

likelihood.

Note that, when using the relative difference parameter2π − 1, ranging from -1 to 1, the logit link is

not appropriate but rather a Fisher-z link would be in order. The identity, withΔr = 2π − 1,

log(
π

1 − π
) = − log(

1 − π

π
) = log(

1 + Δr

1 − Δr
),

implies that models forπ, 1 − π andΔr with respective links are identical (only opposite slopes for the

models for1 − π). Depending on the application at hand, one might be more interested in interpreting

the estimates in terms ofπ, 1 − π or Δr. For the latter choice, a zero intercept would reflect marginal

homogeneity for all covariate values equal to 0, and the effect of a covariate as represented by the

estimated slope would reflect non-homogeneity in one or the other direction: a positive slope would
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indicate a higher marginal probability of success in the first variable, a negative slope would indicate a

higher marginal probability of success in the second variable.

5 Applications

In this section we revisit the three applications introduced in Section2 and show how in each example

model (11) can be formulated and we illustrate the use and interpretation of the three conditional

probabilitiesπ, σ+ andσ− (or variations thereof). Data analyses were performed in SAS version 9.4

using PROC NLMIXED (exemplifying code in the supplemental material).

5.1 Modelling HIV serodiscordance among couples in Mozambique

We reanalyse the HIV data introduced in Section 2.1 based on model components for i) the (homogeneity)

probabilityπij that the female partner of couplej in EA i is HIV positive, given that both partners differ

in their HIV status; ii) the probabilityδ+ij that only one is HIV positive, given that at least one of the two

partners is positive (positive serodiscordance); and iii) the probabilityσ−ij that both are negative given

that at most one of the two partners is positive (negative seroconcordance):

logit(πij) = βT
1 x1,ij + bπ,i

logit(δ+ij) = βT
2 x2,ij + bδ+,i ,

logit(σ−ij) = βT
3 x3,ij + bσ−,i

with

(bπ,i, bδ+,i, bσ−,i) ∼ N3(0, Σ), (12)

trivariate normally distributed random EA-effects, with mean zero-vector and covariance matrixΣ.

Most of the sample designs for household surveys such as INSIDA are complex and involve

stratification, multistage sampling, and unequal sampling rates, and it is necessary to account for the

particular survey design in the statistical analyses using appropriate weights. We followed the same

approach as Jugaet al.3. For more details on the calculation of the weights as used in our analyses,

we refer to Jugaet al.

After following the same model building procedure as in Jugaet al., the best fitting final model had no

random EA-effectbπ,i on parameterπij and correlated random EA-effects(bδ+,i, bσ−,i) on (δ+ij , σ−ij).

This model has an AIC value of 2509.2, considerably improving the fit of the best model in Jugaet al.3

(AIC=2571.8 for a partial-equal random effects type of model). All models converged, in contrast to the
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Table 2. HIV serodiscordance example. Estimates (standard errors) of the final model with no random
EA-effect for parameter πij and correlated random EA-effects (bδ+,i, bσ−,i) on (δ+ij , σ−ij), with variance
components σ2

δ+
, σ2

σ−
and correlation ρδ+σ− .

Effect π δ+ σ−

Intercept -0.82(0.40)* 2.48(0.69)* 3.65(0.37)*
HIV prevalence
5 − 15% - -0.93(0.53) -0.88(0.28)*
> 15% - -1.09(0.56) -1.64(0.32)*
Union number woman
More than once 0.57(0.28)* -0.74(0.26)*-0.49(0.17)*
STI man
Yes - -1.41(0.42)* -
Condom use woman
Not used 1.87(0.79)* - -
Wealth index
Poorer - 1.13(0.37)* 0.42(0.22)
Middle - 0.20(0.37) 0.52(0.24)*
Variance components
σ2

δ+
- 1.29(0.43)†

σ2
σ−

- 0.72(0.20)†
ρδ+σ− - -0.62(0.14)*

∗ Significant at 5% level based on a likelihood ratio test,† Significant at 5% level, usingχ2
0,1-mixture

a - sign in a column refers to a non-significant effect at 5% after which the covariate was deleted (stepwise)

experiences of Jugaet al., who reported that the models with independent random effects and full or

partial random effects did not convergence.

Table2 shows the estimates of the final model. The following covariates appear in the final model

with fixed effects: ‘HIV prevalence’ is the prevalence of HIV at the couple’s residence at the level of the

province, categorized into three categories using cutpoints of 5% and 15% and with 0-5% as reference

category; ‘Union number woman’ refers to whether the woman has been married or lived with a man once

(reference category) or more than once; ‘STI man’ is yes if the man answered yes to any of 3 questions

about symptoms of sexually transmitted infections STIs (no is reference); ‘Condom use woman’ refers

to whether the female respondent of the couple used a condom the last time she had sexual intercourse

with the other partner (yes is reference); ‘Wealth index’ refers to the economic status of the couple with

three categories Poorer, Middle and Richer (reference). For more details, see14.

Comparing our results with those of Jugaet al.3 and focusing on the common conditional

serodiscordance parameter CDM=δ+ in both models, similar effects were obtained for the effect of
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‘HIV prevalence’ and ‘Union number woman’. Additional to those effects, our new model identified

a significant effect of ‘STI man’ and ‘Wealth index’: the probability for both partners of a couple to differ

in HIV status, given that at least one of both is positive, decreases in case the man has reported STIs and

increases in case the couple’s wealth index is poorer rather than richer.

The negative synchrony depends on the ‘HIV prevalence’ (the higher the prevalence the lower the

synchrony), the ‘Union number woman’ (lower synchrony in case the woman has been married or lived

with a man more than once) and the ‘Wealth index’ (higher synchrony for the middle category).

Finally for the homogeneity parameterπ it can be observed that marginal homogeneity (both partners

having the same probability to be HIV positive) does not hold in case the woman has been married or

lived with a man only once and the man has indicated to have no STI symptoms (95% CI [0.166,0.491]

for π, implying the probability to be HIV positive is lower for the woman) and in case the woman has

been married or lived with a man more than once and the man has indicated to have STI symptoms (95%

CI [0.517,0.960] forπ, implying the probability to be HIV positive is higher for the woman).

5.2 Varicella Zoster Virus and Parvo B19 concordance

Table 3. VZV and B19 data. B19 versus VZV, unconditionally and conditional on gender.

VZV
VZV Female Male

B19 0 1 0 1 0 1
0 174 725 91 357 83 368
1 57 1425 28 733 29 692

Let y1 refer to the B19 infection status andy2 to the VZV infection status of the same individual.

We are interested in the dependency ofπ, σ+ andσ− on age and gender. Table3 shows the observed

bivariate frequencies of(y1, y2), unconditionally and conditionally on gender. Model (11) is applied with

an indicator for gender and a cubic spline for age restricted to be linear before the first knot and after the

last knot, with knots located at the 9 deciles of the observed age distribution. Gender was not significant

for any parameter (p-values 0.8762, 0.2002, 0.8641 forπ, σ+ andσ− respectively). Age has a significant

effect on all three parametersπ, σ+ andσ− (p-values 0.004,<0.0001,<0.0001 respectively).

Figure2 visualizes the dependencies on age. For an individual who is positive for one and negative

for the other virus, the probability is lowest that he is positive for B19 (about 0.10) across all ages.

Marginal homogeneity clearly does not hold, for any age (p-value< 0.00001). If an individual is positive

for at least one virus, the probabilityσ+ that he is positive for both increases from 0.10 to about 0.80

with a strange bump at the age of 20. The negative conditional synchronyσ−, being the probability he
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Figure 2. VZV and B19 example. Plot of the fitted π (solid line), σ+ (dashed line) and σ− (dotted line) as
function of age and based on the final model, together with 95% bootstrap percentile intervals using 1000
nonparametric bootstrap samples.

is negative for both given that he is at most positive for one of the virus, decreases rapidly during the

first 10 years of life, from about 0.80 to about 0.05. The bump around the age of 20, visible more or

less for all curves, is caused by an “artefact” in the data, in the sense that the prevalence to be positive

for one only, or for both is expected to be monotone as a function of age (the older you are the higher

the probability of ever been infected by one of the diseases). Already Figure1 shows that this expected

monotonicity constraint is violated by the patterns shown in the data. This phenomenon and possible

model modifications and extensions (covering e.g waning immunity) have been presented and discussed

in e.g. Abrams and Hens15.

Using a bivariate Dale model and splines for the effect of age, Henset al.6 could not reject the null

hypothesis of a constant OR (p-value 0.37). The estimated age and gender independent OR equaled 2.11

with 95% confidence interval (1.45,3.23). This is another example showing that measures for agreement

and for dependency can behave quite differently.

5.3 Diagnostic performance and concordance of the Whooley questions

Let y1 refer to the GSR andy2 to the index test of the same individual. Bosanquet et al.10 report a high

sensitivity of 0.943 (95% CI [0.808,0.993]) and a modest specificity of 0.627 (95% CI [0.590,0.662])

for the index test (at least one Whooley question positive). Table4 shows estimates for all parameters of
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interest. Note that the homogeneity parameterπ̂ = 0.007 is very small, implying marginal heterogeneity

and that, as noticed in general, Sp≈ σ−, PPV≈ σ+ and Se≈ NPV ≈ 1. So, if index and reference

test disagree, it is highly unlikely that the reference test is the positive one. If at least one of the index

or reference test is positive, is unlikely that both are positive (probability of 0.107), so low positive

synchrony or concordance. If at least one is negative, they are both negative with probability 0.625.

Next it is interesting to get more insight in the (con/dis)cordance between both Whooley questions,

Table 4. Whooley questions example. Table of Index test × GSR: point estimates, standard error estimates
and 95% confidence intervals for sensitivity, specificity, positive predictive value, negative predictive value,
probability π, positive and negative conditional synchrony.

Est se 95%CI
Se 0.943 0.0392 (0.866, 1.000)
Sp 0.627 0.0179 (0.591, 0.662)

PPV 0.108 0.0177 (0.073, 0.143)
NPV 0.996 0.0031 (0.990, 1.002)

π 0.007 0.0051 (0.000, 0.017)
σ+ 0.107 0.0176 (0.073, 0.142)
σ− 0.625 0.0179 (0.591,0.660)

defining the index test, and how this depends on the GSR status. So, lety1 now refer to WQ1 andy2

to WQ2. Table5 shows the estimated parameters, unconditionally and conditionally on the GSR status.

SAS code for the model with parameters modelled as a function of the GSR status (MINI) is included in

the supplemental material.

Table 5. Whooley questions example. Table of WQ1 × WQ2, unconditionally and conditionally on GSR status:
point estimates, standard error estimates and 95% confidence intervals for probability π, positive and negative
conditional synchrony.

Est se 95%CI
π 0.699 0.0394 (0.616, 0.770)
σ+ 0.556 0.0284 (0.499, 0.610)
σ− 0.772 0.0172 (0.736,0.804)
π | GSR=0 0.695 0.0402 (0.611, 0.768)
σ+ | GSR=0 0.520 0.0302 (0.461, 0.580)
σ− | GSR=0 0.778 0.0171 (0.742,0.809)
π | GSR=1 0.800 0.1789 (0.308, 0.973)
σ+ | GSR=1 0.849 0.0624 (0.683, 0.936)
σ− | GSR=1 0.286 0.1707 (0.072,0.674)
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The homogeneity probabilityπ does not depend on the GSR status (p-val 0.6189). Asπ ⊥ (σ−, σ+),

it is not necessary to refit a simplified model with no effect of the GSR status onπ. Indeed, fitting such

model would lead to exactly the same results forσ+ | GSR=0 or 1 andσ− | GSR=0 or 1, and the GSR

independent estimate forπ would equal the estimate 0.699 in the collapsed table, being the first line of

results in Table5. So, whether or not the individual is depressed, if the answers on the two WQ’s disagree,

the probability is about 70% that WQ1 is answered positively (95% CI being [0.616, 0.770], marginal

homogeneity does not hold). So, individuals with disagreeing answers on both Whooley questions tend

to have been more often bothered by feeling down, depressed, or hopeless, than bothered by little interest

or pleasure in doing things, regardless of their GSR status.

But σ+ andσ− significantly depend on the GSR status, with p-values 0.0011 and 0.0103 respectively.

The positive synchrony measure estimateσ̂+ increases from 0.520 to 0.849 implying that, giving that at

least one of the WQ’s is answered positively, the probability that both are positively answered increases

substantially for individuals suffering from a major depression disorder (according to GSR). On the other

hand, the negative synchrony measure estimateσ̂− decreases from 0.778 to 0.286 implying that, giving

that at most one of the WQ’s is answered positively, the probability that both are negatively answered

decreases substantially for individuals suffering from a major depression disorder (according to GSR).

Bosanquet et al.10 mention in the discussion that the use of the two-item version of the Whooley

questions, rather than a three-item version, in which the respondent is asked to state whether they would

like help for any difficulties reported, is a potential limitation of their study. However, evidence from

recent studies using a third help question, does not provide a conclusive answer whether to include or not

the third question. It would be interesting to study in more depth the con- and discordance between all

three questions in order to come up with an improved index test.

6 Conclusions and discussion

As interest goes to modelling a genuine synchrony/concordance measure rather than a typical association

measure such as the odds ratio, the joint distribution of matched pairs of binary data need to

reparametrized accordingly. In this contribution, a new parameterization solved the existing permissibility

issue with the conditional synchrony measure and related limitations of fitting appropriate models.

This new parameterization is based on two synchrony measures, a positive and negative synchrony (or

alternatively discordance) parameter, combined with a marginal homogeneity parameter, leading without

any restrictions on any of these parameters to a permissible joint distribution for the matched binary pairs,

thus facilitating the fitting of more flexible and appropriate models.

The usefulness of the new approach has been illustrated in three different areas of application in disease

control and prevention. In the first application, the positive serodiscordance was the main parameter
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of interest, but also the additional negative seroconcordance provides alternative new insights in this

field. Whereas the same characteristic (HIV status) is measured for both partners of a couple in the

first application, two different characteristics (VZV and B19 infection status) on one and the same

individual are available in the second application. The negative and positive synchrony measures provide

new information and insights in the joint process of acquiring both diseases having similar transmission

routes. In a third, more distinct application, the accuracy of a screening test is to be assessed in relation

to the true disease status (or a gold standard). The new synchrony measures allow to investigate the

performance of the diagnostic test from another angle, different from but closely related to well-known

accuracy measures such as sensitivity, specificity, predictive values, DOR, etc. and future use of these

new measures will shed more light on their ultimate value in this particular field of application.

An advantage of the new approach is that, in case interest only goes to both synchrony measures

and their models do not share any parameter in common with the model for the marginal homogeneity

parameter, the disagreeing observations can be collapsed and the synchrony measures can be modelled

by means of a simplified trinomial likelihood. It may be perceived as a disadvantage that the marginal

success probabilities (such as the prevalence of one or both diseases) are not directly estimated or

modelled as a function of covariates, as in the currently applied parameterizations. On the other hand,

the homogeneity parameter still allows to investigate structural differences in both marginal parameters.

Moreover, models for the new parametersπ, σ+, σ− imply indirect models for the marginal success

probabilities using their relation equations.

A first interesting methodological topic for further research is the modification and application of the

HIV model of the first example to same-sex couples, as already mentioned by Jugaet al.3. They suggested

two approaches to deal with the exchangeability of both partners of a couple. But the parameterization

proposed here offers an interesting third option. Indeed only the marginal homogeneity parameter

depends on the order of the partners in a couple and would not be interpretable when using a random

order (actually one would expect homogeneity in case of a random order). Being orthogonal to the other

parameters, it would not affect the estimation of the synchrony measures.

Another interesting extension is to examine synchrony between three or more outcomes, as for instance

three related infections in our second example. As the number of parameters grows exponentially with

the outcome-dimension, defining a full set of appropriate homogeneity and synchrony parameters needs

careful considerations in view of the application of interest. For the last example one often includes an

inconclusive category, introducing one or both as a trinomial outcome. An extension in that direction

poses interesting challenges. Also in the latter setting, one might like to account for an imperfect GSR by

correcting for misclassifications.
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Supplemental material

/ * (CON/DIS)CORDANCE BETWEEN BOTH WHOOLEY QUESTIONS AS A FUNCTION OF

THE GOLDEN STANDARD STATUS* /

proc nlmixed data=WORK.DEPRESSION;

/ * Starting values for intercepts and slopes * /

parms b0_1=0 bA_1=0 b0_2=0 bA_2=0 b0_3=0 bA_3=0;

/ * The dependency of the model parameters on the GSR status (MINI) * /

eta1=b0_1+bA_1 * MINI;

AP10=1/(1 + exp(-eta1));

eta2=b0_2+bA_2 * MINI;

PCSM = 1/(1 + exp(-eta2));

eta3=b0_3+bA_3 * MINI;

NCSM = 1/(1 + exp(-eta3));

/ * The joint probabilities as function of the model parameters * /

p11 = (PCSM-NCSM* PCSM)/(1-NCSM* PCSM);

p00 = (NCSM-NCSM* PCSM)/(1-NCSM* PCSM);

p10 = AP10* (1-NCSM) * (1-PCSM)/(1-NCSM * PCSM);

p01 = (1-AP10) * (1-NCSM) * (1-PCSM)/(1-NCSM * PCSM);

/ * The model parameters for both statuses of the GSR * /

AP10GS0=1/(1 + exp(-b0_1));

PCSMGS0 = 1/(1 + exp(-b0_2));

NCSMGS0 = 1/(1 + exp(-b0_3));

AP10GS1=1/(1 + exp(-b0_1-bA_1));

PCSMGS1 = 1/(1 + exp(-b0_2-bA_2));

NCSMGS1 = 1/(1 + exp(-b0_3-bA_3));

/ * Compute log likelihood for bivariate observations * /

ll = depression * pleasure * log(p11) + depression * (1-pleasure) * log(p10)

+ (1-depression) * pleasure * log(p01) + (1-depression) * (1-pleasure) * log(p00);

model ll ˜ general(ll);
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estimate ’pi given GSR=0’ AP10GS0;

estimate ’sigma+ given GSR=0’ PCSMGS0;

estimate ’sigma- given GSR=0’ NCSMGS0;

estimate ’pi given GSR=1’ AP10GS1;

estimate ’sigma+ given GSR=1’ PCSMGS1;

estimate ’sigma- given GSR=1’ NCSMGS1;

run;


