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We derive a linear thermodynamics theory for general Markov dynamics with both steady-state
and time-periodic drivings. Expressions for thermodynamic quantities, such as mechanical and
chemical work, heat and entropy production are obtained in terms of equilibrium probability distri-
bution and the drivings. The entropy production is derived as a bilinear function of thermodynamic
forces and the associated fluxes. We derive explicit formulae for the Onsager coefficients and use
them to verify the Onsager-Casimir reciprocal relations. Our results are illustrated on a periodically
driven quantum dot in contact with two electron reservoirs and optimization protocols are discussed.

I. INTRODUCTION

Due to the seminal work of primarily Onsager and Pri-
gogine, the theory of linear irreversible thermodynamics
has become one of the cornerstones of modern statistical
physics. Close to equilibrium, one can use this framework
to determine the thermodynamic fluxes, such as heat and
work, and show that they satisfy general properties, such
as Onsager symmetry and the Green-Kubo relations [1].

Over the last two decades, a somewhat different ap-
proach has been undertaken to study the thermodynam-
ics of small-scaled systems [2, 3]. This theory, known
as stochastic thermodynamics, uses Markov dynamics to
model systems at the mesoscale, where fluctuations in the
thermodynamic fluxes become important. The assump-
tion of local detailed balance then leads to a consistent
definition of the thermodynamic properties of the sys-
tem. The stochastic fluxes of the system satisfy general
relations such as the Jarzynski equality [4, 5]. Further-
more, this theory has lead to applications in several other
branches of science, such as information theory [6], chem-
ical reaction networks [7], and active matter [8, 9].

A natural question to ask is how the classical ideas of
linear irreversible thermodynamics can be incorporated
in the theory of stochastic thermodynamics. This prob-
lem has been addressed for several case-studies [10–19].
Furthermore, general theories have been derived for peri-
odically driven systems in contact with a single reservoir
[20–22], and for steady-state systems in contact with two
reservoirs [23, 24], leading to bounds the power and ef-
ficiency of thermodynamic engines [25–27]. A more gen-
eral approach for systems with any number of reservoirs
and time-dependent driving has not been studied thor-
oughly.

In this paper, we close this gap by deriving a general
formalism for the linear thermodynamics of stochastic
systems with both steady-state and time-periodic driv-
ings. Our study is carried out by taking into account
multiple heat and particle reservoirs. We obtain expres-
sions for thermodynamic quantities, such as mechanical
and chemical work, heat and entropy production in terms
of equilibrium probability distribution and the drivings.

In particular, we show that general results of linear ir-
reversible thermodynamics, such as the structure of en-
tropy production rate and Onsager symmetry are valid
for this general class of systems.
This paper is organized as follows. We start in sec-

tion II by introducing the model and by discussing its
linearized dynamics. In section III, we define the work
and heat fluxes and show how they are related to the
entropy production rate. The evaluation of Onsager co-
efficients and the existence of an Onsager-Casimir sym-
metry relation are discussed in IV. In section V, we apply
our formalism to a periodically driven two-level system.
Conclusions and outlook are discussed in section VI.

II. MODEL

Throughout this paper, we focus on systems with a
discrete set of states in contact with multiple tempera-
ture and particle reservoirs that can induce transitions
between distinct configurations. The system can be in a
given state m, specified by its energy ǫm(t) and particle
number nm, with probability pm(t). The time-evolution
of pm(t) is described by a master equation

ṗm(t) =
∑

n,j

W j
mn(t)pn(t), (1)

where W j
mn(t) is the probability per unit of time of a

transition from a state n to a statem induced by reservoir
j. Conservation of probability implies that

∑

m

W j
mn(t) = 0, (2)

valid for all m, and therefore W j
mm(t) =

−∑

n6=m W j
nm(t).

Each reservoir j is characterized by a temperature
Tj(t) and chemical potential µj(t). If the system is in
contact with a single reservoir with time-independent
temperature Tj and chemical potential µj , it will con-
verge to an equilibrium state given by the Boltzmann-
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Gibbs distribution:

P j
m =

1

Zj
eq

e
−(ǫm−µjnm)

Tj , (3)

where Zj
eq =

∑

m e−(ǫm−µjnm)/Tj is the (grand-
canonical) partition function. By definition, the above
equilibrium distribution should satisfy the detailed bal-
ance condition, W j,eq

mn P j
n − W j,eq

nm P j
m = 0, implying the

following ratio between the transition rates W j,eq
mn and

W j,eq
nm

W eq;j
mn

W eq;j
nm

= e−{(ǫm−ǫn)−µj(nm−nn)}/Tj . (4)

This expression allows us to write the transition rate
W eq;j

mn as follows:

W eq;j
mn = Cj

mnλ
eq;j
n , (5)

where λeq;j
n = exp ((ǫn − µjnn)/Tj) and Cj

mn is a matrix
that quantifies the coupling strength between states m
and n. Due to the assumption of local detailed balance
and the properties of the transition matrix, Cj satisfies
the following symmetry relations:

Cj
mn = Cj

nm, Cj
nn = −

∑

m 6=n

Cj
mn. (6)

A. Linear description

As stated before, the system will reach an equilib-
rium Boltzmann state when it is in contact with a single
reservoir at constant temperature and chemical poten-
tial. This is generally not the case when the system is in
contact with multiple reservoirs or when the temperature
and chemical potential are modulated time-periodically.
In those cases, detailed balance is broken, and the sys-
tem starts dissipating heat and producing entropy. As
each reservoir operates independently, the transition rate
of each reservoir has the same form as in Eq. (5), but
with time-dependent parameters ǫm(t), Tj(t), µj(t) and
Cj

mn(t). The total transition matrix is obtained by sum-
ming over all reservoirs, Wmn(t) =

∑

j W
j
mn(t), where

W j
mn(t) is given by Eq. (5) for every reservoir j.
The temperatures and chemical potentials are modu-

lated time-periodically. We introduce the driving func-
tions gTj

(t) and gµj
(t) as

1

Tj(t)
=

1

T0,j
+ FTj

gTj
(t), (7)

µj(t) = µ0,j + T0,jFµj
gµj

(t), (8)

where Fαj
’s correspond to the strength of the thermo-

dynamic drivings αj ∈ {Tj, µj}. The energy of each mi-
croscopic state is also driven periodically by an external
work source,

ǫn(t) = ǫ0,n + T0,jFǫγǫ,ngǫ(t), (9)

where γǫ,n is the amplitude with which the level n is mod-
ulated. As we are focusing on the regime close to equi-
librium, both temperature and chemical potential mod-
ulations are assumed to be around the same equilibrium
state for all reservoirs, T0,j = T0 and µ0,j = µ0 for all j.
To make further progress, we assume that the ther-

modynamic forces are sufficiently small so that we can
perform a linear approximation. This is the crucial as-
sumption for the theory of linear irreversible thermody-
namics [1]. By expanding the coupling matrix C up to
first-order with respect to modulations of temperature,
chemical potential and energy, we have that

Cj
mn(t) = Ceq,j

mn +
∑

α,j

Fαj
gαj

(t)Cαj

mn. (10)

The perturbed coupling matrices Cαj should satisfy the
same symmetry relations as the unperturbed coupling
matrices, Eq. (6). They are used for obtaining the fol-
lowing linear expression for W j

mn(t) in terms of thermo-
dynamic forces:

W j
mn(t) = W eq,j

mn +
∑

α

Fαj
Wαj

mn(t), (11)

where

Wα;j
mn(t) = gαj

(t)[W eq,j
mn γα

n + Cαj

mnλ
eq;j
n ], (12)

and the vector γα has elements given by

γα
n =











(ǫ0,n − µ0nn) α = Tj

γǫ,n α = ǫ

−nn α = µj .

(13)

Since the driving functions gαj
(t) are assumed to be

time periodic, gαj
(t + T ) = gαj

(t), with T being the
period of the driving, the system will relax to a time-
periodic steady-state distribution. This distribution can
be expanded up to linear order in terms of the thermo-
dynamic forces [22],

p(t) = peq +
∑

α,j

Fαj
pαj (t), (14)

where peq is the Boltzmann-Gibbs distribution associated
to the reference energy, temperature and chemical poten-
tial, ǫ0,n, T0 and µ0, respectively. Substituting Eq. (14)
into the master equation (1) leads to

ṗαj (t) = W eqpαj (t) +Wαj (t)peq . (15)

Thus, the first-order contribution in the probability
ṗαj (t) depends only on the total equilibrium matrix
W eq

mn =
∑

j W
eq,j
mn and on the linear perturbation ma-

trix Wαj (t) evaluated over the equilibrium probability.
The above expression can be integrated, leading to

pαj (t) =

∫ ∞

0

dτ eW
eqτWαj (t− τ)peq , (16)
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which is time-periodic. Plugging in the explicit formula
for Wαj (t) and once again taking into account the prop-
erties of the coupling matrix given by Eq. (6), we arrive
at the final expression for the component pαj (t)

pαj (t) =

∫ ∞

0

dτ eW
eqτW eq,jγαpeqgαj

(t− τ), (17)

i.e., the first order correction in the coupling matrix does
not lead to corrections in the probability distribution. We
conclude that, up to first-order, the time-periodic steady-
state distribution can be obtained exactly in terms of the
equilibrium properties, the driving function gα(t)’s and
the γα’s.
Finally, it is worth mentioning that Eq. (17) reduces to

the one obtained in Ref. [22] for the one reservoir case.

III. THERMODYNAMIC FLUXES

Having developed a general formalism to derive the
linear dynamics of the system under study, we are now
ready to evaluate the thermodynamic properties, using
the framework of stochastic thermodynamics [2, 3]. In

particular, the mechanical work flux Ẇmech(t), chemical

work flux Ẇchem(t) and the heat flux Q̇(t) are given by

Ẇmech(t) =
∑

m

ǫ̇m(t)pm(t), (18)

Ẇchem(t) =
∑

m,j

µj(t)nmṗjm(t), (19)

Q̇(t) =
∑

m,j

[ǫm − µj(t)nm]ṗjm(t), (20)

with

ṗjm(t) =
∑

n

W j
mn(t)pn(t). (21)

The time evolution of the mean internal energy of the
system U(t) =

∑

m ǫm(t)pm(t) is given by

U̇(t) = Ẇmech(t) + Ẇchem(t) + Q̇(t), (22)

in agreement with the first law of thermodynamics. By
inserting Eq. (9) into Eq. (18), the average mechanical
work per unit of time can be written as

˙̄Wmech =
T0Fǫ

T

∫ T

0

dt ġǫ(t)
∑

m

γǫ,mpm(t). (23)

Eq. (23) is conveniently rewritten as a product of forces

and flux, ˙̄Wmech = T0FǫJǫ, with work flux Jǫ given by

Jǫ = − 1

T

∫ T

0

dt gǫ(t)
∑

m

γǫ,mṗm(t), (24)

where a partial integration was performed taking into
account the periodicity of pm(t). One can decompose it
further as

Jǫ =
∑

j

Jǫj , (25)

with Jǫj given by

Jǫj = − 1

T

∫ T

0

dt gǫ(t)
∑

m,n

γǫj ,mW j
mn(t)pn(t), (26)

and T0FǫJǫj can be interpreted as the mechanical work
delivered to reservoir j.
Proceeding analogously, the total mean chemical work

per cycle can be obtained by integrating Eq. (19) over

one period and subtracting µ0

∑

j

∫ T

0
ṗjm(t)dt = 0, which

gives

˙̄Wchem = T0

∑

j

Fµj
Jµj

, (27)

where Jµj
is defined as

Jµj
= − 1

T

∫ T

0

dt gµj
(t)

∑

m,n

γµj ,mW j
mn(t)pn(t).(28)

Since the driving is periodic, the average internal en-
ergy of the system does not change over a period of the

driving, ˙̄U = 0. The first law of thermodynamics then
leads to an expression for the average heat in terms of
fluxes,

˙̄Q = − ˙̄W − ˙̄Wchem = −T0

∑

j

(

FǫjJǫj + Fµj
Jµj

)

. (29)

This expression can also be evaluated by a direct integra-
tion of Eq. (20) over one period and summing over the
contribution of all reservoirs.
The total entropy production σ̄ is given by the sum of

the contribution of all reservoirs

σ̄ =
∑

j

σ̄j , (30)

where each term σ̄j can be calculated through the micro-
scopic formula [28, 29]

σ̄j =
1

T

∑

m,n

∫ T

0

dtW j
mnpn ln

W j
mnpn

W j
nmpm

. (31)

Due to periodicity of the steady-state, the inte-

gral
∫ T

0
dt

∑

m,n W
j
mnpn ln(pn/pm) is strictly zero and

Eq. (31) then reduces to

σ̄j =
1

T

∑

m,n

∫ T

0

dtW j
mnpn ln

W j
mn

W j
nm

. (32)
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Since the ratio between W j
mn and W j

nm is given by the
local detailed balance condition, we can derive an expres-
sion for σ̄j in terms of thermodynamic variables;

σ̄j = − 1

T

∑

m

∫ T

0

dt
[ǫm(t)− µj(t)nm

Tj(t)

]

ṗjm

= − 1

T

∫ T

0

dt
Q̇j(t)

Tj(t)
, (33)

in agreement with the classical thermodynamic definition
of entropy production [30].
By inserting the expressions for heat and temperature

from Eqs. (7) and (20), we have that

σ̄ = −
∑

j

1

T

∫ T

0

dt
∑

m

[ǫm(t)− µj(t)nm]ṗjm(t)×

[ 1

T0
+ FTj

gTj
(t)

]

. (34)

This suggests the introduction of a new thermodynamic
flux,

JTj
= − 1

T

∫ T

0

dt gTj
(t)

∑

m,n

γTj ,mW j
mn(t)pn(t), (35)

which allows us to rewrite the stochastic thermodynamics
formula for entropy production to a bilinear function of
thermodynamic forces and fluxes given by

σ̄ =
∑

j

(FǫjJǫj + Fµj
Jµj

+ FTj
JTj

), (36)

with Fǫj = Fǫ. This is in agreement with classical non-
equilibrium thermodynamics [1].
It is worth noting that the structure of Eq. (35) clearly

mimics that of the work and chemical fluxes, Eqs. (28)
and (26). In fact one can easily verify that all three types
of thermodynamic fluxes are of the form

Jαj
= − 1

T

∫ T

0

dt gαj
(t)

∑

m,n

γα
mW j

mn(t)pn(t), (37)

with α = T, ǫ, µ.

IV. ONSAGER COEFFICIENTS

As the thermodynamic fluxes vanish in the absence of
thermodynamic forces, one expects that they depend lin-
early on the thermodynamic forces Fβ near equilibrium,
which implies the following form for a flux Jα:

Jα =
∑

β

Lα,βFβ , (38)

where Lα,β are the so-called Onsager coefficients. From
Eq. (36), the entropy production rate σ̄ is depicted as a
quadratic function of the thermodynamic forces,

σ̄ =
∑

α,β

FαLα,βFβ . (39)

In the absence of odd parity variables (such as mag-
netic fields), the Onsager coefficients of steady-state sys-
tems generally satisfy the Onsager reciprocal relations,
Lα,β = Lβ,α. This is no longer the case for systems
with time-dependent driving, since the driving breaks the
time-reversal symmetry. In this instance, Onsager sym-
metry is replaced by the weaker Onsager-Casimir sym-
metry, which relates the Onsager coefficients under time-
forward driving to the cross-coefficient of time-inverted
driving,

Lα,β = L̃β,α, (40)

where the tilde stands for time inverted driving, g̃α(t) =
gα(−t).
Our aim here is to evaluate the Onsager coefficients

and to prove the Onsager-Casimir reciprocal relations
for a periodically driven system in contact with multi-
ple reservoirs. By expanding Eq. (37) up to first order
in the thermodynamic forces, we verify that Jα has two
terms, one associated with the first order expansion of
the transition matrix W j

mn (from Eqs. (11) and (12)) and
the other with the expansion of the probability distribu-
tion pn(t) (from Eq. (17)). The total flux then reads

Jαj
= J

(1)
αj + J

(2)
αj , with

J (1)
αj

= −
∑

β

[ 1

T

∫ T

0

dt gαj
(t)gβj

(t)
∑

m,n

γα
mW eq,j

mn γβ
np

eq
n

]

Fβj
,

(41)
and

J (2)
αj

= −
∑

β,j′

[ 1

T

∫ T

0

dt

∫ ∞

0

dτ gαj
(t)gβ

j
′
(t− τ)×

∑

k,l,m,n

γα
mW eq,j

mn (eW
eqτ )nkW

eq,j
′

kl γβ
l p

eq
l

]

Fβ
j
′
,(42)

respectively. One can easily see that the first flux de-
pends solely on the thermodynamic forces associated
with the same reservoir, while the second flux is de-
pendent on all thermodynamic forces. Using the lin-
earized expressions, one can now associate an Onsager

matrix with each of those fluxes, J
(1)
αj =

∑

β L
(1)
αj,βj

Fβj

and J
(2)
αj =

∑

β,j′ L
(2)
αj ,β

j
′
Fβ

j
′
, where the Onsager coeffi-

cients are given by

L
(1)
αj ,βj

= − 1

T

∫ T

0

dt gαj
(t)gβj

(t)
∑

m,n

γα
mW eq,j

mn γβ
np

eq
n ,(43)

and

L
(2)
αj ,β

j
′
= − 1

T

∫ T

0

dt

∫ ∞

0

dτ gαj
(t)gβ

j
′
(t− τ)×

∑

k,l,m,n

γα
mW eq,j

mn (eW
eqτ )nkW

eq,j
′

kl γβ
l p

eq
l , (44)

with L
(1)
αj,βj′

= 0 for j 6= j′. The total Onsager matrix is

the sum of these two matrices, Lαj ,βj′
= L

(1)
αj ,βj′

+L
(2)
αj ,βj′

.
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This structure for the Onsager coefficients resembles the
one found for a class of quantum mechanical systems
studied in [16].
We are now ready to study the reciprocal relations for

L
(1)
αj ,βj

and L
(2)
αj,β

j
′
. Remarkably, both Onsager matri-

ces will satisfy an Onsager-Casimir relation separately,
which implies that the total Onsager matrix will satisfy
the same Onsager-Casimir symmetry. We first look at

L
(1)
αj ,βj

. One can easily verify that these coefficients are

invariant under time-reversal by replacing gα(t) and gβ(t)
by gα(−t) and gβ(−t) and doing a change of integra-
tion variable to t′ = −t. Subsequently, taking into ac-
count the detailed balance condition, one can show that
∑

m,n γ
β
nW

eq,j
nm γα

mpeqm =
∑

m,n γ
α
mW eq,j

mn γβ
np

eq
n and hence

the right side of Eq. (43) becomes

L
(1)
αj ,βj

= − 1

T

∫ T

0

dt g̃βj
(t)g̃αj

(t)
∑

m,n

γβ
nW

eq,j
nm γα

mpeqm

= L̃
(1)
βj ,αj

, (45)

which proves the Onsager-Casimir symmetry for L
(1)
αj,βj

.

The proof of the second term can be done in a similar
way. We start by taking the time transformation −t =
t′ − τ in Eq. (44),

L
(2)
αj ,β

j
′
=

[ 1

T

∫ ∞

0

dτ

∫ −T +τ

τ

dt′ gαj
(−t′ + τ)gβ

j
′
(−t′)

×
∑

k,l,m,n

γα
mW eq,j

mn (eW
eqτ )nkW

eq,j
′

kl γβ
l p

eq
l

]

.(46)

Due to the periodicity of the drivings, the first integral
can be shifted by T − τ , allowing us to rewrite it as

L
(2)
αj,β

j
′
= −

[ 1

T

∫ T

0

dt′
∫ ∞

0

dτ g̃αj
(t′ − τ)g̃β

j
′
(t′)

×
∑

k,l,m,n

γα
mW eq,j

mn (eW
eqτ )nkW

eq,j
′

kl γβ
l p

eq
l

]

. (47)

By once again appealing to the detailed balance condi-
tion, one can show that

∑

k,l,m,n γ
α
mW eq,j

mn (eW
eqτ )nkW

eq,j
′

kl γβ
l p

eq
l

=
∑

k,l,m,n γ
β
l W

eq,j
′

lk (eW
eqτ )knW

eq,j
nm γα

mpeqm , (48)

and hence L
(2)
αj ,β

j
′
becomes

L
(2)
αj ,β

j
′
= −

[ 1

T

∫ T

0

dt′
∫ ∞

0

dτg̃β
j
′
(t′)g̃αj

(t′ − τ)

×
∑

k,l,m,n

γβ
l W

eq,j
′

lk (eW
eqτ )knW

eq,j
nm γα

mpeqm

]

. (49)

The right hand side of Eq. (49) is just the Onsager coef-

ficient L̃β
j
′ ,αj

. This completes the proof of the Onsager-

Casimir symmetry.

These results also implies an Onsager-Casimir relation
for any combination of Jα,i’s. For example, if we define,

J ′
i =

∑

α,j

Ai;α,jJα,j, (50)

for some matrix A, then the associated thermodynamic
forces are given by

F ′
i =

∑

α,j

(

A−1
)

α,j;i
Jα,j, (51)

as the entropy production rate σ =
∑

i F
′
iJ

′
i is indepen-

dent of the choice of J ’s. The new Onsager matrix L′ is
of the form,

L′ = ALA†, (52)

and one can straightforwardly verify that this matrix
should satisfy the same Onsager-Casimir relations as the
original matrix L. In particular, we can conclude that
Onsager-Casimir symmetry is also valid when one only
looks at the total fluxes Jǫ, Jµ and JT .

V. TWO LEVEL SYSTEMS

As an example, we consider a quantum dot, with one
active energy level, in contact with two electron reser-
voirs at temperatures T1(t) and T2(t) and chemical po-
tentials µ1(t) and µ2(t), respectively. The quantum dot
can be empty or occupied by a single electron with prob-
abilities p0(t) and p1(t) = 1 − p0(t), respectively. The
temperature and chemical of the electron reservoirs as
well as the energy of the quantum dot are modulated ac-
cording to Eqs. (7)-(9), respectively. The total transition
matrix W (t) is the sum of both reservoir contributions
W (t) = W 1(t) +W (2)(t), with W j(t) given by

W j(t) =

(

−Γjy(t) Γj(1− y(t))
Γjy(t) −Γj(1− y(t))

)

,

where Γj describes the interaction between the quantum
dot and the j-th reservoir and y(t) is the Fermi-Dirac
distribution y(t) = [1 + exp((ǫ(t) − µ(t))/T (t))]−1.
For simplicity, we set Fµj

= 0, implying that the chem-
ical potentials of both reservoirs are the same and thereby
˙̄Wchem = 0. The thermodynamic variables are modu-
lated via the driving functions gǫ(t) =

√
2 sin(ωt+φ) and

gTj
(t) =

√
2 sin(ωt), respectively, where we have assumed

that both reservoirs and the electron level are all driven
with the same frequency ω = 2π/T , but with a phase-
difference φ between the driving of the energy and the
and temperature drivings.
The lowest order expressions for the energy and tem-

perature fluxes Jǫ and JTj
and for the entropy production

rate σ̄ can now be calculated using the expressions from
the previous section and are given by
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FIG. 1: Reduced dissipated power - ˙̄WT /(T0p
eq
0
peq
1
F 2

T1
) (continuous lines) and entropy production σ̄T /(peq

0
peq
1
F 2

T1
) (dashed

lines) versus φ for distinct values of couplings χ1 and χ2. In all cases we considered FT2 = 2FT1 .

Jǫ =
2πpeq0 peq1

T (4π2 + χ̃2)
[2πFǫχ̃+ (ǫ0 − µ0)(χ̃ sinφ+ 2π cosφ)](FT1χ1 + FT2χ2)], (53)

JT1 =
peq0 peq1 (ǫ0 − µ0)χ1

T (4π2 + χ̃2)
[Fǫ(4π

2 cosφ− 2πχ̃ sinφ) + (ǫ0 − µ0)χ̃χ2(FT1 − FT2) + 4π2(ǫ0 − µ0)FT1 ], (54)

σ̄ =
4π2peq0 peq1

T (4π2 + χ̃2)
[F 2

ǫ χ̃+(ǫ0−µ0)
2(F 2

T1
χ1+F 2

T2
χ2)+2(ǫ0−µ0) cosφFǫ(FT1χ1+FT2χ2)+

(ǫ0 − µ0)
2

4π2
χ1χ2χ̃(FT1−FT2)

2],

(55)

respectively, where χj = ΓjT and χ̃ = (Γ1 + Γ2)T . For
the special case, FT1 = FT2 and Γ1 = Γ2, the above ex-
pressions reduce to the single reservoir case up to a factor
2 [22]. JT2 has a similar expression as JT1 with T1 and
T2, F1 and F2 interchanged. One can easily verify that
these expressions satisfy Onsager-Casimir symmetry.

These results can be used to optimize the amount of

mechanical work, ˙̄W = T0FǫJǫ that can be done by the
system. In particular, an optimization with respect to Fǫ

yields the following relation for the maximum mechanical

power:

− ˙̄Wmax =
peq0 peq1 T0(ǫ0 − µ0)

2(FT1χ1 + FT2χ2)
2

4χ̃T (4π2 + χ̃2)

× (χ̃ sinφ+ 2π cosφ)2. (56)

Fig. 1 depicts the behavior of σ and ˙̄W versus φ for dis-
tinct couplings χ1 and χ2 with Fǫ given by its optimal
value. In the limit of low (large) “effective” couplings,
χ̃ ≪ 1 (χ̃ ≫ 1), the work output is maximal (minimum)
when the driving of the work source is in phase with that
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of the heat sources, φ = 0 and minimum (maximum)
mwhen the driving is out of phase, φ = π/2, in accor-
dance with Eq. (56). Conversely, for the above choice of
Fǫ, the positions of maxima and minima of the entropy
production fulfill the above relation

tanφ =

{

− χ̃2 + 12π2 ±
√

χ̃4 + 40χ̃2π2 + 144π4

4πχ̃

}

,(57)

where +(−) denote to the maximum (minimum). They
approach π/2 (maximum) and φ = 0 (minimum) for χ̃ ≪
1 and χ̃ ≫ 1, respectively and deviate from these limits
for intermediate coupling sets.
Similar analytic optimizations for other thermody-

namic fluxes can also be performed. For instance, by

optimizing ˙̄W with respect to both Fǫ and the phase-

difference φ, the expression for ˙̄Wmax becomes

− ˙̄Wmax =
peq0 peq1 T0(ǫ0 − µ0)

2(FT1χ1 + FT2χ2)
2

4χ̃T
, (58)

where the optimal phase-difference and amplitude are
given by

tanφ =

(

χ̃

2π

)

(59)

Fǫ = − (ǫ0 − µ0)

4πχ̃

√

4π2 + χ̃2(FT1χ1 + FT2χ2).(60)

VI. CONCLUSIONS

In this paper, we have derived a general linear de-
scription for the thermodynamics of Markov systems in

contact to multiple reservoirs, using the framework of
stochastic thermodynamics. We have shown that the
thermodynamic fluxes such as mechanical and chemical
work and heat, can be written in a general form, as func-
tions of the driving and the equilibrium properties of the
system. The entropy production is obtained as a bilinear
function of thermodynamic forces and associated fluxes.
Furthermore, we calculated all Onsager coefficients and
showed that they satisfy a generalized Onsager-Casimir
relation.

Finally, we mention some interesting directions for fur-
ther research. Firstly, it would be interesting to extend
our analysis to higher order response coefficients and to
study the resulting constraints on heat engines [31, 32].
Secondly, it would be very interesting to see if our re-
sults can be extended to quantum mechanical systems
and systems with strong coupling [33, 34]. Finally, it
should be no problem to test our predictions, such as the
generalized Onsager-Casimir relation, with state-of-the-
art experimental setups [35, 36].
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