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Abstract

We calculate the large deviation function of the end-to-end distance and the corresponding extension-versus-
force relation for (isotropic) random walks, on and off-lattice, with and without persistence, and in any
spatial dimension. For off-lattice random walks with persistence, the large deviation function undergoes
a first order phase transition in dimension d > 5. In the corresponding force-versus-extension relation,
the extension becomes independent of the force beyond a critical value. The transition is anticipated in
dimensions d = 4 and d = 5, where full extension is reached at a finite value of the applied stretching
force. Full analytic details are revealed in the run-and-tumble limit. Finally, on-lattice random walks with
persistence display a softening phase in dimension d = 3 and above, preceding the usual stiffening appearing
beyond a critical value of the force.
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1. Introduction

Random walks are everywhere. After playing a prominent role in the early development of statistical
mechanics and stochastic processes, they have modeled an incredibly wide array of phenomena in many fields,
ranging from sociology and ecology, over economy and finance, to physics and chemistry [1, 2, 3, 4, 5, 6, 7].
In the basic model, the walker makes a step of a fixed length in a random direction in space. Depending
on the problem at hand, additional prescriptions are included. A prominent example is the consideration
of persistence, whereby the walker has a preference to make a step in the same direction as its previous
one. This takes into account the fact that the motion, while still random, is subject to inertia or memory.
A particular limit, called the run-and-tumble walk, has been studied extensively in the context of bacterial
dynamics [8, 9, 10, 11, 12]. Concomitant with the rich variety of problems, mathematical results have
been obtained covering many aspects of random walks. A question of considerable interest is the statistics
of the end-to-end distance and the related response properties upon applying a stretching force. In this
paper, we report on a surprising first order phase transition in off-lattice random walks with persistence in
dimension d > 5. In the corresponding force-versus-extension relation, the extension becomes independent
of the force beyond a critical value. The transition is anticipated in dimensions d = 4 and d = 5, where full
extension is reached at a finite value of an applied stretching force. Full analytic details are revealed in the
run-and-tumble limit.

2. Interpretation of the large deviation function

The asymptotic statistics of the end-to-end distance along a given coordinate, sayX, is typically described
by a so-called large deviation function (LDF) [13]. More precisely, we focus on the statistics of the scaled
distance x = X/(Nb), with N the number of steps, b the step size. In the limit N →∞, the corresponding
probability P (x) assumes the asymptotic form [14, 15]:

P (x) ∼ exp{−NI(x)}, (1)
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with the LDF I(x) a non-negative and typically convex function. It is equal to zero in the “overwhelmingly
most probable” value x̄ which, for an unbiased walk corresponds to x̄ = 0. For example, the LDF for a
symmetric random walk in 1 dimension reads I(x) = [(1 + x) ln(1 + x) + (1− x) ln(1− x)]/2. The limiting
values I(±1) = ln 2 reproduce the probability 1/2N for always stepping in the same direction.

A revealing interpretation of the large deviation function can be given if we assume that the realizations
of the random walk correspond to equally probably (iso-energetic) states of a system (e.g., a polymer) in
equilibrium. Invoking the microcanonical definition (Boltzmann-Einstein formula) for the entropy S(X) =
kB lnW (X), where W (X) is the number of realizations giving rise to X and kB is Boltzmann’s constant, we
find that P (x) ∼ W (X) ∼ exp{[S(X)− S(X̄)]/kB} (X̄ = Nx̄). Comparing with Eq.(1), one can make the
following asymptotic identification: S(X̄)−S(X) ∼ NkBI(x). Within this setting, it is clear how to explore
the region of exponentially unlikely realizations, namely by introducing a (constant) biasing force F along
the stretching direction. The appropriate thermodynamic potential, namely the Gibbs free energy G(F ) as
a function of the external force (and the temperature T ), is given by G(F ) = minX{−TS(X) − FX} =
N minx{kBTI(x) − bFx} [16]. We will denote the corresponding minimum, i.e., the most likely extension
for a given force by x̄F (with x̄0 = x̄):

I ′(x̄F ) = βbF or x̄F = L(βbF ), (2)

where β = 1/kBT . Here, we have introduced the inverse function of I ′, which we call the (generalized)
Langevin or response function L. Note also the appearance of the scaled force f ≡ βbF , which is the work
delivered per step divided by the thermal energy kBT . In many cases, the Langevin function has a simpler
analytic form than the LDF, while it is in principle readily accessible by probing the extension versus force
relation. For example, for the above mentioned 1d lattice random walk, one has that L(f) = tanh f . The
Langevin function can also be obtained[17] from the scaled cumulant generating function C(f):

C(f) = lim
N→∞

1

N
ln〈efX〉 = max

x
{fx− I(x)}. (3)

Indeed, C(f) being the Legendre-Fenchel transform of I(x), the derivatives C′ and I ′ are each other inverse
function, hence C′(f) = L(f). Note finally that C is, in view of its definition in Eq. (3), always a convex func-
tion, while I needs not be so. Equilibrium statistical physics however tells us that apparent non-concavity
of the entropy, corresponding to non-convexity of the LDF, signals the presence of a phase transition. In
this case, one needs to perform a Maxwell’s construction, which at the level of the LDF is equivalent to
the consideration of its convex envelope. The linear segment of the envelope corresponds to the coexistence
of the two phases each represented by one of the endpoints, and the slope gives the value of the relevant
intensive parameter (in this case, the force f) that stays constant during the coexistence transition. Our
crucial discovery is that such a first order phase transition occurs for persistent off-lattice random walks
in dimensions d > 5, with the newly appearing phase corresponding to the macroscopic manifestation of a
“single microstate”, namely that of persistent flight segments.

In the next sections, we evaluate the LDF I(x) of the end-to-end distance and the corresponding Langevin
function L(f) for isotropic random walks, on and off-lattice, with and without persistence, and in any spatial
dimension. These results are obtained from the scaled cumulant generating function Eq.(3). A separate
section is devoted to the run-and-tumble model understood as a suitable limit of the off-lattice walks.

3. Random walks on a lattice

3.1. The non-persistence case

Let us consider a (probably biased) random walk in a regular d-dimensional lattice. Each time step, a
random direction i = 1, 2, . . . , 2d is chosen and the walker moves one lattice step b = 1 in that direction. We
focus of the probability distribution of the final coordinate X after N steps. When, with probability 1/d,
a movement along the X axis has been chosen in a given time step, then the X coordinate increases by one
with probability p or decreases by one with probability 1− p (we really do not care about what happens in
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the other directions). We ask for the probability P (n) that the X coordinate is n after N time steps. If we
denote by Nx the number of moves in the X-direction, then we have:

P (n) =

N∑
Nx=0, Nx=n(mod 2)

P (Nx)P (n|Nx), (4)

P (Nx) =

(
N

Nx

)(
1

d

)Nx
(

1− 1

d

)N−Nx

, (5)

P (n|Nx) =

(
Nx
Nx+n

2

)
p

Nx+n
2 (1− p)

N−Nx
2 . (6)

Using Stirling’s approximation lnN ! ≈ N lnN −N , introducing u = Nx/N , x = n/N and replacing the sum
over Nx by an integral over u with du = 2/N , we find

P (n) =

∫ 1

0

Ndu

2
e−Nφd(u,x), (7)

φd(u, x) = ln d+ (1− u) ln

(
1− u
d− 1

)
+
u+ x

2
ln

(
u+ x

2p

)
+
u− x

2
ln

(
u− x

2(1− p)

)
.

In the large N limit, we use the saddle-point technique to compute the integral to obtain P (n) ∼ e−NId(x)

with the large deviation function (LDF) given by Id(x) = φd(u
∗(x), x) where u∗(x) is the maximum of

φd(u, x) for given x:

u∗(x) =
(d− 1)

√
(d− 1)2x2 + 4p(1− p)(1− x2)− 4p(1− p)

d(d− 2) + (1− 2p)2
, (8)

which in the symmetric case, p = 1/2, simplifies to:

u∗(x) =


1, d = 1,
1 + x2

2
, d = 2,

(d− 1)
√

1 + d(d− 2)x2 − 1

d(d− 2)
, d > 2.

(9)

The explicit expression of the large deviation function for d = 1 is

I1(x) =
1

2

[
(1− x) ln

(
1− x

2(1− p)

)
+ (1 + x) ln

(
1 + x

2p

)]
. (10)

For d = 2, 3 we just quote the result for the symmetric case, p = 1/2:

I2(x) = (1− x) ln(1− x) + (1 + x) ln(1 + x), (11)

I3(x) = ln(3(1− x2)) + x ln

(
2x+

√
1 + 3x2

1− x

)
− 1

2
ln(5 + 3x2 + 4

√
1 + 3x2 ).

Note that I2(x) = 2I1(x) if p = 1/2.
The response function x = Ld(f) resulting from I ′d(x) = f , or

f = I ′d(x) =
∂φd(u, x)

∂u

∣∣∣∣
u=u∗

∂u∗

∂x
+
∂φd(u

∗, x)

∂x
=

1

2
ln

(
u∗ + x

u∗ − x

)
, (12)

where we have used ∂φd(u,x)
∂u

∣∣∣
u=u∗

= 0, by the own definition of u∗. Replacing u∗(x) from Eq.(8) we find,

after a lengthy but straightforward algebra, a particularly simple result:

Ld(f) =
sinh(f − f0)

cosh(f − f0) + (d− 1) cosh(f0)
, f0 = arctanh(1− 2p). (13)
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As C′d = Ld, C(0) = 0, the cumulant generating function is

Cd(f) = ln

(
cosh(f − f0) + (d− 1) cosh(f0)

d cosh(f0)

)
. (14)

It is noticeable that the response curve for arbitrary asymmetry p can be related to that of a symmetric
random walk in a different dimension Ld(f, p) = Ld′(f − f0, p = 1/2) with d′ = 1 + (d − 1) cosh(f0) =
1 + (d− 1)/(2

√
p(1− p)).

We note the physically expected properties: limf→±∞ Ld(f) = ±1 (full extension for infinite force) and,
in the symmetric case p = 1/2 (or f0 = 0), Ld(f) = −Ld(−f) (opposite force gives opposite extension).
The latter symmetry condition implies Ld(0) = 0 (no extension in absence of a force) and L′′d(0) = 0, i.e.,
Ld(f) has an inflection point at f = 0. As a result, in the absence of another pair of inflection points, the
Langevin function will describe the stiffening (increasing ”spring constant” corresponding to a decreasing
value of L′d) upon increasing force. In fact, we obtain from the series expansion

Ld(f) =
f

d
+
d− 3

6d2
f3 +

30− 15d+ d2

120d3
f5 +O(f7), (15)

showing that Ld(f) has, in this case, additional inflection points, besides the one at f = 0, if d > dc = 3.

3.2. Random walks on a lattice with persistence

We next turn to isotropic on-lattice random walks in a regular d-dimensional lattice but now we include
persistence[18, 19, 20, 21, 22, 23, 24, 25]. Persistence is introduced as a probability P > 0 that the
walker makes a step in the same direction as the previous one; otherwise, with probability 1−P, a random
orientation is chosen (which possibly includes the previous orientation). More specifically: at step k there
is a probability P > 0 that the direction that was taken at step k − 1, say direction i ∈ [1, 2d], is kept or,
otherwise, a new direction is chosen from all possible directions (including again i).

Let xk be the increase in position in the X coordinate at step k. We are interested in quantifying the
probabilities of 3 possible outcomes xk = −1, 0, 1 meaning, respectively, a move of −1 in the X-coordinate, a
move in a direction different from the X axis, and a move of +1 in the X-coordinate. The transition matrix
of the Markov chain is:

W =

W (−1→ −1) W (0→ −1) W (1→ −1)
W (−1→ 0) W (0→ 0) W (1→ 0)
W (−1→ +1) W (0→ +1) W (1→ +1)

 (16)

=


P +

1− P
2d

1− P
2d

1− P
2d

(1− P)
(
1− 1

d

)
P + (1− P)

(
1− 1

d

)
(1− P)

(
1− 1

d

)
1− P

2d

1− P
2d

P +
1− P

2d

 ,

with W (b→ a) = P (xk = b|xk−1 = a).

The probability distribution after N steps ~PN =

P (xN = −1)
P (xN = 0)
P (xN = +1)

, follows from the recursion equation:

~Pk+1 = W ~Pk ⇒ ~PN = WN ~P0. (17)

The average vaue of the cumulant generating function Cd(f)

Cd(f) = lim
N→∞

1

N
ln
〈
ef

∑N
k=1 xk

〉
, (18)
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can be computed as〈
ef

∑N
k=1 xk

〉
=

∑
x0=±1

∑
x1=±1

· · ·
∑

xN=±1

efxNW (xN , xN−1)efxN−1W (xN−1, xN−2) · · · efx1W (x1, x0)P0(x0)

=
∑
x0=±1

∑
x1=±1

· · ·
∑

xN=±1

W̃ (xN , xN−1)W̃ (xN−1, xN−2) · · · W̃ (x1, x0)P0(x0). (19)

Where1 W̃ (xk, xk−1) = efxkW (xk, xk−1), or

W̃ =


(
P +

1− P
2d

)
e−f

1− P
2d

e−f
1− P

2d
e−f

(1− P)
(
1− 1

d

)
P + (1− P)

(
1− 1

d

)
(1− P)

(
1− 1

d

)
1− P

2d
ef

1− P
2d

ef
(
P +

1− P
2d

)
ef

 . (20)

According to Eq.(18), if µd(f) is the largest eigenvalue of W̃ , then Cd(f) = ln(µd(f)). We can in
principle find analytically the largest eigenvalue of W̃ solving a third degree equation, using Cardano’s
formula, although the resulting expression is long, and not very helpful. Let us mention, for the sake of
completeness, the case of non-persistence case P = 0 with bias p in the +X direction. The previous matrix
now reads:

W̃ (P = 0) =


1− p
d

e−f
1− p
d

e−f
1− p
d

e−f

1− 1

d
1− 1

d
1− 1

dp

d
ef

p

d
ef

p

d
ef ,

 . (21)

whose eigenvalues are 0 (double) and (cosh(f − f0) + (d− 1) cosh(f0)) / (d cosh(f0)), obtaining in a much
simpler way the result Eq.(14) of subsection 3.1.

Another important simplification occurs in d = 1. In this case the 0 state does not exist and the problem
can be simplified by limiting ourselves to the 2× 2 matrix:(

1+P
2 e−f 1−P

2 e−f
1−P

2 ef 1+P
2 ef

)
. (22)

After finding the largest eigenvalue of this matrix, we obtain:

C1(f) = ln

[
1 + P

2

(
cosh(f) +

√
cosh2(f)− 4P

(1 + P)2

)]
, (23)

and a response function

L1(f) = C′1(f) =
sinh(f)√

cosh2(f)− 4P
(1 + P)2

. (24)

To find the large deviation function we need to perform the Legendre-Fenchel transform: first invert C′1(f) =
x to find f(x) as

cosh [f(x)] =

√
1− cx2

1− x2
, c ≡ 4P

(1 + P)2
. (25)

Out of the two possible solutions for f(x) we must take sign(f(x)) = sign(x). The LDF is

I1(x) = xf(x)− C1(f(x)), (26)

1A more symmetric choice: W̃ (xk, xk−1) = e
f
2
(xk+xk−1)W (xk, xk−1) gives the same results.
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or the explicit expression

I1(x) = |x| argcosh

(√
1− cx2

1− x2

)
− ln

[
1 + P

2

(√
1− c

1− x2
+

√
1− cx2

1− x2

)]
(27)

The limiting value is I1(x = ±1) = ln

(
2

1 + P

)
.

We derive now an argument that provides an alternative expression for the eigenvalues of W̃ . The idea
is to start from the recursion relation that gives PN (X, i), the probability that, after N steps, the location
of the random walk is X and has been reached from a step in the direction i = 1, . . . ,M = 2d. In the case
of persistence the recursion relation is:

PN (X, i) = PPN−1(X − xi, i) +
1− P
M

M∑
j=1

PN−1(X − xi, j), (28)

where xi is the variation in the X coordinate of the position of the walker occurs when the direction i has
been taken. For the generating function FN (f, i) we obtain:

FN (f, i) ≡
∫
dX efXPN (X, i) = PefxiFN−1(f, i) +

1− P
M

efxi

M∑
j=1

FN−1(f, j). (29)

The trial function FN (f, i) = µNd Ψ(f, i) leads to the eigenvalue problem:

µdΨ(f, i) = PefxiΨ(f, i) +
1− P
M

efxi

M∑
j=1

Ψ(f, j). (30)

We now introduce in this expression the (arbitrary) normalization condition 1
M

∑M
i=1 Ψ(f, i) = 1 to obtain

Ψ(f, i) =
1− P

µde−fxi − P
(31)

and using again the normalization condition we obtain a closed equation for the eigenvalues µd

1− P
M

M∑
i=1

1

µde−fxi − P
= 1. (32)

In the case of a d dimensional regular lattice, one direction contributes +1 to the variable X, another
direction contributes −1 and the remaining 2d− 2 do not contribute, such that the above equation reads:

1− P
2d

[
1

µde−f − P
+

1

µdef − P
+

2d− 2

µd − P

]
= 1. (33)

It is possible to check, either numerically or comparing the resulting equations, that the eigenvalues µd
obtained from this equation coincide exactly with the eigenvalues of matrix W̃ as given by Eq.(20).

In summary, for a regular d-dimensional lattice with persistence, P > 0, once µd(f) has been obtained
using either the eigenvalues of matrix Eq.(20) or the solutions of Eq.(33), the generalized Langevin func-
tion can be obtained as Ld(f) = C′d(f) = µ′d(f)/µd(f). In practice, we have used the symbolic program
Mathematica[34] to obtain the largest eigenvalue µd(f) and its derivative. This allows us to plot the desired
Ld(f) depicted in Fig.1.

The existence of inflection points other than f = 0 of the function Ld(f) can be derived from the
expansion of the Langevin function. Expanding the largest eigenvalue in powers of f ,

µd(f) = 1 +
1 + P
1− P

f2 +
(1 + P)(d(1 + 10P + P2)− 6P(3 + P))

24d2(1− P)3
f4 +O(f6), (34)
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Figure 1: Langevin function L(f) for on-lattice random walk with persistence P = 0.5, for d = 1, 2, 3, 4, 10, 100,∞ (in order of
decreasing slope at the origin). Note the additional inflection points for d > 2.

we obtain

Ld(f) =
1 + P
d(1− P)

f +
(1 + P)(d(1 + 10P + P2)− 3(1 + 6P + P2)

6d2(1− P)3
f3 +O(f5). (35)

Therefore, the equation L′′d(f) = 0 has real solutions±fm 6= 0 for d > dc =
(
3(1 + 6P + P2)

)
/
(
1 + 10P + P2

)
.

As P ∈ (0, 1), it is dc ∈ (2, 3) and, limiting ourselves to integer values of d, the transition dimension is dc = 2,
i.e. for d ≤ 2, L′′d is single peaked, while it is double peaked for d > 2. As a result, a regime of softening
around f = 0, followed by the “usual” stiffening regime upon further increase of the force beyond a critical
amplitude (corresponding to locations of the inflection points away from zero) will be observed in on-lattice
random walks for d > 3, and from d = 3 in the case of persistence.

The Langevin function Ld(f) is an analytical function of its argument f for all finite values of the
dimension d. However, in the mathematical limit d→∞ a singularity does appear. As one can derive from
Eq.(33) we obtain the values

µ∞(f) =


Pe−f , f < lnP,
1, lnP < f < − lnP,
Pe−f , f < lnP,

(36)

and

L∞(f) = C′∞(f) =
µ′∞(f)

µ∞(f)
=


−1, f < lnP,
0, lnP < f < − lnP,
1, f < lnP,

(37)

with singularities at f = ± lnP. From here, the equation L∞(f) = x has the solution{
f = lnP, if x ∈ (−1, 0),

f = − lnP, if x ∈ (0, 1).
(38)

The large deviation function I∞(x) = xf(x)− C∞(f(x)), or

I∞(x) =

{
x lnP, if x ∈ (−1, 0),

−x lnP, if x ∈ (0, 1).
(39)

7



A curve with a singularity at x = 0. Interpreting L∞(f) as the response function giving the elongation to
an external forcing, it turns out that the elongation is 0 up to f = − ln(P) and then it jumps to x = 1, a
discontinuous transition, see Fig.1. In the case of an off-lattice random walk with persistence, considered in
the next sections, the same type of discontinuities will be observed at finite values of the dimension d.

4. Random walks off-lattice

We consider now that the random walker moves in Rd and executes a movement of length b = 1 in
a random direction. Let θ be the angle of the trajectory with the X-direction. We are interested in the
distribution of x = 1

N

∑N
k=1 xk = 1

N

∑N
k=1 cos(θk) which verifies a large-deviation relation of the form

P (x) ∼ e−NId(x).
Persistence can be included as in the lattice case by including the probability P that the direction taken

at step k coincides with the one taken at step k − 1. If, with probability 1− P, that same direction is not
taken then a new direction is taken again randomly. As the angles expand a continuous range of real values,
except in d = 1, the probability that the new direction coincides with the previous one is zero. Note also
that, if d > 1 the only way of reaching x = 1 is by repeatedly iterating an initial move in the X direction,
an event that happens with a probability P (x = ±1) ∼ PN = eN lnP , which leads to Id(x = ±1) = − lnP
for d > 1.

We do not need to develop the theory anew. If we allow the direction angle to change continuously in
dimension d, we can obtain the Legendre-Fenchel transform of the large deviation function Cd(f) = log µd(f)
by extending Eq.(32) to the case of M →∞ taking xi = cos(θ) and the corresponding angular distribution

gd(θ) =
Γ
(
d
2

)
√
πΓ
(
d−1

2

) sind−2(θ),

∫ π

0

dθ gd(θ) = 1. (40)

Hence, µd(f) is found as the solution of the equation,∫ π

0

dθ
gd(θ)

µde−f cos(θ) − P
=

1

1− P
. (41)

We analyze this equation first in the non-persistence case P = 0 and then in the general case of a non-null
persistence.

4.1. Random walks off-lattice without persistence

Setting P = 0 in Eq.(41), we obtain

µd(f) =

∫ π

0

dθ gd(θ)e
f cos(θ) =

(
2

f

) d
2−1

Γ

(
d

2

)
I d

2−1(f), (42)

being Iν(f) the hyperbolic Bessel function of order ν. The response function is Ld(f) = C′d(f) = µ′d(f)/µd(f)
or

Ld(f) =
I d

2
(f)

I d
2−1(f)

. (43)

This includes the well-known results L1(f) = tanh f (d = 1) , and L3(f) = coth f − 1/f (d = 3) [26]. The
Taylor expansion

Ld(f) =
f

d
− f3

d2(2 + d)
+

2f5

d3(2 + d)(4 + d)
+O(f7) (44)

indicates that the third derivative of Ld(f) at f = 0 is always negative and there are no further inflection
points other than f = 0.
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Except for d = 1 where the result coincides with the lattice case, the corresponding LDF’s for d > 1
do not have a simple analytic expression. We note, however, that for large d, one can use the asymptotic
expression of the Bessel function2:

ln Iν(z) ∼
√
z2 + ν2 + ν ln

(
z

ν +
√
ν2 + z2

)
, z →∞. (45)

to obtain the asymptotic result

Id(x) ∼ −d
2

ln(1− x2). (46)

4.2. General case of non-null persistence

Let us introduce ξd ≡ µd/P. From Eq.(41), ξd(f) is found by solving

Fd(ξd, f) =
P

1− P
, (47)

Fd(ξ, f) ≡
∫ π

0

dθ
gd(θ)

ξe−f cos(θ) − 1
. (48)

The problem with this equation is that, as we will see, the solution ξd(f) might not exist for some values
of f and d. This does not make sense as f is an arbitrary parameter taking any possible value in R. To see
what goes wrong, we first need to analyze the integral in some detail.

-Note that Fd(ξ, f) = Fd(ξ,−f) is symmetric with respect to f . Therefore, we restrict ourselves to the
interval f ∈ [0,∞).

-For the integral to be convergent the conditions ξ > ef and ξ < e−f must be satisfied, otherwise the
denominator becomes 0 at some value of θ and the integral does not exist. If ξ < e−f the integrand is always
negative and Fd(ξ, f) can never be equal to P/(1− P) ∈ [0,∞). Therefore, we need ξ > ef (recall we are
considering only f ≥ 0).

-Fd(ξ, f) is a monotonously decreasing function of ξ ≥ 0 taking its maximum value at ξ = ef (the
minimum allowed value for ξ). If this maximum value Fd(e

f , f) is finite then, for a given P there exists
a maximum possible value fc for which the solution ξd(f) exists. If this is the case, the maximum value
fc(d,P), which depends on dimension d and persistence probability P, is found by solving

Fd(ξ = efc , fc) =
P

1− P
. (49)

Only if Fd(ξ = ef , f) = ∞, ∀f , will Eqs. (47,48) have a solution for all values of f . As we will see, this is
the case if d ≤ 3.

Besides d = 1, where the problem is identical to the lattice case, a particularly simple case is d = 3 where
the integral can be expressed in terms of elementary functions:

F3(ξ, f) =
1

2f
ln

(
ξ − e−f

ξ − ef

)
(50)

leading to

ξ3(f) =
sinh [f/(1− P)]

sinh [Pf/(1− P)]
, (51)

C3(f) = ln [P ξ3(f)] , (52)

L3(f) = C′3(f) =
coth [f/(1− P)]− P coth [Pf/(1− P])

1− P
. (53)

2See, for example, https://dlmf.nist.gov/10.41#iv
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Note that ξ3(f) exists for any value of f and that L3(f → ±∞) = ±1. For d ≥ 5 odd it is possible to find
some analytical expressions for Ld(f), see Appendix A, but the calculation of ξd(f) for a given value of the
persistence probability P has to be performed by a numerical solution of Eqs.(47,48). For d even, the whole
determination of ξd(f), Cd(f) and Ld(f) has to be done numerically.

Recall that Ld(f) ∈ [−1, 1], and it is important to determine the value of this response function at
f = fc. If Ld(fc) < 1, then the equation Ld(f) = x ∈ [−1, 1] can not always be solved. This failure has
a formal analogy in the calculation of the partition function of an ideal quantum boson gas[35], that we
now outline briefly. For a Bose-Einstein ideal gas the thermodynamic potential J(z, T, V ) as a function
of the fugacity z, the temperature T and the volume V is obtained in the grand-canonical ensemble as
J = −kBT

∑
` ln(1− ze−ε`/kBT ), where ε` is the energy of the single-particle energy quantum level `. Using

the non-relativistic density of states in three dimensions, g(ε) = 2πV (2m)3/2

h3 ε1/2, the potential J is computed

as an integral J = −kBT
∫∞

0
dεg(ε) ln(1 − ze−ε/kBT ) = kBTV λ

3/2
T Li5/2(z), with λT = h√

2πmkBT
and the

polylogarithm appears as the integral Lis(ξ) = 1
Γ(s)

∫∞
0
dxxs−1/(ξ−1ex − 1). The problem arises when the

equation of state that follows from this thermodynamic potential, N = V λ−3
T Li3/2(z), can not be right as

it predicts that the maximum possible value of the density is N
V = λ−3

T Li3/2(1) = 2.612λ−3
T , and it does not

make sense to have an upper limit for the density of particles.
The solution is well known: in passing from a sum to an integral using the density of states g(ε) the

contribution of the ground state ε = 0 is completely lost as g(0) = 0, but at low enough temperatures the
bosons condensate in the ground state (Bose-Einstein transition) and its contribution to the sum can not
be neglected. This is solved by including explicitly the contribution of the ground state by making the
replacement of a sum by an integral in the following way:∑

`

ln(1− ze−ε`/kBT ) =

∫ ∞
0

dεg(ε) ln(1− ze−ε/kBT ) + ln(1− z). (54)

The failure of our calculation can be solved in a similar way: We realize that the integral, Eq. (41) comes
from a sum Eq.(32) in the limit of M → ∞ terms in the sum, but that in the limit process of replacing
the sum by an integral we have lost the contribution of θ = 0 as the weighting factor sin(θ)d−2 completely
disregards its contribution for d > 2. As in Bose-Einstein theory, the solution is to include the θ = 0 term
explicitly, replacing Eqs.(47-48) by

FMd (ξ, f) ≡ 1

M

1

ξe−f − 1
+

∫ π

0

dθ
gd(θ)

ξe−f cos(θ) − 1
=

P
1− P

. (55)

The equation FMd (ξd, f) =
P

1− P
now has a finite solution for all f as long as M is finite. When M → ∞

the solution for f > fc tends to ξd = ef . This implies that Cd(f) = ln(Pξd) = f + lnP and Ld(f) = 1 for
f > fc. The inclusion of the explicit θ = 0 summand is needed as long as fc is finite, for dimension d > 3.
As a consequence, the function Ld(f) develops a singularity at f = fc. The type of singularity depends
on the dimension. For 3 < d ≤ 5 the function Ld(f) is continuous at f = fc, but its derivative is not,
whereas for d > 5 the function itself has a finite discontinuity. This singularity propagates into the cumulant
generating function Cd(f) and also into the large deviation function Id(x) that develops a singularity at
x = xc = Ld(fc), that is at xc < 1 for d > 5.

Using the explicit expressions above we can prove that fc decreases with increasing dimension. The value
of ξmax = ξ(fc) = efc , also decreases with dimension. For instance, if P = 0.5 we have the numerical values:

From this table, we note that the value of fc decreases steadily with dimension (diverging at d = 3), but
the maximum value of Ld reaches 1 up to d = 5 and then it takes values less than 1. Generalized Langevin
functions Ld(f) for different values of spatial dimension d and a persistence value P = 0.5, have been plotted
in Fig.2(a).

Given the aforementioned properties of Cd(f), it turs out that its Legendre-Fenchel transform, the LDF
Id(x) develops an inflection point at x = xc = Ld(fc) and becomes non-convex for x ∈ [xc, 1]. As mentioned
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d fc Ld(fc)
≤ 3 ∞ 1
4 1.44266 1
5 1.06073 1
6 0.936596 0.67822
7 0.87513 0.512275
8 0.838444 0.411353
9 0.814067 0.343574

earlier, the right interpretation is to introduce the Maxwell construction, and replace the function Id(x) in
that interval by the straight line connecting the points (xc, Id(xc)) and (1,− lnP):

Id(x) =
Id(xc) + lnP

xc − 1
(x− 1)− lnP, for d ≥ 5 and x ∈ (xc, 1), (56)

or, using Id(xc) = xcfc − C(fc) = fc(xc − 1)− lnP,

Id(x) = fc(x− 1)− lnP, for d ≥ 5 and x ∈ (xc, 1). (57)

This Maxwell construction has been used when plotting the LDF of Fig.2(b) for d = 6, 8.

5. Run-and-tumble model

We have introduced persistence in a discrete-time random process by considering that there is a finite
probability P that the previous direction θ is kept at each time step. It is possible to introduce persistence
in a continuous-time version of the random walk, the so-called run-and-tumble model, which might be more
natural. We still consider that initially a random direction θ ∈ [0, π] in Rd is chosen from the distribution
gd(θ). That direction is then followed by the walker during a time τ chosen from an exponential distribution
e−τ/τ0 , time after which a new random direction is chosen independently of the previous one, being τ0 a
characteristic time. Before the new change of direction, the variable X has varied in v0τ cos θ, with v0 = `0/τ0
the speed of the particle, and the time t increased by τ . After a large time, the probability distribution to find
an X-coordinate X at time t will be shown to follow a large deviation function P (X, t) ∼ e−tId(X/t). Note
that the corresponding LDF Id(x) now has limiting values at x = ±1, corresponding to an uninterrupted
straight flight with probability exp(−N), i.e., Id(±1) = 1 (except in d = 1 where I1(±1) = 1/2 due to the
finite state-space), instead of the random walk value I(±1) = ln 2. There are several ways in which this large
deviation function Id(x) can be obtained. The simplest one is by a limit process that we describe in the
next subsection. Other ways of getting the LDF are explained in Appendix B. Without lack of generality
we set `0 = τ0 = v0 = 1.

5.1. Limit process

Probably the simplest way is to relate the continuous-time and the discrete-time versions of the model
is by a limit process. To this end, we consider a discrete-time random walk in which every time step
i = 1, . . . , N , of duration dt, the current direction is kept with probability P = 1− dt, and a new direction
θi is chosen otherwise. During the time dt the walker moves a distance dx = dt. In the limit dt→ 0, this is
equivalent to saying that a direction is kept during a finite time τ drawn from an exponential distribution e−τ ,
or during a distance ` is drawn from a distribution e−`. In the discrete case we know that X̂ ≡

∑N
i=1 cos(θi)

follows a large deviation form P (X̂,N) ∼ e−NId(X̂/N). In the continuous-time version the distance followed

by the random walker is X =
∑N
i=1 dt cos(θi) = dtX̂. As the time of the continuous random walk is

t = Ndt it follows that the probability of X can be written as e−NId(X̂/N) = e−NId(X/Ndt) = e−tId(X/t)

with Id(x) = Id(x)/dt, or, more properly Id(x) = limdt→0 Id(x)/dt (remember that dt appears also in the
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Figure 2: a) Langevin function L(f) for d = 1, 2, 3, 4, 5, 6, 8 (from decreasing slope at the origin) and b) large deviation function
I(x) (same color code) for an off-lattice random walk with persistence P = 0.5. Full extension is reached at a finite critical
value fc of the force for d = 4 and d = 5, while a discontinuous transition, as indicated by dotted vertical lines in panel (a),
takes place for d > 5.

numerator within the persistence probability P = 1 − dt). Concerning the relation between the Legendre-
Fenchel transforms of both functions, a simple calculation leads to Cd(f) = limdt→0 Cd(fdt)/dt.

In Eq.(41), after using the definition µd(f) = eCd(f), we replace f → fdt, P → 1−dt, Cd(fdt)→ dt Cd(f)
and take the limit dt→ 0, obtaining

1 =

∫
dθ

gd(θ)

1 + Cd(f)− f cos(θ)
. (58)

5.2. The large deviation function

We use Eq.(58) to compute the cumulant generating function Cd(f) and to obtain its Legendre-Fenchel
transform Id(x). The integral can be expressed in terms of the Gauss hypergeometric function F (α1, α2;α3;x)
also written in the literature[38] as 2F1(α1, α2;α3;x):

1 =

∫ π

0

dθ
gd(θ)

a− f cos(θ)
=

1

a
F

(
1

2
, 1;

d

2
;

(
f

a

)2
)
, |f | < |a| (59)
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where a = 1 + Cd(f). As the hypergeometric function F
(

1
2 , 1; d2 ; z

)
can be expressed for integer d in terms

of elementary functions, it is possible in some cases to give explicit expressions for Cd(f), its derivative
Ld(f) and the LDF Id(x), as detailed in Table 1 for d = 1, 2, 4, 6. In those cases that an explicit analytical
expression is not available, one can always use parametric expressions. For instance, in Eq.(59) introduce
z = f/a and recall that Cd = a− 1. The cumulant generating function can be expressed as:

Cd(z) = −1 + F

(
1

2
, 1;

d

2
; z2

)
, (60)

f(z) = zF

(
1

2
, 1;

d

2
; z2

)
. (61)

The parametric form of the response function follows from:

Ld(z) =
∂Cd(z)
∂z

∂f(z)
∂z

=
2zF

(
3
2 , 2; 1 + d

2 ; z2
)

dF
(

1
2 , 1; d2 ; z2

)
+ 2z2F

(
3
2 , 2; 1 + d

2 ; z2
) (62)

where we have used the derivative of the hypergeometric function F ′(α1, α2;α3, x) = α1α2

α3
F (1 + α1, 1 +

α2; 1 + α3;x). For the LDF we use x = Ld(f) and Id(x) = xf − Cd(f), to obtain its parametric form:

x(z) = Ld(z), (63)

Id(z) = x(z)f(z)− Cd(z). (64)

For example, for d = 3 we obtain:

x(z) =
1

z
+

(
1− 1

z2

)
arctanh(z), (65)

I3(z) = 1 +

(
1− 1

z2

)
(arctanh(z))2. (66)

We also mention the parametric form of the LDF for d = 5;

x(z) =
3(2− z)z + (6− 6z + z2) ln(1− z)

z (2z + (2− z) ln(1− z))
, (67)

I5(z) = 1 +
3 ((2− z) z + 2(1− z) ln(1− z))2

2z3(2z + (2− z) ln(1− z))
. (68)

From this, one can calculate the parametric form of the cumulant generating function and the response
function:

f(z) =
∂I5
∂z
∂x
∂z

=
3(2− z)z + 6(1− z) ln(1− z)

2z2
, (69)

C5(z) = x(z)f(z)− I5(z) =
z(12 + (−12 + z)z) + 6(−2 + z)(−1 + z) ln(1− z)

2z3
, (70)

L5(f) =
∂C5(z)
∂z
∂f
∂z

=
3(z − 2)z − (6− 6z + z2) ln(1− z)

z(−2z + (z − 2) ln(1− z))
. (71)

These results are summarized in Table.1



d F (1/2, 1, d/2, z2) Cd(f) Ld(f) Id(x)

1
1

1− z2

√
1 + 4f2 − 1

2

2f√
1 + 4f2

1−
√

1− x2

2

2
1

u

√
1 + f2 − 1

f√
1 + f2

1−
√

1− x2

3
arctanh(z)

z
f coth(f)− 1 coth(f)− f cosech2(f) Eqs.(65,66)

4
2

1 + u

f2

4

f

2
x2

5
3(z − (1− z2) arctanh(z))

2z3
Eqs.(69,70) Eqs.(69,71) Eqs.(67,68)

6
4(1 + 2u)

3(1 + u)2
2
3

(
cos
(
w
3

)
+ 2 sin

(
w
6

)
− 1
) 4

3
cos

(
π+arccos( 3f

4 )
3

)
3

16
x2(8− 3x2)

Table 1: The response function Ld(f) and the LDF function Id(x) for different values of the dimension d. We use the notation u ≡
√

1− z2 and w ≡ π+ 4 arccos(3f/4)
whenever necessary.



A further inspection of these results is called for, see also Fig. 3. The LDF’s for d ≤ 5 are smooth convex
functions linking the point I(0) = 0 to I(±1) = 1 (I(±1) = 1/2 for d = 1). The first surprise arises with
d = 4: the LDF is purely quadratic up to full extension |x| = 1. This result was anticipated in [27] from a
general criterion for such “perfect harmonicity”. Turning to d = 5, we note that the LDF is still convex, but
with inflection points at |x| = 1. This signals the departure from convexity, which is apparent when turning
to d = 6: the inflection points are now at |x| = xc = 2/3; the LDF is no longer convex for |x| > xc and takes
on the wrong limiting value I(±1) = 15/16 instead of I(±1) = 1. Furthermore, starting with d = 4, the
value of the generalized Langevin function Ld(f) seems to be greater than 1 for large enough f > fc, which
does not make sense as x = Ld(f) is a length restricted to the interval x ∈ [−1, 1].

The reason for these inconsistencies is the same that was apparent in the off-lattice random walks in
discrete time, namely that Eq.(58) might not be able to provide the function Cd(f) for all values of f . The
analysis is very similar to the one carried out in Subsection 4.2. The existence of integral (58) requires
|1 + Cd(f)| > |f |. There is a limiting value fc, defined as 1 + Cd(fc) = fc (we focus now only of f > 0), such
that the integral does not exist and Cd(f) can not be found using Eq.(58). In this case it is possible to give
an explicit value of fc using Eq.(59) with f = fc that leads to

fc = F

(
1

2
, 1;

d

2
; 1

)
=

∞, d ≤ 3,
d− 2

d− 3
, d ≥ 3.

(72)

The solution is found, again, by considering explicitly the contribution of the θ = 0 direction which is
neglected in Eq.(58) for d > 3 due to the weighting factor gd(θ), i.e. by replacing, for f > 0, Eq.(58) with

1 =
1

M

1

1 + Cd(f)− f
+

∫
dθ

gd(θ)

1 + Cd(f)− f cos(θ)
, (73)

which now admits a solution Cd(f) for all values of f . When M → ∞, the solution for f > fc tends to
Cd(f) = −1 + f and, consequently, Ld(f) = 1.

The value of Ld(fc) can be obtained explicitly setting z = 1 in Eq.(62):

Ld(fc) =
2F
(

3
2 , 2; 1 + d

2 ; 1
)

dF
(

1
2 , 1; d2 ; 1

)
+ 2F

(
3
2 , 2; 1 + d

2 ; 1
) =

2

d− 3
, d ≥ 3. (74)

Hence, the situation is analogous to what happened in the off-lattice model with persistence. For d ≤ 3
the Langevin function Ld(f) tends to ±1 as f → ±∞. For 3 < d ≤ 5, the value Ld(f) = ±1 is reached at

a finite value ±fc = ±d− 2

d− 3
. For d > 5, |Ld(±fc)| = 2

d− 3
< 1, and there is a discontinuity as |Ld(f)| = 1

for |f | > fc.
Concerning the LDF Id(x), it turns out that it becomes non-convex for d > 5 and x > xc = Ld(fc) = 2

d−3 ,
yielding an incorrect value Id(x = ±1) < 1. Again, the solution comes by means of the Maxwell construction,
connecting the (xc, Id(xc)) and (1, 1) points by the straight line

Id(x) = 1 +
d− 2

d− 3
(|x| − 1), for d > 5 and xc < |x| < 1, (75)

that results from Id(xc) = xcfc − Cd(fc) = xcfc − (fc − 1) = (xc − 1)fc + 1. This is the procedure that has
been followed when plotting the LDF for d = 6, 8 in Fig.3(b).

For |f | ≥ fc, the linear segments in the LDF imply that the Langevin function becomes a constant, i.e.,
no increase in force is needed to achieve further elongation beyond the critical elongation xc, see vertical
dashed lines in Fig. 3(a). The constancy of the force is a trademark of a first order phase transition, akin
to constancy of the pressure during the gas-liquid transition. Concerning the nature of the random walks,
fully straight flight segments of macroscopic length, i.e., proportional to L, will constitute a finite fraction
of the realizations for end-to-end distances exceeding |x| = xc and our calculations allow us to calculate
exactly the macroscopic weight of these segments. Note that the values of xc are close to those observed
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in the persistent off-lattice random walk, while the values for fc differ by a factor close to ln 2. The phase
transitions in the run-and tumble-limit and the persistent off-lattice cases are qualitatively but also to some
extent quantitatively similar.
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Figure 3: a) Langevin function L(f) for d = 1, 2, 3, 4, 5, 6, 8 (from decreasing slope at the origin) and b) large deviation function
I(x) (same color code) for the run-and-tumble walk with `0 = τ0 = v0 = 1.

6. Conclusions

In summary, we encounter a number of surprising features that are absent in the walks without persis-
tence. Firstly, on-lattice random walks with persistence, a pair of new inflection points (wiggles) appear
in the Langevin function for d ≥ 3, implying an initial phase of softening followed by the usual stiffening
beyond a critical value of the force amplitude. In the limit of infinite dimension, the two wiggles turn into
a pair of discontinuous transitions, with no extension below, and full extension above a critical value of the
applied force. For off-lattice random walks with persistence, the large deviation function undergoes a first
order phase transition in dimension d > 5. This transition is of the ”condensation type” in the sense that
the occupancy of a single state (namely the persistent direction) becomes macroscopic beyond a certain
extension. In other words, the condensed phase corresponds to a macroscopic fraction of the random walk
oriented along the end-to-end distance. This is obviously reminiscent of a transition to crystallization. In
the corresponding force-versus-extension relation, the extension becomes independent of the force beyond a
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critical value. The transition is anticipated in d > 3, where full extension if reached at a finite value of the
applied stretching force.

We make some final comments. First, we have chosen to discuss persistency as a purely entropic phe-
nomenon. The resulting temperature independent phase transition arises, as in hard core liquids [28], from
a competition between two forms of entropy, one associated to persistency and the other to the space angle.
One could attribute an energetic origin to persistency, which would result in a temperature dependent phase
transition. Second, we expect that the critical dimension of the reported phase transition can be reduced by
complementing the space angle entropic cost with an energetic cost induced by attractive forces. Thirdly,
it was recently shown that dynamic phase-transitions also exist in a different model for persistent random
walks [29]. It would be interesting to study the relation with our result. Fourthly, our random walk model
can be mapped on a one-dimensional spin chain, where the direction of the spins corresponds to the direc-
tion of the walker. This mapping is particularly interesting, as the number of one-dimensional models with
local interactions exhibiting phase-transitions is very limited [30, 31]. Finally, the observed phase transition,
with the macroscopic appearance of fully stretched segments, is very reminiscent of a stretched-induced
crystallization [32, 33], but further research is needed to clarify the exact correspondence.

Appendix A. Some analytical expressions

It turns out that for d odd the integral Eq.(48) can be expressed in terms of the polylogarithm3 Lik(z)
via the functions:

Gk(ξ, f) =
Lik(e−f/ξ) + (−1)k Lik(ef/ξ)

fk
, (A.1)

G−k (ξ, f) =
Lik(e−f/ξ)− (−1)k Lik(ef/ξ)

fk
, (A.2)

as

Fd(ξ, f) =
Γ
(
d
2

)
√
πΓ
(
d−1

2

) (−1)b+1
b∑

k=0

2b−k
(
b

k

)
(b+ k)!Gb+k+1(ξ, f),

b =
d− 3

2
integer. (A.3)

Specific cases:

F3(ξ, f) = −1

2
G1(ξ, f), (A.4)

F5(ξ, f) =
3

2
[G2(ξ, f) +G3(ξ, f)] , (A.5)

F7(ξ, f) = −15

2
(G3(ξ, f) + 3G4(ξ, f) + 3G5(ξ, f)), (A.6)

F9(ξ, f) =
105

2
(G4(ξ, f) + 6G5(ξ, f) + 15G6(ξ, f) + 15G7(ξ, f)). (A.7)

The function Ld(f) =
ξ′d(f)

ξd(f)
is obtained taking the derivative of Fd(ξd(f), f) =

P
1− P

with respect to f :

∂Fd(ξd, f)

∂ξd

dξd(f)

df
+
∂Fd(ξd, f)

∂f
= 0⇒ Ld(f) = −1

ξ

(
∂Fd(ξ,f)

∂f

)
(
∂Fd(ξ,f)

∂ξ

)
∣∣∣∣∣∣
ξ→ξd(f)

(A.8)

3https://en.wikipedia.org/wiki/Polylogarithm
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As the derivative of the polylogarithm function can be expressed in terms of polylogarithm functions, it is
possible to derive explicit expressions for d odd as:

L5(f) = −G1(ξ, f) + 3G2(ξ, f) + 3G3(ξ, f)

G−1 (ξ, f) +G−2 (ξ, f)

∣∣∣∣
ξ→ξd(f)

, (A.9)

L7(f) = −G2(ξ, f) + 6G2(ξ, f) + 15G4(ξ, f) + 15G5(ξ, f)

G−2 (ξ, f) + 3G−3 (ξ, f) + 3G−4 (ξ, f)

∣∣∣∣
ξ→ξd(f)

, (A.10)

L9(f) = −G3(ξ, f) + 10G4(ξ, f) + 45G5(ξ, f) + 105G6(ξ, f) + 105G7(ξ, f)

G−3 (ξ, f) + 6G−4 (ξ, f) + 15G−5 (ξ, f) + 15G−6 (ξ, f)

∣∣∣∣
ξ→ξd(f)

. (A.11)

Appendix B. Alternative derivations of the large deviation function for the run-and-tumble
model

Appendix B.1. Direct approach

The probability (density) of having a coordinate X at time t satisfies:

P (X, t) =

∫ ∞
0

dτ

∫ π

0

dθ e−τgd(θ)P (X − τ cos θ, t− τ), (B.1)

and this is expected to follow a large deviation form P (X, t) ∼ e−tId(X/t).
The generating function G(f, t) =

〈
efX

〉
=
∫
dXP (X, t)efX yields the Legendre-Fenchel transform

Cd(f) = limt→∞
1
t lnG(f, t) of the large deviation function Id(x). Inserting Eq.(B.1) in the definition of

G(f, t) we arrive at:

G(f, t) =

∫
dτ dθ gd(θ)e

−τ(1−f cos θ)G(f, t− τ). (B.2)

We insert the ansatz G(f, t) = etCd(f) and perform the integral over τ , leading again to Eq.(58).

Appendix B.2. Master equation approach

Let us start from a finite set θ1, . . . , θM of possible orientations to choose from and let P (X, θi, t) be the
probability that the walker is at X-coordinate X and has reached it from the θi direction. This probaiblity
satisfies a master equation than can be derived from:

P (X, θi, t+ dt) = P (X − dt cos θi, θi, t)(1− dt) +
dt

M

M∑
j=1

P (X − dt cos θi, θj , t). (B.3)

Expanding at first order in dt and taking the limit dt→ 0 one gets:

∂P (X, θi, t)

∂t
= −P (X, θi, t)− cos θi

∂P (X, θi, t)

∂X
+

1

M

∑
j

P (X, θj , t). (B.4)

For the set of generating functions G(f, θi, t) =
∫
dXefXP (X, θi, t) we obtain after an integration per parts:

∂G(f, θi, t)

∂t
= −G(f, θi, t) + f cos θiG(f, θi, t) +

1

M

∑
j

G(f, θj , t). (B.5)

A set of M coupled linear differential equations for which we try the ansatz G(f, θi, t) = Ψi(f)etCd(f), or:

CdΨi = (−1 + f cos θi)Ψi +
1

M

∑
j

Ψj . (B.6)
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The algebra is now similar to the one used in the study of random walks on a lattice with persistence and
leads to

1 =
1

M

M∑
j=1

1

1 + Cd − f cos θj
, (B.7)

which in the limit M →∞ recovers Eq.(58).

Appendix B.3. Using contraction theorem

Our starting point here is the explicit, exact result for the large deviation function of the empirical
distribution for a Markov process obeying detailed balance. For large times t, the empirical distribution
converges to the genuine probability p(Ω). This convergence is described by a LDF J [q(Ω)]. Note that J
is a functional whenever the state space Ω is continuous since q(Ω) is then a function. Our basic starting
point is that the explicit form of this LDF is known for a continuous time Markov process obeying detailed
balance [36, 37], namely:

J [q(Ω)] =

∫
dΩ1

∫
dΩ2

1

2

(√
W (Ω2,Ω1)q(Ω1)−

√
W (Ω1,Ω2)q(Ω2)

)2

=

∫
dΩ1

∫
dΩ2W (Ω2,Ω1)q(Ω1)

−
∫
dΩ1

∫
dΩ2

√
W (Ω1,Ω2)W (Ω2,Ω1)q(Ω1)q(Ω2),

(B.8)

where W (Ω1,Ω2) is the transition function, and the summation (or integration) runs over the full space of
Ω1 and Ω2. In our system, we have W (Ω1,Ω2) = 1/

∫
dΩ, i.e. a uniform transition rate. This leads to

J [q(Ω)] = 1−

(∫
dΩ
√
q(Ω)

)2∫
dΩ

(B.9)

For its application to our random walk problem, we assume that the speed of progression along a direction
x is given by a function f(Ω) = cos(θ), where θ is the angle between the preferred direction and the direction
of Ω. The LDF I(x) for x is then obtained by a “contraction”. More specifically, it is given by:

I(x) = J [q̄(Ω)], (B.10)

where q̄ is the most likely empirical distribution, i.e. the one that minimized the LDF J [q(Ω)], while
satisfying the constraint that it realizes the correct value of x, while of course obeying normalization:∫

dΩq̄(Ω) = 1, (B.11)∫
dΩq̄(Ω) cos(θ) = x. (B.12)

Note that we have, for simplicity of notation, omitted the dependence of q̄(Ω) on x, q̄(Ω) = q̄x(Ω) . This
dependence is in fact crucial as it reveals the empirical distribution that will be observed with exponentially
overwhelming probability in the realizations that correspond to an observed x.

The above minimization can be performed using Lagrange multipliers. The function q̄(Ω) that minimizes
the expression

J [q(Ω)] + (1 + c1)

(∫
dΩq(Ω)− 1

)
− c2

(∫
dΩq(Ω)f(Ω)− x

)
. (B.13)
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(the arbitrary multipliers 1+c1 and −c2 simplify some later formulas) is found from basic variational calculus
to obey the following integral equation:

q̄(Ω) =

( ∫
dΩ′
√
q̄(Ω′)

(1 + c1 + c2 cos(θ))
∫
dΩ′

)2

. (B.14)

This equation has to be solved together with the constraints Eqs. (B.12)-(B.11). The LDF I(x) for the
sample speed follows by plugging this result for q̄(Ω) into Eq. (B.10).

One can rewrite Eq. (B.14) as

q̄(Ω) =
r

(1 + c1 − c2 cos(θ))
2 ∫

dΩ
, (B.15)

with
√
r =

∫
dΩ
√
q̄(Ω)√∫
dΩ

. (B.16)

With this definition one can easily check that

Id = 1− r (B.17)

Furthermore, plugging Eq. (B.15) into Eqs. (B.16),(B.11) and (B.12) leads respectively to

Sd(c1, c2) = 1, (B.18)

−r ∂Sd(c1, c2)

∂c1
= 1, (B.19)

r
∂Sd(c1, c2)

∂c2
= x, (B.20)

where

Sd(c1, c2) =

∫ π

0

dθ
gd(θ)

1 + c1 − c2 cos(θ)
. (B.21)

The similarity of this relation with Eq.(58) indicates that c1(c2) follows the same functional relation as

Cd(f). Furthermore, using Eqs.(B.19,B.20) we obtain
dc1
dc2

= x, confirming that c1 can be identified with Cd
and c2 with f .
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